Convergence of the Variable-Elliptic-Vortex Method for Euler Equations
Zhen-Huan Teng; Lung-An Ying; Pingwen Zhang
S AM Journal on Numerical Analysis, Vol. 32, No. 3. (Jun., 1995), pp. 754-774.

Stable URL:
http:/links.jstor.org/sici ?sici=0036-1429%28199506%62932%3A 3%3C754%3A COTV M F%3E2.0.CO%3B2-A

SIAM Journal on Numerical Analysisis currently published by Society for Industrial and Applied Mathematics.

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journalg/siam.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Sun Mar 4 21:59:07 2007


http://links.jstor.org/sici?sici=0036-1429%28199506%2932%3A3%3C754%3ACOTVMF%3E2.0.CO%3B2-A
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/siam.html

SIAM J. NUMER. ANAL. © 1995 Society for Industrial and Applied Mathematics
Vol. 32, No. 3, pp. 754-774, June 1995 004

CONVERGENCE OF THE VARIABLE-ELLIPTIC-VORTEX
METHOD FOR EULER EQUATIONS*

ZHEN-HUAN TENG!, LUNG-AN YING', aNp PINGWEN ZHANGH

Abstract. A general formulation of the variable-elliptic-vortex method for the incompressible
Euler equations is derived, and its consistency, stability and convergence are proved. The main feature
of this method is that not only the centers of the vortex blobs are transported by the induced velocity
field, but also the blobs themselves are rotated and deformed in the elliptic shape according to the
Jacobian matrix of the induced velocity field. The variable-elliptic-vortex method provides a more
flexible and more reasonable approach to mimic physical flows and allows a smooth transition from
vortex blobs to sheets and vice versa. The theoretic analysis indicates that the discretization error
using variable blobs is smaller than that using fixed blobs. Several issues on the practical aspects of
the method are also addressed.
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1. Introduction. Vortex methods based on Lagrangian formulations are effec-
tive methods for the stimulation of incompressible flows (see Chorin [4] and Leonard
[12]). The features of these methods are that the interactions of the numerical vortices
mimic the physical mechanisms in actual fluid flow, vortex methods are automatically
adaptive because the vortex blobs concentrate in the regions of physical interest, and
there are no inherent errors with behavior like the numerical viscosity of Eulerian
difference methods. The basic idea of the vortex methods for the two-dimensional
inviscid case is to approximate the vorticity distribution by a collection of radially
symmetric vortex blobs of fixed shape and to let the centers of the blobs be moved
by the velocity field that is induced by the approximate vorticity distribution. The
convergence of vortex methods was first obtained by Hald [8]; then the results were
improved and different proofs were given by Anderson and Greengard [1], Beale and
Majda [2], [3], and Raviart [13]. All of the results and some new advances on the
initial boundary problem are included in the book Vortex Method by Ying and Zhang
[17].

However, notice that all the standard numerical vortex blobs mentioned above
are assumed to retain a fixed shape for all time, while the actual flow can undergo
substantial distortion. The “nonphysical behavior” of the vortex blobs might reduce
the accuracy of the vortex methods even though it does not interfere with the con-
vergence of vortex methods. The variable-elliptic-vortex method proposed by the first
author of this paper in [15] and [16] can follow the distortion of the actual vortex
blobs and allow a smooth transition from vortex blobs to sheets and vice versa. The
feature of this method is that not only the centers of the blobs are transported by
the induced velocity field, but also the blobs themselves are rotated and deformed
in the elliptic shape according to the Jacobian matrix of the induced velocity field.
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Therefore, the variable-elliptic-vortex method provides a more flexible and more rea-
sonable approach to mimic physical flows and also a more accurate method to stimulate
flows with strong local shear and, in particular, to stimulate boundary layer flow [15],
[18]. Another potential application of the variable-elliptic-vortex method is to capture
small-scale structures of turbulence, since the elliptic-vortex blob might be a basic
model with which to approach turbulence (see Chorin [5], [6]).

In this paper we first derive a general formulation of the variable-elliptic-vortex
method for the two-dimensional Euler equations and then prove its consistency, sta-
bility, and convergence. At last we also discuss several issues on the practical aspects
of the proposed method. The theoretic analysis indicates that the discretization error
and the moment error using variable blobs are smaller than those using fixed blobs,
and the convergence theorem shows that the variable-elliptic-vortex method can ap-
proximate not only the exact particle trajectories of the fluid but also the Jocobian
matrices of the flow map.

Here we would like to mention that the study of this paper is also motivated by
the work of Hou [10}, in which he proved the convergence of a variable-blob vortex
method for the Euler and Navier-Stokes equations under the assumption that the
deformations of the vortex blobs are known and the upper and lower bounds on the
deformations are assumed.

2. Formulation of the variable-elliptic-vortex method. The incompress-
ible two-dimensional Euler equation can be written in the vorticity form

(2.1) w+ (u-V)w=0, w(z,0)=uw(x),
where u is defined by the Biot—Savart law through w

(2.22) wat) = | K@ —yly,t)dy
R2
and K is the Biot—Savart kernel
1
(2.2b) K(z) = —2ﬂ|x|2(—x2,x1).

Let ¢(a,t) be a flow map (characteristic line) that is defined by

d‘ﬁf;t" 9 u(d(e,t),t), ¢(a,0)=a,

where « is the Lagrangian coordinate for the Euler equations. This, along with (2.1)
and (2.2), gives

(2.3)

LOGDD o, w(glan),6) = wofa),
and further
(2.4) d¢(dC:’ _ u(p(a,t),t) = /1;2 K(¢(a,t) — z')w(z',t) da'.

Using the transformation =’ = ¢(a/,t) to (2.4), which satisfies det(V¢(a/,t)) = 1, we
obtain

d¢(doté,t) B /K(¢(a7t) - ¢(a/’t))w(¢(a/’t)’t) da’
¢ = /K(¢(a,t) — ¢(a,t))wo () de’.
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Thus we obtain the equivalent Lagrangian formulation of the Euler equations

(2.5) d¢ (o,1) /K d(a,t) — p(e,t))wo(a) do/,  ¢(e,0) = a,

which is the basis for our definition of the variable-vortex method. To solve (2.5), we

cover the a-plane by nonoverlapping square meshes with mesh length h and centered
at o = jh and let

kj = wo(aj)h27 a; = Jh= (th'a.hh)
p(x) = p(|z]) is called an mth-order blob function if it satisfies

p(x) =0 for |z|>1,
/p(x)day—;l,
R2
/a:ﬂp(a:)da:=0 VB e N? with 1<|8|<m—1,
R?

and ps(a) is defined by
1 o
ps(a) = <50 (5) .

Now let us formulate the variable-vortex method. To begin, we approximate the
initial vorticity woy(a’) by a collection of vortex blobs

(2:6) @o(a) = Z kips(al = o),
and then we write (2.5) in the following form:
d¢’ o) /K B t) — $(a, 1)) (wo(a) — To(c)) da
3ok / [K $(a,t) — (o, 1)) — K (¢(a,t) — p(aj, 1)
(27) — Vé(a;, (0’ - o)) |ps(’ - o) do
+ 30k [ K(9lart) - 9(a5,0) = V(o 0(e’ - ) ps(e’ o) e,
$(a,0) = a

Taking the derivative with respect to « in the above equations, we have
dw ?) / VE ($la ) — d(o’, 1)) (wole!) — Dola)) do - Vol t
+ ij / [VK $lont) — Bl 1)) — VK (p(a,t) — (o, t)
J
(28) — Vo(ag,t)(e’ - aj))|psle’ — ag) do - V(e 1)
+ ij /VK(¢(01’ t) — ¢y, t) — Vé(ay, t)(e — a;))ps(a’ — a;)da’ - V(a,t),
j

v¢(aa O) =E,
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where F is the identity matrix. .

If we set a = «; into (2.7) and (2.8) and drop the first two “truncation error”
terms on the right-hand sides of (2.7) and (2.8), then we obtain a differential system
that defines the variable-elliptic-vortex solution ¢,(t) and /¢, (t) for i € Z? as

o) 20 -3k [ K0 -3,0)- 56,0 - ap)osta’ ~ o) do’,

(2.10) dwt Zk / VK (6,(6)— 8, ()-8, (t) (o' —a;)) ps(0’ — ;) de' (1)

with initial conditions
(2.11) 6:(0) =ih, V;(0) =

Here ¢;(t) is an approximation of ¢(c;,t) and /¢;(t), which is a 2 x 2 matrix, is an
approximation of V¢(a;,t).
We first prove some properties of the variable-elliptic-vortex solution q‘) (t) and
V(). _ —
PROPOSITION 1. If the variable-elliptic-vortex solution ¢,(t) and 7é;(t) fori €
Z? exists, then

(2.12) det(V;(t)) =
Proof. Since K = V+g(x), where g(z) = 5= In|z|, V*+ = (—08,,, s, ), we have
(2.13) tr(VK) = 0,

where tr(a;;)ax2 = a11 + a22. According to the Liouville theorem [14], we find
det (%z(t))
R t — p— —
= det (F8,0) e [ (S ks [ VE @G0 -5, - T8,0)(e’ - )
0 j
x ps(a’ — aj) da') dt
t
= det(F) exp/0 ij /tr(VK(ai(t) - aj(t) — %j (t)(a — aj)))
- .
x ps(a/ — ay) dd dt.

In view of (2.13), we get (2.12). [J
Using the transformation

0 (2.9) and noting that

we find that

eu) Ok [KG0-3,0 - )0 @0 o) @
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The support of ps (V¢;(t) ! - ) with respect to 2’ is

(2.15) Q) = {2/ | 28,() " (Va; (1)) 2T < &%, o € R?)

and has the following properties.
PROPOSITION 2. The shape of Q;(t) defined by (2.15) is an ellipse with conserved
area in time
meas (Q;(t)) = m6%.

Proof. By (2.12) and (2.15) we can easily arrive at the conclusion. 0
In comparison with the standard (fixed) vortex method [4], [12], we present the

governing equations for the fixed vortex solution ¢ (t):

d"” -3k [ B -2)osla = B5(0)

or
(2.16) ddh Zk /K &i(t) ; )—x’)pg(:c')dx’.

We can see that the shape of the blob function ps(-) given by (2.16) is fixed while that
of ps (%j(t)‘l(-)) given by (2.14) can be changed in the elliptic shape. Therefore, we
call (2.9) and (2.10) the variable-elliptic-vortex method.

Now we define a regularized kernel Ks(z; A) by

(2.17a) Ks(z;A) = /K(z — Ad')ps(a’) da’
or, equivalently,

(2.17) Ko(ai 4) = [ Kw)os(4™ (= v) dy
where A = (a;;) is a 2 x 2 matrix with the properties

(2.18) lai;] < C,

(2.19) det A= 1.

Thus the variable-elliptic-vortex method (2.9)—(2.11) can be written as follows:

(2.20) d"bz ZkK Bt — 3,(0:98;(0)), :(0) = o,

dvqﬁ,

(2.21) Zk VK5 (6:(t) — 6,(t); Ve, (1) - Vdi(t), vi(0) =

The vorticity distribution @(z,t) for the variable-elliptic-vortex method is defined by
the sum of variable blobs, centered at ¢;(t) and of the shape ps(V ;)71 (),

(2.22) Zk;,ﬂ& (78,07 (= - 9,))),
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and the velocity field @(x,t) is defined by

or

(2.23) (e, t) =Y kiKs (z—6,(t);V;(t)) -
J

3. Main theorem. We define some discrete norm as follows:
1

P
villyy = (fﬂ > Ivjl”) , 1<p<oo,

jez?
|A] = Hﬁxlaijl, A = (aiz).

Our main result in this paper is the following theorem.

THEOREM 1. Assume the solution of (2.1) is sufficiently smooth, wo has compact
support, and, moreover, that p(z) is an mth-order (m > 2) blob function and p also
has compact support, p € C(R?). Let h < 6% and (a — 1)l > 1. Then the solutions of
(2.20)—(2.23) satisfy

3.1) [[€:(t) = plas, )| ,p < C6?|10g ],
(3.2) [V6:(t) = Vé(as, )|, < C6]logé],
(3.3) ”M@a%ﬂ—u@mhmﬂngcﬁu%ﬂ,
(3.4) [|Va(e:(t),t) — Vu(d(, 1), 1) || i < C6|log |

for 0 <t < T, where ¢(a,t) and u(z,t) are the corresponding exact solutions of the
Euler equations.

In this paper C and C; denote constants that are independent of § and h but
may depend on p, wy, T, and bounds for a finite number of derivatives of the exact
solution ¢, while C' denotes the same kind of constant but does not depend on T' and
¢. In different places C and C’ may stand for different values.

In order to prove the theorem we need a number of technical lemmas.

LEMMA 1. Suppose the components of a matriz A(6) = (ai;(6)) are smooth func-
tions on 0 < 0 < 1 and satisfy (2.18), (2.19). Then the regularized kernel Ks(z; A(6))
has the following properties: :

(3.5) DY DPKs(z A@0))| < Cl6|"181=M for all z,
A

(3.6) |DYDEKs (2 AB))] < ClaA™ 1811 for 2] > Gy,

where B = (B1,02) and v = (y1,72,73,74) are multi-index with |8 = Z?=1 B; and
M =31 v and

(3.7) |DoKs(2; A(9))| < Clé| " %)-i for all z,
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(3.8) |DoKs(z; A(9))| < Cé|2 |‘2 dzZéO)‘ for |z| > Cy6,
(3.9) |DYDPDoKs(z; A(9))] < C|6]72 —i%i for all z and || + 8] =1,

(3.10) |D}DPDyKs(z A(6))] < Clz| ™2 70

dA(6
—)‘ for |z] > C16 and |y| + 6] =1,
where d,;ge) = (difi{;—e)) and DY, is a |7y|-order derivative operator with respect to the
components of A.

Proof. In virtue of the boundedness of A(¢) and A~!(#), we can derive (3.5) and
(3.6) by using a similar argument as given in the proof of Lemma 2 in [2], and therefore

we omit the proof here.
If A(9) = (ai;(0)), then we have

w0 = o) = (2 )

and
~1
Dops (A7 (0)(z ~ ) = Drs (A7 0) (= - ) L@ - ),

where

o (450)

For |z| > C16, (3.8) will imply (3.7), and thus we only need to prove (3.7) for
|z] < C16. We write
(3.11) DoK& z; A0 /K D9p5 1(6)(2’ — y)) dy=I5+1,

where I is the integral over {|y| < 2C16} and I, over {|y| > 2C,6}. For any o > 0,
we can easily estimate K in L'(|y| < o). Since |[K(y)| is a constant times |y|~ L we
have

(3.12) / | K (y)|dy = C’/ r~trdr = Co
lyl<e 0
where C is a universal constant. Also we know
_ dA(6
[Dops (A= (0)(z — )| < C|(= - 9) Dos(A~0)(z ~ v))| \—”]
-1
_ 22—y (9
el ton () [
_o |dA(6)
< 2|7
<o |49

where the last inequality follows from |zDp(z)| < C for any € R?. Using these two
facts, we have
dA(6)

< -2

dA(6)

‘ =06t
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Now we estimate I. On the set {|y| > 2C16}, we have |y — z| > |y| = C16 > C46.
From this and |D%p(z)| < C|z|73, it follows that

|Dops (A71(6)(2 — 1) | < C|(z = 4)Dps (A71(0)(2 ~ v)) | ldA(a ‘
< Clz—y|? d‘;{(f)‘ < Ol - ¢y | 222 ‘

Using the above inequality and the relation K (y) ~ |y|~! we have
dA(6)
do

dA(0)
e |’

[o9)
[Ip] < C’/ r~Y(r — C16) 2rdr
2016

[e o)
sc/ r~2dr éé@’ <C6!
2C16

de

. This completes the proof of (3.7).
We now prove (3.8). In order to estimate (3.11) we denote by I3 and I the
integral (3.11) with K replaced by K and (1 — ¢)K:

DoK&(ZA(e))
/«px ) Dops (A~1(8)(z — v)) dy + /(1—-w>K<y>Dopa(A-1<0><z—y))dy
= I3 + Iy,

where ¢¥(y) = ¥o(|y|/|2|) and ¥o(r) is a smooth function, which satisfies: ¥p(r) = 0
for r < i, Po(r) =1 for r > %, and 0 < 9g < 1. In the first term, the singularity at
y = 0 has been removed. Using the variable substitution 3’ = A~!(#)(z — y) to I3 and
noting det A(f) = 1, we can write

I =+ [ Dafu(s = AGW)K (= = A©)) Juosly) dy
(3.13) — £ [ D[w(z ~ AOW)K (= - AOW)| DeAOwos(y) dy
= i/D Y)K (y)] Do A(B) A~ (60)(z — y)ps (A7 (0) (2 — y)}) dy.
Since [Dy| < Clz|~Y, |DK (y)| < Cly|~*~1" and, on the support of ¥, |y| > |2|/4, we

have

|D($()K®1))] < Cl2] 2.

On the other hand, we have

] [ @) - w)os(a7 )z -y))dyl <05 [ = yllo(4™0)(z - )ldy < 5.
Substituting the above two inequalities into (3.13) we conclude that

Al
(3.14) i13] < colz=2 | 420)

_ It remains to show that for |z| > ¢;6, the above inequality holds for I;. In doing
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so it is enough to establish for |z| > 16,

(3.15) < Célz|? iiﬁl-@‘

do

/ (1 - §)K (y) Dops(A~10)(z — 9)) dy
lyl<|z|/2

By using the facts that |z —y| > |2|/2 > C16/2 for |z| > 16 and |D'p(z)| < Cnl|z|~N
for any integer N, we obtain

- _3|dA
|Daps (A7 (0)(z — )] < €2 | Lo a1 21
3y - dA(0)

< O§N=3[,|—-N+1 ‘

< C6" 04| 70
Using this inequality with N = 4, we can bound the left-hand side of (3.15) by

C(S|z|‘3 U y)|dy < C6|z| 2 dA(9) ‘ .
y|<|z|/2 dé

Thus, we have proved (3.15). Combining (3.14) and (3.15) yields (3.8). The proof of
(3.9) and (3.10) is the same. Therefore Lemma 1 is completed. []
LEMMA 2. Let A(0) satisfy (2.18) and (2.19), and define

tm) _ 1P )+
(3.16) Mz] |yl|réa0)§6m+|ﬁ|+|'y| l{lD D D K&(¢(a1a ) ¢(ajvt)+yaA(0))|}

Then

3 I 61 ifl = 2;
(1,1),2 dA(0)| .
> MY R? < Céllog bl ‘W ;

J
S MEVh? < Cllogs| ‘
J

dA(6) ’

Proof. Using estimates from Lemma 1 and arguing exactly as in the proof of
Lemma 3.2 in [2], we could prove Lemma 2. []
LEMMA 3. For |B| + |y| =1, we have

(3.17) < CllgllLe-

fD}DfKé(z - y; A(9))g(y) dy ;

The proof of this lemma can be found in [10] and therefore is omitted.

4. Consistency. We define
un (Ba, t), Zk Ks(¢p(aist) — d(aj,t); Ve, t)).

Then we obtain the following consistency error estimates.
LEMMA 4 (consistency). Under the assumption of Theorem 1, we have

(4.1) [un (¢(ai, t),t) — u(d(es, t),t)| < C6%|logél,

(4.2) [Vun (¢(as,t),t) — Vu(¢(ai, t),t)| < C5|log 6|
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for0<t<T.
Proof. We decompose the consistency error into three parts as follows:

luh (¢(ai7 t)at) - u(¢(aia t)’ t)l
- ’ijKé (Ble,) = By, 1) Vola,0)) — u(pla, 1), 1)]

= ’Z’“ |5 (9l 1) ~ 6oy, 0 V(e 1)) = Kol a5, )|

4.3
o + ‘ ijlcé(ai,aj,t) - /’Cé(ai,ﬁ, t)‘*’o(ﬁ)dﬂ’
J
+] [ Ko(a . 0an(8)d5 — [ K(8(au,t) ~ 68,00 (8)ds]
= variable-vortex error + discretization error + moment error,
where
(4.4a) Ks(as, B,t) /K #(ai, t) — ¢(d,t)) ps(e’ — B)da’

or, equivalently,

(44b) alaﬂa /K(y Pé 1 (ala ) - y) - /8) dy

In order to estimate the moment error, we write

Ks (e, B, t)wo(B)dB = (/K(¢(ai,t) —¢(a/, 1)) ps(a’ — ﬂ)da') wo(B)dB
R2 R?2
/ / 9(cirt) — 3o, 1)) ps e’ — Bwo(B)de’dB
Rr2 JR2
= [l KGtont = a0 ([ oo’ = Blon(s)ds) ae

By the assumption that p is an mth-order blob function, we can show that (see [13])

< C'IVgiwo (@)L ™.

| pste’ = B)en(8)46 - ofa)

In virtue of compact support of wy, we have

/R2 K (¢(ai t) — ¢(c, 1)) (/ ps(a’ — B)wo(B)dB — wo(a’)> ot

< max l/ ps @ = B)uo(8)df — wo(a')
< O Vwo(@) = 8™

/ K (¢(c, 1) — (e, 1)) |dor
lo’|<R+1

where R is chosen such that wo(z) = 0 for > R. Thus we have
(4.5) |[moment error| < C'6™ < C'6*  (m > 2),

where C’ only depends on the smoothness of wy(a/) .
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For the discretization error, we know from Theorem 3.1 of Raviart [13] that

ijlcé(aiaajat)_/’Cé(ain@at)wo(ﬂ)dﬂ < C'BYlg(ai, - t) L1
J

where
9(ai, B,t) = Ks(au, B, t)wo(B);
and then we have
|discretization error| < C'|| VY, wo(a)| prhté (=Y
(4.6) < C'|[Vewo(@)zr (h/6)'8
<O (fa—1)21),
where C’ only depends on wp(c’) and the blob function p.

Now we turn to the variable-vortex error given by (4.3). This error can split into
two parts:

Zk[Ks Blas,t) = Bla, )i Vlay, 1)) = Ko(aw, a5, 8)] | = 115 + Il

where I5 is the sum over {j||d(cs,t) — ¢(ay,t)| < Ci6}, Is over {j||p(ai,t)
#(aj,t)| > C16}, and the constant Cy will be defined later.
In view of (2.17b) and (4.4b) I5 can be expressed as

Is = z kJ/K(y) [pé (V¢(ajat)_l(¢(ai’t) - ¢(aj’t) - y))

|p(as t)—p(a;,t)|<C16

— ps(67 ($la, 1) ) — )] dy
=Yk K@) [s(98as 0 0lant) - 65 t) )

[¢(cist)—d(a;,t)|<C16

— 5(V9(05, 1) (B, t) — By, 1) — 9) | dy
= Y b [ K@[Des(Vea) ) 0l - dlas,) — )

[p(exi t)—@(cx; t)|<C16
Da (V¢(a;*7t)_1) (aj - a;)(¢(aiat) - ¢(aj,t) - y)] dya

where ¢(aj,t) lies on the segment connecting ¢(ai,t) — y and #(aj,t) and @(as*,t)
lies on the segment connecting ¢(a},t) and ¢(e;,t). Since ¢(aj, ) is located between
#(ai,t) — y and ¢(a;,t) and in the above integral |¢(a;,t) — ¢(ay,t) —y| < C6, we
conclude that

| Do (Vop(a3*,1)71) (af — )| < C6

and
(i, t) — dlaj,t) — yl| Dps (Ve t) " (p(au, t) — dlaj,t) —y))| < C52.

Thus we have

1I3) < ¢! Dy il [ K (3)] dy.
|d(ai t)—dlaz )| <C16 [¢(as,t)—d(a;,t)—y|<C26
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It follows from (3.12) that

IIs] < € > Jwo(ay)|h?
|p(ai,t)—p(ay,t)|<C16

=¢C lwo (97" (y,1)) | dy < C62.
[¢(ai,t)—y|<C16

(4.7)

Similarly, from (2.17a) and (4.4a) Is can be expressed as

Is = k/ (¢, t) — ¢lay, 1) — V(65 1) (o — o))

|p(exi )~ ¢(ay t)|>C16
— K(#(00t) — 9l 1) — Vo, 1) = )| ps(a = ) dot

= k; /DK (04,t) — Py, t) — V( ;-‘*,t)(a' — aj))
|p(ci t)— ¢>(a1,t)|>016
X DaVo(B5,t)(B] — a;)(a’ — aj)ps(@ — ;) d,
where (7 lies on the segment connecting o; and o' and B;* lies on the segment
connecting §; and c;. Since B; is located between a; and o' and in the above integral
lo’ — a;| < 6, we have

|DaV(B;*,1)(8; — a)| < C6.
Thus we have
[ls| < C6 > |k |/IDK (s, t) — $lag, 1) — VOB, ) (o’ — ay))]

[p(ai t)—d(ay,t)|>Cr6
x |(@ — aj)ps (@ — ay)| da’
(o — ay)ps(e’ — ay)| '
<6 ; / ; i dol
M5l | et = étay0) - Vala D@ )P

[¢(as,t)— ¢>(a; )[=C16
If Cy is chosen such that C; > ||V¢| L=, then we have

h2
I S 062 |w0(a3)|
" |¢(ai,t>—¢<za5,t>|zcla (166, 8) = @lay, B = [Vl z=6)?
(4.8) |wo (¢~ (y, 1))
< C8? / : d
|¢(ai,t)—y|>C16 (I¢(es,t) =yl = [Vl L= 6)?

< C§%|log .
Combining (4.7) and (4.8) we obtain the estimate for the variable-vortex error
|variable-vortex error| < C62|log |,

and hence from this and (4.5)—(4.6) we verify (4.1).

The proof of (4.2) is similar to (4.1) and therefore is omitted. 0

Remark. We recall that the moment error and discretization error of the variable-
elliptic-vortex method are uniformly bounded by

IVaiwo(a )L™ + [|Veswo(a)l| 1 (R/6)'S,

which do not depend on the exact solution ¢. Therefore they produce smaller dis-
cretization errors than the fixed-vortex blob method.
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5. Stability and convergence. In this section we will prove a stability lemma
for the variable-vortex method and then prove the main result, Theorem 1. The
following lemma plays a center role in proving the stability lemma.

LEMMA 5. Let U = (ui;) and V = (v;;) be 2 x 2 matrices and satisfy

detU =1, detV =1,
(A1) lujl < C, vyl <C,
|uij — vij| < C6°  for some 0 < s < 1.

Then there exists a matriz function A(0) = (a;;(0)) defined on 0 < 6 <1 such that

det A(0) =1, |[a;;(0)| <C,
(4.2) AQ)=U, AQ)=V,
‘dA(B)

< <6<
d0| ClU-V| foro<6<1

provided that 6 is small enough.
Proof. We construct A(f) as follows. In virtue of detU = 1, there exists a u;j,

such that )

|u’to]0 | 2

In particular, we suppose u12 > 1 s and then we have v12 > L provided that 6 is small
enough. We define

A(9) = ((1 —Q)ui +6viy (1 —0O)usz + 0v12)
) a21 (0) (1 - 0)’11,22 + Bvgo
where
((1 = O)ugy + Ov11)((1 — O)uge + Ovaz) — 1
(1 —O)uiz + 12 ’

It is easy to verify that A(6) satisfies (A.2). 0
LEMMA 6 (stability). Assume

a21(0) =

. it)] <
(5.1) (Bax, max [6,(t) — ¢l t) <6
and
. T, (t) — ) < &
(5.2) 01522}7(", max |v¢,(t) V¢(a,,t)| <& for some0 < s<1/2,

where T, is some constant satisfying 0 < T, <T. Then
[[2(¢:(2),t) — un(d(as, 0), ¢) ||z;:

5.3) - _
< Clli(t) - ¢(aiat)”l£ +Cé||vei(t) - V¢(ai,t)||1,';
and
[Va(ei(t), 1) - V"h (@(a, ), t)[;p -
(5.4)

< 1166) ~ (@, )] +C[F:(0) - V(@i

uniformly for t € [0,T.], where C is independent of T, but depends on T'.
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Proof. We first divide the following stability error into three terms:
E’(Ei(tL t) - uh(¢(ai’ t)1 t)
= Z kK5 (B:() = ;657 (1) — Ks (Bl ) — (e, ); V(e )]

- Zk K5 (6:6) = 8;(0):99;(0)) - Ks (8l t) — 3,0 79,(0) |

" Zk [Ko(0lai,t) = 8,859, (1)) = Ko (#as,t) - $(o 1) 76;(1))]

+Zk [Ké ¢(au t) — (a]a t); ¢](t)) _K6(¢(aiat)"¢(aj’t);v¢(ajat))]

_ vj” 0@ 4 y®.

)+v

By using the mean value theorem we have

ZDKa $aist) — B0, t) + yig; V5 (£)) ejks,

where e; = ¢(a;,t) — ¢j(t) and |y;;| < |¢(a]~,t) - aj(t)l < 6. Furthermore, we write

v? = 37 DK ($(ai,t) = ¢(ay, 1) 7%;(1)) esh; + (",
J

where

r = 37 [DKs(6(as,1) - 9la,1) + 315 9, (1))

J
~ DKs(9las,t) - d(a;,1); 78,(0)) | esh;
Using the mean value theorem again yields

rP1 < 37 3T DK (¢, t) — dla,t) + vl V(1) vis | lesh|
1Bl=2 7

ZM(Z 9§le;wo(a;)|h2,
where |y;;| < |yi;| < 6. Let Mi(]g,o) denote

(5.5) MEO = max max { | D Ks ($(cis t) — plas, ) + 43 (1)) | }

Then by Young’s inequality [7] we obtain
Il < §max { S MEOR,Y Mi‘f"”hz}ueiw(,(ai)nlg.
J i
(2.12) and (5.2) imply that %j(t) satisfies (2.18) and (2.19); thus, applying Lemma 2

o (5.5) gives
(2,0) 2 (2,0) 2
E Mij h E M h
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Therefore

1
(5.6) Il < Clleswo(@i)lliy < Cleilly.

Now we write v@) further into

(57) (2) ZDKé a'u ¢(aj’ );V¢(aj, )) k +lr(2)+r’t(1)’

where
r§2) = Z [DK& (q)(a@, ) ¢(aj1t);%j(t))
— DEs((as,) — #lay, 1); V(0 1) [esks:

Following Lemma 5 we can define a matrix function A;(¢) on (0 < @ < 1) such that
A;(0) = Vo(aj,t) and A;(1) = %j(t), and then by the mean value theorem we can
write

=Y " DyDKs((ci, t) — $(ay, 1); A;(60)) esks,

j
where 0 < 8y < 1. Thus we obtain
2 2,1
rP | < 3 M lejwo(ay) IR,
J
where

M2 = = max {|D0D'BK6 (¢(aist) = p(aj,t); A;(60)) I}

1] |
Lemma 5 and assumption (5.2) imply that A;(6) satisfies (2.18) and (2.19); thus, by
Lemma 2 we have

ZM(“)h2<C|1 5|‘dA (60)

< Cllogb||[Ve,(t) — Vo(aj,t)|

< Cé%|logéd| < C.
The symmetry of M;; with respect to 4 and j gives
Y M@V <.
i
Therefore
2 2,1 2,1
(58)  [[rPlly < max {3 MEVR ST MEVR Hleswola)ly < Clesllip-
7 J
(2)

In order to complete the estimate on v,

| 32 DK (9t 1) ~ (e 1); Vg, 1) egena)h?
J

, we need to bound

I

In fact, this is a discrete counterpart of the kind of integration given in the left-hand
side of (3.17). Therefore we can use the inequality (3.17) and a similar argument as
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given in the proof of the stability lemma by Beale and Majda [2] to show that
IS DKo (6(0s,6) = dlag, ) V(. 1)) ejen(a;)h?
J

(5.9) 4
< Clleiwo(aa)lliz < Cllesllsz -
Combining (5.6)—(5.9), we conclude that

2
[0l < Cllesllp-
Now we turn to v Usmg the mean value theorem yields

oM = Z k; [Ké (:(t) — ;(£); 7, (1)) — Ks (e, t) — 6;(1); V;(t)) ]
= ZDKg az, ¢](t) + yl]7v¢g( )) J
= ZD!@ (#(ei, t) — dlay,t) +yiz3 V5 (t)) ek,

where |y;;| < |¢(a;,t) — ¢j (t)| and y;; = yi; + d(a, t) — Ej(t). The assumption (5.1)
implies that

(5.10) luiy| < 26.
Using a similar argument as above we can show

(5.11) (1) ZDK‘S d(ay,t) — d(aj,t); Vo(ay,t )e]wo(aj )h? +s(1) + sgz)’

where
=3 [DKs (90, ) = dla,t) + 413 98(1)
(5.12) — DK (¢(u, t) — ¢(j, £); V5 (1)) ]ejkj
= Y Y " DPKs (d(ei, t) — dlay,t) +yiy; V(1)) vizesks
18l=2 j
and
. ng) = Z [DKa (P, t) — #(ay, t);%j(t))
(5.13) J

- DK6 (¢(ai7 t) - ¢’(aj1 t)’ v¢(a11 t))] e.]k]
It follows from (5.10) and (5.12) that
|50 < 063" MGV esikjl,
J

where Mi(f’o) is defined by (3.16) with co = 2 and A(f) = V;(t). By Lemma 2 and
Young’s inequality we deduce that

IE 1>||”, < Cémax { ZM,2 2,3 Mi(f’o)h2}||eiwo(ai)||l£ < Clleill-
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Following Lemma 5 we can write (5.13) as follows
s? = Y DoDKs(d(ci,t) — ¢(aj, t); A;(6o))esk;,
J
where 0 < 6y < 1, 4;(0) = V¢(ay,t), and A;(1) = —v—aj(t). Similarly, we can obtain
s < 37 MG Vejkl;
J
and then
) 2,
15711,y < Cmaxc{ 3° MRS ME D2 leiwo( i,
j i

where Mi(jz’l) is defined by (3.16) with A(f) = A;(f). Lemma 2 and Lemma 5 show
that

[7] -
M ieslly < Cllog 81 [58,(6) - Vo(az,0) lesliz
< 5*|log llleslly < Cleallp-

151 < Chogsl| 24
h

In order to finish the estimate on vz(l)

right-hand side of (5.11) as follows:

we need to bound the first term on the

< Cllelly-

(5.14) ||ZDK6 #(ai,1) = Blag, 1) Volag, ) eswn(e)h

In fact, this is a discrete counterpart of the inequality in (3.17). Therefore we can use
the inequality (3.17) and the same argument as given by Beale and Majda in [2] to
show that (5.14) is valid. Thus, it follows from (5.11) that

||vfl)||l£ < Clleillsz-

Finally we estimate v By the mean value theorem and Lemma 5 we can define
a matrix function A;(6) such that A4;(0) = V¢(aj,t), A;(1) = Vé,(t), and for some
0<by<1

v = Zk K5 (9l0s,t) = 60, 1) 78;(0) = Ko ($(a,t) = $lag, ) V(. )]
—ZDOK& au ¢(a]7 )v 1(00))k1

By the chain rule we have

DyKs(¢(ci, ) — dla, t); A(B0)) = DaKs (d(cxi,t) — plaj, 1); 4 (90))dAdg’°);
and then we write
(5.15) o = 3" k;DaKs(#(ai,t) — $(ay, t); V(e ],t))dA 3(60) +r®),

J
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where

SR Dok [DAKa (p(aist) = plaj, t); A;j(60))

J

— DaKs(¢(ai, t) — ¢(aj,t); Vo(ay, t))] dAélg?OO)'

Applying the mean value theorem and Lemma 5 again we have

NO Zk DyDaKs ($(as,t) — plexy,1); Ay o)) =2 dA; (00)

where A4;(0) = V¢(a;,t), A;(1) = A;(8o), and 0 < fp < 1. We denote
MY = max {’DODV Ks ( Play,t) — (aj,t);/ij(éo))l},

ij
and then by Lemma 2 we have
> MPUR? < Csllo 5|‘ 0")‘ < O8] log || A;(1) — 4;(0)]
j
= C6|log 6]|A;(60) — Vp(aj, t)| < C8|log | |V;(t) — Ve(a, )|
< C8'*o|log | < C.

Substituting the above inequality into r ylelds

(3)”1” < C” ZM(Z 1)dA 90 k;

th
< C'max { Z Mi(jz’l)hz, Z Mi(jz'l)hz} H %_é!;f’lwo(ai)

dA; (90)

I

(5.16)

dA; 0
0) o(ai)

<Cs ||V¢>¢(t) -Vé ai,t)”lg = C‘SIlEi”lﬁ»

C5”

< 05||

U8

where E; = WJ( ) — Vé(aj,t).

To complete the estimate on v( )

, we need to bound

o ”Zk D Ks(p(ai,t) — p(aj,t); Vo(ay,t)) dAél(fO)

h

- | > / DK ((ast) — (e, 1) — T8, (£)(a’ — ay))

dA; (0
< (o = ag)oale ) dod P00,

®w
By the Calderon—Zygmund inequality we arrive at

dA;(6o)
a9 wo (az) !

dA;(6o) ”
dg e

I <Cll(e = aj)ps(a’ — aj)] L1
dA; 00

h

(5.17)

c&H < 05|| < G| Eills.

o(ai) i
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Then combining (5.15)—(5.17), we have
3
o], < CBIE; 1l

This completes the proof of (5.3). Similarly, we can prove (5.4), and the details of the

proof are omitted here. ] _ _
Proof of Theorem 1. Let e;(t) = ¢;(t) — ¢p(a, t) and E;j(t) = v;(t) — Vé(a, t).
Then we have

de;(t) = [ﬂ (6:(t), t) — u(B(eu, 1), )] dt,
dE;(t) = [vn (:(0),1) Vi (t) — Vu(plas, ), £) Vo(a, t)] dt.

The consistency and stability lemmas imply that

|| de;it) ”lﬁ <C [”ez’(t)”lg + 8|\ Ei(t) ||z + 6% log 5|] . e(0) =0,

and

” dE;(t)

1
i, <€ 5l + 15Oy +elrogs] B0 =0

I

Thus we have

d(]|e; » + 6| E; »
(518) (“6 (t)”lh ;’t ” (t)”lh) S C I:(”ez(t)”lﬁ -I-(SIIEz(t)”lz) +62|10g6|] ,

les(O) 1z + 811 E:(0) 1z = 0.

Applying the Gronwall inequality to (5.18), we obtain
(5.19) lles@®lliz + 8l E:(t)]lip < C&2|log 6|
for 0 <t < T, where C is independent of T,. Thus we have

max es(t)] < hF es(9)ly < Oh~36%)log 8] < 2

and

max|Bi(8) < b3 | Ex(t)ly < Chollogd] < 56%, 0<s<,
for t < T.. By choosing p, m, | large enough and h small enough, on account of
h = 6% with a > 1, we can see that ||e;(t)|;z> hardly reach & and ||E;(t)||ize hardly
reach 6° (0 < s < 1/2). Hence we conclude that T, =T and (5.19) holds for 0 < t < T..
Thus (3.1) and (3.2) have been proved.
The convergence of discrete velocity follows from

de;(t)

7 B0 — u(g(e0,0) ] < |22 i

c [(ueia)nlg + 81| Es(t)lly ) + &% og 5]
< C8?|logé|.
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Finally, we prove (3.4). From (2.3), (2.20), and (2.22) it follows that

% = Vu(d(ai,t),t) - Vé(as, t),
W) _ 97 G,00.1) - T

and hence
Vi (3,(0), 1) ~ V(@ 1),1) = S V(e 1)+ Volas ) - T6,(0).

By using (5.18), (3.2), and the above inequality we conclude (3.4). This completes the
proof of Theorem 1. [J

Remark. The error constants C' in the stability lemma depend on 7" and ¢; hence
the error constants C in Theorem 1 also depend on them even though the constants
C' in moment error and discretization error are independent of them.

dv¢ (t) (

6. Conclusion. We have presented a general formulation of the variable-elliptic-
vortex method and proved its consistency, stability, and convergence. Now we turn to
the practical aspects of the proposed method and make the following comments.

1. The extension from circular blobs to elliptic blobs can yield a more efficient
vortex representation and therefore reduce the number of vortex blobs in calculations.
This is justified by numerical experiments with the fixed-elliptic-vortex method [15]
and with the variable-elliptic-vortex method [18], where the elliptic blobs are used to
mimic the flow over a flat-plate at different Reynolds numbers.

2. If p is chosen to be the step function

o) = { 1/m if |z| <1,

6.1
(6.1) 0 if |z| > 1,

then the integral Ks(z; A) (VKs(z; A) as well) has an explicit closed-form expression
(see [15], [16]), which is important in designing an effective algorithm for (2.20) and
(2.21). A full discretization scheme is designed in [16].

Note that the blob function (6.1) is nonsmooth, which does not comply with the
assumption on p stated in Theorem 1, but the convergence theorem may still follow
from the theoretical analysis given in this paper and the techniques used in [9].

3. In order to make the initial vorticity approximation (2.6) more accurate we
may let each blob function have its own shape, i.e., @Wo(¢') is defined by

(6.2a) wo(e') = 3 kipd (o — o),
J

where

(6.2b) 2 (@) = ps (B} 'a)

with suitably chosen 2 x 2 matrices B; satisfying det B; = 1. It is easy to see that the
support of p(J )( -) is an ellipse. We can simply replace ps(a’ — ;) in (2.9) and (2.10)
by p(] )(a — a;) to adapt the method, and all the theoretical results in this paper are
also valid for the adapted method.

4. This method can easily be used to approximate a high Reynolds number flow
by incorporating a random-walk algorithm to mimic the viscosity effect and a vortex-
generating algorithm to maintain the no-slip boundary condition (see [4] and [15]).
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5. Kida [11] solved the motion of an elliptic vortex of uniform vorticity in a
uniform shear flow exactly and showed that when the strain is very strong, the vortex
is always elongated infinitely in the direction of the strain. This may also happen
to the numerical elliptic-vortex blobs. In order to preserve numerical stability and
accuracy, Zhu [18] suggested taking the following steps: stop deforming a blob if its
minor axis is smaller than a given small number and split a blob if its major axis is
larger than a given large number.

Here we would like to point out that Zhu [18] has studied the practical aspect
of this concept in depth. More practical applications and numerical calculations are
needed to verify the capabilities and limitations of the variable-vortex method. We
will report this matter elsewhere.
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