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FULLY DISCRETE CONVERGENCE ESTIMATES FOR VORTEX 
METHODS IN BOUNDED DOMAINS* 

YING LUNG-ANt AND ZHANG PING-WENt 

Abstract. In this paper the authors study vortex method for 2-dimensionsal Euler equations 
of incompressible flow in bounded domains. To approximate the initial vortex field by a sum of vortex 
blobs with arbitrary high accuracy, this field is extended smoothly to a small neighborhood of the 
boundary. And the computation is carried out in the extended domain. To construct the velocity 
field from vorticity, a second-order isoparametric finite element method is applied, and to solve the 
characteristic equations, the explicit Euler's scheme is considered. Optimal error bounds for this fully 
discrete scheme are obtained. 

Key words. Euler equation, vortex method, convergence, initial-boundary value problem, 
finite element method, Euler's scheme 
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1. Introduction. Vortex methods are efficient numerical techniques for simulat- 
ing incompressible flow, especially flow with high Reynord's number. The mathemati- 
cal foundation of the vortex methods has been studied by many authors. By virtue of 
a viscous splitting approach, the equations are decomposed into Euler equations and 
pure diffusion equations. Thus the study of vortex methods for Euler equations is an 
important part in the theory, and the most fruitful results have been obtained in this 
direction. 

The convergence of vortex methods for the initial value problems of Euler equa- 
tions was first obtained by Hald [6]. Then the results were improved and different 
proofs were given by several authors [2], [3], [4], [7]. Recently, the first author of this 
paper considered the convergence problem for two-dimensional bounded domains [10] 
and obtained optimal error estimates for a semidiscretization scheme, where it was 
assumed that the equations for stream functions and the system of ordinary differ- 
ential equations for partical trajectories were solved exactly. In [10] a finite element 
approximation for the equations for the stream function was also considered and con- 
vergence results were given, but constants in the error bounds depended on the vortex 
blob parameters. 

One purpose of this paper is to prove that the rate of convergence of the finite 
element schemes can be independent of the vortex blob parameters, provided second- 
order isoparametric finite elements are used instead of linear ones. The other purpose 
is to give error estimates for fully discretized two-dimensional vortex methods for 
initial-boundary value problems of Euler equations. 

The paper is organized as follows. In ?2, we recall a result in [10]. In ?3, we prove 
an error estimate for the combined effect of vortex discretization and finite element 
approximation. In ?4 we prove the error estimate for full discretization problems. 

2. A convergence theorem for semidiscretization. Let Q C 1R2 be a convex 
and bounded domain, whose boundary &Q is sufficiently smooth. Denote by x = 
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(XI, x2) the points in R2. We consider the following initial-boundary value problems 

(9u 1 
(2.1) , + (u * V)u + p V r = f, at ~~p 
(2.2) V* u = 0, 
(2.3) u * n IxEaQ= 0, 

(2.4) u It=o= uo, 

where u = (ul, u2) stands for velocity, 7r stands for pressure, f = (fl, f2) is the external 
force, the density p is a positive constant, n is the unit outward normal vector along 
&Q, and the initial data uo satisfies 

V uo = 0, uo n lo= 0. 

If f, uo are sufficiently smooth, then the solutions u and 7r are also sufficiently smooth 
on the domain Q x [0, T], where T is an arbitrary positive constant. 

Let w = - V Au, wo = - V Auo, and 0b be the stream function corresponding to 
u. Then (2.1)-(2.4) is equivalent to 

(2.5) , + u* VW -7 Af F, 

(2.6) - A = w,u = V A, 

(2.7) 'p IxEaQ= 0, 
(2.8) w It=o0 wo. 

We extend functions uo and f, still denoted by uo and f, such that they are 
sufficiently smooth on R2 and R2 x [0, T], respectively, and the supports of them are 
compact. Let c be any positive constant. We define 

Qc = {x, dist(x,IQ) < c}. 

The "blob function" is defined as follows, ((x) is a cutoff function, such that 0 
for ixl > 1 and 

(X) =- 2(_) 

With that notation, the semidiscretization scheme for (2.5)-(2.8) is 

(2.9) W (x, t) = a (t) ( (x - XjE (t)), 

davE 
(2.10) = h2 F (XjE (t), t), a E (O) aj, 

dt , 

dXE (2.11) ~~~~dXj = 9E (XjE (t),I t), IXIE (O) =Xj ) (2.11) ~~~~~dt 
(2.12) -A /E = wE, /E lxcaQ= 0, 

(2.13) =VA, 

M 

(2.14) ge(x, t) = Z aiue(x(i), t), 
i=l1 
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where j (jl, j2),Xj = (ji hj2h), aj = h2Wo(Xj), and J1 = {j,Xj E Qd}t if x E Q, 
then x(i) = x, otherwise 

x(i) = (i + 1)Y-ix, 

where Y is the nearest point on &Q to x; the terms ai are the solutions of the system 

M 

Z,(-i)jai=1 j O, ... I M; 

i=l1 

and E > 0, h > 0, d > 0 are mesh parameters. Equations (2.14) makes sense only if x(i) 
belongs to Q, but it is proved in [10] that this fact is true provided d is small enough. 
In this scheme the function g6 plays the role of velocity, which is equal to ue in the 
domain and interpolated to the exterior part of Q. This is a natural way to deal with 
blobs near the boundary. Using g9 and a "slightly larger" domain Qd in computation, 
all blobs move according to a uniform formula (2.11). 

Now we state the convergence results. The notation Wm P(Q) for conventional 
Sobolev spaces and 11 l1m,p for the norms of them are applied throughout this paper. 
Let Xj (t) be characteristic curves that satisfy 

dX3(t) = U(Xj(t),t),X3(0) = Xj. 
dt 

As a rule, we admit the value of u as an extension if Xj(t)Q. Then set 

J2 = {J;Xj EQcoF nlQd}, 

( ~~~~~~~1/p 
IIe(t)jlp = h2 E IXj(t) - XI(t)IPI , 1 p < o0, 

K JEJ2 9 
where Co is a positive constant to be determined. The following theorem is proved in 
[10]. 

THEOREM 1. If we have m > 1, k > 2, such that ( C Wm+l (I R2) and 

((x)dx = 1, 2 

(2.15) jx ((x)dx = 0 VeCN2 with1<Ial?:k-1 
2 

and if there is a constant C, such that 

(2.16) C~-iea < h < C1 

where a > 1 + k- and if the constant in expression (2.14), AM > k, then for any 
P c [1,00) , there are positive constants do, Co, Cl, and C2 such that if d < do, then 
the solution of problem (2.9)-(2.14) satisfy 

(2.17) i Vue(x,t)l < C, x C, 

(2.18) llu - uFllo,p,? + IIe(t)jjp < C2Ek 

forte [0,T]. 
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For our later use, we need the following. 
COROLLARY. Under the assumption of Theorem 1, let C3 > 0 be given. Then 

there is a constant C4, such that 

(2.19) 11WE (-, t)jjk-1,p,Q,,3? -_ C4 t C [O, T]- 

Proof. It was proved in [10] that the points Xj out of Qc,, do not contribute to 
the value of wE in Q. Now we replace Co by Co + C3. Then the points Xj do not 
contribute to the value of wE in QCe. 

By the proof of Lemmas 2, 3, and 4 of [10], 
IW-WeI i 1 P,Qc36 

2 h 
{ ( ~h) r hm hN 

<C ek+ em+1- N+1-1 

(2.20) 

I1+ I1 le(t) I l0ooh Ile(t)j1p + - lle (s)pjlpds, 

where r C [1, 2], p + = 1 N > 3, C is a positive constant, and 

IIe(t)II c,o = max IXj (t) - XJ(t) . 

By (2.31) of [10], we have 

Ile(t)lloo, <:- Ile(t)j1p, 
hpt 

for any p' C [1, oo). We take I = k, p' > 4, N > m. Then we get the upper bound of 
the right-hand side of (2.20). a 

3. Further discretization by finite element methods. Let C denote a 
generic constant independent of mesh parameters. For simplicity we only consider 
quadratic triangular isoparametric elements of Lagrange type here. Let a triangle K 
be the reference element, and the set of six nodes consists of three vertices and three 
midpoints of the edges. Denote by FK the isoparametric mapping from K to each ele- 
ment K. If K is an interior one, then we take FK affine. If K is a "boundary" element, 
the nodes of which is shown in Fig. 3.1 where a12,K is the midpoint of al,Ka2,K, the 
node a12,K belongs to OQ, and ail2,Kal2,K is perpendicular to al,Ka2,K. The nodes 
a13,K and a23,K are simply midpoints. It is known that FK is uniquely determined by 
the nodes. 

Let 76 = {K} and Q = UKEK, where 6 is the size of the largest diameter of 
elements. We assume that the partition is regular and quasiuniform. Then we define 
the finite element space 

V6 = {v c Ho(Q6); VIK C P2(K) o FK1}X 

where P2 (K) is the space of all polynomials of degree < 2 and Q6 is the interior of 

. We consider in this section the following scheme: 

(3.1) w6(x, t) = E oj(t)(?(x - X (t)), 
jJCJ 

dac~ (t)_ 
(3.2) 

3 
h2F(X- (t),t), M(0) = aj, 

dX (t) 
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a12,K 

al,K a2,K 

\ ~~~a12,K/ 

a13,K / 23,K 

a3,K 

FIG. 3.1 

?/6 E V6, and 

(3.4) j V6 Vvdx = j w6vdx Vv E V61 

(3.5) u6=VA061 

where 
M 

96(x, t) = Zaiu6(xM),t). 

i=l1 

As before = x if x E Q, and otherwise 

x-i = (i + 1)Y6 -ix, 

where Y6 is the nearest point on &Q6 to x. Y6 is not necessary unique; we pick up an 

arbitrary one. Now g6 is no longer continuous, so (3.3) is satisfied in a generalized 
sense; see [10]. Here (3.4) and (3.5) are just the definition of a weak finite element 
solution to (2.12). Since Q is arbitrary, spacial discretization is needed in solving 
(2.12). We will prove convergence and get error estimates for it. 

Since Q6 ? Q we need to extend some functions from Q to the whole space R2. 

Since &Q is sufficiently smooth, there exists a strong m-extension operator E on Q 
such that [1] 

(3.6) J|EO11k,p,R2 ? C /JJk,p,Q, 
VO < k < m, I < p < O, }CWm,P(Q) 

In this section, we take m large enough, and extend the stream function ?6, still 
denoted by 6, then set u6 and w6 to be the corresponding velocity and vorticity, all 
of them now defined on R2 X [0, T]. 

We are now in a position to estimate u6 - u6 and X,"(t) - X6(t). We define 

lIe(t)Ilp = (h2 , IXff(t) - Xj(t)lP) 
\\ j CJi 

lIe(t) IKoo = max IXjE(t) - X (t)I. 
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LEMMA 1. Under the assumptions of Theorem 1, 

2 

-(., t )- 6 Q(,t) Il 1,P Q6 < C82 + C{ (I + -IIe(t)IIo0) IIe(t)IIP 

+ j lie(s) IIpds}, 

provided 8 < C3E, where p > 2, 1 + I = 1. q 
Proof. We define two operators: If O/ corresponds to wE on the basis of (2.12), 

then we define ?/ w = LX-lw, likewise (3.4) defines an operator ?/ l = L\iw6. Then 

W f ( Eaj (t) E ( Xj t) )) tb ( Ea2(t)( ( ' - X6 (t) )) 

- (1 + 02 + 03, 

on the domain ?K, where 

01 = t ( E ~a ()E'- Xf (t)) - (E(- XjE (t))) 

72 = A-1 ( 3 (aj(t) - aj(t))((- -XI(t)) 

03 = al1_t 1 j(t)G(,- - 
Xj6(W-) 

Proceeding in a manner similar to [10], we have 

(3.8) IqSi (, t) <1,p,Q ? C (I + - i|e(t) I|00 le(t) IIP, 

(3.9) II2 (,t) II l,p,Q ? IIe(s)Ilpds, 

and 

(3.10) IIWE (Q t) - W6(. t)IIi,P,QC3E ? 2{ (1 + E lIe(t)IIoo) IIe(t)IIp 

+ jIIe(s)Ilpds}. 

Inequality (3.10) and the Corollary of Theorem 1 yield 

(3.11) 1 (,'t)IIIt1PQC3E- ?0+ E2 {( + ElII(t)11?) 11 (tIIP 

+j lie(s)Ilpds}. 

To estimate 03, we define a function ?1 that solves 

-zX41' == W, x C Q, ?1 'lxca= 0. 
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Then function 06 determined by (3.4) is the finite element approximation of 1. 
An abstract error estimate of the isoparametric finite element method shows (see 
[5, Thm. 4.4.1]) 

1hi 1-6 PH6 ?7Q ' C ( inf vII I- V1,Q? 
'V CV6 

(3.12) + I f Oi 7i vvdx - fw w6vdxl 

vc v6 I IVII i,'7? 
v=O 

Integrating by parts and using the Holder inequality gives 

IJ V11 Vvdx - J w6vdx 

- |-J (/A\1 + w6)vdx 

= j (A/w1 + w6)vdx 

2 

? IIL\4'1 + W6110,6,Q6\QIIVIIO,6,Q-\y (meas(Q6 \ Q)) 3. 

It will be shown in the Appendix that 

meas(Q6 \ Q) <<C63. 

This fact and the conclusion of the embedding thorem, H1 (I ) - L6(Q6), shows that 
the second term of the right-hand side of (3.12) is bounded by 

C62 ( w6 16 1Q+ 11b 113,1-?) 
? C82 w 1 

An interpolation error estimates theorem [5, Thm. 4.3.4] gives the same bound for the 
first term; therefore, 

1kbi - O111,Q6 < C02 11wH11,,Q 36. 

By the L?? estimate [8], we have 

1kbi - 0b111,C,-Q6 < C62IIw8IIi,l,ooS03e. 

Then the Stampachia interpolation inequality gives 

1kbi - O/)18 1,p,Q6 < C02 11W111'p'QC3E' 

that is, 

(3.13) 110311 ,p,Q6 < C02 1 1 i,P,Cc36 - 

Finally (3.8), (3.9), (3.13), and (3.11) yield (3.7). [1 
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LEMMA 2. Under the assumptions of Theorem 1 with k > 3, 

(3.14) IIe(t) lIp ?082 ? of (i + - Ile(s) IIo + ? 

{62+ (J ? IIe(s)IIo) IIe(s)II + IIe(t)IIpdt ds 

provided 6 < C36, and d is small enough, where p > 2, 1 + 1. q 
Proof. We define 

M 

gEb (XI t) = aius (x(i) I t). 
i=l1 

Then taking (2.11) and (3.3) into account, we have 

dXff(t) dXt- = I + 12, XF (O) - X6(0) 0, dt dt 

where 

I, = ge (Xf (t), t) - g6 (X6 (t), t), 

12 = gE6 (Xf (t), t) - g6 (X (t) I t) 

By (2.17) and the definitions of functions g6 and g96, we obtain 

|I, < cl (Xj- (t))(i)(Xj6(t))(i I 

< CI(XAeT(t))(2) -(X6(t)) + cI(X6(t)) (x6(t)) 

Since Q is convex, the first term is bounded by CIXff(t) - X6(t)I,and we will prove in 
the Appendix that the second term is bounded by C02; therefore, 

(3.15) II? 1X;(t) - X: (t) I + C62. 

Now we estimate 12, denoted by K(i), the element to which the point (X,(t))(i) 
belongs. Then 

M 

121 < C j IIUe(&, t) - u'(., t)I 00oK(t) 

M 

= C I?/,e(,t) -V6(-, t)I ,o() 
i=l 

Let I: C(K) - P2(k)oFK1 be the interpolation operator associated with the nodes. 
We have 

1I1b(.1 t) - 
0b(6Q t)I1?,I,K(?) < 1( t) - ( t)I1,oo,K() + I01e(-, t) - 1(1,ot)I K() 3 
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By the interpolation estimate for isoparametric elements and the Corollary of Theorem 
1, we obtain 

kb(, t) - I1(, 
t)1,00 K(') < C2 HI( t) 3,oo,KW 

3 3 

< C6 2 
IOF(- t) 13,00, Q 

< C02. 

Using the inverse inequality gives 

IIW (, t) ? C8 If (-,t) - I (-, t)H1,p K(') 

Therefore 
M 

1121 < C02 + 6-Z 2I4'( ,t)- 

In conjunction with (3.15), this gives 

dX,(t) _ dX(t) 8C62 + C|X6(t)- X(t)l 
dt dit 

(3.16) M 

+CE PII ( ,t-E t) l,lp,K(") 
i=l1 

Before summing up (3.16) with respect to j, we should estimate the number of points 

(Xj6(t))( which lie in one single element K. First of all, let us estimate card {j c 
Ji; Xj (t) c K}. We define 

Bj = X C R2; (ii2 h < xi < (ii + 2) h'i = 1,2} 

Consider the initial value problem 

dt 9 (S,t), Ylt=o = yo C Bj 

and define Bj(t) {y(t); for all yo C Bj}. It is easy to see that 

measBj < CmeasBff(t), diamBjF(t) < Ch. 

Because the distance between XV(t) and X;F(t) is less than Ile(t)ll0, if X>(t) C K, 
then Bj(t) lies in a disk with center in K and radius 6 + |1e(t)IIoo + Ch. Since Bj(t) 
do not overlap each other, we have 

(3.17) card{j c Ji; X8 (t) c K} C < r(8 ? le(t$,0 ? Oh) 

Secondly, let us estimate card{j C Ji; (Xj6(t))6i c K, Xj (t) Q8}. If (Xj(t))6i C K, 
then similar to (3.15) we have 

- (X< (t))(2)l ? X;(t) - Xj (t)+ C? 2. 
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Let xo be any point on K n Q. Then 

(Xj (t)) (i) - xo < 6 + I?Xj (t) - X8(t)I + C02. 

If d is small enough, then the correspodence x -> x(i) is one-to-one. Let yo , Q and 
xo = (yo)(i). Then 

IX; (t) - yol < C(8 + IX;s(t) - X6(t)j + 62). 

By the same argument we obtain an analogue of (3.17): 

(3.18) card{j c Ji; (X6(t)) () C K,Xj(t) (t) < C (8 ? Ie(t)Io ? h)2 

Inequalities (3.16)-(3.18) imply that 

lle(t)Hlp <?082 ? cf |||e(t)||pds + ChP 

(3.19) 2 ft (8 II~e(t)I0?i) 8 P6_IIpe(.,S)- 
*/(h+hletlo+ 1) -P I+( s) S)( II jp Q6 ds. 

Using the interpolation theorem and Lemma 1, we obtain 

(3.20) { ( E )I(;)} (3.20) ?08 
C2?0 

{ (I ? 
?He(s)Ho0) I He(s)IIp 

? j 
le(s)IIpdT} 

+ C0210ie(, S)I3'p'Q6 

By the Corollary of Theorem 1, I 06 S)13pQ6 is bounded, thus substituting (3.20) 
into (3.19) gives (3.14). O 

THEOREM 2. If the assumptions of Theorem 1 hold with k > 3 and do is small 
enough, and if 6 < C3E and there are constants b > 0 and C5 > 0 such that 

C0-18b < h < C56, 

then 

(3.21) 
p6e(t)Hp? <u (C,t) -<u( t)HopQe ? C02 

for anyp C [1,oo). 
Proof. It will suffice to prove the conclusion for large number p. If jle(t) IP < C02 

then the factor in (3.14), 

1+ h e(s)llO -< I+ Ie(s) p+h 1? 6 1e(s) 11 o ? ?1? 8h2 8 

<0 + C1 P + C5 

< C, 
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provided 1 - 2b > 0 Since 6 < C3E, the factor (1 + He(t) 11) q is bounded too. We 
p 

have lle(O)llp = 0. Thus by using Gronwall inequality and a continuous argument it 
is easy to prove that IIe(t)j p < C02 holds for t C [0,T]. Finally the proof of (3.21) is 
complete by using Lemma 1. 0 

4. Full discretization. For simplicity we assume f = 0 in this section. The 
forward Euler scheme is applied to the ordinary differential equations (3.3). The full 
discretization scheme for solving uAt, IwAt, and X At is the following: 

J 

(4.1) wAt(x, n A t) aj ( (x- Xj (nA t)), 
jEJ1 

(4.2) Xj ((n + 1) A t) =Xt (n A t) + AtgAt(XAt (n A t), n A t), 

(4.3) XJAt(O) 

/At(n A t) c V6, and 

(4.4) j Vb't . Vvdx= wAtvdx Vv C V6, 

(4.5) uAt(n A t) = V A OAt(n A t), 

where At is the length of time step, and 

M 

gAt (X, t) =ajuAt (x(i),I t) . 
i=l1 

Now we estimate the error Xj- XAt and u- uAt. Let 

\ iEJ~~3 
llenl10(= Z Xjt(rt At)-Xj(n A t)|, 

jEJ3 
- )omax Xjt (niAt) -Xj(n At)l, 

jEJ3 

where 
J3 {j; Xi C Qdn 2Co(e+8+At)} 

LEMMA 3. There exists a constant C6 such that 

dX 
(4.6) IX((n + I1)A t) -X(n t) -At dt (n t)l < C6 A t2. 

Proof. Since u is sufficiently smooth, (4.6) obviously follows. O 
LEMMA 4. Under the assumptions of Theorem 1, 

( I2 jEJ3 A((Xj (n / t))i n t) - u((Xj(n A t))i n A t)IP) 
jEJ3 

(4.7) 
< C(Ek + 62 + 1enIlp), 
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where p > 2. 
Proof. We have 

us(XjA(nA t))(i),n A t) -u((Xj(n A t))(i) n A t)~ 

? (u((Xij(n A t))(i), nA t) - u((Xj(n A t))(i, n A t)l 

+ ue((Xj(n A t))(i, n A t) - u((Xj(n A t))(i), n A t)| 

+ u ((Xj(n A t))(), n A t) - u((Xj(n A t))(i), n A t). 

By (2.17) and the Appendix, we get 

uE((XjAt(n A t))(i, n A t) - ue((Xj(n A t))(i), n A t) 

< Ci I (X At (n A t)) - (Xj (n A t))(i| 

< Cl (I (XjAt (n A t))(i - (XjAt (n A t)) () 

+ I(XjAt(n A t))() - (Xj(n A t))()I + ? (Xj(n A t))() - (Xj(n A t))( )M 

< C62 + CIXAt(n A t) - Xj(n A t)1, 

uE((Xj(n A t))(i), n A t) -uE((Xj(n A t))(i), n A t) 

< CI(Xj(n A t))( -(Xj(n A t))(i)l 
< C02, 

and 

u((Xj(n A t))(i), n A t) - u((Xj(n A t))(i, n A t) 

C CI(Xj(n A t))() - (Xj(n A t))(L) 
< C02. 

Then, we have 

(h2 uFA((XA t(n / t) - u ((Xj(n A t))i, n A t)L P ) 
jEJ3 

< C02 + (h2 S ue((Xj(n A t))(i), n A t) 
jEJ3 

-u((Xj(n A t))(i), n t t)P + Cllenllp. 

By (2.25), (2.26) of [10], 

(h2 uE((Xj(n A t))(i), n A t) - u((Xj(n A t))(i), n A t)IP) 
jEJ3 

? C(IHu - ullo,pQ + hlu -uFll,p,Q) 

< Cek. 
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Thus (4.7) is obtained. 0 
We will prove by induction that 

(4.8) liel lip < C7(Ek + 62 + At) 

holds for a suitable C7 and all 1. Since IleOllp = 0, we assume that (4.8) is valid for 
0 < I < n. 

From now on we assume that all the hypotheses of Theorem 2 are satisfied. Since 
only large p is needed to be taken into consideration, we may assume the constant a 
in (2.16) satisfies a < P. Also we assume 

(4.9) At < C862, Ek-1 < 88. 

Again by (2.31) of [10] and (2.16) we have 

- 2 

(4.10) ||e ||<2||lIP l I 
hP'10 ? 2Pl'I 

-aIeIP 

Then (4.8) and 8 < C36 yield 

ljel'lj < C(ck-1 + 6 + At )El P2 

Noting k > 3, we get 

(4.11) ljel'jo < E + ? +At2 

for sufficiently small E. 
LEMMA 5. If the hypotheses of Theorem 2 and (4.9) hold, and (4.8) holds for 

I = n, and if E is sufficiently small, then 

114At(-,nA t) - ?/enA (.,nAt)jj1 < C962 

where p > 2, p +1 1, and the constant C9 is independent of C7. q 
Proof. The proof is almost the same as that of Lemma 1. Now 

- - = 01 + 02, 

s = A'- ( -b($ -Xf(n A\ t)) -St( - Xf t(n A\ t)))) 

?b2 - (A-_ 

An A) 
> 

)))(.-XAt(n 
A t)). 

jE 

Inequality (4.11) implies 

A-' aj (.- Xjf (n A t)) (. - X t(n At)))) 
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Using the same argument we can estimate q1 and 02. U 
LEMMA 6. If the hypotheses of Theorem 2 and (4.9) hold, and if E is sufficiently 

small, then 

j ,(n t), nAt)-gAt(X , At),nAt)IP) 
(4.12) ( 

jEJ3 

< C (1+ ? |ien iIo) (62 + II4E(-,n At)- At(.,n A t)IIl,p,6)6 

Proof. Like the proof of Lemma 2, we can get 

(4.13) 111-,CQIt) - (-,t)ll ,1,00 < C62l?/e(.,t)l3,oo,Q < C02, 

(41) IO+(10-, t)-At(-, t)II1,00 K(") < C6 P I06+(- It) -+ - It)|l () 

Then 

gAt(Xf\t(n A t), n At) - ge3(Xft (n A t), n A t) 

< ? ai IIu* II - o ou,K,( K) 

i=l 

M 

= S IaiHl *110/e -+t Il 00o, Kt) 
i=l M~~~~~~ 

< C02 + C-P2 lail III+b(.,n At) - 4At(.,nA t)l1pK(t). .~~~~~~~~~~~~~~~~~~~~~~ i=1 

For any K c T%, we also have 

card{j C Ji, XjAt(n A t) C K} < C-( +Ie1Ih2 + )2 

and therefore 

(h2 S IgAt (XZ't(n A t), n A t) - ge6(X't (n A t), n A t) IP) 
j EJ3 

<C62 ? c ( I ? clenlIoo) 1114wQ,n A t) - /At(.,n A t)lll pn. 

In view of (4.13) we obtain (4.12). 0 
LEMMA 7. Under the hypotheses of Lemma 5, 

(4.15) Ilen+1lip <llenlip + COi At (1 + -|IenIIOO) 1 + liieniiOO) 

(ek+62+ At + IlenIp), 

where the constant Clo is independent of 07. 
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Proof. By Lemma 3 and (4.2) we obtain 

n+l1p= (ip 2 ?((n+1) At)-Xj((n + 1) At)lP 
j EJ3 

(4.16) < 11 en ?lp + CA t2 + At (h2 E gAt(Xj't(n A t), n A t) 
iEJ3 

\ 

- u(Xj((nA t),rnA t)IP) 

We have 

h2 E IgAt(XA\t(nA t), nA t)-u(Xj(nA t), nA t) 12, 
iEJ3 

where 

Ii (h2 > gAt (Xj't(n / t), n / t)-gE (Xj't(n / t), n A t)IP 
jEJ3 

2 2 >h23 g1ue(Xf t(nA t))),n u A (Xj (n-( t),XnAt),lp)) 
JiEJ3 

2 (h2 5ai(uE((Xft(n / t))(i), n A t) -u((Xj(n rA t), n r t)) 
jEJ3 i=1 

< (h2 > |ai(uu((X t(n A t)))n A t) - u((Xj(n t))(,in A t)) 

\jEJ3 i=1 
+ (h2 > 5ai(u((Xj(n A t))(ni), t) -u((Xj(n A t))(i),n A t)) ) 

\ EJ3 i=1 

+ (h2 E ai((u ((Xj(n A t))(i) n A t) - u((Xj(n A t))( n / t)) 

i=E3 i=1EJ3 

? ( 3 >|3 au((X( n A t))(i),rnAt) -u((Xj(n A t))(A), n A t) P 

i= \ jEJ3 

? h2 , ai (u ((Xj (n /\ t)) (i), n /A t) - u(Xj (n /A t) , n A t))|) 
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Using Lemma 4, the fact that u is smooth enough, and Taylor's formula, we get 

12 < C(ek + 62 + 11enlip). 

The term in (4.16) with respect to Il can be estimated by using Lemma 6. Then we 
get 

4en+17 II < e IenI lp + C A t2 + C At (1 + , Ien iiO) 

(4.17) n* (82 ? IIp(., nAt)-bAt(, n A t)II jp,Q6) 

+ CA t(Ek + 62 + lienlip). 

By Theorem 1 

> Ixi(t) - Xff(t)IP) < C2(2(E + 8 + At1))k < Cek . 

jEJ3 

Hence Lemma 5 implies 

j1f/)t(, n A t) - be(.,n A t)lll,p,Q5 < C02 + C ? 
+ -IIeniIo) (Ek + jjen|jp). 

Substituting this into (4.17) gives (4.15). U 
THEOREM 3. If the hypotheses of Theorem 2 and (4.9) hold, then 

(4.18) 11 en IIP + ju u(F, n A t) - uAt (, n A t) l po,,Q6 < C(Ek + 62 + At), 

where nA t <T. 
Proof. It will suffice to prove (4.18) for large p and small E. We have assumed 

that (4.8) is valid for 0 < 1 < n. From (4.10) and the relations among E, 6, and At, 

we get 

IIenIlo < C7CP (Ek + 62 + At)E P -1 ? Cii 

for E < so, where so depends on C7 but Cl1 is independent of C7. Analogously we 

can estimate IIen lo00. Then (4.15) becomes 

IIen+1IIp < IlenlIp + C12 A t(Ek + 62 + At + Ilen lip), 

for E < so, where C12 is independent of C7. 

We set C7 = Cl2TeC12T. Then we determine Eo according to C7. It is easy to 

verify that 

lienlip < C12eCl2nAt(Ek + 62 + At)n A t 

for E < Eo and all n, n A t < T. Thus the estimate for IlenIIp is obtained, and the 

estimate for us - uAt follows from Lemma 5. 0 

Remark. The extension of convergence proof to higher order schemes for time 

stepping is straightforward. A numerical example was given to show the accuracy of 

this method [11]. 
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Appendix. Let domains Q and Q6 be the above. We prove 

(A.1) meas(QW \ Q) < C63 

and 

(A.2) Ix(i) - X(?)I < C02 Vx c Qd, 

provided d is small enough. 
Introducing local coordinates, 9Q6 is the quadratic interpolation of DQ. Thus we 

have (Chapter 2 of [9], for example) 

sup inf Ix-yI < C63, 

from which (A. 1) follows. 
Let us consider (A.2). If x E Q, then (A.2) is trivial, so we assume x ? Q. From 

Fig. 3.1 it is clear that 

|a12,K -a12,Kj < C02. 

12 

A 

aKi a12,K a2,K 

a3,K 

FIG. A. 1 

Let Y* be the intersecting point of line xY, and &Q, 11 be the tangent line of aQ 
through Y3*, 12 be the tangent line of 9Q6 through Y8, and 1l be the parallel line of 
12 through Y,* (Fig. A.1). The angle between 11 and 12 is less than C02. We draw 
the vertical line of 11 through point x. Let A be the foot of perpendicular and B be 
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the intersecting point of xA with 1'. Then Y lies in the triangle Y6*AB. The angle 
ZY6*xB is equal to the angle between 11 and 1. Now x c Qd, hence 1xY,* I < Cd. Then 

IY5*YI < IY*BI < Cd - C62 < C2. 

Consequently, 
IY(YI < IY6Y;*I + ?Y6sYI < C63 + C62 < C02. 

By definition, 
Ix(') - x(i)I 

- 
(i + ?1)Y6YI < C2, 

which proves (A.2) if Y6 is not a node. Conversely, if Y6 is just a node, say al,K, then 
we consider the two triangles containing al,K. The argument is similar. 
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