
Modified models of polymer phase separation

Douglas Zhou,1 Pingwen Zhang,1,* and Weinan E1,2,†

1LMAM, Peking University, Beijing 100871, People’s Republic of China
and School of Mathematical Science, Peking University, Beijing 100871, People’s Republic of China

2PACM, Princeton University, Princeton, New Jersey 08544, USA
and Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA

�Received 28 September 2005; revised manuscript received 13 March 2006; published 12 June 2006�

In this paper we discuss continuum models of phase separation in polymer solutions, with emphasis on the
thermodynamic foundation of these models. We demand that these models obey a free energy dissipation
relation, which in the present context plays the role of the second law of thermodynamics, since the system is
isothermal. First, we derive a modified two-fluid model for viscoelastic phase separation from nonequilibrium
thermodynamics. Then we study the special case when only diffusion is present, and hydrodynamic effects are
neglected. Numerical results demonstrate that our models show better stability properties and at the same time
reproduce the expected physical phenomena such as volume shrinking and phase inversion. Our findings
suggest that these important phenomena are caused by a diffusional asymmetry of the constituent molecules.
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I. INTRODUCTION

The phenomena of phase separation have attracted a great
deal of interest in recent years �1–4�. When a binary mixture
is quenched from the miscible region into the immiscible two
phase region in the phase diagram, phase separation occurs
via mechanism of spinodal decomposition. Generally speak-
ing, in the early stage, phase separation is controlled by con-
centration fluctuation and the decrease of bulk energy. At the
later stage, phase separation is controlled by diffusion and
coarsening, and the decrease of surface energy. It is estab-
lished that the domain size R�t� satisfies some scaling law:
R�t�� t� during the course of phase separation, where � is
the growth exponent �5�. The dynamics and morphology of
phase separation also depend on the particular systems. In
small-molecule systems the morphology of phase separation
is quite simple, and it is determined by the relative concen-
tration in the mixture. In polymer systems, however, the mor-
phology of phase separation can exhibit many unusual fea-
tures such as volume-shrinking and phase inversion �6,7�.
Much work has been done in order to understand the dynam-
ics of polymer phase separation. It is now established that the
internal dynamic asymmetry between component molecules
of the mixture determines on the morphology and the dy-
namics during the phase separation process �3�. Jäckle and
Sappelt introduced dynamic asymmetry through
concentration-dependent mobility �8�. Then Ahluwalia car-
ried out a study of phase separation in polymer solutions
with a similar viewpoint �9�. Onuki, Doi, and Milner estab-
lished a two-fluid model in which the dynamic asymmetry
was reflected by the stress field �10,11,22�. Later on Tanaka
and co-workers further developed the two-fluid model and
extensively investigated viscoelastic phase separation both
theoretically and experimentally �2–4,6,7�.

In this paper we will follow the same philosophy, and
focus on viscoelastic phase separation in polymer solutions

and the consequence of dynamic asymmetry. However, we
will pay special attention to the thermodynamic foundation
of the models, namely, we demand that the models should
satisfy the energy dissipation relation which plays the role of
the second law of thermodynamics. This should be a basic
requirement for any physical models. But it is not satisfied
by the existing two-fluid models. We will first derive our
modified two-fluid model from nonequilibrium thermody-
namics. Then we present two models in which the transport
is only due to diffusion—hydrodynamic effects are ne-
glected. Our numerical results demonstrate that these models
can reproduce the overall features of phase separation in
polymer solutions and at the same time have much better
stability properties, compared with existing two-fluid mod-
els.

This paper is organized as follows. From Sec. II to Sec.
IV, we present models and their corresponding numerical
simulations. We also discuss briefly the energy dissipation
relation. Section V contains some discussions and conclu-
sions. The details of the energy dissipation relation of our
models are given in the Appendix.

II. THE MODIFIED TWO-FLUID MODEL

A. Free energy of the polymer-solvent system

We describe the dynamics of phase separation through the
Cahn-Hilliard-Cook theory �12–14�. The local volume frac-
tion of the polymer molecules � is chosen as the order pa-
rameter, which is a function of space and time. Due to the
incompressibility condition, the local volume fraction of the
solvent molecules is then 1−�. We use a simplified version
of the free energy in a nonhomogenous isotropic system �12�

F��,��� =� dr� � f��� +
C0

2
����2	 �1�

with
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f��� =
1

np
�ln � +

1

ns
�1 − ��ln�1 − �� + ���1 − �� , �2�

where np and ns are the molecular weight of the polymer and
the solvent, respectively. � is the effective Flory interaction
parameter which decays with temperature. We assume that �
is inversely proportional to the temperature T:

� =
�0

T
, �3�

where �0 is a positive constant.
The gradient of the chemical potential as driving force is

defined by

�� = �� �F

��
	 ,

where � is the chemical potential.

B. Tanaka’s two-fluid model

We first recall the original two-fluid model equations
given in Refs. �10,15�.

��

�t
+ � · ����p� = 0,

��p − �� = − M1����� · �J − � · 	J� ,

���

�t
= − �P + � · 	J − � · �J + 
��J ,

� · �J = 0,

where �J is the osmotic pressure tensor and 	J is the stress
tensor satisfying the following equations:

	J = 	Js −
1

d
Tr�	Js�IJ + qIJ,

�	Js

�t
+ ���p · ��	Js = ����p� · 	Js + 	Js · ����p�T

−
1

�s
	Js + Ms����p + ����p�T� ,

�q

�t
+ ��p · �q = −

1

�B
q + MB�� · ��p� ,

where d is the spacial dimensionality and IJ is the unit tensor.
The stress 	J consists of two parts �23,24�: one is the shear

stress tensor 	Js, the other is the bulk stress tensor qIJ. The
total energy of the above system should contain the free en-
ergy, the kinetic energy, and the viscoelastic energy of poly-
mers and it should decay with time from thermodynamic
viewpoints. However, it is quite easy to verify that this two-
fluid model does not satisfy the expected energy dissipation
relation

d

dt
�F +� 1

2
����2 +� 1

2
q2 +� 1

2
�Tr	Js�	 
 0.

Not only is this unsatisfactory from a physical viewpoint, it
also sometimes results in numerical instability in simula-
tions.

C. Derivation of model equations

We now derive the modified two-fluid model that does
respect an energy dissipation relation. Following the standard
procedures in nonequilibrium thermodynamics, we split the
currents into a reversible and a nonreversible part. The re-
versible contributions can be obtained through the virtual
work principle, while the irreversible contributions are ob-
tained by analyzing the dissipative process. We start from the
total energy which has the form

E = F +� 1
2 ����2 +� 1

2q2 +� 1
2Tr�	Js� .

The first term represents the free energy of mixture. The
second term is the kinetic energy of the system. The third
term derives from the chain conformational entropy of the
polymer molecules which can be regarded as some penalty
function since the migration of polymer molecules will cause
much more decrease in entropy compared with the solvents.
The last term is the elastic energy of polymer molecules. The
underlying physics of this term comes from the well-known
Hookean-dumbbell models of flexible polymers �16�.

First we write down the general equations for variables �,
q, ��, and 	Js. According to the continuity equation, the vol-
ume fraction � should satisfy

��

�t
+ � · ����p� = 0,

namely

d�

dt
=

��

�t
+ ��� · ��� = − � · �����p − ���� ,

where ��p and �� are the velocity of polymer molecules and the
volume-averaged velocity of fluid particles, respectively.

Next we deal with the constitutive equations of polymer
molecules for q and 	Js. They should obey relaxational dy-
namics

dq

dt
= −

1

�
q + A ,

D	Js

Dt
= −

1

�s
	Js + BJ ,

where A and B remain undetermined at this stage. � and �s
are the relaxation time which take the form �3,17�.

� = �B
0�2, �s = �s

0�2.

The time derivative D
Dt is the upper-convected derivative.

The hydrodynamic equation for the incompressible sys-
tem is given by
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d��

dt
= − �P + � · 	Je + � · 	Jv,

� · �� = 0,

where �� is the volume-averaged velocity of polymer mol-
ecules and solvents. 	Je corresponds to the elastic stress,
while 	Jv is the viscous stress.

We first derive an expression for the reversible part 	Je in
the above equations using the generalized virtual work prin-
ciple �16�. The variation of the total free energy in response
to the infinitesimal deformation can be identified through the
work done by the elastic stress with respect to the deforma-
tion rate as follows:

�Ef =� 	Je:����t .

Namely

�Ef = ��F +� 1

2
q2 +� 1

2
Tr�	Js�	

=� � �F

��

d�

dt
+

�F

���
·

d��

dt
+ q

dq

dt

+
1

2

d

dt
Tr�	Js�	�t

=� � �F

��

d�

dt
+ q

dq

dt
+

1

2

d

dt
Tr�	Js�	�t

−� 
 �F

���
� ���:����t

=� � �F

��

d�

dt
+ q

dq

dt
+

1

2
Tr
 D

Dt
	Js�	�t

+� 
	Js −
�F

���
� ���:����t . �4�

Here we only consider the reversible parts, thus we do not
take account of relative motions between polymer molecules
and solvents which correspond to the irreversible parts. In
other words, we have

��p = ��s = �� .

Therefore, we get the following expression through Eq. �4�,

�Ef =� 
	Js −
�F

���
� ���:����t .

The elastic stress is obtained as

	Je = 	Js −
�F

���
� �� .

In the following we deal with the irreversible part which is
related to the dissipation process. The first step is to con-
struct the entropy source TS. Our derivation of the entropy

source follows rather closely the approach of de Groot and

Mazur for isotropic fluids �18�. The dissipation TS
·

for an
isothermal process is equal to the decrease in the total energy

TS
·

= −
d

dt
�F +� 1

2
����2 +� 1

2
q2 +� 1

2
Tr�	Js�	

=−� 
 �F

��

d�

dt
+

�F

���
·

d��

dt
� −� �� ·

d��

dt

−� �q
dq

dt
+

1

2

d

dt
Tr�	Js�	

=−� �F

��

d�

dt
+� �	Jv:���� −� q

dq

dt

−� 1

2
Tr
 D

Dt
	Js�

=� �− ��1 − ���
�F

��
	 · ���p − ��s� +� �	Jv:����

−� qA −� 1

2
Tr�BJ� +� 1

�
q2 +� 1

2�s
Tr�	Js�

�5�

Considering that there are only two freedoms among the

strain rate ���p, ��s
� and ���, we choose ����p−��s� and ��� as

independent variables. For small deformation case, we have
the linear relationship between the stress and the strain rate.
Therefore, we obtain the following expressions:

A = A1Tr�����p − ��s�� + A2 Tr�� · ��� ,

BJ = B1�����p − ��s� + ����p − ��s�T� + B2���� + �����T� .

Due to the incompressibility condition, we obtain

A = A1Tr�����p − ��s�� ,

Tr�BJ� = B1Tr�����p − ��s� + ����p − ��s�T� .

Since Tr�	Js� is the spring energy and must remain positive,
this will only hold when B1 is zero. Therefore, we get

TṠ =� �− ��1 − ���
�F

��
	 · ���p − ��s� +� �	Jv:����

−� qA1�� · ���p − ��s�� +� 1

�
q2 +� 1

2�s
Tr�	Js�

=� �− ��1 − ���
�F

��
+ ��A1q�	 · ���p − ��s�

+� �	Jv:���� +� 1

�
q2 +� 1

2�s
Tr�	Js� .

Noticing that the chain conformation entropy only induces
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an extra pressure �q which can be absorbed by pressure P in
the momentum equation, we can treat the viscous stress ten-
sor 	Jv as one proportional to the strain rate ��� in the new-
tonian case

	Jv = 
���� + �����T� .

Assuming that the linear friction law holds, we have

��p − ��s = − M������1 − ���
�F

��
− ��A1q�	 , �6�

where M��� is the mobility coefficient. Then we get the
following dissipation relation:

TṠ =� �M������p − ��s�2 +



2
���� + �����T�2 +

1

�
q2

+
1

2�s
Tr�	Js�	 .

In summary, our two-fluid model reads:

d�

dt
= � · ���1 − ��M������1 − ���

�F

��
− ��A1q�	
 ,

dq

dt
= −

1

�
q − A1� · �M������1 − ���

�F

��
− ��A1q�	


�	Js

�t
+ ��� · ��	Js = ����� · 	Js + 	Js · �����T −

1

�s
	Js + B2����

+ �����T� ,

d��

dt
= − �P + � · �
���� + �����T�� − � · 
 �F

���
� ���

+ � · 	Js,

� · �� = 0, �7�

where A1 is the bulk modulus between the isotropic stress
�induced by conformation entropy� and the strain rate.

D. Numerical results

Simulations are carried out in two dimensions for the
above model. We use a forward Euler method in time and
finite volume method in space to discretize the equations.
The grid size is �x=�y=1 and the system size is 128
�128. Periodic boundary conditions are used. The time step
is chosen as �t=0.025. The parameters for the free energy in
Eqs. �1�–�3� are chosen as C0=1 ,np=ns=1,�0=2.8. For this
set of parameters, the phase diagram is calculated in Ref.
�19�. Here we do not consider the molecular weight differ-
ence since we mainly care about viscoelastic effects of poly-
mer which are pivotal to the morphology of phase separa-
tion.

The mobility coefficient M��� in Eq. �6� is given by

M��� =
1

�
,

where � is the friction constant between polymer and solvent
molecules and is chosen as �=0.1 in simulations. This form
of M��� can be obtained from Fickian diffusion in ideal
mixtures where the free energy only consists of entropic con-
tributions.

The relaxation modulus B2 in Eq. �7� is given by �3,17�

B2 = Ms
0�2.

The bulk modulus A1 in Eq. �7� is given by

A1��� = MB
0�1 + tanh
 cot ��* − cot ��

�
�	 + MB

1 ,

where ��1 and is chosen as 0.01 in simulations. Therefore,
A1 changes rapidly from MB

1 when � is smaller than �* to its
maximum value �2MB

0 +MB
1� when � is larger than �*. Here

�* is the critical concentration for the polymers to crosslink
and we take �* as the initial uniform value �0 in simulations.
The initial value of the volume fraction � is the uniform
concentration perturbed by uncorrelated noise distributed in
the interval �−0.001,0.001� �15�. In the following, we will
present the grey-scale map of the volume fraction. White
stands for the solvent-rich region, and black stands for the
polymer-rich region.

Figure 1 shows simulation results of the modified two-
fluid model Eqs. �7�. The whole viscoelastic phase separation
process is exhibited more clearly for the case T=1.1,�0
=0.35 shown in Fig. 2. We see that the morphology evolution
in both figures is quite as similar as the experimental obser-
vations �6,7�. The simulation results will be explained at
length in Sec. III for no hydrodynamic case since the model
is more simple and easier to be understood.

Here we should point out that there is an important phe-
nomenon which is called the “frozen state” and occurs in the
very early stage of phase separation in polymer solutions.
This indicates that the viscoelastic effects of polymer sup-
press the macroscopic phase separation in the initial stage
�3�. In our model, this is manifested by the retardation of
diffusion due to the presence of extra pressure �q. This extra
pressure is active since we have chosen the bulk modulus
smaller compared with zero bulk modulus in Tanaka’s model
for the solvent-rich region �20�. In these simulations, we are
able to use a time step size �t=0.025 which is much larger
than the time step size ��0.01� tolerated by Tanaka’s model.
It shows that the model has better numerical stability prop-
erties. This is expected since the model satisfies the energy
dissipation relation.

III. THE SIMPLIFIED MODEL

A. Dynamic model equations

We consider the modified two-fluid model in the special
case where there is no hydrodynamic transport, in other
words, we have

�� = ���p + �1 − ����s = 0. �8�

Thus a simplified model is obtained as
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��

�t
= � · ���1 − ��M������1 − ���

�F

��
− ��A1q�	
 ,

�q

�t
= −

1

�
q − A1� · �M������1 − ���

�F

��
− ��A1q�	
 .

�9�

Using Eqs. �6� and �8�, we get the following linear relation-

ship between the flux J� and the driving force

J� = ���p = − ��1 − ��M������1 − ���
�F

��
− ��A1q�	 .

The thermodynamic driving force contains two parts: one is
the gradient of chemical potential, the other is called the
extra pressure which causes dynamic asymmetry between the
polymer-rich and the solvent-rich region. We will see that
this simple model can reproduce almost all experimental ob-
servations of viscoelastic phase separation and at the same
time has the following energy dissipation relation:

d

dt
�F +� 1

2
q2	 = −� 1

�1 − ��2M���
���p�2 −� 1

�
q2.

B. Numerical results

Figure 3 shows simulation results of the simplified model
Eqs. �9�. We will see that this model captures some physical

mechanism of viscoelastic phase separation. For ease of no-
tation, we will use �1 to represent the polymer-rich region
and �0 to represent the solvent-rich region. Due to the initial
disturbance added to the system, and that the bulk modulus
in �0 is quite different from that in �1, we have an extra
pressure �q with a direction pointing from �1 to �0. This
pressure �q has an opposite effect for the movement of poly-
mer molecules since polymer molecules move from �0 to
�1. Therefore, �q makes it harder for the polymer molecules
to aggregate than for the solvent molecules. As a result drop-
let phase forms in �0 whereas �1 remains a continuous ma-
trix. These are shown in Figs. 3�a� and 3�b�. Afterwards sol-
vent molecules begin to aggregate and the solvent-rich
region �shown in white� forms droplet phase, while the
polymer-rich region �shown in black� forms a continuous
phase. This is unusual compared with standard phase sepa-
ration of small-molecule mixtures where the solvent-rich re-
gion forms continuous phase since it has a larger volume
fraction.

In Figs. 3�c� and 3�d�, the matrix-polymer-rich phase
forms thin networklike structures. At the same time, the
solvent-rich droplets grow and coagulate. The area of the
polymer-rich phase keeps decreasing. This is the well-known
volume-shrinking process in polymer phase separation �3�. It
can be explained as follows. Since solvent molecules move
faster, it is natural that the volume fraction in �0 is close to
the equilibrium value. Subsequently, the driving force for
diffusion in �0 becomes very small. However, the volume
fraction in �1 is still in the unstable state of the phase dia-

FIG. 1. Time evolution of phase separation after temperature quench with T=1.1,�0=0.4 and �B
0 =10,�s

0=5,MB
0 =0.5,MB

1 =1,Ms
0=0.5, at

time=20,200,240,320,400,800.
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gram because of the slow down caused by the extra pressure
�q. Therefore, the diffusion process in �1 dominates the
development of morphology in the intermediate stage. As
solvent molecules are repelled from �1, the area fraction of
�1 decreases rapidly.

In the late stage which is shown in Figs. 3�d� and 3�f�,
polymer-rich networklike structures are broken and the
polymer-rich phase changes from being continuous to being
discontinuous. This process is called phase inversion. It can
be explained as follows. After the volume-shrinking process
is completed, the volume fraction of �1 is also close to the
equilibrium value. Therefore, diffusion driven by the gradi-
ent of chemical potential is weak in the whole system. The
extra pressure �q becomes the main driving force in the
system. Polymer-rich network structure is stretched by the
solvent-rich droplets. This causes the network structure to

break and the polymer-rich region reduces to discontinuous
phase. The morphology in Fig. 3 is almost the same as that in
Figs. 1 and 2 except that phase inversion is observed more
rapidly in the former. This is quite understandable since hy-
drodynamic flow accelerates domain coarsening.

IV. THE DIFFUSION MODEL

A. Dynamic model equations

In this section we will consider dynamic asymmetry
through concentration-dependent mobility. The solvent mol-
ecules are smaller and easier to aggregate compared with the
polymer molecules. Based on this, we establish another
simple model that reproduces the volume-shrinking and
phase inversion phenomena. To represent such asymmetry,

FIG. 2. Time evolution of phase separation after temperature quench with T=1.1,�0=0.35 and �B
0 =10,�s

0=5,MB
0 =0.5,MB

1 =1,Ms
0

=0.5 at time=20,200,320,360,400,450,500,600,1200.
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we consider the system to be compressible �21,24�. The local
volume fractions of polymer and solvent are denoted by �1
and �2, respectively,

�1 + �2 
 1,

where 1−�1−�2 can be regarded as the fraction of free vol-
ume. The free energy functional is given by

F��1,�2,��1,��2� =� dr�f��1,�2�

+� dr��C1

2
���1�2 +

C2

2
���2�2	 ,

�10�

where

f��1,�2� =
1

np
�1 ln��1� +

1

ns
�2 ln��2�

+ �1 − �1 − �2�ln�1 − �1 − �2� + ��1�2.

�11�

The dynamic equations can be expressed as

��1

�t
+ � · ��1��1� = 0,

��2

�t
+ � · ��2��2� = 0,

��1 = −
1

�p
�1 − �1���1,

��2 = −
1

�s
�1 − �2���2, �12�

where 1
�p

and 1
�s

are the mobility coefficient of polymer and
solvents, respectively.

The gradient of the chemical potential ��1 and ��2 are
defined through the relation

��1 = �� �F

��1
	 ,

��2 = �� �F

��2
	 .

We show in the Appendix that the model satisfies the follow-
ing energy dissipation relation:

dF

dt
= −� 1

�p
�1�1 − �1����1�2 −� 1

�s
�2�1 − �2����2�2.

B. Numerical results

Simulations are carried out in two dimensions for this
model. The parameters for the free energy in Eqs. �10� and
�11� are chosen as C1=C2=10,np=ns=1,�0=8.0.

FIG. 3. Time evolution of phase separation after temperature quench with T=1.1,�0=0.4 and �B
0 =10,MB

0 =0.5,MB
1 =1 at time

=20,200,320,400,600,3000.
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The mobility coefficient of polymer molecules 1
�p

is given
by

�p =
�1 − �2

2
tanh
 cot ��* − cot ��1

�
� +

�1 + �2

2
,

where �1 is much larger than �2. Therefore, �p chooses dif-
ferent value in polymer-rich ��1��*� and solvent-rich ��1


�*� regions, and this reflects the dynamic asymmetry. �1

and �2 are chosen as �1=40,�2=2 in simulations. We take the
critical concentration �* as the initial background value �1

0.
Figure 4 shows simulation results of the diffusion model

Eqs. �12�. We see that volume shrinking and phase inversion
phenomena are also well reproduced in these simulations.
This model is established based on the diffusion asymmetry
between molecules. Dynamic asymmetry is reflected through
the mobility function. It is easy to understand that the friction
coefficient of solvent molecules is much smaller than that of
the polymer molecules. In solvent-rich region we suggest
that the mobility coefficient of polymer molecules become
large in order to promote the aggregation of the solvent mol-
ecules. In other words the polymer moves passively because
of the movement of solvent molecules.

The underlying mechanisms are the same for the simpli-
fied model and the diffusion model. Recall that �0 is the
initial volume fraction of polymer, �1 and �2 are the volume
fraction of equilibrium values with �1 smaller than �2. Dif-
fusion is suppressed in the region where � is larger than �0.
This causes the retardation of diffusion when � approaches

to �2. In contrast diffusion is fast in the region where � is
smaller than �0, which makes � approach to �1 quickly. This
retardation is caused by the large size of the polymer, which
makes polymer molecules move more difficult than small
solvent molecules. And it is vital to the volume-shrinking
process in the polymer-rich region and the subsequent phase
inversion phenomenon.

V. CONCLUSION

We have discussed phase separation in quenched polymer
solutions and have identified the dynamic diffusional asym-
metry as being the origin of observed characteristics in poly-
mer phase separation, mostly the volume shrinking and
phase inversion. This is verified in both the diffusion model
and the modified two-fluid model as we proposed. Our work
on the two-fluid model is motivated by Tanaka’s model. But
we have gone one step for them by emphasizing the impor-
tance of not only reproducing experimental results in phase
separation but also respecting the energy dissipation relation,
which plays the law of entropy production in the model
equations. The latter is absent in Tanaka’s original model.
Our model is numerically more stable and can be easily ex-
tended to studying phase separation in polymer blends and
polymer-dispersed liquid crystal system.
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APPENDIX

In the following part �Subsections A–C�, we prove that all
the above model equations �the simplified model, the diffu-
sion model, the modified two-fluid model� satisfy the energy
dissipation relation.

1. Energy dissipation relation of the simplified model

The transport in this model is only through diffusion,
therefore the energy of the system does not contain the ki-
netic energy. The entropy production of this isothermal sys-
tem is given by

TṠ = −
d

dt
�F +� 1

2
q2	

=−� 
 �F

��

��

�t
+

�F

���
·
���

�t
� −� q

�q

�t

=−� � �F

��
− � ·

�F

���
	 ��

�t
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 ��p
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�
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=� �F

��
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��p
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=� ��p

1 − �
· �− ��1 − ���

�F

��
+ ��A1q�	 +� 1

�
q2

=� 1

�1 − ��2M���
���p�2 +� 1

�
q2. �A1�

The above equation indicates that the polymer molecules
will store energy once they crosslink. The total energy of the

system contains both free energy and the energy of the net-
work �entropy loss�. Dissipation is caused by diffusion and
visco-elastic damping of the conformational entropy.

2. Energy dissipation relation of the diffusion model

Using Eqs. �12�, we have

TṠ = −
dF

dt

=−� 
 �F

��1

��1

�t
+

�F

���1
·
���1

�t
�

−� 
 �F

��2

��2

�t
+

�F

���2
·
���2

�t
�

=−� 
 �F

��1

��1

�t
+

�F

��2

��2

�t
�

=� � �F

��1
� · ��1��1� +

�F

��2
� · ��2��2�	

=� 1

�p
�1�1 − �1����1�2 +� 1

�s
�2�1 − �2����2�2.

Therefore, dissipation in this model is caused by diffusion of
both polymer molecules and solvent molecules.

3. Energy dissipation relation of the modified two-fluid model

In this case the transport is not only through diffusion but
also through hydrodynamic flow. Therefore, the energy of
the system should include both the kinetic energy and the
total free energy

E =� 1
2 ����2 + F��,��� +� 1

2q2 +� 1
2 Tr�	Js� .

Using Eq. �7�, we have
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·

= −
d

dt
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2
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2
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dt
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2
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=� �− ��1 − ���
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+ ��A1q�	 · ���p − ��s� +� 


2
���� + �����T�2 +� 1

�
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=� M������p − ��s�2 +� 


2
���� + �����T�2 +� 1

�
q2 +� 1

2�s
Tr�	Js� .

�1� P.-G. de Gennes, J. Chem. Phys. 72, 4756 �1980�.
�2� H. Tanaka, Phys. Rev. E 56, 4451 �1997�.
�3� H. Tanaka, J. Phys.: Condens. Matter 12, R207 �2000�.
�4� J. Zhang, Z. Zhang, H. Zhang, and Y. Yang, Phys. Rev. E 64,

051510 �2001�.
�5� A. J. Bray, Adv. Phys. 43, 357 �1994�.
�6� H. Tanaka, Phys. Rev. Lett. 71, 3158 �1993�.
�7� H. Tanaka, Phys. Rev. Lett. 76, 787 �1996�.
�8� D. Sappelt and J. Jackle, Europhys. Lett. 37, 13 �1997�.
�9� R. Ahluwalia, Phys. Rev. E 59, 263 �1999�.

�10� M. Doi and A. Onuki, J. Phys. II 2, 1631 �1992�.
�11� S. T. Milner, Phys. Rev. E 48, 3674 �1993�.
�12� J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 �1958�.
�13� J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31, 668 �1959�.
�14� H. E. Cook, Acta Metall. 18, 297 �1970�.
�15� H. Nakazawa, S. Fujinami, M. Motoyama, T. Ohta, T. Araki,

H. Tanaka, T. Fujisawa, H. Nakada, M. Hayashi, and M.
Aizawa, Comput. Theor. Polym. Sci. 11, 445 �2001�.

�16� M. Doi and S. F. Edwards, The Theory of Polymer Dynamics
�Oxford University Press, New York, 1986�.

�17� P.-G. de Gennes, Scaling Concepts in Polymer Physics �Cor-
nell University Press, New York, 1979�.

�18� S. de Groot and P. Mazur, Non-Equilibrium Thermodynamics
�Dover, New York, 1984�.

�19� G. Brown and A. Chakrabarti, J. Chem. Phys. 98, 2451
�1993�.

�20� T. Araki and H. Tanaka, Macromolecules 34, 1953 �2001�.
�21� W. E. and P. Palffy-Muhoray, Phys. Rev. E 55, R3844 �1997�.
�22� T. Taniguchi and A. Onuki, Phys. Rev. Lett. 77, 4910 �1996�.
�23� H. Tanaka and T. Araki, Phys. Rev. Lett. 78, 4966 �1997�.
�24� H. Tanaka, J. Phys.: Condens. Matter 15, S387 �2003�.

ZHOU, ZHANG, AND E PHYSICAL REVIEW E 73, 061801 �2006�

061801-10


