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ABSTRACT: Quasicrystals are intriguing ordered structures
characterized by quasiperiodic translational and noncrystallo-
graphic rotational symmetry. The tiling of different geometric
units such as triangles and squares in two-dimensional space can
result in a great variety of quasicrystals that could be realized by the
self-assembly of liquid crystalline molecules. In this study, we
introduce three self-similar dodecagonal tilings, including a novel
diamond−square−triangle pattern, composed of triangular and
quadrangular tiles, and examine their thermodynamic stability by
using the self-consistent field theory applied to T-shaped liquid
crystalline molecules. Specifically, we detail the inflation rules for
the construction of these dodecagonal tilings, analyze their self-
similarity, and show that these tilings can be viewed as projections of higher-dimensional periodic lattice points with projection
windows. Using these dodecagonal tilings as initial configurations of the SCFT results in solutions corresponding to quasicrystals
that could form from T-shaped liquid crystalline molecules. The relative stability of these aperiodic phases is analyzed to obtain
design rules that could stabilize quasicrystals. Meanwhile, we provide a criterion for distinguishing three dodecagonal quasicrystals
and their approximants by analyzing their diffraction peaks. These findings shed new light on the discovery of new quasicrystals in
soft materials.

■ INTRODUCTION
Quasicrystals (QCs) are fascinating structures that possess
quasiperiodic translational and noncrystallographic rotational
symmetry. The discovery of QCs in Al−Mn alloys in 1984 was
a breakthrough that changed the perception of crystalline
order.1 Since then, thousands of metallic alloys have been
found to exhibit quasicrystalline order.2 Furthermore, QCs
have been observed in a wide range of soft materials, including
block copolymers,3−5 liquid crystalline molecules,6−8 nano-
particles,9 colloidal particles,10 mesoporous silica,11 silicon
bilayers,12 and DNA motifs.13,14 It is interesting to note that
the majority of soft QCs adopt 12-fold rotational symmetry,
while only a few of them are with 10- and 18-fold rotational
symmetries.10,15,16 These soft QCs are quasiperiodic in a plane
while homogeneous or periodic normal to the plane. Here,
“homogeneous” refers to the structure exhibiting a columnar
form in the normal direction, similar to the columnar
quasicrystals described in the literature.8 Therefore, they are
regarded as two-dimensional (2D) QCs. The patterns of 2D
dodecagonal QCs (DDQCs) observed experimentally are
mainly square−triangle (ST)5,17,18, and quadrangle−square−
triangle (QST) tilings.8,19 Only the ST tiling has been
considered theoretically.4 Despite great progress made over
the years, the discovery and stability analysis of diverse
DDQCs remain relatively unexplored.

In general, the study of thermodynamic stability of ordered
phases requires a specific physiochemical system that exhibits
the desirable phase behavior and a theoretical framework that
allows accurate calculation of the free energies of different
phases. Therefore, systems capable of self-assembling into
polygonal structures are of great interest for studying soft QCs.
For the purpose of studying the emergence and relative
stability of various DDQCs that could be constructed from
polygonal tiles, a suitable soft matter system is the T-shaped
liquid crystalline molecules (TLCMs) shown in Figure 3.
Extensive experimental studies on this class of molecules have
demonstrated their self-assembly into rich polygonal struc-
tures, such as triangle, dual-pentagon, diamond, square,
pentagon, hexagon, octagon, decagon,20−31 and even
DDQCs.8 The rich phase behaviors of the TLCMs make
them an ideal platform for studying the relative stability of
diverse DDQCs in soft materials.
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On the theoretical front, several frameworks have been
proposed to study the stability of QCs. One widely used class
of theories depends on the construction of multilength-scale
free energy functionals, such as phenomenological Landau-type
theories32,33 and density functional theories.34 These models
are suitable for investigating generic features of QCs and their
phase transitions.35−37 However, these theories usually start
from certain hypothesized multilength-scale correlation
potentials, making it difficult to connect the theory with
concrete physical systems. Another widely used class of
theories is the self-consistent field theory (SCFT), which is a
powerful framework for accurately describing the self-assembly
behavior of inhomogeneous soft materials, particularly
polymers and liquid crystal polymers.38−41 Over the past
decades, the SCFT has been successfully applied to studying

the phase behaviors of various flexible and semiflexible polymer
systems.42−45 The success of SCFT makes it a useful
framework to study the phase behaviors of complex molecules,
such as the TLCMs.
In this work, we study the emergence and relative stability of

various two-dimensional QCs in TLCMs by using dodecagonal
aperiodic tilings as initial candidate phases of the SCFT.
Starting from the aperiodic tiling theory, we analyze the
existing dodecagonal ST tiling and QST tiling and then
propose a novel dodecagonal diamond−square−triangle
(DST) tiling. The respective inflation rules of these structures
are presented in detail. Meanwhile, a cut-and-project method is
used to analyze these tilings and obtain the corresponding
projection windows. In the second step of the study, we
develop an SCFT framework for TLCMs, utilizing the Maier−

Figure 1. Three dodecagonal aperiodic tilings are noticed: (a) square−triangle (ST) tiling, (b) diamond−square−triangle (DST) tiling, (c)
quadrangle−square−triangle (QST) tiling, (I) fundamental dodecagon, (II) inflation rules of prototiles, and (III) second-generation tilings of (I).
In the second-generation tilings, parallel line sets show that vertex spacings (“letters”) A and B of the given generations construct aperiodic
sequences by substituting {A3B → A′, A2B → B′}. The black-outlined parts in the third-generation pattern are self-similar. (IV) Schematic tilings of
fundamental dodecagons. The green vertices form dual tilings of these dodecagonal tilings (red vertices). (V) Diamond and quadrangle tiles.
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Saupe interaction to represent the orientational interaction of
rigid rods. Using the constructed dodecagonal tilings as initial
structures, we obtain solutions of the SCFT equations
corresponding to three DDQCs as well as other candidate
phases. The free energies of these phases are then used to
determine their relative stability. Finally, we introduce random
DDQCs and obtain SCFT solutions of all ideal and random
DDQCs in TLCMs, then perform energy analysis to predict
possible ways for stabilizing DDQCs. For three DDQCs and
their approximants, we provide a criterion for distinguishing
them by analyzing their diffraction peaks.

■ DODECAGONAL APERIODIC TILINGS
The main task of the SCFT study is to obtain solutions of the
SCFT equations. Almost all of the numerical methods of
solving the SCFT equations are iterative in nature; thus, the
solutions depend crucially on the initial configurations. Over
the years, various methods have been developed to construct
initial configurations, leading to solutions corresponding to
various periodically ordered phases.46 However, there have
been few studies of the construction of initial configurations for
QCs. We propose using aperiodic tilings to construct initial
configurations for diverse DDQCs, thereby opening possibil-
ities for their discovery. Mathematically, a tiling is defined as a
covering of a plane or space using one or more geometric
shapes, called tiles, with no overlaps and no gaps. Therefore,
different tiles and tiling rules (inflation rules) would result in
different tilings. In what follows, we introduce the ST and QST
tilings and construct a new DST tiling.
The ST tiling is a classical aperiodic tiling consisting of three

types of triangles (Ts) and two types of squares (Ss), all with
equal edge lengths. The inflation rule to construct ST tiling is
discovered by Stampfli.47 As shown in Figure 1a, the
fundamental dodecagon (Figure 1a(I)) is transformed to the
second-generation dodecagon (Figure 1a(III)) by following
the inflation rules shown in Figure 1a(II). Here, the tiles
obtained with different inflation rules are distinguished by
different colors. The local third-generation pattern in Figure
1a(III) is obtained by inflating the T1 and S1 tiles twice. The
corresponding edges of the three outlined S1 are magnified by
an inflation factor α = 2 + √3 in each generation, where α is
the platinum number, corresponding to the root of f(x) = x2 −
4x + 1. Meanwhile, the substitution rule {AABA → A′, ABA →
B′} is repeatedly applied to generate an aperiodic sequence.
The “letters” A and B are two spacings between parallel lines
passing through the vertices of the first-generation tiling, and
A′ and B′ are the spacings between parallel lines passing
through the vertices of the second-generation tiling. The length
ratios between A′ and A, and between B′ and B are both α.
The inflation matrix is given in the Supporting Information
(SI), Section S1. The maximum eigenvalue of the inflation
matrix is α2.
The DST tiling, consisting of two kinds of Ts, two kinds of

Ss, and one kind of diamond D, is a novel dodecagonal
aperiodic tiling constructed in the current study. All of the
prototiles have equal edge length, and their inflation rules are
given in Figure 1b(II). The shape characteristic of diamond D
is specified in Figure 1b(V). The fundamental dodecagon
shown in Figure 1b(I) containing 6 T1, 2 T2, 2 D, 2 S1, and 4 S2
can inflate once to form a second-generation tiling; see Figure
1b(III). Meanwhile, the third-generation pattern is obtained by

inflating the first-generation T1, D, and S2 twice. The first-,
second-, and third-generation Ts are highlighted in black,
arranged from bottom to top. Each generation can be
magnified by a factor of α relative to the previous generation.
Based on the inflation rule shown in Figure 1b(II), the number
of these tiles in the (n + 1)th generation, denoted by T1

n+1, T2
n+1,

Dn+1, S1n+1, and S2n+1, are related to those in the nth generation
by the inflation matrix MDST
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Here, the inflation matrix MDST keeps track of the number of
various prototiles in a self-similar way, and its maximum
eigenvalue is also α2. If only the shape (T, D, and S) of the
prototiles is distinguished, the inflation matrix can be simplified
as
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Furthermore, the vertices of the given generation tilings lying
on the set of parallel lines can form two spacings (“letters”) A
and B, as shown in Figure 1b(III). These letters constitute an
aperiodic sequence following the substitution rule {ABAA →
A′, ABA → B′}, and the length ratios between A′ and A, and
between B′ and B are both given by α. Note that the ST and
DST tilings are incongruent tilings; the constituent tiles are not
the same, and they are not related by plane rotations with no
deformations. The tilings are certainly related, but the
symmetry of the DST tiling is lower than that of the ST
tiling. It is noted that the 12-fold “cogwheel” of the DST tiling
in Figure 1b(I) has only two orthogonal mirror planes, along
the vertical and horizontal directions, due to the two blue
diamonds in the central hexagon. In contrast, the ST tiling
consists of a central hexagon formed by six triangular tiles,
which inherently results in six mirror planes.
The prototiles of either the ST or DST tilings are equilateral

polygons. By introducing an incongruent quadrangle (Figure
1c(V)), we can construct the QST tiling, where the
fundamental dodecagon is illustrated in Figure 1c(I). Figure
1c(II) displays nine prototiles and the corresponding inflation
rules, containing four kinds of triangles T1, T2, T3, and T4, four
kinds of quadrangles Q1, Q2, Q3, and Q4, and one kind of
square S. A second-generation QST tiling with the third-
generation of 1 Q2, 1 Q4, and 1 S is shown in Figure 1c(III).
Three black-outlined Q4 are self-similar, which are magnified
by α from the bottom to top. The “letters” A and B form the
same aperiodic sequence following the substitution rule
{ABAA → A′, ABA → B′} as DST tiling. By tracking the
changes in the number of T1, T2, T3, T4, S, Q1, Q2, Q3, and Q4
based on inflation rules, we can obtain the inflation matrix
MQST
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During the inflation process, the contribution of Q in all
prototiles manifests not only as a whole but also in the form of
divided equilateral triangle and right triangle, as indicated by
the dashed lines in Figure 1c(V). Thus, the area ratios m =

2√3/(1 + 2√3) and n = 1/(1 + 2√3) of the two parts
relative to Q are used to describe the contribution of Q,
respectively. The maximum eigenvalue of MQST is also α2.

Figure 2. Higher-dimensional analysis of (1) ST tiling, (2) DST tiling, and (3) QST tiling. (a−c) Projection windows obtained by mapping
second-to fourth-generation tilings to the perpendicular space.
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To better understand these dodecagonal tilings, a high-
dimensional analysis is carried out by using the classical cut-
and-project method.48 This involves representing a low-
dimensional QC as a projection of a high-dimensional crystal
onto a two-dimensional physical space. The high-dimensional
space is divided into parallel and perpendicular spaces. By
mapping the vertices of the second-, third-, and fourth-
generation tilings to the perpendicular space, we construct
their projection windows shown in Figure 2. The windows of
the ST and DST tilings exhibit fractal characteristics. The DST
tiling window resembles a Koch snowflake, and the QST tiling
window resembles the shape of two overlapping hexagons. The
Hausdorff dimension of the projection window for DST tiling
is log 6/log(2 + √3)≈ 1.3605, while the Hausdorff
dimensions of the projection windows for the ST and QST
tilings are still unknown. It is noted that the different windows
for the ST and DST tiling in Figure 2 also highlight the
differences between the DST and ST tilings.

■ SCFT OF T-SHAPED LIQUID CRYSTALLINE
MOLECULES

For a given molecular system, we solve the SCFT equations
using various initial configurations, including the dodecagonal
tilings, to obtain solutions corresponding to the different
ordered phases. The free energies of these phases are then used
to analyze their relative stability. The first step of the SCFT
procedure is to develop an SCFT framework for the given
molecular systems.
In this study, we consider an incompressible melt of n T-

shaped pentablock terpolymers (Figure 3) with an overall

degree of polymerization or number of segments N in a
volume of V. Each TLCM consists of a liquid crystalline (rigid
rod) middle block R (blue) with two flexible end blocks, A1
and A2 (red), tethered at the ends of the rod and one flexible
side block B (green) grafted at the middle of the rod. The
grafting point of the B block divides the rod R block into two,
R1 and R2, subblocks. Effectively, the TLCM is a pentablock
copolymer with five blocks, α = {A1, A2, B, R1, and R2}. The
volume fraction of the α-block is denoted by fα with α = {A1,
A2, B, R1, and R2}. For the TLCM specified in Figure 3, the
volume fractions are given by, fA d2

= ϵAfAd1
, f Rd2

= ϵRfR d1
, with ∑α fα

= 1.
We model the flexible blocks as Gaussian chains and the

rigid blocks as wormlike chains. Within the SCFT framework,
the free energy per TLCM in units of thermal energy kBT,
where T is the temperature and kB is the Boltzmann constant,
can be expressed as38

Ä

Ç
ÅÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑÑ

r r r r

r r r

f F
nk T

V N N
d

NV
d Q

1 1
4

( )
1

4
( ) ( )

1
2

( ): ( ) log ,

V

V

B

1
1
2

2
2
2

=

= +

+

+

(3)

where the Maier−Saupe interaction parameter η quantifies the

strength of the orientational interaction favoring the alignment

of the rod blocks, Q is the single-chain partition function. The

symbol A: B denotes the double dot product, defined as A: B =

∑i,jAijBij. μ1 and μ2 are the general “exchange chemical

potential” of the system. μ+ is the pressure potential to ensure

local incompressibility. is the orientational field of the
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The single-chain partition function Q, the density distribu-

tion of different blocks, ϕα (α = {A, B, R}), and the orientation

order parameter are computed from the chain propagators,

qα(r, s) and qα
†(r, s), α = {A1, A2, B}, qβ(r, u, s) and qβ

†(r, u, s), β

= {R1, R2}, which in turn are obtained by solving a set of

modified diffusion equations (MDEs). Here, u is a vector

defined on the unit sphere , which represents the local

orientation of the semiflexible molecule. Specifically, we have

Figure 3. T-shaped liquid crystalline molecule consisting of a rigid
rod R (blue) with two flexible blocks, A1 and A2 (red), tethered at its
ends and a flexible side block B (green).
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Here, qα(r, s), α ∈ {A1, A2, B} is the forward propagator,
representing the probability of finding the sth α segment at a
spatial position r from s = 0 to s = fα under mean field wα. The
backward propagator qα

†(r, s) represents the probability weight
from s = fα to s = 0. For the Gaussian chains, the propagators
satisfy the modified diffusion equations (MDEs)39
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For semiflexible chains, the forward propagators qβ(r, u, s) and
β ∈ {R1, R2} represent the probability of the end point of the s
segment at spatial position r and orientational position u. They
satisfy the “convective diffusion” equations39
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where ( )r u r r uu Iw( , ) ( ) ( ):R
1
2

= . The parameter
ν = (bR/bB)(6N)1/2 measures the size asymmetry of monomers
R and B, bA and bB represent the statistical segment lengths of
monomers A and B, respectively. λ is the hardness of the
semiflexible chain. The backward propagators of the semi-
flexible block satisfy
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Finally, the various fields and densities are related by the self-
consistent equations that are obtained by the minimization
conditions
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Mathematically, the SCFT of LCMs is a nonlocal,
multisolution, multiparameter, high-dimensional, and non-
linear variational problem. The solutions of SCFT are saddle
points of the free energy landscape corresponding to different
ordered structures. Obtaining these solutions numerically
requires a diverse set of initial configurations and accurate
algorithms. In order to study the relative stability of QCs, it is
essential to construct initial configurations corresponding to
various DDQCs as well as periodic structures. The initial
configurations for DDQCs can be obtained by constructing
dodecagonal aperiodic tilings. There exists a gap between these
aperiodic tilings, which is a geometric construction, and the
density profiles of candidate phases for SCF calculations. To
bridge this gap, we employ a method to decorate tilings with
smooth functions like Gaussian or tanh function (eq S3).
Specifically, the density functions ϕA and ϕB are obtained by
decorating the dodecagonal tilings and their dual tilings (red
and green vertices in Figure 1(IV)), respectively, while ϕR is
obtained by using the incompressibility condition. Using this
approach, the initial configurations of three DDQCs, namely,
the square−triangle DDQC (STQC), diamond−square−
triangle DDQC (DSTQC), and quadrangle−square−triangle
DDQC (QSTQC) can be obtained. Their corresponding
converged states are illustrated in Figure 5, and the white lines
are a rough guide for the tiling pattern of the converged
structure. Since the initial configuration might change during
SCFT iteration, the converged configuration does not always
perfectly match the initial tiling pattern.
Accurate and efficient algorithms are required to solve the

SCFT equations. In this work, we consider two-dimensional
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ordered structures and restrict the orientation of the rigid
block on a unit circle; i.e., the orientation of the rigid rods is
represented by the polar angle θ ∈ [0, 2π]. After comparing
the accuracy and efficiency of various numerical algorithms, we
use the Fourier pseudospectral method to discrete spatial and
orientational variables, the fourth-order backward difference
formula and the fourth-order Runge−Kutta method to discrete
the contour variable of Gaussian and Wormlike chain
propagators, respectively. And the hybrid nonlinear iteration
scheme is used to find the saddle points of the SCFT.49 During
the self-consistent iteration, we utilize optimization algorithms
to relax the calculation domain to allow the structures to reach
their optimal energy states. For more algorithmic details and
procedures, please refer to the SI, Section S3. Meanwhile, a
parallel technique is developed using FFTW-MPI package in C
++ language50 to accelerate the calculations.

■ SCFT SOLUTIONS OF DDQCS
Using aperiodic tilings as initial configurations allowed us to
obtain SCFT solutions of three DDQCs shown in Figure 4.
The self-consistency of all of the SCFT solutions is determined
by demanding that the free energy difference between
consecutive iteration steps is less than the iteration tolerance

of tol = 1.0 × 10−8. The relative stability of all candidate phases
is examined by using their free energies. Phase diagram of the
system is constructed by a comparison of the free energies of
the candidate phases. The library of candidate phases used in
the current study includes the three DDQCs and their crystal
approximants, such as P4gm, APX,4 P4gmL,8 as well as
polygonal structures including the triangle and square. The
corresponding diffraction patterns of each phase are displayed
in Figures 4 and 5. Specifically, STQC exhibits more
prominent diffraction peaks compared with DSTQC, as it
maintains a higher rotational symmetry and greater self-
similarity.
Previous experiments and simulations have revealed that the

DDQCs could form between the stable regions of the
triangular and quadrangular phases.23−25,28−30 For the case
of TLCMs, our previous SCFT calculations51 have provided a
suitable parametric range for the search of stable DDQCs, i.e.,
ϵA = 0.4, f R d1

= 0.14, ϵR = 1.1, η = 0.3, bA = bB = 1.0, and λ =
300. Due to the significant impact of Flory−Huggins
parameters χAR, χBR, χAB, and the side chain length f B on
phase stability, we employ χ = χAR (χBR = χ − 0.02, χAB = χ −
0.04) to analyze the stability of three DDQCs. Comparing the
SCFT free energies of all ordered phases with fixed parameters,

Figure 4. Periodic phases self-assembled from TLCMs. The second column presents the morphologies in which A-, B-, and R-rich domains are
plotted in red, green, and blue colors, respectively. The white lines are a rough guide for the tiling pattern of the converged structure. The third,
fourth, and fifth columns show the density distributions of components A, B, and R, respectively. The last column shows the main diffraction peaks
of components A (red) and B (green).

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.4c02380
Macromolecules 2025, 58, 5229−5239

5235

https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.4c02380/suppl_file/ma4c02380_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c02380?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c02380?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c02380?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c02380?fig=fig4&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.4c02380?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the one with the lowest free energy is taken as the stable
structure at that point. The resulting phase diagram in the χ-f B
plane is presented in Figure 6a. This phase diagram shows that
in the range of χ ∈ [0.28, 0.34], the DDQCs are metastable
phases that do not appear in the phase diagram. A phase
transition sequence from triangle, to P4gm, and then to square
is observed when f B is increased. These stable phases are either
congruent triangle/square tilings or their combination (P4gm).
The three QCs, STQC, DSTQC, and QSTQC, are all
solutions of the SCFT equations but they are metastable
states within the parameter range. It is worth noticing that the
free energy differences per chain between the DDQCs and
their crystalline approximants (P4gm, P4gmL) are quite small,
at the 10−2 level, as shown in Figure 6b.
In order to understand the influence of different factors on

the relative stability of the ordered phases, we divide the free
energy per chain into three parts: interaction energy ( f I),

orientation interaction energy ( f M), and entropic contribution
( f E)
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(9)

An example of these free energy components with χ = 0.30 and
η = 0.35 is shown in Figure 7. The numerical results from
SCFT calculations indicate that the DDQCs have lower f I and
f M values compared to those of the stable P4gm. However, the
relatively larger contribution of f E prevents the DDQCs
become stable phases, despite the advantage brought by the f I
and f M. Thus, the entropic contribution f E dominates the

Figure 5. DDQCs self-assembled from TLCMs. The second column presents the morphologies in which A-, B-, and R-rich domains are plotted in
red, green, and blue colors, respectively. The white lines are a rough guide for the tiling pattern of the converged structure. The third, fourth, and
fifth columns show the density distributions of components A, B, and R, respectively. The last column shows the main diffraction peaks of
components A (red) and B (green).

Figure 6. (a) Phase diagram in the χ − f B plane. Symbols indicate the transition points determined by SCFT; while solid lines are a guide for the
eyes. (b) Free energy differences Δf = f − f P4gm at [χ − f B] = [0.28 − 0.351], [0.30 − 0.350], [0.32 − 0.348], and [0.34 − 0.347]. Here, the
parameters are ϵA = 0.4, f R d1

= 0.14, ϵR = 1.1, η = 0.3, and λ = 300.
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stability of DDQCs. Similarly, the DDQCs are metastable
phases for the Maier−Saupe parameter in the range of η ∈
[0.3, 0.36]. The corresponding phase diagram and free energy
components (in the SI, Section S4) confirm the dominant role
of f E in stabilizing the different phases.
One interesting question is whether the introduction of

randomness to the DDQCs can alter the entropic contribution
to the free energy f E, thus enhancing their stability. There are
two ways to introduce randomness to construct random tilings
for the DDQC morphologies. The first one is the zipper
update move approach,52 which can disrupt the self-similarity
through the phase flipping mechanism. The imperfect
aperiodic tilings obtained by this method are almost
degenerate compared with the DDQCs, as indicated by the
observation that their free energies are nearly equal.53 This
method has already been applied in the construction of
random STQC in the SCFT calculations of ABCB tetrablock
copolymers, resulting in metastable structures with free energy
variation per chain only at the 10−3 level.4 The conclusion from
these studies is that the zipper update method could not
increase f E sufficiently to stabilize the DDQCs. The second
one is randomly rotating the fundamental dodecagon in
DDQCs such that they still guarantee dodecagonal symmetry,
as shown in Figure S2. This method could either increase or
decrease the energy f E. For instance, in the STQC-R1 tiling,
rotation increases f E, while in the QSTQC-R1 tiling, it
decreases f E. However, the free energy variations per chain
resulting from rotation are also only very small at the 10−3

level, as shown in Figure S3. Therefore, the randomness
through rotation still does not increase f E enough to stabilize
the DDQCs in the TLCMs. Discrepancies between theoretical
and experimental results may arise from the challenges in
accurately simulating experimental systems, such as polymer
systems with ions, which are difficult to model with SCFT.8

Based on these SCFT studies, it can be concluded that the
stability of the DDQCs obtained via the inflation rules and
their randomized variations are insensitive to the parameters χ,
η, and f B of the TLCMs. Therefore, in the future, we should

attempt to introduce more blocks or blends into the system to
modulate the energy and achieve stable DDQCs.

■ DISTINGUISHING DIVERSE DDQCS AND THEIR
APPROXIMANTS

The three DDQCs and their approximants exhibit similar
symmetries, as shown in Figure 8. The common method of

identifying ordered structures through different symmetries of
diffraction peaks1,6 requires further developing. We can arrange
the diffraction peaks in the descending order based on their
symmetry and the magnitude of their Fourier coefficients. The
Fourier coefficients are calculated by the standard expression.39

We designate the top 12 peaks as the first-order peaks, while
the subsequent peaks, ranked from 13 to 24, as the second-
order peaks. Based on this, we combine the positions of the
first-order with the second-order peaks to achieve this task.
Focusing on the positions of the A diffraction peaks when χ =

Figure 7. (a−d) Free energy difference per chain Δf = f − f P4gm among all phases with χ = χAR = 0.30, where f P4gm is the free energy per chain of
P4gm on the boundary of triangle and square indicated by dashed lines. (b−d) Three parts energy differences correspond to panel (a).

Figure 8. Diffraction peaks of monomer A for DDQCs and their
approximants when χ = 0.30 and f B = 0.35. The solid circle represents
the location of first-order diffraction peaks, and the dashed circle
shows the location of some second-order diffraction peaks.
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0.30, f B = 0.35, as shown in Figure 8, it is evident that the
overlapping first-order peaks (lie on solid circle) are difficult to
distinguish between DDQCs and their approximants, except
for APX. However, when combined with nonoverlapping
second-order peaks position (lie on dashed circle), it is
sufficient to distinguish all structures. More detailed position
comparisons are shown in Table S2. The criterion is presented
for the parameter χ = 0.30, f B = 0.35 as an example, and it is
applicable to other parameters.

■ CONCLUSIONS
In summary, we constructed three dodecagonal aperiodic
tilings, including a novel DST tiling, and used them to
construct initial density profiles for the SCFT. By applying the
cut-and-project method, we showed that the aperiodic tilings
could be obtained from the projection of higher-dimensional
periodic lattice points to the lattice points of parallel space
within a projection window. The availability of the initial
configurations allowed us to obtain accurate solutions of the
SCFT equations corresponding to metastable DDQCs. A free
energy analysis underscored the dominant role of the entropic
contribution to the free energy in determining the stability of
the DDQCs. We also showed that the introduction of random-
tiling DDQCs is insufficient to stabilize the DDQCs. These
insights highlight the need to explore additional mechanisms
that can stabilize the DDQCs, such as adjusting the molecular
topology and introducing extra species via blending. For three
DDQCs and their approximants, we provided a criterion to
distinguish them based on diffraction peaks. This work
represents an effort to investigate DDQCs within the SCFT
framework of TLCMs. The methodology and results from the
current study not only open new possibilities for research on
soft QCs but also provide guidance for experimental
investigations aimed at discovering novel DDQCs.
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