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Abstract. In this paper, we propose a new algorithm, the irrational-window-filter projection
method (IWFPM), for quasiperiodic systems with concentrated spectral point distribution. Based on
the projection method (PM), IWFPM filters out dominant spectral points by defining an irrational
window and uses a corresponding index-shift transform to make the FFT available. The error
analysis on the function approximation level is also given. We apply IWFPM to one-dimensional,
two-dimensional (2D), and three-dimensional (3D) quasiperiodic Schr\"odinger eigenproblems (QSEs)
to demonstrate its accuracy and efficiency. IWFPM exhibits a significant computational advantage
over PM for both extended and localized quantum states. More importantly, by using IWFPM, the
existence of Anderson localization in 2D and 3D QSEs is numerically verified.
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1. Introduction. Quasiperiodic systems, as a natural extension of periodic
structures, have been widely observed in physics and materials sciences, such as
many-body problems, quasicrystals, incommensurate systems, polycrystalline materi-
als, and quantum systems [29, 32, 10, 38, 15]. Over these years, a growing realization
has emerged that underlying irrational numbers of quasiperiodic systems impart var-
ious fascinating features [28, 26, 5, 7]. Particularly, in quantum systems, numerous
intriguing physical phenomena have been discovered to be related to quasiperiodic
structures, including quantum Hall effect, Anderson localization, topological insula-
tors, photonic moir\'e lattices, and mobility edge [39, 16, 15, 41, 31, 40, 27].

Quasiperiodic systems pose significant challenges for numerical simulations, due
to their space-filling order without decay or translation invariance. In recent years,
several methods for solving quasiperiodic systems have been developed. The widely
used periodic approximation method [44] employs periodic solutions to approximate
quasiperiodic solutions, inevitably introducing rational approximation errors [17, 18].
An accurate algorithm is the projection method (PM), which treats the quasiperiodic
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IWFPM AND APPLICATION TO QSES 565

system as an irrational manifold of a high-dimensional periodic system [17]. PM has
spectral accuracy, and is efficient owing to its utilization of fast Fourier transform
(FFT) [20]. Further, the finite points recovery method is proposed for both high- and
low-regularity quasiperiodic systems [21].

Motivation. PM has shown outstanding advantages in accurately computing
quasiperiodic systems, especially in incommensurate quantum systems [20, 25, 43,
19, 45]. However, when using PM, quasiperiodic function after lifting dimension may
exhibit distinct regularities along different directions, leading to a notable deteriora-
tion in convergence. This flaw becomes apparent when solving some quasiperiodic
systems with singularity solution, like localized quantum state.

Focusing on Anderson localization, the phenomenon of wave diffusion being absent
in a disordered or quasiperiodic medium, it is of great significance in regulating various
physical properties in materials, including conductivity, optical properties, and mag-
netism [1]. Over the past few decades, incommensurate electrical structures, drawing
attention for their capacity of achieving the continuous transition from extended state
to localized state, have been experimentally studied through techniques like cold atom
control and optical superlattice [30, 11, 37, 41]. Under the tight-binding limit, the
Hamiltonian of incommensurate quantum system can be mapped onto the well-known
almost Mathieu operator in the one-dimensional (1D) discrete case, which is a typ-
ical form of quasiperiodic Schr\"odinger eigenproblems (QSEs) [35]. Since the 1980s,
substantial progress has been made in the spectral theory of QSEs. Researchers have
found that the spectral structure of QSEs can be decomposed into pure point, singular
continuous, and absolutely continuous spectra, which correspond to localized, criti-
cal, and extended states of quantum systems, respectively [6, 8, 35, 9, 2, 3, 4, 13, 34].
While significant theoretical works have been conducted on the one-dimensional cases
of QSEs, addressing two- and higher-dimensional scenarios remains a challenging en-
deavor [9, 34].

When numerically solving arbitrary dimensional QSEs, especially in these cases
where the wavefunction exhibits localization, PM might become inefficient due to
the high computational cost. Based on PM, several heuristic works have been intro-
duced. Reference [42] observed the phenomenon of concentrated distribution of spec-
tral points in QSEs. Based on this observation, [42, 12] both capture the concentrated
distribution of spectral points by a parallelogram index set, thus reducing the degrees
of freedom of PM. Unfortunately, the RPM does not improve the FFT computational
efficiency of PM, as it adopts a zero-fill operation when performing FFT on such an
irregular index set. How to improve PM to make the FFT available and applied to
QSEs to find high-dimension Anderson localization is the main purpose of this paper.

Contribution. In this paper, we propose a new algorithm, named the irrational-
window-filter projection method (IWFPM), and apply it to arbitrary dimensional
global quasiperiodic systems. Based on the PM and the phenomenon that the spec-
tral points are concentrated along an irrational direction, IWFPM filters out dominant
spectral points by defining an irrational window. Moreover, a corresponding index-
shift transform is designed to make the FFT available. The error analysis on the
function approximation level is also given. We apply IWFPM to 1D, two-dimensional
(2D), and three-dimensional (3D) QSEs to demonstrate its accuracy and efficiency.
An efficient diagonal preconditioner is also designed for the discrete QSEs to signif-
icantly reduce condition number. Numerous experiments demonstrate that IWFPM
has an absolute computational advantage over PM for both extended and localized
quantum states. More importantly, by using IWFPM, the existence of Anderson
localization in 2D and 3D QSEs is numerically verified.
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566 JIANG, LI, MA, ZHANG, ZHANG, AND ZHOU

Organization. This article is structured as follows. In section 2, we introduce the
preliminaries about quasiperiodic functions and give a brief introduction of the PM.
In section 3, we present the IWFPM and its implementation process. Moreover, we
define a new norm in quasiperiodic function space to enable the convergence analysis
of IWFPM. In section 4, we illustrate the effectiveness and superiority of IWFPM
through its application to 1D, 2D, and 3D QSEs, and verify the existence of Anderson
localization. Finally, in section 5, we summarize this work and give an outlook on
future work.

2. Quasiperiodic functions and projection method (PM). In this section,
we present the preliminaries about quasiperiodic functions and offer a brief overview
of PM.

Definition 2.1. A matrix \bfitP \in \BbbR d\times n is called the projection matrix, if it belongs
to the set \BbbP d\times n := \{ \bfitP = (\bfitp 1, . . . ,\bfitp n) \in \BbbR d\times n : \bfitp 1, . . . ,\bfitp n are \BbbQ -linearly independent,
rank(\bfitP ) = d\} .

Definition 2.2. A d-dimensional function u(\bfitx ) is quasiperiodic if there exists a
continuous n-dimensional periodic function U(\bfity ) and a projection matrix \bfitP \in \BbbP d\times n,
such that u(\bfitx ) =U(\bfitP T\bfitx ) for all \bfitx \in \BbbR d.

Remark 2.1. The periodic function U(\bfity ) is called the parent function of u(\bfitx ).
And we use the notation \scrQ (\BbbR d) to represent the set of all d-dimensional quasiperiodic
functions. Without loss of generality, we always assume that all parent functions are
measurable on n-dimensional torus \BbbT n := (\BbbR /2\pi \BbbZ )n.

For n-dimensional periodic functions U and V , their inner product is

\langle U,V \rangle := 1

(2\pi )n

\int 
[0,2\pi ]n

U(\bfity )V (\bfity )d\bfity .

We say U \in \scrL 2(\BbbT n) if \| U\| \scrL 2 := \langle U,U\rangle 1/2 < +\infty . Denote Fourier basis function
\varphi \bfitk (\bfity ) := ei\bfitk \cdot \bfity for index \bfitk \in \BbbZ n, where \bfitk \cdot \bfity =

\sum n
j=1 kjyj . It is obvious that for any

\bfitk , \bfitk \prime \in \BbbZ d, the Fourier basis functions \varphi \bfitk and \varphi \bfitk \prime are orthogonal, i.e.,

\langle \varphi \bfitk ,\varphi \bfitk \prime \rangle := \delta \bfitk \bfitk \prime =

\biggl\{ 
1, \bfitk = \bfitk \prime ,
0, \bfitk \not = \bfitk \prime .

Then, for a periodic function U \in \scrL 2(\BbbT n), its Fourier series is defined by

U(\bfity ) =
\sum 
\bfitk \in \BbbZ n

\^U\bfitk \varphi \bfitk (\bfity ), \^U\bfitk := \langle U,\varphi \bfitk \rangle .

For a quasiperiodic function u(\bfitx )\in \scrQ (\BbbR d), its mean value M(u) is defined as

M(u) := lim
T\rightarrow +\infty 

1

(2T )d

\int 
\bfits +[ - T,T ]d

u(\bfitx )d\bfitx \forall \bfits \in \BbbR d.

Correspondingly, the inner product and norm of u, v \in \scrQ (\BbbR d) can be defined as

\langle u, v\rangle :=M(u\=v), \| u\| :=
\bigl( 
M
\bigl( 
| u| 2
\bigr) \bigr) 1/2

.

We say u \in \scrL 2
\scrQ if \| u\| <+\infty . Note that the definition of Fourier basis functions can

be easily extended to more general cases as \varphi \bfitq (\bfitx ) := ei\bfitq \cdot \bfitx , for any \bfitq , \bfitx \in \BbbR d. Then,
the Fourier--Bohr transform of u is \^u\bfitq :=M(u\varphi \bfitq ), \bfitq \in \BbbR d.
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IWFPM AND APPLICATION TO QSES 567

Lemma 2.3 (see [20, Theorem 4.1]). For a d-dimensional quasiperiodic function
u and its associated parent function U , it holds that \^u\bfitq = \^U\bfitk when \bfitq =\bfitP \bfitk .

Then the generalized Fourier series of u(\bfitx )\in \scrL 2
\scrQ is given by

u(\bfitx ) =
\sum 
\bfitk \in \BbbZ n

\^U\bfitk \varphi \bfitP \bfitk (\bfitx ).

Remark 2.2. When the parent function satisfies certain regularity conditions, all
Fourier coefficients have the decay property. Specifically, if U \in \scrH \alpha (\BbbT n), there exists
a positive constant C such that \^U\bfitk \leq C| \bfitk |  - \alpha | U | \scrH \alpha [14, 33]. Here, the definitions of
seminorm | \cdot | \scrH \alpha and the corresponding Sobolev space \scrH \alpha (\BbbT n) are given in (3.13).

Next, we briefly introduce the PM. Unlike previous numerical methods, PM grasps
the essential feature of a d-dimensional quasiperiodic function that can be embed-
ded into its associated n-dimensional parent periodic function [17]. As a result, PM
computes the n-dimensional parent periodic system in a pseudospectral way instead
of directly addressing quasiperiodic system. Then, PM projects these results onto
d-dimensional space by the projection matrix \bfitP to obtain quasiperiodic system. Con-
cretely, given a positive integer N , we define the finite index set

\scrK N := \{ \bfitk \in \BbbZ n : \bfitk \in [ - N,N)n\} .

Then, the dual grid of \scrK N is given by

\scrG N := \{ \bfity \ell = \pi \ell /N \in [0,2\pi )n : \ell \in \BbbZ n \cap [0,2N)n\} .

For periodic functions U and V , the compound trapezoidal formula of inner product
is

\langle U,V \rangle N :=
1

(2N)n

\sum 
\bfity \ell \in \scrG N

U(\bfity \ell )V (\bfity \ell ).

Limiting the space \scrL 2(\BbbT n) to a finite-dimensional subspace spanned by the \{ \varphi \bfitk : \bfitk \in 
\scrK N\} , we obtain the discrete Fourier--Bohr series of u\in \scrL 2

\scrQ [20]

u(\bfitx ) =
\sum 

\bfitk \in \scrK N

\=U\bfitk \varphi \bfitP \bfitk (\bfitx ), \=U\bfitk := \langle U,\varphi \bfitk \rangle N .

The corresponding error analysis of PM can refer to [20]. Moreover, since discrete
Fourier coefficients originate from the periodic parent function, PM can use the n-
dimensional FFT to improve the computational efficiency.

3. Irrational-window-filter projection method (IWFPM). When using
PM to address some quasiperiodic systems, such as QSEs, an interesting phenomenon
has been observed that the Fourier coefficients are concentrated in a narrow elongated
area (see [42, 12]). In this section, based on this phenomenon, we improve the index
set of spectral points, thereby reducing the DOF of PM. Then we further overcome
the challenge of performing FFT on irregular index sets by using an index transform.
Finally, we provide implementation details of IWFPM and establish an error analysis
of this method at the functional level.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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568 JIANG, LI, MA, ZHANG, ZHANG, AND ZHOU

Fig. 1. Rectangle index set \scrK N , parallelogram index set \scrK K,L, and irrational window \scrW K,L

when d= 1, n= 2, N = 12, K = 2, L= 6, \bfitP = (1, (
\surd 
5 + 1)/2).

3.1. Irrational window. Based on the decay property of Fourier coefficients
mentioned in Remark 2.2, we discover that Fourier coefficients are concentrated in
a hyperparallelogram area along the \bfitP \bfitk = 0 direction. Further, we divide \bfitP =
(\bfitP I,\bfitP II), where \bfitP I \in \BbbR d\times d and \bfitP II \in \BbbR d\times (n - d). According to the definition of
projection matrix, we can always make the d-order matrix \bfitP I invertible. Hence,
there exists an elementary row transform \bfitP  - 1

I such that \bfitP  - 1
I \bfitP = (Id,\bfitQ ), where Id

is the d-order identity matrix and \bfitQ :=\bfitP  - 1
I \bfitP II \in \BbbR d\times (n - d). Through this transform,

we can concentrate all irrational numbers in \bfitP into \bfitQ . Correspondingly, we partition
the index \bfitk \in \BbbR n into two parts: \bfitk = (\bfitk T

I ,\bfitk 
T
II)

T , \bfitk I \in \BbbR d, \bfitk II \in \BbbR n - d. Then, the
hyperparallelogram tilt along the \bfitP  - 1

I \bfitP \bfitk = \bfitk I +\bfitQ \bfitk II = 0 direction.
Based on this distribution feature of Fourier coefficients, we can define an irratio-

nal window for given two positive integers K and L as

\scrW K,L :=

\biggl\{ 
\bfitk =

\Bigl( 
\bfitk T
I ,\bfitk 

T
II

\Bigr) T
\in \BbbR n : \bfitk II \in [ - L,L)n - d, \bfitk I +\bfitQ \bfitk II \in [ - K,K)d

\biggr\} 
.

Obviously, irrational window \scrW K,L is determined by the irrational numbers in the
projection matrix \bfitP . Then, we can define a hyperparallelogram index set

\scrK K,L :=\scrW K,L \cap \BbbZ n.(3.1)

As an illustrative example, Figure 1 presents the rectangle index set \scrK N , paral-
lelogram index set \scrK K,L, and irrational window \scrW K,L when d = 1, n = 2, N = 12,
K = 2, L = 6, and projection matrix \bfitP = (1, (

\surd 
5 + 1)/2). We can observe that the

index set \scrK N has 2N \times 2N = 576 points, while \scrK K,L significantly reduces the number
of points to 2K \times 2L= 48.

Remark 3.1. Generally, the two positive integers K and L can be two vectors
\bfitK = \{ K1, . . . ,Kd\} \in \BbbN d

+ and \bfitL = \{ L1, . . . ,Ln - d\} \in \BbbN n - d
+ , respectively.

3.2. Index-shift map. For the Fourier coefficient index set \scrK K,L, there seems
a drawback in practical calculations that the irregular shape may make the FFT
inapplicable. To address this issue, we introduce an index-shift map \varrho , defined by

\varrho (\bfitk ) = \bfitk \ast =
\bigl( 
k\ast j
\bigr) n
j=1

,

where

k\ast j =

\biggl\{ 
kj mod 2K if j = 1, . . . , d,
kj mod 2L if j = d+ 1, . . . , n.

(3.2)

Here, ``mod"" represents modulo operation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IWFPM AND APPLICATION TO QSES 569

(a) \scrK K,L (b) \scrK \ast 
K,L (c) \scrG K,L

Fig. 2. The parallelogam index set \scrK K,L (left), the rectangle index set \scrK \ast 
K,L (middle), and the

grid points \scrG K,L (right) when d= 1, n= 2, K = 2, L= 6, \bfitP = (1, (
\surd 
5 + 1)/2).

Applying \varrho to all indicators of \scrK K,L, we obtain the following hyperrectangle index
set:

\scrK \ast 
K,L :=

\biggl\{ 
\bfitk =

\Bigl( 
\bfitk T
I ,\bfitk 

T
II

\Bigr) T
\in \BbbZ n : \bfitk I \in [0,2K)d, \bfitk II \in [0,2L)n - d

\biggr\} 
.

Correspondingly, the set of dual grid points can be defined as

\scrG K,L :=

\biggl\{ 
\bfity \ell =

\Bigl( 
\pi \ell T1 /K,\pi \ell T2 /L

\Bigr) T
\in [0,2\pi )n : \ell =

\Bigl( 
\ell T1 ,\ell 

T
2

\Bigr) T
\in \scrK \ast 

K,L

\biggr\} 
.(3.3)

Obviously,

\varphi \bfitk (\bfity \bfitl ) =\varphi \bfitk \ast (\bfity \bfitl ) \forall \bfity \ell \in \scrG K,L, \bfitk \in \scrK K,L.(3.4)

Remark 3.2. Based on the equivalence relationship (3.4), we can establish the con-
nection between the discrete Fourier transforms on indicator set \scrK K,L and indicator
set \scrK \ast 

K,L in subsection 3.3.

As an example, Figure 2 illustrates the index-shift map on the index set \scrK K,L

when d= 1, n= 2, K = 2, L= 6, and \bfitP = (1, (
\surd 
5 + 1)/2). It shows the parallelogam

index set \scrK K,L, the rectangle index set \scrK \ast 
K,L, and the grid points \scrG K,L.

In what follows, we give an explicit expression of \varrho  - 1 in another way. Although \varrho 
is a bijection, the calculation of the inverse of \varrho cannot be directly obtained by (3.2).
Hence, we attempt to give the mathematical expression of \varrho  - 1 in the following. Let
(\bfitQ \bfitk II)j denote the jth component of the vector \bfitQ \bfitk II. According to the definition
of \bfitk I = (kj)

d
j=1 in index \bfitk \in \scrK K,L, it is obvious that the value range of kj is the 2K

integers within the interval [ - K - (\bfitQ \bfitk II)j ,K - (\bfitQ \bfitk II)j). Among these integers, only
one can be divisible by 2K, and that is Rj = \lceil ( - K  - (\bfitQ \bfitk II)j)/2K\rceil \cdot 2K, where \lceil \cdot \rceil 
represents rounding up. Then, we can obtain the inverse map

\varrho  - 1(\bfitk \ast ) = \bfitk =
\Bigl( 
\bfitk T
I ,\bfitk 

T
II

\Bigr) T
, \bfitk \ast \in \scrK \ast 

K,L(3.5)

by two steps. The first step is to compute \bfitk II as following:

kj =

\biggl\{ 
k\ast j if k\ast j <L,
k\ast j  - 2L if L\leq k\ast j < 2L,

j = d+ 1, . . . , n,(3.6)

and the second step is to compute \bfitk I as the following:

kj =

\biggl\{ 
k\ast j +Rj if k\ast j +Rj + (\bfitQ \bfitk II)j <K,
k\ast j +Rj  - 2K otherwise,

j = 1, . . . , d.(3.7)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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570 JIANG, LI, MA, ZHANG, ZHANG, AND ZHOU

3.3. Implementation. Based on the new index set \scrK K,L and the index-shift
map \varrho introduced in the previous two subsections, we can now present the implemen-
tation of IWFPM.

For n-dimensional periodic functions U and V , the compound trapezoidal formula
of inner product over \scrG K,L is

\langle U,V \rangle K,L :=
1

2nKdLn - d

\sum 
\bfity \ell \in \scrG K,L

U(\bfity \ell )V (\bfity \ell ).(3.8)

The finite-dimensional subspace of \scrL 2(\BbbT n) is \scrS K,L := span\{ \varphi \bfitk : \bfitk \in \scrK K,L\} . Then,
the Fourier interpolation operator of IWFPM is defined by

\scrI K,L : \scrL 2
\scrQ \rightarrow \scrS K,L,(3.9)

u(\bfitx ) \mapsto \rightarrow 
\sum 

\bfitk \in \scrK K,L

\~U\bfitk \varphi \bfitP \bfitk (\bfitx ),

where \~U\bfitk := \langle U,\varphi \bfitk \rangle K,L = \langle U,\varphi \bfitk \ast \rangle K,L.
Denoting U := (U(\bfity \ell ))\bfity \ell \in \scrG K,L

, there is a discrete Fourier transform F equivalent
to \scrI K,L such that

\~U=FU, \~U :=
\Bigl( 
\~U\bfitk 

\Bigr) 
\bfitk \in \scrK K,L

.(3.10)

Correspondingly, let F\ast be the standard discrete Fourier transform, i.e.,

\~U\ast =F\ast U, \~U\ast :=
\Bigl( 
\~U\ast 
\bfitk \ast 

\Bigr) 
\bfitk \ast \in \scrK \ast 

K,L

,(3.11)

where \~U\ast 
\bfitk \ast := \langle U,\varphi \bfitk \ast \rangle K,L. Based on subsection 3.2, we can define the index-shift

transform T with respect to the inverse map \varrho  - 1 such that \~U=T\~U\ast . Therefore, to
implement the discrete Fourier transform F, we can equivalently apply the transform
F\ast and T successively. In other words, it means that F=TF\ast . Through the index-
shift transform T, FFT is available to be performed on index set \scrK \ast 

K,L with DOF

(2K)d(2L)n - d.
Algorithm 3.1 summarizes the implementation process of IWFPM.

Remark 3.3. Note that the index-shift operator T only modifies the indicators
of Fourier coefficients without changing the value. Thus, the computational cost of
the discrete Fourier transform F corresponding to IWFPM is entirely equivalent to
that of the standard discrete Fourier transform F\ast . Further, by utilizing FFT, the
computational cost of F is of order O(KdLn - d(logK + logL)).

Algorithm 3.1. Irrational-window-filter projection method (IWFPM).

Require: projection matrix \bfitP , size of index set: K and L
1: Generate index sets \scrK K,L and \scrK \ast 

K,L

2: Obtain \~U\ast = ( \~U\ast 
\bfitk \ast )\bfitk \ast \in \scrK \ast 

K,L
by solving (3.11) using FFT

3: for \bfitk \ast \in \scrK \ast 
K,L do

4: Solve \bfitk = \varrho  - 1(\bfitk \ast ) according to (3.5)--(3.7)

5: Store \~U\bfitk = \~U\ast 
\bfitk \ast 

6: end for

7: Calculate the Fourier interpolation u=
\sum 

\bfitk \in \scrK K,L

\~U\bfitk \varphi \bfitP \bfitk 
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IWFPM AND APPLICATION TO QSES 571

3.4. Error analysis. In this subsection, we give an error analysis of IWFPM.
For simplicity of analysis, we use the notation A[u] \lesssim B[u], which means that there
exists a positive constant satisfying A[u]\leq CB[u], where A[u] and B[u] are functional
with respect to u(\bfitx ), and the positive constant C is independent of K, L, and any
norm of u. Moreover, we abbreviate A[u] \lesssim B[u] and B[u] \lesssim A[u] as A[u] \simeq B[u].
The Sobolev seminorm and norm of quasiperiodic function u \in \scrL 2

\scrQ for any \alpha \geq 0 are
defined as

| u| \alpha :=

\Biggl( \sum 
\bfitk \in \BbbZ n

\| \bfitP \bfitk \| 2\alpha | \^U\bfitk | 2
\Biggr) 1/2

,(3.12)

\| u\| \alpha :=

\Biggl( \sum 
\bfitk \in \BbbZ n

\bigl( 
1 + \| \bfitP \bfitk \| 2\alpha 

\bigr) 
| \^U\bfitk | 2

\Biggr) 1/2

.

Here we set 00 = 1. And we say u \in \scrH \alpha 
\scrQ if \| u\| \alpha < +\infty . The Sobolev seminorm and

norm of periodic function U \in \scrL 2(\BbbT n) for any \alpha \geq 0 are defined as

| U | \scrH \alpha :=

\Biggl( \sum 
\bfitk \in \BbbZ n

\| \bfitk \| 2\alpha | \^U\bfitk | 2
\Biggr) 1/2

,(3.13)

\| U\| \scrH \alpha :=

\Biggl( \sum 
\bfitk \in \BbbZ n

\bigl( 
1 + \| \bfitk \| 2\alpha 

\bigr) 
| \^U\bfitk | 2

\Biggr) 1/2

.

And we say U \in \scrH \alpha (\BbbT n) if \| U\| \scrH \alpha < +\infty . If the norm of the projection matrix \bfitP 
is not very large, the quasiperiodic norm \| u\| \alpha can be effectively controlled by the
periodic norm \| U\| \scrH \alpha , while the opposite is not true. u \in \scrH \alpha 

\scrQ may not necessarily
lead to U \in \scrH \alpha (\BbbT n), or the norm \| U\| \scrH \alpha may be much larger than the norm \| u\| \alpha .
Considering the definition of index set \scrK K,L (3.1), we adopt a new norm definition

| u| \alpha ,\beta :=

\Biggl( \sum 
\bfitk \in \BbbZ n

\bigl( 
\| \bfitk I +\bfitQ \bfitk II\| 2\alpha + \| \bfitk II\| 2\beta 

\bigr) 
| \^U\bfitk | 2

\Biggr) 1/2

,

\| u\| \alpha ,\beta :=

\Biggl( \sum 
\bfitk \in \BbbZ n

\bigl( 
1 + \| \bfitk I +\bfitQ \bfitk II\| 2\alpha + \| \bfitk II\| 2\beta 

\bigr) 
| \^U\bfitk | 2

\Biggr) 1/2
(3.14)

for any \alpha ,\beta \geq 0. Note that the Cauchy--Schwarz inequality can lead to\Biggl( \sum 
\bfitk \in \BbbZ n

\lambda 2
\bfitk | \^U\bfitk + \^V\bfitk | 2

\Biggr) 1/2

\leq 

\Biggl( \sum 
\bfitk \in \BbbZ n

\lambda 2
\bfitk 

\Bigl( 
| \^U\bfitk | 2 + | \^V\bfitk | 2

\Bigr) 
+ 2

\sum 
\bfitk \in \BbbZ n

\lambda 2
\bfitk | \^U\bfitk 

\^V\bfitk | 

\Biggr) 1/2

\leq 

\left(  \sum 
\bfitk \in \BbbZ n

\lambda 2
\bfitk 

\Bigl( 
| \^U\bfitk | 2 + | \^V\bfitk | 2

\Bigr) 
+ 2

\Biggl( \sum 
\bfitk \in \BbbZ n

\lambda 2
\bfitk | \^U\bfitk | 2

\sum 
\bfitk \in \BbbZ n

\lambda 2
\bfitk | \^V\bfitk | 2

\Biggr) 1/2
\right)  1/2

=

\Biggl( \sum 
\bfitk \in \BbbZ n

\lambda 2
\bfitk | \^U\bfitk | 2

\Biggr) 1/2

+

\Biggl( \sum 
\bfitk \in \BbbZ n

\lambda 2
\bfitk | \^V\bfitk | 2

\Biggr) 1/2

for any real sequence \{ \lambda \bfitk \} \bfitk \in \BbbZ n . Therefore, it is easy to prove that | \cdot | \alpha ,\beta and \| u\| \alpha ,\beta 
satisfy the conditions for defining the seminorms and the norm, respectively. Here we
say u\in \scrH \alpha ,\beta 

\scrQ if \| u\| \alpha ,\beta <+\infty .
Then we give the following lemma shows the relation among the above three

spaces.
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572 JIANG, LI, MA, ZHANG, ZHANG, AND ZHOU

Lemma 3.1. Suppose that \alpha \geq \beta \geq 0, then u \in \scrH \alpha ,\beta 
\scrQ if and only if u \in \scrH \alpha 

\scrQ and
U \in \scrH \beta (\BbbT n), i.e., the seminorms and norms defined in (3.12), (3.13), and (3.14)
satisfy

| u| \alpha ,\beta \simeq | u| \alpha + | U | \scrH \beta ,

\| u\| \alpha ,\beta \simeq \| u\| \alpha + \| U\| \scrH \beta .

Proof. The proof is in Appendix A.

The truncation approximation operator can be defined via the following projection
operator:

\scrP K,L : \scrL 2
\scrQ \rightarrow \scrS K,L(3.15)

u \mapsto \rightarrow 
\sum 

\bfitk \in \scrK K,L

\^U\bfitk \varphi \bfitP \bfitk ,

where \^U\bfitk is the Fourier coefficient for \bfitk \in \scrK K,L.

Lemma 3.2. Suppose that u \in \scrH \alpha ,\beta 
\scrQ with \alpha \geq \beta \geq 0, then the error of truncation

approximation \scrP K,L (3.15) satisfies

| u - \scrP K,Lu| \mu ,\nu \lesssim K - \alpha (K\mu +L\nu ) | u| \alpha +L - \beta (K\mu +L\nu ) | U | \scrH \beta ,

\| u - \scrP K,Lu\| \mu ,\nu \lesssim K - \alpha (K\mu +L\nu )\| u\| \alpha +L - \beta (K\mu +L\nu )\| U\| \scrH \beta 

for \mu \in [0, \alpha ], \nu \in [0, \beta ].

Proof. The proof is in Appendix B.

Combined Lemma 3.2 with Lemma 3.1, the following corollary can be easily
obtained.

Corollary 3.3. Suppose that u \in \scrH \alpha ,\beta 
\scrQ with \alpha \geq \beta \geq 0, then the error of

truncation approximation \scrP K,L (3.15) satisfies

| u - \scrP K,Lu| \mu ,\nu \lesssim 
\bigl( 
K - \alpha +L - \beta 

\bigr) \bigl( 
K\mu +L\nu 

\bigr) 
| u| \alpha ,\beta ,

\| u - \scrP K,Lu\| \mu ,\nu \lesssim 
\bigl( 
K - \alpha +L - \beta 

\bigr) \bigl( 
K\mu +L\nu 

\bigr) 
\| u\| \alpha ,\beta 

for \mu \in [0, \alpha ], \nu \in [0, \beta ].

Theorem 3.4. Suppose that u \in \scrH \alpha ,\beta 
\scrQ with \alpha \geq \beta >

n - d

2
and

d

2\alpha 
+

n - d

2\beta 
< 1,

then the error of interpolation approximation \scrI K,L (3.9) is

| u - \scrI K,Lu| \mu ,\nu \lesssim 
\bigl( 
K - \alpha +L - \beta 

\bigr) \bigl( 
K\mu +L\nu 

\bigr) 
| u| \alpha ,\beta ,

\| u - \scrI K,Lu\| \mu ,\nu \lesssim 
\bigl( 
K - \alpha +L - \beta 

\bigr) \bigl( 
K\mu +L\nu 

\bigr) 
\| u\| \alpha ,\beta 

for \mu \in [0, \alpha ], \nu \in [0, \beta ].

Proof. The proof is in Appendix C.

Remark 3.4. According to the above convergence result of IWFPM interpolation,
it is evident that for some special quasiperiodic functions with distinct regularities
along different directions (means that the gap between \alpha and \beta is huge), our proposed
hyperparallelogam index set \scrK K,L can achieve the consistent convergence effect by
adjusting K and L.
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IWFPM AND APPLICATION TO QSES 573

4. Application to quasiperiodic Schr\"odinger eigenproblems (QSEs). In
this section, we apply IWFPM to solve 1D, 2D, and 3D QSEs. Considering the
eigenproblems with quasiperiodic Schr\"odinger operator H : \scrC 2(\BbbR d)\rightarrow \scrC (\BbbR d) as

Hu(\bfitx ) := - 1

2
\Delta u(\bfitx ) + v(\bfitx )u(\bfitx ) =Eu(\bfitx ),(4.1)

where v(\bfitx ) is a quasiperiodic potential, the eigenfunction u(\bfitx ) is the normalized
wavefunction, and the eigenvalue E represents the corresponding energy.

In terms of the existence of QSE solutions, considerable progress has been made
for 1D operators on both \BbbZ and \BbbR [35, 2, 3, 4, 13]. While it becomes significantly
difficult when dealing with multidimensional QSEs and only a few papers exist [9, 34].
Moreover, the regularity analysis of QSE solutions remains an open problem. Due
to the challenges in developing theoretical research on QSEs, the IWFPM method
holds great significance, as it offers a way to predict the shape of the solution from a
numerical perspective.

4.1. IWFPM discretization. Suppose that U(\bfity ) and V (\bfity ) are the parent
functions of u(\bfitx ) and v(\bfitx ), respectively. Let \~U be the Fourier coefficients vector of
U(\bfity ) on the index set \scrK K,L. Then, by the discretization of IWFPM, solving QSE
(4.1) can be expressed as finding an eigenpair (E, \~U) such that

\~H\~U :=\Lambda \~U+FVF - 1 \~U=E \~U,

where

\Lambda =
1

2
diag

\bigl( 
\| \bfitP \bfitk \| 2

\bigr) 
\bfitk \in \scrK K,L

, V= (V (\bfity ))\bfity \in \scrG K,L
,

F is the discrete Fourier transform corresponding to IWFPM defined by (3.10). To
solve this eigenvalue problem in matrix form, we employ the locally optimal block
preconditioned conjugate gradient (LOBPCG) method [24], with convergence error
1.0e-10 and initial vector \bfite 1 = (1,0, . . . ,0)T . The preconditioner selected in LOBPCG
method is

\bfitM = argmin
\bfitD \in \scrD 

\| \~H\bfitD  - \bfitI \| F =diag
\Bigl( 
\~h11/\| \~H\bfite 1\| 22, . . . ,\~hNN/\| \~H\bfite N\| 22

\Bigr) 
,(4.2)

where N = (2K)d(2L)n - d is the size of matrix \~H, and \~hii is the ith diagonal element
of \~H, i= 1, . . . ,N . \| \cdot \| F means the Frobenius norm and \scrD is the set of all diagonal
matrices of order N . More details about this preconditioner can refer to [22]. Algo-
rithm 4.1 summarizes the detailed process of using LOBPCG eigensolver to solve the
QSE (4.1). Note that, the LOBPCG eigensolver can simultaneously compute multiple
eigenpairs of arbitrary QSE.

4.2. Numerical experiments. Now we present the numerical results obtained
by IWFPM and demonstrate the performance by comparing with PM. All algorithms
are coded by MATLAB 2022b. The computations for 1D and 2D QSEs are car-
ried out on a workstation with an Intel Core 2.10 GHz CPU and 16 GB RAM.
Iteration (IT) and CPU represent the required iterations and the CPU time (in
seconds), respectively. DOF := (2K)d(2L)n - d denotes the degrees of freedom. In
this section, we consistently present the calculation results of the minimum eigen-
value E0 and the corresponding eigenfunction u0(\bfitx ). We observe the eigfunction
in grid form as \bfitu 0 = (u0(\bfitxi ))\bfitxi \in \scrG , where \scrG is a uniform grid on the bounded region
\scrG = [ - 5a,5a]d(a= 103 - d) with the step size h= 0.1, and normalize it through dividing
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574 JIANG, LI, MA, ZHANG, ZHANG, AND ZHOU

Algorithm 4.1. LOBPCG eigensolver for solving QSE (4.1).

Require: \Lambda , V, \bfitM , an initial vector \~U(0), a conjugate vector p(0) = 0
1: Itetate: For i= 0, . . . , until convergence:

2: \mu (i) := \langle \~U(i), \~U(i)\rangle /\langle \~U(i), \~H\~U(i)\rangle , where \~H\~U(i) =\Lambda \~U(i) +FVF - 1 \~U(i)

3: r := \~U - \mu (i) \~H\~U(i)

4: w=\bfitM r

5: Use the Rayleigh--Ritz method for I - \mu (i) \~H on the trial subspace Span \{ w(i),
\~U(i),p(i)\} 

6: \~U(i+1) :=w(i) + \tau (i) \~U(i) + \gamma (i)p(i)(the Ritz vector corresponding to the
maximal Ritz value)

7: p(i+1) :=w(i) + \gamma (i)p(i)

8: End

9: Output the approximations E = 1/\mu (i) and \~U= \~U(i) to the smallest eigenvalue
and its corresponding eigenvector.

by the norm of maximal module \| \bfitu 0\| \infty . The probability density of eigenfunction \bfitu 0

is denoted as \bfitrho := | \bfitu 0| 2. We use relative errors of E0 and \bfitu 0 to measure the numerical
accuracy

Ev =

\bigm| \bigm| \bigm| \bigm| E0  - E\ast 
0

E\ast 
0

\bigm| \bigm| \bigm| \bigm| and Ef = \| \bfitu 0  - \bfitu \ast 
0\| \infty ,

where E\ast 
0 and \bfitu \ast 

0 are corresponding numerical exact solutions of E0 and \bfitu 0, respec-
tively.

Example 4.1. Consider 1D QSE (4.1) with potential

v(x) = v0[2 - cos(2\pi x) - cos(2\pi \alpha x)],(4.3)

where v0 \in \BbbR , \alpha = (
\surd 
5 - 1)/2.

The projection matrix corresponding to (4.3) is \bfitP = 2\pi (1, \alpha ), then v(x) can be
embedded into the 2D parent function V (\bfity ) = v0(2 - cosy1  - cosy2), \bfity = (y1, y2)

T .
According to (3.1), the hyperparallelogram index set is

\scrK K,L =
\bigl\{ 
\bfitk = (k1, k2)

T \in \BbbZ 2 : k1 + \alpha k2 \in [ - K,K), k2 \in [ - L,L)
\bigr\} 
.

This example is worth considering due to the observable phase transition from
extended state to localized state as v0 increases. To verify this, we present the proba-
bility density function \bfitrho and the generalized Fourier coefficients \~U\bfitk under the potential
(4.3) with different v0, as shown in Figure 3. The wavefunction exhibits an extended
state when v0 = 2.5, and translates into a localized state when v0 = 3. Moreover,
it can be observed that the Fourier coefficients \~U\bfitk , whose intensities are larger than
1.0e-8, are mainly concentrated within a narrow parallelogram area. IWFPM method
has a natural advantage in solving quasiperiodic problems with such Fourier coeffi-
cient distribution. Compared with the case v0 = 2.5, the concentrated area of the
case v0 = 3 is greatly elongated. The entire size of this concentrated area can reach
5082\times 8192. Such a large computing area could be unaffordable for PM. However, by
using the parallelogram index set \scrK K,L with a small K, IWFPM can still efficiently
solve this case. To demonstrate the superiority of our algorithm in handling the above
two cases, we use both PM and IWFPM to solve this QSE.
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IWFPM AND APPLICATION TO QSES 575

(a) v0 = 2.5 (b) v0 = 3

Fig. 3. Results of solving 1D QSE with potential (4.3) by IWFPM. The top row: probability
density function \bfitrho ; The bottom row: Fourier coefficients \~U\bfitk .

Table 1
Condition numbers of \~H and \bfitM \~H for 1D QSE with potential (4.3) (v0 = 2.5).

Condition number

DOF \~H \bfitM \~H

L 200 400 800 200 400 800

K = 200 PM 4.72e + 05 9.02e + 05 2.17e + 06 2.24 2.24 2.24

IWFPM 1.81e + 05 1.81e + 05 1.81e + 05 2.24 2.24 2.24

K 50 100 200 50 100 200

L= 1600 PM 4.87e + 06 5.35e + 06 6.37e + 06 2.24 2.24 2.24

IWFPM 1.15e + 04 4.55e + 04 1.81e + 05 2.24 2.24 2.24

Case 1: v0 = 2.5. First, in Table 1, we give a comparison of the condition
numbers of \~H before and after preconditioning, to show the effectiveness of the pre-
conditioner \bfitM defined by (4.2). The results show that whether using PM or IWFPM,
the condition numbers of \~H generally exceed the magnitude of 1.0e + 04. While after
preconditioning, they are remarkably reduced from >1.0e + 04 to 2.24. In fact, the
preconditioner we designed has shown amazing condition number optimization effects
for solving 1D, 2D, 3D QSEs and under different quantum states.

After using the powerful preconditioning, we next compare the algorithm accuracy
of PM and IWFPM in terms of eigenvalue and eigenfunction errors. To present the
tiny errors clearly, we set the calculated eigenvalue E\ast 

0 and eigenfunction \bfitu \ast 
0 of a

large-scale system as the numerical exact solution for comparison. Here, E\ast 
0 and

\bfitu \ast 
0 are calculated by PM with K = 640, L = 1024. Table 2 records the errors of

eigenvalue E0 and eigenfunction \bfitu 0, respectively. The data shows that both PM and
IWFPM methods can achieve high accuracy in calculating this example. While, from
this comparison, it can be seen that under the same L, PM will need a more lager
K to achieve the same convergence accuracy compared with IWFPM. For instance,
when achieving Ev = 2.84e-14 and Ef = 1.49e-05, IWFPM requires K = 5, while PM
requires K = 0.7L= 42.
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576 JIANG, LI, MA, ZHANG, ZHANG, AND ZHOU

Table 2
Errors of PM and IWFPM when solving 1D QSE with potential (4.3) (v0 = 2.5).

L 20 40 60

K = 0.3L 1.45e-05 7.35e-08 9.42e-10

Ev PM K = 0.5L 4.60e-07 2.79e-10 4.13e-13

K = 0.7L 5.64e-08 2.69e-11 2.82e-14

IWFPM K = 5 5.64e-08 2.11e-11 2.84e-14

K = 0.3L 1.11e-01 1.91e-02 2.59e-03

K = 0.5L 3.00e-02 2.05e-03 5.13e-05

Ef PM K = 0.7L 1.82e-02 4.03e-04 1.49e-05

IWFPM K = 5 1.82e-02 3.48e-04 1.49e-05

Fig. 4. Required DOFs of PM and IWFPM when they achieve the same accurate Ev for solving
1D QSE with potential (4.3) (v0 = 2.5).

Note that the size of K and L affects the DOFs of the two algorithms, and
fundamentally affects their calculation time. Hence, we next present Figure 4 to show
the DOFs required by PM and IWFPM when they achieve the same errors of E0.
It is obvious that as the required accuracy increases, the DOF required for PM rises
sharply compared with IWFPM. When Ev \approx 2.8e-14, the DOF of IWFPM is 1200,
while the DOF of PM has exceeded 10000. We further compare the computational
costs of PM and IWFPM. Table 3 records the ITs and CPU times required by PM
and IWFPM when Ev \approx 2.8e-14. It is clear that although the ITs required by the two
methods to achieve the same convergence accuracy are basically the same, the CPU
time consumed differs by 10.75 times. In conclusion, the above series of results all
demonstrate that IWFPM can greatly improve the calculation efficiency.

Case 2: v0 = 3. Table 4 records the results of PM and IWFPM for solving the
eigenvalue E0 and eigenfunction \bfitu 0. Here, the numerical exact solutions E\ast 

0 and \bfitu \ast 
0

are obtained by IWFPM with K = 10, L = 4096. The reason why we do not use
PM to obtain a numerical reference solution is that the excessively large DOF in this
case makes PM unaffordable. As we can see, IWFPM can achieve the same accuracy
as PM with much fewer DOF, and less computational cost. For example, when the
error E0 \approx 1.4e-07, the DOF of IWFPM is 32768, while PM is 2621440. It means that
IWFPM can speed up the CPU time of PM by 133.70 times.

Example 4.2. Consider 2D QSE (4.1) with potential

v(\bfitx ) = 4 - [cos(\beta x1) + 2cos(\beta x2) + cos(\beta x1 cos\theta + \beta x2 sin\theta )],(4.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IWFPM AND APPLICATION TO QSES 577

Table 3
ITs and CPU times required by PM and IWFPM when solving the 1D QSE with potential (4.3)

(v0 = 2.5).

PM IWFPM PM/IWFPM

Ev 2.84e-14 2.82e-14 1.01

DOF 10080 1200 8.40
IT 204 195 1.05

CPU(s) 0.86 0.08 10.75

Table 4
Results of PM and IWFPM for solving the 1D QSE with potential (4.3) (v0 = 3).

IWFPM PM PM/IWFPM

Ev 9.78e-06 2.45e-06 6.03e-07 1.42e-07 1.44e-07 1.01

Ef 8.43e-03 3.65e-03 4.16e-04 3.81e-04 3.57e-04 0.94
DOF 4096 8192 16384 32768 2621440 80

IT 1147 2140 4092 6871 7656 1.11

CPU(s) 0.57 1.72 6.08 22.87 3057.75 133.70

where \bfitx = (x1, x2)
T , \beta \in \BbbR , \theta \in (0,2\pi ).

The projection matrix of v(\bfitx ) is

\bfitP = \beta 

\biggl( 
1 0 cos\theta 
0 1 sin\theta 

\biggr) 
,

and the corresponding parent function is

V (\bfity ) = 4 - (cosy1 + 2cosy2 + cosy3), \bfity = (y1, y2, y3)
T .

The parallelogram index set \scrK K,L defined by (3.1) is

\scrK K,L =
\Bigl\{ 
\bfitk = (k1, k2, k3)

T \in \BbbZ 3 : k1 + k3 cos\theta \in [ - K,K), k2 + k3 sin\theta 

\in [ - K,K), k3 \in [ - L,L)
\Bigr\} 
.

Figure 5 shows the probability density function \bfitrho under the potential (4.4) with
different parameters \beta and \theta . Among them, Figure 5(a) shows a 2D extended state
and Figure 5(c) shows a 2D localized state. The phase transition between the two
states arising from \beta plays a dominant role in interfering in the degree of localization
of the wave function. While some special values of \theta can bring periodicity to the wave
function. As shown in Figure 5(b), when \beta = 0.5\pi , \theta = 0.25\pi , the \bfitrho exhibits extended
state along the line x1 + x2 = 0 and localized state in the orthogonal direction.

Next, we consider the concentrated area of the Fourier coefficient \~U\bfitk (\gg 1.0e-8)
under the potential (4.4) with different parameters, as shown in Figure 5. Similar to
Example 4.1, localized states require more DOFs than that of extended states. In the
following, we use IWFPM to solve the above mentioned three quantum states and
compare the results with PM.

Case 1: I: \beta = 0.8\pi , \theta = 0.2\pi . Table 5 records the errors of eigenvalue E0

and eigenfunction \bfitu 0, respectively. Here, the numerical exact solution E\ast 
0 and \bfitu \ast 

0 are
calculated by IWFPM when K = 10, L = 160. Compared with the PM, IWFPM
exhibits higher-order convergence under a small scale of K. Specifically, when K =
6, L= 20, the error Ev of IWFPM reaches 4.53e-08, while that of PM does not reach
7.51e-05. To achieve the same magnitude of error, PM needs K = 16, L= 20.
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578 JIANG, LI, MA, ZHANG, ZHANG, AND ZHOU

(a) I: \beta = 0.8\pi , \theta = 0.2\pi (b) II: \beta = 0.5\pi , \theta = 0.25\pi (c) III: \beta = 0.5\pi , \theta = 0.2\pi 

Fig. 5. Results of solving 2D QSE with potential (4.4) by IWFPM. The top row: probability
density function \bfitrho ; The bettom row: Fourier coefficients \~U\bfitk ( \~U\bfitk \geq 10 - 8).

Table 5
Errors of PM and IWFPM when solving 2D QSE with potential (4.4) (I: \beta = 0.8\pi , \theta = 0.2\pi ).

L 20 30 40 50

K = 0.4L 7.51e-05 2.55e-06 6.21e-08 1.83e-09

Ev PM K = 0.6L 2.55e-06 1.48e-08 8.60e-11 1.65e-12

K = 0.8L 7.35e-08 9.88e-11 3.85e-13 1.11e-15

IWFPM K = 6 4.53e-08 3.09e-11 1.84e-13 1.11e-15

K = 0.4L 1.55e-01 2.58e-02 3.48e-03 7.99e-04

Ef PM K = 0.6L 2.58e-02 1.94e-03 2.22e-04 3.46e-05

K = 0.8L 3.81e-03 2.35e-04 1.43e-05 1.18e-06

IWFPM K = 6 3.12e-03 1.67e-04 1.00e-05 1.09e-06

Fig. 6. Required DOFs by PM and IWFPM when they arrive in the same accurate Ev for
solving 2D QSE with potential (4.4) (I: \beta = 0.8\pi , \theta = 0.2\pi ).

We further compare the ITs and CPU times of PM and IWFPM when achieving
the same accuracy. First, Figure 6 illustrates the DOFs required by PM and IWFPM
when they achieve the same errors of E0. Once again, the results underscore that, in
comparison to IWFPM, PM exhibits a notable drawback in terms of computational
storage. Then, we consider the case when the error is about 1.1e-15. The data in
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IWFPM AND APPLICATION TO QSES 579

Table 6
Comparison of ITs and CPU times spent by PM and IWFPM, when solving the 2D QSE with

potential (4.4) (I: \beta = 0.8\pi , \theta = 0.2\pi ) with Ev \approx 1.1e - 15.

PM IWFPM PM/IWFPM

Ev 1.11e-15 1.11e-15 1.00

DOF 640000 14400 44.44
IT 227 229 0.99

CPU(s) 25.27 0.39 64.79

Table 7
Results of PM and IWFPM for solving the 2D QSE with potential (4.4) (II: \beta = 0.5\pi , \theta = 0.25\pi ).

IWFPM PM PM/IWFPM

Ev 1.51e-05 3.76e-06 9.30e-07 2.22e-07 1.51e-05 1.00

Ef 4.34e-03 1.08e-03 2.88e-04 5.64e-05 4.36e-03 1.00
DOF 65536 131072 262144 524288 10240000 156.25

IT 1873 3538 6726 13133 1653 0.88

CPU(s) 16.98 71.56 264.67 1009.56 3050.37 179.64

Table 8
Results of PM and IWFPM for solving the 2D QSE with potential (4.4) (III: \beta = 0.5\pi , \theta = 0.2\pi ).

IWFPM PM PM/IWFPM

Ev 1.43e-05 3.58e-06 8.85e-07 2.11e-07 1.54e-05 1.08
Ef 9.59e-01 9.01e-01 6.94e-01 1.75e-01 9.61e-01 1.00

DOF 65536 131072 262144 524288 10240000 156.25

IT 1911 3612 6870 13426 1653 0.87
CPU(s) 18.53 77.50 274.81 1025.83 3111.78 167.93

Table 6 shows that although PM and IWFPM have almost the same IT, IWFPM can
reduce the DOF of PM by 44 times, which ultimately results in IWFPM taking over
64 times CPU time less than PM.

Case 2: II: \beta = 0.5\pi , \theta = 0.25\pi and III: \beta = 0.5\pi , \theta = 0.2\pi . Tables 7 and 8
present the errors, ITs, and CPU times of IWFPM and PM for solving the eigenvalue
E0 and eigenfunction u0. Here, the numerical exact solution E\ast 

0 and u\ast 
0 are calculated

by IWFPM when K = 10, L = 4096. The data once again shows the high efficiency
and accuracy of IWFPM, regardless of whether the eigenstate is periodic localized or
localized. When the two methods both achieve the error Ev \approx 1.5e-05, it is apparent
that the DOF required by PM is 156 times larger than that needed by IWFPM. As
a result, the CPU time consumed by PM is 168 times larger than that by IWFPM.
Note that, if higher accuracy is achieved, the advantages of IWFPM over PM will be
even more exaggerated.

Example 4.3. Consider 3D QSE (4.1) with potential

v(\bfitx ) = 6 - [cos(\beta x1) + cos(\beta x2) + cos(\beta x3) + cos(\beta x1 cos\theta + \beta x2 sin\theta ))

+ cos( - \beta x1 sin\theta + \beta x2 cos\theta ) + cos(\beta \alpha x3)],
(4.5)

where \bfitx = (x1, x2, x3)
T , \beta \in \BbbR , \theta = 0.2\pi , \alpha = (

\surd 
5 - 1)/2.

The projection matrix of v(\bfitx ) is

\bfitP = \beta 

\left(  1 0 0 cos\theta  - sin\theta 0
0 1 0 sin\theta cos\theta 0
0 0 1 0 0 \alpha 

\right)  ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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580 JIANG, LI, MA, ZHANG, ZHANG, AND ZHOU

(a) \rho (b) \~U\bfitk (k4, k5, k6 = 0) (c) \~U\bfitk (k4, k5, k6 = 12)

Fig. 7. Results of solving 3D QSE with potential (4.5) by IWFPM (\beta = \pi ). (a) The probability
density function \bfitrho ; (b)(c) Slices of the Fourier coefficients \~U\bfitk ( \~U\bfitk \geq 10 - 8).

(a) \rho (b) \~U\bfitk (k4, k5, k6 = 0) (c) \~U\bfitk (k4, k5, k6 = 32)

Fig. 8. Results of solving 3D QSE with potential (4.5) by IWFPM (\beta = 0.5\pi ). (a) The proba-
bility density function \bfitrho ; (b)(c) Slices of the Fourier coefficients \~U\bfitk ( \~U\bfitk \geq 10 - 8).

and the corresponding parent function is

\scrV (\bfity ) = 6 - cos\bfity , \bfity = (y1, . . . , y6)
T .

The spectral point set \scrK K,L defined by (3.1) is

\scrK K,L = \{ \bfitk = (k1, . . . , k6)
T \in \BbbZ 6 : k1 + k4 cos\theta  - k5 sin\theta \in [ - K,K),

k2 + k4 sin\theta + k5 cos\theta \in [ - K,K), k3 + k6\alpha \in [ - K,K),

k4 \in [ - L,L), k5 \in [ - L,L), k6 \in [ - L,L)\} .

Figures 7(a) and 8(a) show the probability density function \rho under the quasiperi-
odic potential (4.5) with different parameters \beta . When \beta = \pi , the wave function
diffuses throughout the entire 3D space, which seems to be a 3D extended state.
Conversely, when \beta = 0.5\pi , the wave function becomes localized eigenstate.

To show the concentrated distribution of Fourier coefficients within a 3D par-
allelogram area, we depict the slices of \~U\bfitk under the potential (4.5) with different
parameters in Figures 7 and 8. Clearly, the L required for the case I is less than 12,
while the L required for the case II is more than 32. To calculate the case II in the
six-dimensional (6D) space will bring a huge storage difficulty for PM (DOF exceed-
ing 108). However, IWFPM enables the calculation of this problem by significantly
reducing DOFs. Table 9 records the results of IWFPM for solving the eigenvalue E0

and eigenfunction \bfitu 0. Here, the numerical exact solutions E\ast 
0 and \bfitu \ast 

0 of E0 and \bfitu 0

are obtained by IWFPM with K = 5, L = 40. The data show that IWFPM can
achieve convergence when calculating 3D QSE with (4.5), regardless of whether the
solution belongs to extended state or localized state.

5. Conclusion and outlook. In this paper, a new algorithm IWFPM is pro-
posed based on PM for quasiperiodic systems with concentrated spectral point distri-
bution. It filters out dominant spectral points by defining an irrational window and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IWFPM AND APPLICATION TO QSES 581

Table 9
Results of IWFPM for solving the 3D QSE with potential (4.5) (I: \beta = \pi ; II: \beta = 0.5\pi ).

K = 5 Ev Ef

L I II I II

10 6.82e-04 4.08e-03 2.88e-04 3.55e-02
20 1.58e-04 9.91e-04 1.94e-04 4.84e-03

30 4.34e-05 2.71e-04 9.32e-05 2.21e-03

uses a corresponding index-shift transform to make the FFT available. The conver-
gence analysis and computational cost of IWFPM are also given. We apply IWFPM
to 1D, 2D, and 3D QSEs to demonstrate its accuracy and efficiency. An efficient
diagonal preconditioner is also designed for the discrete QSEs to significantly reduce
condition number. For both extended and localized quantum states, IWFPM exhibits
a significant computational advantage over PM. More importantly, by using IWFPM,
the existence of Anderson localization in 2D and 3D QSEs is numerically verified.

The proposed method opens avenues for further research in several directions.
First, given the widespread existence of the observed spectral point distribution fea-
ture, it is imperative to apply the IWFPM to a broader range of quasiperiodic systems
to demonstrate its applicability. Second, the convergence analysis of quasiperiodic
eigenproblems differs from conventional numerical analysis, as the Hilbert space for
describing potential energy functions and eigenfunctions is entirely different. New
fundamental theories of numerical analysis are needed to describe this problem, and
we plan to explore this in our future work. Third, we will extend the application of
our method to more quasiperiodic systems, aiming to discover exotic phenomena and
even unveil new physical principles.

Appendix A. Proof of Lemma 3.1.

Proof. We only prove the equivalence | u| \alpha ,\beta \simeq | u| \alpha + | U | \scrH \beta , since the other is
similar. First, it is easy to obtain | u| \alpha ,\beta \lesssim | u| \alpha + | U | \scrH \beta since

| u| 2\alpha ,\beta =
\sum 
\bfitk \in \BbbZ n

\bigl( 
\| \bfitk I +\bfitQ \bfitk I\| 2\alpha + \| \bfitk II\| 2\beta 

\bigr) 
| \^U\bfitk | 2

=
\sum 
\bfitk \in \BbbZ n

\bigl( 
\| \bfitP  - 1

I \| 2\alpha \| \bfitP \bfitk \| 2\alpha + \| \bfitk \| 2\beta 
\bigr) 
| \^U\bfitk | 2

\lesssim 
\sum 
\bfitk \in \BbbZ n

\| \bfitP \bfitk \| 2\alpha | \^U\bfitk | 2 +
\sum 
\bfitk \in \BbbZ n

\| \bfitk \| 2\beta | \^U\bfitk | 2.

Next, we prove the converse | u| \alpha +| U | \scrH \beta \lesssim | u| \alpha ,\beta . It can be divided into two parts:
| u| \alpha \lesssim | u| \alpha ,\beta and | U | \scrH \beta \lesssim | u| \alpha ,\beta . The former can be obtained naturally because

| u| 2\alpha =
\sum 
\bfitk \in \BbbZ n

\| \bfitP \bfitk \| 2\alpha | \^U\bfitk | 2 =
\sum 
\bfitk \in \BbbZ n

\| \bfitP I\| 2\alpha \| \bfitk I +\bfitQ \bfitk II\| 2\alpha | \^U\bfitk | 2.

For the latter

| U | 2\scrH \beta =
\sum 
\bfitk \in \BbbZ n

\| \bfitk \| 2\beta | \^U\bfitk | 2 =
\sum 
\bfitk \in \BbbZ n

\bigl( 
\| \bfitk I\| 2\beta + \| \bfitk II\| 2\beta 

\bigr) 
| \^U\bfitk | 2,

then we need only focus on \| \bfitk I\| 2\beta . We discuss it from three cases. The first case is
\bfitk II = 0, and it is obvious that

\| \bfitk I\| 2\beta = \| \bfitk I +\bfitQ \bfitk II\| 2\beta \leq \| \bfitk I +\bfitQ \bfitk II\| 2\alpha .
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582 JIANG, LI, MA, ZHANG, ZHANG, AND ZHOU

The second case is \bfitk II \not = 0 and \| \bfitk I +\bfitQ \bfitk II\| < 1, and it yields

\| \bfitk I\| \leq \| \bfitk I +\bfitQ \bfitk II\| + \| \bfitQ \bfitk II\| < 1 + \| \bfitQ \bfitk II\| \leq 
\bigl( 
1 + \| \bfitQ \| 

\bigr) 
\| \bfitk II\| .

The third case is \bfitk II \not = 0 and \| \bfitk I +\bfitQ \bfitk II\| \geq 1, and we have

\| \bfitk I\| \leq \| \bfitk I +\bfitQ \bfitk II\| + \| \bfitQ \| \| \bfitk II\| ,

which yields

\| \bfitk I\| 2\beta \leq C1

\bigl( 
\| \bfitk I +\bfitQ \bfitk II\| 2\beta + \| \bfitk II\| 2\beta 

\bigr) 
\leq C1

\bigl( 
\| \bfitk I +\bfitQ \bfitk II\| 2\alpha + \| \bfitk II\| 2\beta 

\bigr) 
,

where C1 is a constant independent of \bfitk . The above inequalities can lead to

\| \bfitk \| 2\beta \leq C2

\bigl( 
\| \bfitk I +\bfitQ \bfitk II\| 2\alpha + \| \bfitk II\| 2\beta 

\bigr) 
,

and so | U | \scrH \beta \lesssim | u| \alpha ,\beta .
Appendix B. Proof of Lemma 3.2.

Proof. First, it is easy to obtain the following inequality:

| u - \scrP K,Lu| 2\mu ,\nu =
\sum 

\bfitk \in \BbbZ n\setminus \scrK K,L

\bigl( 
\| \bfitk I +\bfitQ \bfitk II\| 2\mu + \| \bfitk II\| 2\nu 

\bigr) 
| \^U\bfitk | 2

\leq (a1 + a2) + (a3 + a4),

where

a1 =
\sum 

\bfitk \mathrm{I}\mathrm{I}\in \BbbZ n - d

\sum 
\| \bfitk \mathrm{I}+\bfitQ \bfitk \mathrm{I}\mathrm{I}\| \infty \geq K

\| \bfitk I +\bfitQ \bfitk II\| 2\mu | \^U\bfitk | 2,

a2 =
\sum 

\| \bfitk \mathrm{I}\mathrm{I}\| \infty \geq L

\sum 
\| \bfitk \mathrm{I}+\bfitQ \bfitk \mathrm{I}\mathrm{I}\| \infty <K

\| \bfitk I +\bfitQ \bfitk II\| 2\mu | \^U\bfitk | 2,

a3 =
\sum 

\bfitk \mathrm{I}\in \BbbZ d

\sum 
\| \bfitk \mathrm{I}\mathrm{I}\| \infty \geq L

\| \bfitk II\| 2\nu | \^U\bfitk | 2,

a4 =
\sum 

\| \bfitk \mathrm{I}\mathrm{I}\| \infty <L

\sum 
\| \bfitk \mathrm{I}+\bfitQ \bfitk \mathrm{I}\mathrm{I}\| \infty \geq K

\| \bfitk II\| 2\nu | \^U\bfitk | 2,

and \| \bfitm \| \infty =max1\leq j\leq n\prime \{ | mj | \} for \bfitm \in \BbbR n\prime 
. Using the equivalence of vector norms,

we have

a1 =
\sum 

\bfitk \mathrm{I}\mathrm{I}\in \BbbZ n - d

\sum 
\| \bfitk \mathrm{I}+\bfitQ \bfitk \mathrm{I}\mathrm{I}\| \infty \geq K

\| \bfitk I +\bfitQ \bfitk II\| 2\mu  - 2\alpha \| \bfitk I +\bfitQ \bfitk II\| 2\alpha | \^U\bfitk | 2

\leq K2\mu  - 2\alpha 
\sum 

\bfitk \mathrm{I}\mathrm{I}\in \BbbZ n - d

\sum 
\| \bfitk \mathrm{I}+\bfitQ \bfitk \mathrm{I}\mathrm{I}\| \infty \geq K

\| \bfitP  - 1
I \| 2\alpha \| \bfitP \bfitk \| 2\alpha | \^U\bfitk | 2

\lesssim K2\mu  - 2\alpha | u| 2\alpha ,

a2 \leq K2\mu 
\sum 

\| \bfitk \mathrm{I}\mathrm{I}\| \infty \geq L

\sum 
\| \bfitk \mathrm{I}+\bfitQ \bfitk \mathrm{I}\mathrm{I}\| \infty <K

\| \bfitk II\|  - 2\beta \| \bfitk II\| 2\beta | \^U\bfitk | 2 \lesssim K2\mu L - 2\beta | U | 2\scrH \beta ,

a3 =
\sum 

\bfitk \mathrm{I}\in \BbbZ d

\sum 
\| \bfitk \mathrm{I}\mathrm{I}\| \infty \geq L

\| \bfitk II\| 2\nu  - 2\beta \| \bfitk II\| 2\beta | \^U\bfitk | 2 \leq L2\nu  - 2\beta | U | 2\scrH \beta ,

a4 \leq L2\nu 
\sum 

\| \bfitk \mathrm{I}\mathrm{I}\| \infty <L

\sum 
\| \bfitk \mathrm{I}+\bfitQ \bfitk \mathrm{I}\mathrm{I}\| \infty \geq K

\| \bfitP \bfitk \|  - 2\alpha \| \bfitP \bfitk \| 2\alpha | \^U\bfitk | 2

=L2\nu \| \bfitP I\|  - 2\alpha 
\sum 

\| \bfitk \mathrm{I}\mathrm{I}\| \infty <L

\sum 
\| \bfitk \mathrm{I}+\bfitQ \bfitk \mathrm{I}\mathrm{I}\| \infty \geq K

\| \bfitk I +\bfitQ \bfitk II\|  - 2\alpha \| \bfitP \bfitk \| 2\alpha | \^U\bfitk | 2

\lesssim L2\nu K - 2\alpha | u| 2\alpha .
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IWFPM AND APPLICATION TO QSES 583

Combining the above four equations, we can obtain the estimate of | u - \scrP K,Lu| \mu ,\nu in
the original proposition. Following the similar proof, we can also obtain the estimate
of \| u - \scrP K,Lu\| \mu ,\nu .

Appendix C. Proof of Theorem 3.4.

Proof. From (3.8), it is easy to prove that the Fourier basis functions satisfy the
following discrete orthogonality:

\langle \varphi \bfitk ,\varphi \bfitk \prime \rangle K,L =

\biggl\{ 
1, \bfitk  - \bfitk \prime \in \scrZ K,L,
0 otherwise,

(C.1)

where

\scrZ K,L := \{ \bfitm = (\bfitm I,\bfitm II)
T \in \BbbZ n :\bfitm I/(2K)\in \BbbZ d, \bfitm II/(2L)\in \BbbZ n - d\} .

This discrete orthogonality leads to the following aliasing formula:

\~u\bfitk =

\Biggl\langle \sum 
\bfitl \in \BbbZ n

\^U\bfitl \varphi \bfitP \bfitl ,\varphi \bfitP \bfitk 

\Biggr\rangle 
K,L

=
\sum 

\bfitm \in \BbbZ n

\^U(\bfitk \mathrm{I}+2K\bfitm \mathrm{I},\bfitk \mathrm{I}\mathrm{I}+2L\bfitm \mathrm{I}\mathrm{I})(C.2)

for any \bfitk \in \scrK K,L. Thus,

\scrP K,Lu(\bfity ) - \scrI K,Lu(\bfity ) =
\sum 

\bfitk \in \scrK K,L

\varphi \bfitk (\bfity )
\sum 

\bfitm \in \BbbZ n\setminus \{ 0n\} 

\^U(\bfitk \mathrm{I}+2K\bfitm \mathrm{I},\bfitk \mathrm{I}\mathrm{I}+2L\bfitm \mathrm{I}\mathrm{I}),

where 0n denotes the n-dimensional zero vector. Let

g(\bfitk ,\bfitm ) = \| \bfitk I + 2K\bfitm I +\bfitQ (\bfitk II + 2L\bfitm II)\| 2\alpha + \| \bfitk II + 2L\bfitm II\| 2\beta .

Note that g(\bfitk ,\bfitm ) = 0 if and only if \bfitk =\bfitm = 0, and this is because the column vectors
of the projection matrix \bfitP are \BbbQ -linearly independent. Using the Cauchy--Schwarz
inequality, we have

\| \scrP K,Lu - \scrI K,Lu\| 2\scrL 2

=
\sum 

\bfitk \in \scrK K,L

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitm \in \BbbZ n\setminus \{ 0n\} 

\^U(\bfitk \mathrm{I}+2K\bfitm \mathrm{I},\bfitk \mathrm{I}\mathrm{I}+2L\bfitm \mathrm{I}\mathrm{I})

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

=
\sum 

\bfitk \in \scrK K,L

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitm \in \BbbZ n\setminus \{ 0n\} 

g(\bfitk ,\bfitm ) - 1/2g(\bfitk ,\bfitm )1/2 \^U(\bfitk \mathrm{I}+2K\bfitm \mathrm{I},\bfitk \mathrm{I}\mathrm{I}+2L\bfitm \mathrm{I}\mathrm{I})

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

\leq 
\sum 

\bfitk \in \scrK K,L

\sum 
\bfitm \in \BbbZ n\setminus \{ 0n\} 

g(\bfitk ,\bfitm ) - 1
\sum 

\bfitl \in \BbbZ n\setminus \{ 0n\} 

g(\bfitk , \bfitl )| \^U(\bfitk \mathrm{I}+2K\bfitl \mathrm{I},\bfitk \mathrm{I}\mathrm{I}+2L\bfitl \mathrm{I}\mathrm{I})| 
2.

(C.3)

Next, we consider the series\sum 
\bfitm \in \BbbZ n\setminus \{ 0n\} 

g(\bfitk ,\bfitm ) - 1 =
\sum 

\bfitm \mathrm{I}\in \BbbZ d
\bfitm \mathrm{I}\mathrm{I} \not =0n - d

g(\bfitk ,\bfitm ) - 1 +
\sum 

\bfitm \mathrm{I} \not =0d
\bfitm \mathrm{I}\mathrm{I}=0n - d

g(\bfitk ,\bfitm ) - 1 = b1 + b2.

Since \bfitk II \in [ - L,1 - L, . . . ,L)n - d, we have

\| \bfitk II + 2L\bfitm II\| 2\beta \geq L2\beta \| \bfitm II\| 2\beta .
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For fixed \bfitm II, there exists a unique \bfitm \prime 
I such that

\bfitk I + 2K\bfitm \prime 
I +\bfitQ (\bfitk II + 2L\bfitm II)\in [ - K,1 - K, . . . ,K)d,

and it is obvious that \bfitm \prime 
I = 0d if \bfitm II = 0n - d. Then,

\| \bfitk I + 2K\bfitm I +\bfitQ (\bfitk II + 2L\bfitm II)\| 2\alpha 

= \| 2K(\bfitm I  - \bfitm \prime 
I) + \bfitk I + 2K\bfitm \prime 

I +\bfitQ (\bfitk II + 2L\bfitm II)\| 2\alpha 

\geq K2\alpha \| (\bfitm I  - \bfitm \prime 
I)\| 2\alpha .

Thus,

b1 =
\sum 

\bfitm \mathrm{I}\in \BbbZ d

\sum 
\bfitm \mathrm{I}\mathrm{I} \not =0n - d

\bigl( 
\| \bfitk I + 2K\bfitm I +\bfitQ (\bfitk II + 2L\bfitm II)\| 2\alpha + \| \bfitk II + 2L\bfitm II\| 2\beta 

\bigr)  - 1

\leq 
\sum 

\bfitm \mathrm{I}\in \BbbZ d

\sum 
\bfitm \mathrm{I}\mathrm{I} \not =0n - d

\bigl( 
K2\alpha \| (\bfitm I  - \bfitm \prime 

I)\| 2\alpha +L2\beta \| \bfitm II\| 2\beta 
\bigr)  - 1

\leq max
\bigl\{ 
K - 2\alpha ,L - 2\beta 

\bigr\} \sum 
\bfitm \mathrm{I}\in \BbbZ d

\sum 
\bfitm \mathrm{I}\mathrm{I} \not =0n - d

\bigl( 
\| \bfitm I\| 2\alpha + \| \bfitm II\| 2\beta 

\bigr)  - 1
,

b2 \leq 
\sum 

\bfitm \mathrm{I} \not =0d

\| \bfitk I + 2K\bfitm I +\bfitQ \bfitk II\|  - 2\alpha \leq K - 2\alpha 
\sum 

\bfitm \mathrm{I} \not =0d

\| \bfitm I\|  - 2\alpha .

Combining the above two inequalities, we have\sum 
\bfitm \in \BbbZ n\setminus \{ 0n\} 

g(\bfitk ,\bfitm ) - 1 \lesssim 
\bigl( 
K - 2\alpha +L - 2\beta 

\bigr) \sum 
\bfitm \mathrm{I} \not =0d

\sum 
\bfitm \mathrm{I}\mathrm{I} \not =0n - d

\bigl( 
\| \bfitm I\| 2\alpha + \| \bfitm II\| 2\beta 

\bigr)  - 1
.

The sufficient condition for the convergence series
\sum 

\bfitm \mathrm{I} \not =0d
\| \bfitm I\|  - 2\alpha 

\sum 
\bfitm \mathrm{I}\mathrm{I} \not =0n - d

\| \bfitm II\|  - 2\beta , \alpha > d/2, and \beta > (n - d)/2, can be easily obtained by H\"older's inequality.
Moreover, the condition d/2\alpha + (n  - d)/2\beta < 1 implies that there exist \alpha \prime > d and
\beta \prime >n - d such that

\alpha \prime 

2\alpha 
+

\beta \prime 

2\beta 
= 1,

and by Young's inequality, we have\sum 
\bfitm \mathrm{I} \not =0d

\sum 
\bfitm \mathrm{I}\mathrm{I} \not =0n - d

\bigl( 
\| \bfitm I\| 2\alpha + \| \bfitm II\| 2\beta 

\bigr)  - 1 \leq 
\sum 

\bfitm \mathrm{I} \not =0d

\sum 
\bfitm \mathrm{I}\mathrm{I} \not =0n - d

\| \bfitm I\|  - \alpha \prime 
\| \bfitm II\|  - \beta \prime 

,

which is obviously convergent. The convergence of the series yields\sum 
\bfitm \in \BbbZ n\setminus \{ 0n\} 

g(\bfitk ,\bfitm ) - 1 \lesssim 
\bigl( 
K - 2\alpha +L - 2\beta 

\bigr) 
.

Therefore, it follows from (C.3) that

\| \scrP K,Lu - \scrI K,Lu\| 2\scrL 2 \lesssim 
\bigl( 
K - 2\alpha +L - 2\beta 

\bigr) \sum 
\bfitk \in \scrK K,L

\sum 
\bfitl \in \BbbZ n\setminus \{ 0n\} 

g(\bfitk , \bfitl )| \^U(\bfitk \mathrm{I}+2K\bfitl \mathrm{I},\bfitk \mathrm{I}\mathrm{I}+2L\bfitl \mathrm{I}\mathrm{I})| 
2

\leq 
\bigl( 
K - 2\alpha +L - 2\beta 

\bigr) 
| u| 2\alpha ,\beta .
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Moreover,

| \scrP K,Lu - \scrI K,Lu| 2\mu ,\nu =
\sum 

\bfitk \in \scrK K,L

\bigl( 
\| \bfitk I +\bfitQ \bfitk II\| 2\mu + \| \bfitk II\| 2\nu 

\bigr) 
| \^U\bfitk  - \~u\bfitk | 2

\leq 
\bigl( 
K2\mu +L2\nu 

\bigr) 
\| \scrP K,Lu - \scrI K,Lu\| 2\scrL 2

\lesssim 
\bigl( 
K - 2\alpha +L - 2\beta 

\bigr) \bigl( 
K2\mu +L2\nu 

\bigr) 
| u| 2\alpha ,\beta .

Thus, from Corollary 3.3, we have

| u - \scrI K,Lu| 2\mu ,\nu \leq | u - \scrP K,Lu| 2\mu ,\nu + | \scrP K,Lu - \scrI K,Lu| 2\mu ,\nu 
\lesssim 
\bigl( 
K - 2\alpha +L - 2\beta 

\bigr) \bigl( 
K2\mu +L2\nu 

\bigr) 
| u| 2\alpha ,\beta .

Similarly, we can also obtain

\| u - \scrI K,Lu\| 2\mu ,\nu \lesssim 
\bigl( 
K - 2\alpha +L - 2\beta 

\bigr) \bigl( 
K2\mu +L2\nu 

\bigr) 
\| u\| 2\alpha ,\beta .

The original proposition is established.
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