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Abstract. We present an analysis of the approximation error for a d-dimensional quasiperiodic
function f with Diophantine frequencies, approximated by a periodic function with the fundamental
domain [0,L1) X [0,L2) X --- x [0,Lg). When f has a certain regularity, its global behavior can be
described by a finite number of Fourier components and has a polynomial decay at infinity. The
dominant part of the periodic approximation error is bounded by O(maxi<j<4 L% ), where L;
belongs to the best simultaneous approximation sequence and s; is the number of diﬁlerent irrational
elements in the jth dimension component of Fourier frequencies, respectively. Meanwhile, we discuss
the approximation rate. Finally, these analytical results are verified by some examples.
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1. Introduction. Quasiperiodic systems, as a natural extension of periodic sys-
tems, are widely found in nature, materials science, and physical systems, such as
many-body problems, incommensurate structures, quasicrystals, polycrystalline ma-
terials, and quasiperiodic quantum systems [1, 2, 3, 4, 5, 6, 7]. We consider a d-
dimensional quasiperiodic function f(«), and aim to approximate it using a periodic
function f,(z) in a finite domain. This subject is basic and important in the field of
approximation theory. Meanwhile, this is also the core idea of the periodic approxi-
mation method (PAM), which is widely used to study quasiperiodic systems [8, 9, 10].
Therefore, studying the approximation error of PAM not only expands the intension
of the approximation theory, but also establishes a basic theory for the application
of PAM. However, it is surprising that there is still a lack of rigorous and systematic
theoretical analysis on this approximation problem. In this work, we analyze the
approximation error of multidimensional quasiperiodic functions with Diophantine
frequencies when approximated by periodic functions.

Assume that f(x) has the Fourier series [11]

(1.1) fx) = Z axe’™® g cRY
AEA
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where

(12) f(w)e—l?ﬂ)vw da :][f(w)e—i%r/\m dr

ax= T1—1>I-{-loo (QT)d /[_T,T]d
is the Fourier coefficient and A = {X: A= Pk, k € Z"} C R? is the Fourier exponent
set (also called the Fourier frequency set). P = (p;,ps,-..,p,) € R*" n >d, is the
projection matrix where p;,ps,...,p,, are Q-linearly independent.

Let F be the n-dimensional periodic parent function of f such that f(x) =
F(P"x). The convergence of the Fourier series of its parent function can be de-
termined by the convergence of the Fourier series of the quasiperiodic function, and
vice versa [12]. Therefore, for the quasiperiodic function f given in (1.1), F can be
expanded as

F(z)= Y Fue®™** zeT"=R"/Z",
kezm

with Fourier coeflicient

- 1

(1.3) Fk:m' ] e PR EP(2) dz.

For more properties of parent function F, refer to [12].
Based on the Birkhoff’s ergodic theorem [13], we have the following useful result.

THEOREM 1.1 (see [12]). For a given quasiperiodic function
f(w):F(pl.w7"'7pn.w)7 we:le’

where F(z) is its parent function defined on T", and py,...,p, are Q-linearly inde-
pendent, we have

ax = Fk?
where A= Pk, k€ Z". ax, and Fy, are defined in (1.2) and (1.3), respectively.

According to Theorem 1.1, Fourier coefficients F}, of F and Fourier coefficients
ax of f have the same decay behavior. Consequently, if the parent function F' has
certain regularity, it is reasonable to define the set of fundamental Fourier exponents
that globally describe the behavior of f. For a given positive integer N € Z™, denote

K}%[:{k:(k'j)?zl ISYALE —NSk‘j <N},
and the fundamental Fourier exponents set of f can be defined as
Ay ={A=Pk:kc Ky} CA.

Obviously, the order of the set A% is #(A%) =D = (2N)". Let QP(R?) represent the
space of all d-dimensional quasiperiodic functions. From A?V, we can obtain a finite
dimensional linear subspace of QP(R?),

Sy = span{eizﬂ)"m,m eR¥ Ae A‘fv} .

Denote the projection operator Py : QP(R?) +— Sy. Then we can split the quasiperi-
odic function f into two parts:

fl@y= > ae®® 4 3" T =Py f+ (f—Pnf).

AEAY XeEA\AY,
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From the viewpoint of x-space, a periodic function is used to approximate Py f.
Concretely, for some vectors @ = (xj);lzl, y= (yj);l:l, and z = (zj);-lzl with z; # 0,
we define Hadamard product zoy = (:cjyj)?:l and x/z = (acj/zj)?:l, |z| =212 24.

Then, for a given positive integer vector L = (Lj)‘f:p we rewrite Py f as

D
Paf(z)= Y arerorlt,
(=1

where vy =L o Ay with Ay € Aﬁl\,. Using a periodic function

D
(1.4) fol@) =Y b/ g e T =RY/(LoZY),
(=1

where h;, € Z¢ and by is the Fourier coefficient, we approximate Py f in Q= [0,L1) x
[0,Lg) x -+- x [0, Lq).

In related work, Gomez, Mondelo, and Simo applied the PAM to recover frequen-
cies and amplitudes of a one-dimensional quasiperiodic function from regular sampling
data [14]. Correspondingly, a special error analysis was also provided for their consid-
ered one-dimensional cases [15]. The analysis in high-dimensional cases meets many
difficulties compared to one-dimensional ones. The main challenge is that irrational
frequencies in Fourier exponents may exist across different dimensions. In this paper,
we are devoted to giving a theoretical analysis of the periodic approximation problem
for arbitrary-dimensional quasiperiodic function.

From the viewpoint of reciprocal space, the periodic approximation problem in-
volves using the integer vector hy to approximate the irrational vector vy, which is
related to the Diophantine approximation theory. For any vector « = (xj)?zl €R?, let
[2] = ([z;])?_, denote the integer vector whose element [2;] is the distance between ;
and its nearest integer and ||x||g~ = max;<j<q|z;|. In subsection 2.2, we will demon-
strate that f, presents a good approximation to f when h;, = [v,]. Correspondingly,
we can obtain the Diophantine inequality

h, — o = — 1/2.
he —velle fgjagdm,y gl <1/

Clearly, the approximation analysis of Fourier frequencies is directly related to Dio-
phantine theory. The following Dirichlet’s theorem by Dirichlet is a fundamental
result in this field.

THEOREM 1.2 (Dirichlet’s theorem on simultaneous approximation [16]). Sup-
pose that «q,...,as are s real numbers. Then there are infinitely integer points
(¢,p1,---,ps) with ¢ #0 such that

max |a;q—p;| < Csq™Y/*
1Sjgsl 19— il < Csq™ /%,

where Cs =s/(s+1).

Denote Y& = {v1, va,...,vp}. According to Theorem 1.2, there exists an in-
creasing sequence {¢; 1, g;2,...} such that

D D
Br, = ooy —hegl= 3 1Lihes — [LiAeg)l < DCy, L™
=1 =1

where L; € {gj1, g;2,...} and s; is the number of different irrational elements in the
jth dimension of Y2, j=1,2,...,d.
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DEFINITION 1.1. Forj=1,2,...,d, the j column increasing subsequence T;(Y3) =

tiv, tio,... Y C{qgj1, gio,...} is the best simultaneous approximation sequence of Y2

3,15 U, 3,15 4, D
by taking tj1 =gq;1 and t; = argminEt’j‘k<E%k71 {q]',g}?iek with tj x—1=qj.0, -

Assume that the first ¢ Fourier exponents of Y belong to Q¢, and the rest belong
to RA\Q?. In fact, v; = h; (j =1,2,...,(). Denote ch = {v1,v2,...,v¢}. Without
loss of generality, we always have ch # (0. Otherwise, we can obtain a new vector
vy € Q¢ = Q?\{0} through dividing vj¢ by vis, where j =1,2,...,D, £=1,2,....d,
and v1g #0.

To analyze the approximation error, we introduce the definition of Diophantine
number.

DEFINITION 1.2 (see [17]). A real number « is said to be a Diophantine number
if for any 7 >0 and there exists a constant C, >0 such that

q —q2+‘r

for every rational number p/q.

From the definition of Diophantine number, we give the Diophantine condition
on the fundamental Fourier exponents set A%.

Assumption 1.3. Assume that irrational elements A, ; in the Fourier exponents
A= Pk e Yg\YCd are Diophantine numbers. In particular, A, satisfy the Diophantine
condition when p=0, ¢ = | k||¢~, and

Aol > —5—=, 7>0.
[T lFasg

Remark 1.4. An irrational number is either a Diophantine number or a Liou-
ville number. The set of Liouville numbers has a Hausdorff dimension of zero [17].
Specifically, all algebraic numbers in R\Q are Diophantine numbers [18].

Remark 1.5. Since v = Lo A and all rational elements A; in A can be transformed
into integers by an appropriate choice of L, our analysis focuses on distinguishing
between integers and irrational numbers in v.

Main results. The approximation error between the quasiperiodic function and
the approximated periodic function is measured by the infinity norm ||f, — f|leo =
SUPgeq | fp(x) — f(x)|. According to the triangle inequality, the approximation error
becomes

(1.5) 1fp = flloo < fp = P flloe + PN f = flloo-

The right terms of inequality (1.5) are the rational approximation error and the
truncation error, respectively. The truncation error is related to the regularity of
the quasiperiodic function f. If f is a-order derivative, the truncation error can be
bounded by O(N*~%) where a > k > d/2. The rational approximation error is esti-
mated as O(maxi<;j<4 L; ™) where s; is the number of different irrational elements in
the jth dimension of Y3 and L; € T;(Y2). The detailed analysis of the main results
will be presented in section 2.

2. Analysis. Let a = (a1,a2,...,a,)T € R" and A = (a;;) € R¥", and denote
that ||a|| = z;;l la;| and | A1 = maxi<;<n Zle |a;;|. Denote A< B as an estimate
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of the form A < ¢B for a positive constant c. For any positive integer «, the space
Hg P(Rd) comprises all quasiperiodic functions with partial derivatives order a > 1
with respect to the inner product (,)a,

(hfo)a=f fifede+ Y for s 07 fude
[m|l=a
and 9* =9 - ~8xd Then, we can define the norm || f||2=3", .. (14| Ak ) *|ax, |*
and seminorm |f|2 =3,z | Ae]**|ax, |*.
Assume that the qua51per10dlc function f € HQP(]Rd) the estimate of ||Pn f— £/ 0o
has been given in [12], i

1PN = flloo S N[ fla

where a > k > d/2. The truncation error becomes negligible when f exhibits suffi-
cient regularity. Hence, the periodic approximation error is mainly dominated by the
rational approximation error.

Denote byqr = maxi<s<p{|be|}. Next, we estimate the rational approximation
error || f, — Pn f|ls- According to the definition of f, and Py f, we have

[fo = Pn flloo = sup [Pn f(x) — fp(z)]
xe

D
p 2nvex/L E beeiZ'n'h[g-m/L

D D
— (G:Z _ bé)ei%rvg'm/L _ Zbe(eiQ-rrhpm/L _ e'l:27r’l}g~:13/L)
= {=1
D
SZ (Lg bz| ei2mve m/L‘ +Z|b£| 2T m/L‘ z27r(hg ve)xe/L ’
{=1

;
Zag bg|—|—Z|bg| ‘QSiH[W(h@—’l)e)-w/L]‘

b£| +27TbmarZZ|hﬁj 7vﬁj|

(=1 j=1

(2.1)

Tbjb I

In fact, ||he — vg|| can be arbitrarily small (see subsection 2.2). Hence, the last
inequality in (2.1) is reasonable when |hy; — v, ;| <1/2d, j=1,2,...,d.
Denote the quasiperiodic and periodic Fourier coefficient vectors

y:(a17a27~' ) y Yp = (b13b27 bD)T7
the difference is Ay =y —y,,, and
AV = (h1 —'Ul,hg —’Ug,...,hD —'UD) GRdXD.

Define ||AV ||, = ZeD:1 Z;l:l |he; — ve ;|- Then, the inequality (2.1) can be reduced
to

(2.2) 1o = Pn flloo < 1AY[ + 27bmax [ AV e,

where ||[AV||. is the Diophantine approximation error and ||Ay|| is the frequency
approximation error. Then we will estimate ||Ay|| and ||[AV| in subsections 2.1 and
2.2, respectively.
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2.1. Error estimation ||Ay]||. In this subsection, we will estimate the upper
bound of ||Ay|| with the help of the discrete Fourier transform (DFT). The windowed
DFT with G discretization nodes in the jth dimension is

F}],L,G ‘G| Z Hﬂ jOL/G) —127r,3.7/G
JEKE

where G = (Gy)¢_,, K& ={j = (o)}, € Z%: —G/2< jy < Gy/2 — 1}, B € Z?, and
d .
27'(-][ 1 . d
K
Hg;(])z 1:[277_1”< — cos Gg) , JERg,

(=1
0 otherwise.

Note that one can always choose G such that Gy > Ly,. Concretely, we require that
Pn f and f, are equal through the DFT with n-order Hanning windowed function

(2.3) Fp rnch)=F) o a(h), s=1,2,....D.

This is equivalent to

—i27h:-j/G _ —i2mh, G
|G‘ Y. HEG)Pyf(ioL/G)e *mhed/ |G| Y. HEG) (o L/G)e =3/

JEKE, JjeKE,

where h, € X ={hy, ha,...,hp} C Ké. The matrix form of (2.3) is

(2.4) My = Mpyp’
where
(2.5)
M:(Ust)E(CDXD’ uSt:F:lz-;wt @)L LG |G‘ Z HTI 127T(vt_h.§).j/(;,
EKd
Mp:(ugt) G(CDXD, ’Uzzs)t:F:lz,rhf @)L LG ‘G| Z H" lQ‘n’(ht—hs).j/G.
JEKL

From (2.4), we can obtain the Fourier coefficient vector y, if y is known, and vice
versa.

Subsection 2.1.2 demonstrates that M is invertible if the Fourier exponent wv;
satisfies Assumption 1.3, and L, G satisfy Assumption 2.2. As a result, by applying
the norm property to the linear system (2.4), we can obtain

IAY < biaz M 7|1 1M, — M]]e.

In the following, we give the upper bound estimates of |M, — M|, and ||[M |,
in subsections 2.1.1 and 2.1.2, respectively.

2.1.1. The bound of ||M, — M||.. The difference between us; in M and u?,
in M, can be estimated as

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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Coefﬁc?ent = Ic —MpU™t 1 < U
matrix AN I 7R PR V]
M (2.5)

(Lemma 2.4) (Theorem 2.8)

The bound 1 ( The bound
of [U~uly | | of Uy
(Theorem 2.6) J L (Theorem 2.7)

F1G. 1. An overview of the upper bound proof of ||[M~1]|1.

_ p 77 7,271' (vi—hs)-3/G _ 7] ZQW(ht*hs)"/G
Ust ut |G| Z H J |G‘ Z H ’

JEKE JEKE
HL(j zQﬂ(ht—hs)j/G’. i2n(vi—h t)~j/G_1‘
|G\ Z €
JEKE
|G\ Z HZL(5 ‘2s1n (v — hy) - J/G’]’
JEKE,
§27TH’Ut—ht||,

where the last inequality is reasonable with |h; ; — v ;| <1/2d, j=1,2,...,d. Conse-
quently, we have
D D

1My — M= > |uly — ug| <27 D||AV .
t=1 s=1

Obviously, the Diophantine approximation error |AV||. controls the bound of || M, —
M.

2.1.2. The bound of || M ~1||;. This subsection proves that || M ~1||; is bounded
and we give its upper bound. Figure 1 illustrates the flowchart of the upper bound
proof of ||[M~!||;. For the purpose of error analysis, we introduce some required no-
tations. Let Z< = Z%\{0} for d € Z*. Denote that I(€) and I;,(v) are index sets of
zero and integer entries of £ € R%, respectively, i.e.,

I(0)={j:6;,=0,1<j<d},
Ln(®)={j:t;€Z, 1<j<d}.
For 0 <r <d, denote
(2.6) Jo={0cZ #Iy(€) =r} C Z°.

Obviously, U?_,J, = Z4.

Continuous normalized windowed Fourier transform. The continuous nor-
malized windowed Fourier transform (NWFT) with Hanning window function of order
neZr is

) 1 U —i2Tw-x
(2.7) S =g / HY (@) f()e™ 2™ da,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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where w = (w;)4_, € R? and

J
0 otherwise.

Then 0 < H} (z) < (27 + 1)%. The Hanning window function has the normalization
property

1
(2.8) —/ H] (x)dx=1.
12 Jo
From (2.7) and (2.8), for a vector v = (v;)_; € R%, we obtain
¢Zi27rvem£7L[ (wé) =1, (e I()(’U — w)
For a given Ly € Z*, if |(vg — wg) Le + j1| > 0 with —n < j; <7, we have

T D et 1)

2.9  rnw (W) = : -
(2.9) Deiz ,Lg( ) e:l_[1 i2r 0 [(ve — we) L + i
LEIo(v—w)

We can also give the coefficient matrix M = (uy;) € CP*P in the NWFT where

Ugt = ¢Zi27r'vt»m/L)L(hS/L)'
The relation between DFT and NWFT is given in Lemma 2.1.
LEMMA 2.1 (relation between the DFT and the NWFT). When n>1, we have

(2.10) FlyaR) =01 L (k/L)+ 3 ¢, ('”i"G) .

Lezd

The proof of Lemma 2.1 is similar to the one-dimensional case presented in [19].
Rewriting the form of M. From the definition of ¢, we know that

1, s=t
(2.11) ug=2""" for1<s<D,1<t<C
0, s #t,

According to the properties of Y71, we rewrite M and M as block matrices

_ (M1 Mo (I Mg
o o () ()

where My, € C$*¢ and U € C(P=O)x(D=0),
From the relation between DFT and NWFT, we have the following proposition.
PROPOSITION 2.2. Under Assumption 1.3, L and G satisfy

L;C, 1 1 .

Then, we have My =1¢, My =0.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/01/25 to 203.93.11.89 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

APPROXIMATION ANALYSIS OF PAM 959

Proof. For all £ ZZ, we first assume that inequalities

{|vs,j —hey+ 51| >0, i ¢ Io(vs — hy),

(2.14) . ,
[vs,; — hej — 4G5+ 41| >0, j & Io(£),

hold for |j1| <n. From Lemma 2.1 and vy j —hs ; —{;G; = —{;G;j € Z, with 1 <s <,
we can obtain

|Uss - ussl = ‘F:i27rvs-w/L’L’G(hs) - ¢Z7ﬁ2ﬂ'vs-w/L’L(hS/L)‘

SZ hs+£oG)

O iaroresn
ei2mvs -/ ,L L

eczd

§ Z ﬁ (—1)7 ()2 [ei2m (Vs —hes=€;Gy) _ 1] .
= " ”7 ‘7 .7 - - " = .

r=02eJ, | j=1,j¢Io(e) i2mllj - (Vsj = hsj = £;G5 + 1)

Similarly, based on inequalities (2.14), since v, j —hs ; € Z, and v, j—hs ;—€;G,; €
Z, with 1 <t <(, we have

(n!)2|ei2ﬂ(vt,j*hs,j) _ 1|

d—1
st~ £ ) 11 2all] __lve; — hsj + i

r=0¢cJ, | \jelo(®)\Io(v,—v,) = 1=77
d

II

4 271l _
J=1,j¢10(£) =

(n!)Q|6i27r(vt,j*hs,j*ZjGj) — 1|
nlVts —hsj = £;Gj+ i

=0.

Therefore, us = ug where 1 <s,¢ < (. Combining with (2.11), it follows that

1,s=t
usg=14 """ for1<s<D,1<t<c.
0, s#t,

This means that My, = I and My =0.

Next, we show that inequalities (2.14) are true when L and G satisfy conditions
(2.13).

(i) We prove that the inequality |vs ; — h¢; + 71| > 0 holds when j ¢ Iy(vs — hy)
and |j1| <. For j ¢ Iy(vs — vy), due to Assumption 1.3 and |j;| <17, we have
L;C, 1

*\]1|)>W*§*U>O-

(215) |’U5J — ht,j +j1| Z ) min (‘Us,j — ht,j
J¢1o(vs—vy)
For j € Ip(vs — vy), then |vs ; — hyj + j1| = |ve,j — he,j + j1|. From the Diophantine
inequality |v ; — hy ;| < 1/2, we have |v j — hy ; + j1| > 0 when v j # hy ;. Therefore,
|vs,j — e j + j1| > 0 is true for j & In(vs — hy).
(ii) We prove that |vy; — hsj — €;G; + j1| > 0 is true when j ¢ Iy(£). For
J & Io(vs —vy), since |1 <n and j ¢ Io(£), then

Vs, — hej — LGy + ji| > 651G — vs j — by j| = |71]-

Since

[Vs,5 = hej| < |vsj = ve 3]+ |vr; — by j| <2L; || Pl1N +1/2,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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we can obtain
05,5 = Tt j = €G5 + 1| 2 161Gy = 2L4[| P[L N = 1/2 =1,
Moreover, we have
05,5 = Tuj = £G4 >0,

that is, j ¢ Ip(vs — hy — L0 G).

For j € Iy(vs —v:) and j ¢ Io(€), we obtain

05,5 = hs,j = 4G+ 51| 2 Gj = [[vs = hsllee =0 >G5 = % —n>0,

and this also means that j ¢ Ip(vs — hs —£0 G).

Therefore, |v. j — hs,; —£;G; + j1| > 0 holds for j & Iy(£). O

Remark 2.1. Similarly to Proposition 2.2, it is easy to prove that M, is the
identity matrix when conditions (2.13) are true.

Applying Proposition 2.2, M becomes
_ ({¢ M
M= (0 ha).

Analyze the bound of ||[M~1||;. Lemma 2.4 will show that U is nonsingular,

then
1 IC —MlgUil
M _(0 G2

Moreover, we can obtain
M7y < max{1, (1+ [|Maa[)U 11}

The upper bound of ||[M~!||; can be obtained by estimating bounds of |[U~}||;
and HM12H1.

Subproblem 1: The bound of ||[U~!||;. Before giving the bound of ||[U~!||1,
we introduce some necessary lemmas and symbols.

LEMMA 2.3 (Chapter 5.8 in [20]). Assume that E = Ey + Es. If Ey is invertible
with ||ETY| - | E2|| < 1, then E is invertible and

1B
BT | Eall

Set £y = U, E5 = U — U in Lemma 2.3. Lemma 2.4 provides the sufficient
condition such that ¢ is nonsingular and |[/~!||; - ||U —U||s < 1. The proof of the
upper bound of ||[U~1||; is split into two parts: upper bounds of ||U —U||; and ||/,
(see Theorem 2.6 and (2.31), respectively).

For any v, v, € Y2 \ch, denote

(2.16) e

(217) Ts :#Iin(vs)y ast:#IO(vs _vt)v S#ta
and
219 T = i) v = el
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with 0 < d,, <d—1and 0 < dy <d-—1. Denote L,y = minlSdeLj, Loz =
maxi<;j<d Lj, and Gpin =mini<;<q G;. In the following analysis, we assume that L
and G satisfy Assumption 2.2.

Assumption 2.2. For given positive numbers ¢, €, (0 <r <d — 1), assume that L
and G satisfy

1
I >(2N)2+T . (77+ 1) +maxd 1 (77!)2 T a1 @D (d=dpp)
min Ca 2 b T b) € )

- enPel )

1
Zn+1

0<r<d—1 €

1
Gmin > max 2Lmaw”P||1N+ (77+ 5) + 0 (

where n > 1, C) = % and dps is defined by (2.18).

LEMMA 2.4. Under Assumption 1.3, for given positive numbers € and €, (0 <r <
d —1) such that

d—1 )2 d_d —2nd
(n") 3drd (1
2.19 (D — (D—¢—1)e< - ,
(2.19) 9 ; (=1)e< = <2+n>

e -Tr

and L,G satisfy Assumption 2.2, then matrices U and U defined in (2.12) are non-
singular. Moreover, the inequality |[U71||1 - [[U —U]|; <1 holds.

The proof of Lemma 2.4 will be presented at the end at this subsection.
For convenience, given a vector £ = (Ej)?:l €74, denote
( )2|€i27r(vs7j—h,,,j) _ 1|
27l [(vs,j — heg) + 1l
(n!)? |ei27r(vs,j—h,,,j —£4;Gy) _ 1

2mlLj, (v = Py = 6,G5) + ol

AO(Us,Ja hi j) = jelo(€)NI5(vs — hy),

A vy i gi b)) = L EISO) N IS (vs —hy — L0 G).
Obviously, A (vs,j, ht,j,4;) = A%(vs,j, he ;) for j € Io(£). Next, we prove that A°(vs ;,
he ;) and A'(vsj,hej,¢;) are well-defined and bounded under Assumptions 1.3
and 2.2.

PRrROPOSITION 2.5. Under Assumptions 1.3 and 2.2, for a given vector € =
(éj);l:l €72, the following conclusions hold:
(1) A%vs j,he ;) and AY(vs i, he g, l;) are well-defined. Moreover, for j ¢ Io(£),
we have j ¢ In(vs —hy —£0G).
(2) If Iin(vs) =0, then Iy(vs — hs) =10,

(2.20) A(vg by ) <1, 1< 5 <d,

and

(n!)?

2.21 A (s gy he g b
( ) (vs,jy hejr lj) < 7([4;1G; — ||[vs — htllee — )

2n+1° ] ¢ IO(’e)

In particular, when s#t and j ¢ In(vs — vy), it follows that

(n)?

<
LminCa 1 -
W(W — 5 —n)@+l)

(2.22) A(vg 4, he ) <
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(3) If Iy (vs) #0, that is #1;,(vs) =75 >0, then, Iy(vs — hg) # 0.
(3.1) When s=t, we have

A%vg 4,y j) <1, § ¢ Io(vs — hy).

When s #t, if In(vs — hs) N I§(vs —vy) # 0, we have

(2.23) AO(’USJ', ht,j) = O7 j S Io('vs — hs) n Ig(vs — ’Ut).
Otherwise, In(vs — hg) NI§(vs —vy) =0, then In(vs — hy) C Ip(vs — vy)
and

(2.24)

A% (v 5,y ) <1, ¢ Io(vs — vy),
AO(’U&]‘,ht’j) = AO('Us,jahs,j) < 1, j S IO(US — 'Ut) \IO(US — hg)

(3.2) If Ip(vs — hg) NI§(€) # 0, we have
(2.25) A (v 5, hej, 05) =0, j € In(vs — hy) NIG(L).
Otherwise, In(vs — hs) NI§(£) =0, we have Io(vs — hy) C Io(£), and

(nt)” J ¢ Io(0).
161G, —Tos — Rallem —mporr®”

(226) Al(v87j7ht’j,€j) S -

Proof. (1) From Assumption 2.2, the inequality (2.13) holds. Then, according to
the proof of Proposition 2.2, the conclusion is easy to prove.
(2) Iin(vs) =0 (¢ +1<s<D) implies Io(vs — hy) =0. When s=t,
(n!)2|€i2ﬂ(vs)j—hw) _ 1|
C2nll] _ [(vs g — hsg) + 1l
(m1)? - 2sin[m(vs,; — hs,j)]

Ao(vs,ja hs,j)

2mfvey o T (v = heg)? = i
sinfm (vs,; — hsj)] 1
. — . si—hs )21
Tlosg —hogl T _j[1 — Camgel)

From the Weierstrass factorization formula

oo 2
sin(mz) :WZH <1 - 22) , z€C,

(=1

the function

R~ 11 (1-5)

Jji=1 J1
monotonically decreases with respect to n when 0 <z < 1/2. Therefore,

AO(’USJ, hsﬂ‘) <1.
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When s #t, we also show that inequality (2.22) holds. For j ¢ Iy(vs — v;), applying
the inequality (2.15), we can obtain

2|27 (vs,j—ht,5) _ 12
A%(vg 5, by j) = (77-27 & 1~‘ S T ) j
27TH]-1:777|US,J‘ — hy i+ j1] WHjlzfn‘Us,j = hej + 1l
(n!)? 1 1

<
m LyinCo _ 1 =
((2N)2+T 27 77)

For j € Iy(vs — vy), it follows that
A (v, by ) = A% (vs 5, hs ) < 1.
Meanwhile, from the definition of A'(vs_j, ht j,¢;) and
Vs, = heg = G5 + 1l 2 15| Gmin — [[vs = hellee =,

then inequality (2.21) holds.
(3) Iin(vs) #0 ((+1<s< D) implies Ip(vs — hg) #D.
(3.1) For s =t, similar to the above analysis in (2), we have

AO(’UsyﬁhS,j) < 17 .7 ¢ IO('US - hs)

For s # t, we consider two cases. If Io(vs—hs)NI§(vs—v;) # 0, there exists j such
that v ; is an integer and vs j — hy,j € Z,. This means A%(vs j, hy ;) = 0. Otherwise,
Iy(vs — hg) N I§(vs — ve) =0 implies In(vs — hs) C Ip(vs — vy). When j & Ip(vs —vy),
we have v ;j — bt j ¢ Z and A%(v, ;,hy ;) < 1.

(3.2) Similar to the proof of the conclusion (2), (2.25) and (2.26) can be
proved. 0

Next, we estimate the bound of |[U — U||; by the relation between DFT and
NWET. Denote

(to) ! (. £2) !
o\lo) — 9 1\t1,02)— .
g w9 (61 Gonin — [[05 — Pl — )2

meinca 1
((2N)2+" -2~ 77)

Inequalities (2.22) and (2.26) are rewritten as

12
go(2n+1) <1, AM(vgj, ey, l5) < (nﬂ) g1(|¢4;],2n + 1).

1\2
AO(Us,jaht,j) < (77)
m
Denote

1 d—r 1 d—r
g2 = , 93 = .
(U(Gmin - % - 77)2774'1) (U(Gmm - 2Lmax”PHlN - % - 17)277+1)

THEOREM 2.6. Under Assumption 1.3, then

d—1 (n!)Q(d_r) 4 d—r 5
U=t < > = a=—Ciar - 2 ) Clg2 + (D = ¢~ 1)gs),
B=0

r=d,

where dy, is defined in (2.18).
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Proof. Let’s prove this theorem for I;,(v) =0 and I;,(v) # 0, respectively.
(1) When I, (v) =0, from Assumption 2.2, we have

LpinCo 1 N2\ zrr
W*g*ﬁz ((77) )%+ s Gmin — 2Lpmas || P|1N — 1/2 > .

For s,t=(+1,{+2,...,D, from the definition of J,. in (2.6) and Lemma 2.1, we have

(227) |u5t u5t| | ZLZ’wvt ‘@ /L ,L G(h ) - ¢Zi27rvt m/L7L(hS/L)‘

+£LoG
5 ()

VIV

d—1 ]
- (n!)2|ez27r(vt,j*hs,j) — 1‘
(2.28) = Z Z < H 271" i —hsj + il

r=0£cJ, JE€Io(£) T J’F*”'””
ﬁ (77!)2|6i27r(vt,j7h5,jflej) _ 1‘
J=17210(8) 2ﬂH;127nlvt7j - hsyj - ngj +]1|
d—1 d
(2.29) :Z Z { H A Ut NE ,J) H Al(vt7j7h57j7€j)}'
r=02eJ. \ jely(£) j=1,7¢10(£)

In the following, we will analyze the bound of (2.29) for s #¢ and s =t, respectively.
When s #t, according to

[vs = hille= <lvs = ville= + [[vr = Bille~ <2Lmaa || PN +1/2,
and from conclusion (2) of Proposition 2.5, we have

d
Z{ H Ao(vt,jvhs,j)’ H Al(vt,jyhs,jvgj)}

ecJ,. \jeio(e) j=1,j¢10(£)

.
<> I a2+

Le j:LjéIo(l)

2\d—Tr d
(2(:77')) ad S I a2+

ezl >0, J=r+l
fy= =0, =0

_ - d
2(n!)? -
- ((W) cy Z AN I I ot.20+1)
B=0 Lert j=r+p+1
Lpp1=+=Lrpp=1
£;2>2,j=r+pB+1,-d
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Cig1(1,(2n+1)8 H / 91(y5,2n + 1) dy;
j=r+B+1

IN
Y
3
=
o
~
0
5
Q
&
|
5

T T
o

|
3

cy a(1,(2n+1)p)

) ' 2\ d—r )
(2|
C
1 d—r—p
X ( )
QUGmln(szn — ||’Ut — hs”l‘” _ 77)277
12 d—r
< (2(7;') ) cr - {
d—r—p3
<277(Gmin — lve — hglle= — n)2n+1> ] }

@™
Il

T
]

Oy g1(L,(2n+1)p)

(]

=1
o

X

d—r d—r
(n})*t¢=) BB 1
<5 Ca- ) (2)°Cy, :
md=r 62:% d N(Gmin — 2Lmaz || P|[1 N — % — )2+l
Therefore,
2((1 7") d—r 5
[T <Z Ci- > (2n)’Cy g5
B=0
Similarly, when s =1,
2(d— 7‘) d—r 3
(2.30) [tgs — Ugs| < Z Cy- > (2n)°Cl_, 2.
B=0
It follows that
U=t = max Z [T
s=(+1
(d r) d—r 5
< Z Ci- > 2n)°Cy g2+ (D —( —1)gs).

B=0
(2) When I;,,(v) = Ip(vs — hs) # 0, we can obtain a tighter bound of ||U —U]|;.
We consider the diagonal case of s =t and the nondiagonal one of s # t separately.
(i) Let’s consider the case of s =t¢. For ry < r < d—1, we give an index set

{j¥, 45,...,75} such that
Io(vs — hy) C {45, Ga, .y iiy C{1,2,...,d},
and denote
:{ZEZd:éjlx =l ==L =0}.

From (2.9), we have

L. | A\ "
i/ ! iUk 1 — cos 2rz; ei2m(vs j=hs )z /Ly dx;
LjJo (@n-1)1 L;

L je€Iy(vs — hy),
Ao(vsyj’hs,j)v J & lo(vs — hy).
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According to conclusion (3) of Proposition 2.5, we only need to consider the case
Io(vs —hg) N IS(£) = for £€ Z2 since

Al(vs,j,h ,j,é ) 0,4 6]0( hs)ﬁfg(f)

Therefore, In(vs — hs) C Ip(£) and #1o(vs — hs) < #Ip(€). From inequalities (2.24)
and (2.26), we can obtain

d—1 d
|uss _uss| < Z Z { H AO(US,j7hS,j) : H Al(vsyﬁh’&j?(j)}
r=rs e, \ jelo(€)\Io(vs—hs) J=1,j¢10(£)
d—1 d
< Z > { I1 Al(vs,jvhs,jvfj)}
r=rsfeJ, \ j=1,j¢Io(€)
T @
r=rs LeJ; J=1
>0 JE{41, 335000}
d—1 2(d r) d—r
< Z Gy (2n) Tl ge.
r=rg £B=0

Obviously, the upper bound mentioned above is tighter than the bound given in (2.30)
since

d—1 (n|)2(d77ﬂ) d—r d—1 2(d r) d—r

> W e el e Y B et S en e

r=r B=0 dm B=0
-1

N2(d—r) d-r
%cd S @)l g

v
0 B=0

IN
T

r

(ii) When s #t and from (2.26), the upper bound of |uss — U] is

d—r

d—1 _
(n')2(d i r—T BB
[ugs — s | < Z ch_rj : Z( n)"Cy_ .93
T=rg B=0
The proof is completed. ]

The bound ||U —U||; is always finite when G; > L;. Lemma 2.4 has presented
a sufficient condition to guarantee the invertibility of ¢ and |[Up'||; - |Uoll1 < 1. In
the following, we derive an upper bound for ||Z/~1||; by decomposing U into diagonal
part Up and nondiagonal part Up.

THEOREM 2.7. Under Assumption 1.3, then U is invertible and

_ a1
2.31 U< ,

where

d—dm _
{xl_?ﬂdfwww(”rn)%(d dm),
2d
va=(D—¢— 1) 50120+ 1)(d — dur)),

dp, and dp; are defined in (2.18).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/01/25 to 203.93.11.89 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

APPROXIMATION ANALYSIS OF PAM 967

Proof. Lemma 2.4 implies that U/ is invertible. For v; € Rd\(@d,
U = ¢Zi27rvt«m/L1L(ht/L) % 0.
This means that Up is invertible. Let’s prove the inequality (2.31) for I;,(v) =0 and

I;n,(v) # 0, respectively.
(1) When I, (v) =0, from the definition (2.9) of ¢, we have

d .
27TH77 (v, — hej) + 1]
1 77 ]1 —n »J »J
|utt | - [ elQWUt'm/L7L(ht/L ‘ U GZQW(Ut j—htj) _ 1)
B d 27TH;—71:777 ’Ut’j—ht)j —l-jl‘
=1 ()2 [2sinl (v — b))
d
1 ona (14 |ve — b7
S (n!)2d(”'vt — hy[ges 4+ 1) <1 e — hl22

The last inequality is true according to the following inequality:

. 2/12
7r2—x2<smx< x2—g2\"/ € (0,7)
x ).
2422 o T\ w2422 ’ ’

Since U, ' = (u;;") and the function f(z) = (1+z)/(1—=) is monotonically increasing,
it follows that

— d
0l = s o< e (ol )

54 1 2nd
RECICTIED (2 *”) '

For the nondiagonal elements of U, from (2.20) and (2.22), we can obtain

d
1+ |l — byl >
1= [l — b

ol = [ o/ 2| = | [T Gl ) )
Ust| = | D iznoy s ‘ = :
s ei? /L L e z271-1'[7]71__77[(%’]. — hs,j) +]1}
d
= II A®shey)- I Aesihsy)
Jj=1, Jj€lo(vs—vy)

J¢Io(vs—vy)
()2 eer)
< Wf]o(@ﬂ +1)(d - ast)),
where ay; is defined in (2.17).
From Assumption 2.2, we can obtain

Lminca 1 >1
Nz T2 =T
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Therefore, we have

D
[Uolls = max = > Jusl
s=C+1,s#t

D 2(d—auat)
(n!) N
<oms, 3 a2+ Dd-au)
T T s=(C+1,s#t

gy ) _
< (D C 1)7Td7dl\/f 90((277 + 1)(d leI))

with dpr = max, {as} <d—1. Applying Lemma 2.3, the conclusion of this theorem

holds for I;,,(v) = 0.
(2) When I,,,(v) # ), we can also provide the upper bound on ||/ ~1]|;.
(i) For s =t, it follows that

iQ'/TH;?l:_n[(US,j — hs,j) +]1}

—1) _ |ign h,/L —1‘= :
|uss [ 5127rv.e'ﬂ=/L,L( / )] ]];[1 (_1)'{](,’7!)2(61277(1}5“7'—hs,j) _ 1)
j?éIin('US)

5d—7“s 1 2n(d—rs)
g (541)

where 7 is defined in (2.17). Due to n > 1, we easily find

5 1 n
1< —
—amv(2+”> ’

5d—7‘5 1 2n(d—rs) 5d 1 2nd
s (341) < (541)

Therefore, we can obtain

then

U= = M < e L) e (]
p 1= WAL p M 1= 3a=a, (ry2ta=ay \2 77 ~ 340! \2

with d,, = ming{rs} <d—1.

2nd
+ 77)

(ii) For s # ¢ and from (2.23), A°(v; j,hs ;) =0 for j € In(ve — hy) N I§(vs — vy),

which implies ug; = 0. Therefore, we only consider Iy(vy — hy) C In(vs — vy),

d
ual= I A%vr . hsj)- 11 A°(vs 4, hs 5)
ngIj(ZL ) JE€Ip(vs—vi)\Iin(vs)
0(Vs—V¢
(n!)

< mgo(@n +1)(d—dum))
with das = max, {as } <d—1. Consequently, we have

ooy _
[Uollx < (D¢ = 1) a0((2n +1)(d — dar)).

From the abve analysis, inequality (2.31) holds.

|

According to Theorem 2.6 and (2.31), we can derive the upper bound of |[U~!|];.
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THEOREM 2.8. Under Assumption 1.3, U is nonsingular and

_ Z1
Ulhyg—-Ft
|| Hl_ 17501(1‘24’13)

where
5d—dm 1 2n(d—dum )
34— (1) 2(d—dm) (5 * 77) ’

20=(D—(— 1)7577!i ((2n+1)(d—dur)),

xr1 =

d—dp; 90
—1 —r d—r
T — Z (77!)2(d )Cr—d'rn . 2(2 )Bcﬁ [ + (D —(- 1) ]
3 — 7r(d—7') d—d, n d—rl92 93],
r=dm B=0

dp, and dp; are defined by (2.18).

Proof. Lemma 2.4 implies that U is invertible. According to Lemma 2.3, we have

e~ ]
— U =ulh

1T~ < F(le= s 10 = Uln).

F monotonously increases with respect to [[4~'[|l; and |[U — Ul|; since 9F/
A(|U71]]1) > 0 and OF/O(||U —U||1) > 0. Combining with Theorem 2.6 and (2.31),
the proof can be completed. ]

Proof of Lemma 2.4. From the above analysis, we know that x1(z2 + x3) < 1
implies U and U are invertible. We will now demonstrate that this inequality is true
when Assumption 2.2 is satisfied for L and G.

(1) When I, (v) =0, denote 3 = (D — ( —1)Co + Cp where

d— d—r d—1 d—r

(") 2(d r) 8B (n!) 2(d—r) P
Z e 2(277) Co_r93: CD:Zde 2(277) Ca_r92,
r=0 B8=0 r=0 B=0

and

1 34> <1

2nd

Since d > 1 and L; >0, then Cp < Cp. The inequality z1(z2 + x3) <1 becomes

(2:32) (D =C=1)Co+ Cp+(D—¢~ )2+ 1)(d - dur)) < Cldn).

Hence, we need to prove that the inequality (2.32) holds.
First, for a given positive number €, since L., satisfies

(2N)2+7' 7TdM WM
c, €

1
+§ +77} <Lmaa:;

we have

+-+n<

2 (2N)2+7' '

R S
M ] ErEDd—dy) ] LinazCla
€
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It follows that

rim
@ra—an =T eo((2n+1)(d—dwm)) <e
LimazCa 1
@N)2Fr — 2 77}
Second, for positive numbers €, (r=0,1,...,d — 1), since Gy;n satisfies
1
1 CTES|
1 cy- 2) Bcﬁir LE
Gin > max 2LmazHP”1N+*+n+ Z,B 0( 77) d 1 7
0<r<d—1 9 . ;

ie.,

1 2n+1
2asl PN =5 =)

€r

Cg-zézzemﬁccé’_r]“q(g -

we can obtain

@ 1 d—r
Co= L Cn- 2n)°PCy_,. [ }

;) m(d=r) ¢ Bgo( ) ¢ N(Gmin — 2Lmaz || PN — % —mn)2ntt

d— 1

<Z nﬁ(d e

_ 2(d—r) L
Moreover, C'p < Cp means that Cp < Zfzé %er. If positive numbers ¢, (r =

0,1,...,d—1) and e satisfy the inequality (2.19), we have

()¢
(D—C=1)Co+Cp+ (D -~ DI go((2n+ 1)(d— d)
d=1, \\_op
<c0-0X e 4 (D-c—ne<Cidn)
r=0

Therefore, the inequality (2.32) is true and U is nonsingular. Moreover, we can obtain
(n!)>
(D= ¢=1) =5, 90((2n + 1)(d = dar)) < C(d,n),

which means xz1x2 < 1 and U is nonsingular. The condition that guarantees U is
nonsingular is sufficient to ensure that U/ is also nonsingular.

(2) When I, (v) # 0, based on the analysis in Theorem 2.6 and (2.31), we know
that 23 = (D — ¢ — 1)Co + Cp where

S @)

r=dm
d—1 2(d—r
A (77') ( ) r—dpm
D= ,n—d—T d— m
r=dm

d—r

> @n)’cy g,

»

d—r

> 0Oy .

5=0

Note that Cp < Co, Cp < Cp, and C’(d, n) > C(d,n). Hence, if the inequality (2.32)

holds, we have

(n!)>
(D—¢-1)Co+Cp+(D—¢—1)-L— s

90((2n+1)(d — dar)) < C(d,n).
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This means that U and U/ are nonsingular. Consequently, the proof of Lemma 2.4 is
completed. ]

Subproblem 2: The bound of |[Mjz||1. Based on the analysis in Remark
2.1, we can directly give the upper bound of ||Mj2||;. Based on the proof of Theorem
2.6 and (2.31), it follows that

[ Mia]l1 < (¢ +1)(22 +y2),

where
(2.33)
d—1 d—r
77[ 2d ’/]' 2(d—r) —d,
ro= I go(@n + Dd—du)) = Y Dot S @m0l
’r‘:dm ﬁ:O

with d,,,, dps defined by (2.18).

2.2. Analysis of Diophantine approximation matrix AV. In this subsec-
tion, we analyze the approximation rate of Diophantine approximation error ||[AV ||,
and discuss the periodic approximation function sequence. From the definition of
IAV ||, we can derive

||AV||e: ||(h1 —’Ul,hg —’UQ,...,hD —’UD)He

D d D
h-—v<<dmax2h»—v»
=" lhej— el < max, hej — v,
/=1 j=1 =1
which is equivalent to the simultaneous approximation of u; = (v, 7)£ J=12,...,d

Denote
R(h) = (hej —ve )2 1 Rw) = ([veg] —ve,)t -

Now we can show that | R(h)]||s~ < 1/2 if and only if hy ; = [vgj]. When R(h) # R(v)
and ||R(v)]|¢~ < 1/2, we have

IR(R) — R(v)||g = [[(hej — [ve,]) 25 ;1 lle > 1.

This means that [|R(h)|s~ > |R(h) — R(v)||¢= — || R(v)||¢= > 1/2, which is obviously
contradictory.

Since we assume that there are only integers and irrational elements in u; (j =
1,2,...,d), then hy; = vs; when vy ; is an integer. According to Theorem 1.2 and
Definition 1.1, it follows that

1AV, ZZWW WH\<ZO LV, Ly e Ti(YH),

j=1k=1

where s; represents the number of different irrational Fourier frequency elements in
u; (j = 1,2,...,d), respectively. As a consequence, the above expression provides
an upper bound of ||[AV || rather than a supremum, and demonstrates that ||AV.
is inversely proportional to L;. Nevertheless, the uniform decrease of [|[AV||. with
a gradually increasing L; cannot be guaranteed due to the property of irrational
number. It is possible that a gradual increase of L; may increase |AV|.
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Remark 2.3.

(i) When the vector u; only contains an irrational number A;,, then {¢1, to,...}
is a continued fraction expansion of A .

(ii) When the vector u; contains more than one irrational number, finding the

simultaneous approximation sequence {q1 j, g2 j,...} is an NP-hard problem
[23, 24].

2.3. Summary. We put previous results together and give the bound of the
rational approximation error

1fp = Pn flloo < bmaal|M 1| My — M|le + 27bpmaa | AV e
€1
(14 ((+1)(x2 +y2)l21
1 — CCl(IQ +I3)

(2.34)

< 27hyan | D + 1AV e,

€2

where the definitions of z1, x2, x3, and y, are given in Theorem 2.8 and (2.33),
respectively.
The main result of this work is summarized as follows.

THEOREM 2.9. Under Assumption 1.3, and assuming the quasiperiodic function
fe HgP(Rd), the error in approzimating f with f, € H*(T?) is given by

[1fp = flloo S gj,agdL;Sj + N fla,

where a > Kk > d/2, s; is the number of different irrational elements in the jth dimen-
sion of Y2, and L; e E(Yg) is the corresponding best simultaneous approximation
sequence.

2.4. Discussion.

2.4.1. On the error bound. From the above analysis, we can offer some dis-

cussion on the approximation error.

(i) When the quasiperiodic function f(x) is known, we can use (2.3) to directly
obtain the approximate error || f, — f||oo-

(i) When the Fourier exponents of f(x) and the periodic approximation func-
tion fp(x) are given, we can calculate an error bound e; defined in (2.34).
Moreover, by solving (2.3), we can obtain the Fourier coefficient vector y.

(iii) When the quasiperiodic function f(«) is unknown, we can use Theorem 2.9
to obtain an upper bound of ||f, — fllcc. Moreover, the error bounds of
Il fp — Pn fllo have a relationship

| fo — Pnflloo < €1 <e2.

2.4.2. On the best approximation rate. Although directly computing the
best simultaneous approximation sequence 7 can be challenging, we can still discuss
its growth rate. The sequence T increases at a rate of at least [21]

.. 1/k
hkrglcgf(tk) >1+ TR

The sequence T grows at a rate of at most [22]

1
lim sup Z Int, <C

k—o0
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for almost all u = (Ug)ZD: 1 € RP and C is a contant. Here, “almost all” refers to the
Lebesgue measure on RP.

3. Some examples. This section offers two examples for d = 1 and d = 3
to support our theoretical results. These examples involve only finite trigonometric
summations, so there is no truncation error. Denote g = || fp — Pn fllo and e(L;) =
ZeD:1 |LiXe,j — [LjXe,lls 5 = 1,2,...,d. The d-dimensional quasiperiodic function
f(x) has the following expansion: f(x) = Zle age??m(Loxe) /L The corresponding
periodic approximation function f,(x) is given in (1.4) with a fundamental domain
[0,L1) x [0,Lg) X --- x [0,Lg). We will show the rational approximation error ¢y and
two theoretical upper error bounds €1, €5. To derive a more accurate upper bound
€2, 1 in (2.34) is calculated by

-7 1+ vs*hs 200 d=rs
P17 TR {<vshs||zw+n>2”<d )(”M> }

 (41<s<D 1—|jvs — hyll

Lemma 2.4 gives a sufficient condition that M is invertible. In the following
examples, this condition can be weakened as
meCa 1 (7]')2
(31) (QJV)Q_H_QT]>IHQ,X{1, |: .

Let n =1, then [(n!)?/7 e = (1/7)5 < 1. Inequality (3.1) becomes
n n

5 (2N)2FT 3

Lmin 5 T A~ Gmln 2Lmaw PN 5

>3 > 1PN + 5

Ezample 3.1. Consider a one-dimensional quasiperiodic function f(z) with four

Fourier exponents (A1, A2, Az, A1) = (1, V2, 24+ V2, 1+ 2v/2). The corresponding
Fourier coefficients are a3 =0.02 — 0.24, as = 0.1, a3 =0.03 4+ 0.17, a4 = 0.02.

her )
:| ) szn *2Lmaat||P||1N* 5 >77-

In this example, the projection matrix is P = (1 /2). The reciprocal lattice
vectors are

o ke b k) =(5 ) T )

with N = 2. Let Diophantine parameters C, = 2 and 7 = 0.2. We can verify
that A1, A2, A3, A4 satisfy the Diophantine condition and ¢ =1, I;in(X\;) =0 (j =
2,3,4), das =0, ||P||y = V2. Therefore, L > 20 and G > 4v/2L +3/2. Here, we choose
G =10L.

We can obtain the periodic approximation function f,(z) from (2.3). For example,
when L = 13860, Fourier exponents of f,(x) are

h1 =13860, he =19601, hg = 53062, hy =47321.
The corresponding Fourier coefficient vector y,, is

y,, = 0.0200 — 0.2000i,0.1000 — (8.0139¢ — 07),0.0300 -+ 0.1000i,0.0200
— (1.6028¢ — 07)i”.

Figure 2 illustrates that as L increases, e(L) decreases, but the decrease is not
uniform. To compute the error results, we present the first eight terms of the optimal
approximation sequence 7, which correspond to the first column in Table 1.
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F1G. 2. The change of Diophantine approxzimation error e(L) with an increase of L. The se-

10"

quence in the figure corresponds to the best simultaneous approximation sequence.

TABLE 1

Error results of the one-dimensional case given in Example 3.1.

L ||AV||e €0 €1 €2
29 4.8773e-02 2.7689e-02 9.2404e-02 3.2843e-01
70 2.0203e-02 1.1549e-02 3.8271e-02 1.2979e-01
169 8.3682e-03 4.7935e-03 1.5852e-02 5.3200e-02
408 3.4662e-03 1.9877e-03 6.5662e-03 2.1948e-02
985 1.4357e-03 8.2512e-04 2.7198e-03 9.0765e-03
2378 5.9471e-04 3.4217e-04 1.1266e-03 3.7571e-03
5741 2.4634e-04 1.4180e-04 4.6665e-04 1.5558e-03
13860 1.0201e-04 5.8747e-05 1.9329e-04 6.4436e-04
1
032 *
0.10 *
* *
003} > A ek
0.01 > * N
= ‘s\ 0
%3.20;»03 > % ‘{L\ *
1.00e-03 g * \\‘ *
* €9 > * . *
3.16¢-04 e > *
[>eo >
1.00e-04 *
* [|AV]e >
3.16¢-05

31 100 316 1000 3162 10000

Fic. 3. In Ezample 3.1, the relationship between errors ||AV||e, o, €1, €2, and L.

Table 1 presents the rational approximation error €y and the corresponding the-
oretical upper bounds 1 and 5. The relationship of ¢y < &1 < €9 is consistent with
the discussion in subsection 2.4.

Figure 3 displays the reduction rates of these four errors when L is selected as
the best approximation sequence. It is evident that all four errors decrease at the
rate of O(L™1). Furthermore, we observe that the error £y depends not only on the
error ||[AV ||, between Fourier exponents but also on the error ||Ay|| between Fourier
coefficients.
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Ezxample 3.2. We consider two three-dimensional quasiperiodic functions.
Case (i). The Fourier exponents are

1 V3/2
A= 0 V2/2
V3/2 0

The corresponding Fourier coefficients are a; = 0.2+0.14, as = 0.1+0.2i. Here, dj; = 0.
Case (ii). The Fourier exponents are

1 0 5/4
Ar=10 V2/2 0
0 V3/2 /3/2

The corresponding Fourier coefficients are a; = 0.2 + 0.1¢, a2 = 0.1 + 0.24, a3 =
0.02 — 0.02¢. Here, dp; =1.

For Case (i), the projection matrix is

1 0 0  V3/2
P,=(0 v2/2 0 0 |,
0 0 Vv3/2 0

and N = 1. The reciprocal lattice vectors are k; = (1,0,1,0)7 and ks = (0,1,0,1)7.
When Diophantine parameters C, = 2 and 7 = 0.1, ( =0, Lin(A;) # 0, (j = 1,2),
dm =1, |P1|li = 1. Then Lyyin > 5 and Gpin > 2Lmar + 3/2. Here, we choose
Gmin = 2Lmaz +10.

It is evident that the second dimension is associated with /2, while the first
and third dimensions are related to v/3. Consequently, Figures 4(a)-(b) show the
relationship between e(L;) and L; with j = 1,2, respectively. Note that L, = Ls.

For Case (ii), the projection matrix is

1 0 0 5/4
Py=(0 Vv2/2 0 0
0 0 V32 0

The reciprocal lattice vectors are k; = (1,0,0,0)7, ko = (0,1,1,0)7, and k3 =
(0,0,1,1)7 where N = 1. When Diophantine parameters C, = 2 and 7 = 0.2,
C = ]., I”L()\]) 7é @, (] = 2,3), dpy = 1, ||P2||1 = 1. Then L,,;, > 10 and Gin >
2Lmaq + 3/2. Here, we choose Gpin = 2Lmas + 10.

Similarly, we show the relationship between e(L;) and L; as well as the best
approximation sequence for each dimension. The second and third dimensions are
presented in Figure 4. Figure 5 illustrates this relationship for the first dimension in
Case (ii).

For convenience, let G1 = Go = G3 = G,in in these two cases. The errors of
three-dimensional quasiperiodic functions are presented in Table 2. The table com-
pares three error bounds and clearly demonstrates the consistency of our theoret-
ical findings. Since the degrees of freedom of Case (i) and Case (ii) are given by
D = G2 ,,, the computational cost becomes significantly high as the area of L in-
creases. Therefore, we restrict the calculation area to (0,209] x (0,239] x (0,209] and
(0,127] x (0,99] x (0,209] in Table 2, respectively.
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10!

0 3

10
Lo

(b) The relationship between e(L2) and Ls.
Fi1G. 4. In Case (i) of Example 3.2, when the projection matriz is P1, Diophantine approzima-

tion error e(Lj) changes with increasing L; and j =1,2. The sequence in the subfigure corresponds
to the best simultaneous approximation sequence in the corresponding dimension.

10° 10! 10 10°
Ly

Fic. 5. In Case (ii), the change of Diophantine approzimation error e(L1) with an increase of L.

TABLE 2
Error results of two three-dimensional cases given in Ezample 3.2.

Fourier exponents (L1,L2,L3) [[AV e €0 €1 €2
(7,17,7) 1.4517e-01 2.9179e-01 3.0510e-01 7.3318e-01
Aq (15,41,15) 2.7860e-02 5.7767e-02 5.8709e-02 1.2095e-01
(97,99,97) 1.2500e-02 2.6158e-02 2.6342e-02 5.3508e-02
(209,239,209) 2.8605e-03 6.0135e-03 6.0284e-03 1.2147e-02
(25,41,15) 5.2435e-02 4.6980e-02 1.1050e-01 3.1908e-01
Ao (34,99,97) 1.9077e-02 1.9775e-02 4.0205e-02 1.0976e-01

(127,99,209) 9.7943e-03 6.0208e-03 1.9171e-02 5.6053e-02
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4. Conclusion. This paper presents a comprehensive theoretical error analy-
sis of approximating an arbitrary-dimensional quasiperiodic function with a periodic
function. The approximation error of this problem includes two parts: rational ap-
proximation error and truncation error. If the quasiperiodic function exhibits cer-
tain regularity, the rational approximation error dominates the approximation error.
Meanwhile, we investigate the approximation rates of both the rational approxima-
tion error and the best periodic approximation sequence. Finally, we further verify
the correctness of the theoretical analysis by several examples.

There are still many problems worth studying, including applying the PAM to
solve the quasiperiodic differential equations/operators and providing the correspond-
ing mathematical analysis based on these results presented here. Furthermore, we will
develop the new method to analyze the approximation error of quasiperiodic functions
with non-Diophantine frequencies by periodic functions.
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