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We analyze the semi-implicit scheme of high-index saddle dynamics, which provides a powerful
numerical method for finding the any-index saddle points and constructing the solution landscape.
Compared with the explicit schemes of saddle dynamics, the semi-implicit discretization relaxes the
step size and accelerates the convergence, but the corresponding numerical analysis encounters new
difficulties compared to the explicit scheme. Specifically, the orthonormal property of the eigenvectors at
each time step could not be fully employed due to the semi-implicit treatment, and computations of the
eigenvectors are coupled with the orthonormalization procedure, which further complicates the numerical
analysis. We address these issues to prove error estimates of the semi-implicit scheme via, e.g. technical
splittings and multi-variable circulating induction procedure. We further analyze the convergence rate
of the generalized minimum residual solver for solving the semi-implicit system. Extensive numerical
experiments are carried out to substantiate the efficiency and accuracy of the semi-implicit scheme in
constructing solution landscapes of complex systems.

Keywords: saddle point; saddle dynamics; solution landscape; semi-implicit scheme; error estimate;
GMRES.

1. Introduction

Searching saddle points on a complicated energy landscape is a crucial but challenging topic in
computational physical and chemistry [7, 16, 17, 23, 25, 29, 31, 32, 35, 39, 42, 43]. The saddle points
can be classified by the (Morse) index, which is characterized by the maximal dimension of a subspace
on which the Hessian is negative definite, according to the Morse theory [26]. Most existing numerical
algorithms focus on finding the index-1 saddle points, e.g. [1, 5, 8, 9, 10, 11, 21, 22, 40]. However, the
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computation of high-index saddle points receive less attention due to their unstable nature, despite of the
fact that the number of high-index saddle points are much larger than local minima and index-1 saddle
points on the complicated energy landscapes [36, 37] and their important applications among many
scientific fields. For instance, in chemical system, index-2 saddle points offer valuable information on
the trajectories of chemical reactions [19, 20, 24, 27, 28]. In quantum mechanics, excited states that have
higher energy than the ground state are modeled as high-index saddle points of the energy functional
with the constraint [2, 3, 34].

High-index saddle dynamics (HiSD) is recently proposed in [38] to find the any-index saddle points,
which, together with the downward or upward search algorithms, is widely used to construct the solution
landscapes that attracts increasing attentions due to its successful applications in various fields such
as revealing the mechanism of nucleation of quasicrystals [35] and the excited states and excitation
mechanisms of the rotational Bose-Einstein condensates [34]. It was proved in [38] that a linear stable
steady state of HiSD of index-k is exactly an index-k saddle point. To ensure that the numerical scheme
of HiSD also converges to the same target saddle point of HiSD, it is critical to ensure that the discrete
HiSD evolves along the dynamical pathway of continuous HiSD. If we only analyze the discrete HiSD
without considering its difference from the continuous HiSD, there is no guarantee for the discrete HiSD
to converge to the same target saddle point of HiSD. For this reason, it is important to perform error
estimates for a certain numerical scheme of HiSD to ensure its dynamical pathway convergence.

There are some recent progresses on the numerical analysis of HiSD [44]. In [44], an explicit
difference scheme was proposed for the HiSD and rigorous error estimates were performed to show
its first-order accuracy, which ensured the dynamical convergence of numerical solutions to the saddle
dynamics and consequently supported the accurate construction of the solution landscape [18, 37].
Since the explicit Euler scheme is adopted in [44], the orthonormal property of the eigenvectors at each
time step has been fully employed in simplifying the derivations and analyzing the properties of the
numerical solutions. While the explicit scheme is convenient to implement, it could suffer numerical
instability if the time step size is large, and thus reduces the efficiency of the saddle dynamics.

To relax the time step size and accelerate the convergence behavior, we investigate a semi-implicit
scheme of HiSD. Compared with the explicit scheme, the orthonormal property of the eigenvectors
at each time step could not be fully employed due to the semi-implicit treatment, which makes the
numerical analysis intricate. Furthermore, we adopt a novel computational strategy by computing the
eigenvectors {vi}k

i=1 and performing the orthonormalization procedure successively for 1 ≤ i ≤ k,
and such coupling scheme of the eigenvectors and the orthonormalization requires more technical
and complicated analysis. All these difficulties invalidate the delicate error estimates of HiSD in
[44]. Therefore, the improved analysis such as the technical splittings and multi-variable circulating
induction procedure are required to prove the error estimate of the semi-implicit scheme. Furthermore,
the generalized minimum residual (GMRES) method is applied to solve the semi-implicit system, the
convergence of which needs to be analyzed that is not encountered in the explicit scheme.

Motivated by these discussions, we show the error estimate of the semi-implicit scheme of HiSD
and the convergence of the GMRES method. We perform various numerical experiments to show the
efficiency and accuracy of the semi-implicit scheme compared with the explicit scheme. The rest of
the paper is organized as follows: In Section 2 we introduce the formulation of HiSD and its semi-
implicit numerical scheme, as well as proving some properties of the numerical solutions. In Section 3
we develop novel techniques to prove a key estimate to support the error estimate of the semi-implicit
scheme in Section 4. In Section 5 we prove the convergence of the GMRES solver for the semi-implicit
system. Numerical experiments are performed in Section 6 to substantiate the theoretical findings and
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compare the explicit and the semi-implicit schemes. We finally address concluding remarks in Section
7.

2. HiSD and semi-implicit scheme

Let E(x) be the energy function with x ∈ RN , and define F(x) = −∇E(x) and J(x) = −∇2E(x). It is
clear that J(x) = J(x)⊤. Then the saddle dynamics for an index-k saddle point of E(x) with 1 ≤ k ∈ N
reads [38] 

dx
dt

= β

(
I −2

k

∑
j=1

v jv⊤j

)
F(x),

dvi

dt
= γ

(
I − viv⊤i −2

i−1

∑
j=1

v jv⊤j

)
J(x)vi, 1 ≤ i ≤ k

(2.1)

where x represents a position variable, vi(i = 1, ...,k) are k directional variables, and β , γ > 0 are
relaxation parameters. It is shown in [38] that if {vi(0)}k

i=1 are orthonormal vectors, then {vi(t)}k
i=1 are

orthonormal for any t > 0. Throughout the paper we use Q to denote a generic positive constant that
may assume different values at different occurrences, and make the following assumptions:
Assumption A: The F(x) could be represented as a sum of the linear part L x for some matrix L and
the nonlinear part N (x), that is, F(x) = L x+N (x), and there exists a constant L > 0 such that the
following linearly growth and Lipschitz conditions hold under the standard l2 norm ∥ · ∥ of a vector or
a matrix

max{∥J(x2)− J(x1)∥,∥L x2 −L x1∥,∥N (x2)−N (x1)∥} ≤ L∥x2 − x1∥,

max{∥L x∥,∥N (x)∥} ≤ L(1+∥x∥), x,x1,x2 ∈ RN .

Remark 1 In Assumption A the F is decomposed as a combination of the linear and nonlinear
parts such that in the following semi-implicit scheme, the linear part will be treated implicitly while
the nonlinear part will be treated explicitly. This semi-implicit treatment is indeed consistent with the
commonly-used semi-implicit numerical methods for some nonlinear problems such as the phase-field
equation [4] to ensure the computational stability and accuracy.

Based on the Assumption A, it is shown in [44] that ∥x(t)∥ is bounded for t ∈ [0,T ] for a given
terminal time T .

2.1. Semi-implicit scheme

We consider the semi-implicit scheme of the index-k saddle dynamics (2.1) on the time interval [0,T ]
equipped with the initial conditions

x(0) = x0, vi(0) = vi,0, v⊤i,0v j,0 = δi, j, 1 ≤ i, j ≤ k. (2.2)

Let 0 = t0 < t1 < · · · tN = T be the uniform partition of [0,T ] with the step size τ = T/N, and let
{xn,vi,n}N

n=0 be the numerical solution of (2.1). Then we discretize the first-order derivative by the
Euler scheme and treat the linear and nonlinear parts on the right-hand side of (2.1) via the implicit and
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explicit manner, respectively, to obtain the semi-implicit scheme of (2.1) for 1 ≤ n ≤ N as follows



xn = xn−1 + τβ

(
I −2

k

∑
j=1

v j,n−1v⊤j,n−1

)(
L xn +N (xn−1)

)
,

ṽi,n = vi,n−1 + τγ

(
I −2

i−1

∑
j=1

v j,nv⊤j,n

)
J(xn)ṽi,n

−τγvi,n−1v⊤i,n−1J(xn)vi,n−1,

vi,n =
1

Yi,n

(
ṽi,n −

i−1

∑
j=1

(ṽ⊤i,nv j,n)v j,n

)
,


1 ≤ i ≤ k.

(2.3)

Here the last equation represents the Gram-Schmidt orthonormalization in order to maintain the
orthonormal property of the vectors as in the continuous case, and thus Yi,n represents the norm of
the vector in (· · ·), i.e.,

Yi,n : =

∥∥∥∥ṽi,n −
i−1

∑
j=1

(ṽ⊤i,nv j,n)v j,n

∥∥∥∥=

(
∥ṽi,n∥2 −

i−1

∑
j=1

(ṽ⊤i,nv j,n)
2
)1/2

.

Remark 2 The purpose of the Gram-Schmidt orthonormalization aims to ensure the orthonormality of
directional vectors as in the continuous HiSD, that is, ensure the Stiefel manifold constraint [15]. From
the later point of view, one may also apply the projection method for differential equations on manifold
[14, 15] to retract the dynamics of directional vectors in (2.3) to the Stiefel manifold at each time
step, and the error estimate could be immediately obtained by directly applying the conclusions in [15,
Section IV.4]. However, according to [15, Example 4.6], computing the projection for the current case
requires to perform the singular value decomposition for the matrix concatenated by {ṽi,1, · · · , ṽi,n}
at each time step tn, which could be computationally expensive. Thus we instead adopt the easy-to-
implement approach (i.e. the Gram-Schmidt process) in the scheme, which, however, is no longer the
projection to the Stiefel manifold such that the conclusions in [15, IV.4] could not be applied to reach
error estimates that motivates the current study.

By Assumption A and ∥v j,n−1∥= 1, we could apply the discrete Gronwall inequality to derive from
the first equation of (2.3) that ∥xn∥ is bounded by some constant Qx for 1 ≤ n ≤ N, which, based on the
scheme of ṽi,n, implies the boundedness of ∥ṽi,n∥ for τ small enough. Note that the boundedness of xn
and ṽi,n further implies

∥ṽi,n − vi,n−1∥

=

∥∥∥∥τγ

(
I −2

i−1

∑
j=1

v j,nv⊤j,n

)
J(xn)ṽi,n − τγvi,n−1v⊤i,n−1J(xn)vi,n−1

∥∥∥∥≤ Qτ.
(2.4)
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Compared with the explicit scheme presented in [44]



xn = xn−1 + τβ

(
I −2

k

∑
j=1

v j,n−1v⊤j,n−1

)
F(xn−1),

ṽi,n = vi,n−1 + τγ

(
I − vi,n−1v⊤i,n−1

−2
i−1

∑
j=1

v j,n−1v⊤j,n−1

)
J(xn−1)vi,n−1, 1 ≤ i ≤ k,

vi,n =
1

Yi,n

(
ṽi,n −

i−1

∑
j=1

(ṽ⊤i,nv j,n)v j,n

)
, 1 ≤ i ≤ k,

(2.5)

the schemes and the computational strategies have salient differences:

(a) In the explicit scheme (2.5), all variables on the right-hand side of the equations take the values
at the previous time step tn−1. In this way, the orthonormal property of the vectors {vi,n−1}k

i=1
at the time step tn−1 could be fully employed to facilitate the numerical analysis as performed in
[44, 45]. However, in (2.3) the linear parts on the right-hand side of the equations of vectors are
treated implicitly, for which the orthonormal property could not be applied directly and thus the
error estimate could be significantly complicated.

(b) In the explicit scheme (2.5), the schemes of the vectors {ṽi,n}k
i=1 are firstly solved, and then

their orthonormalization are independently performed. In the semi-implicit scheme (2.3), the
computational strategy is different in that the scheme of the vector ṽi,n in the second equation and
its orthonormalization with {v j,n}i−1

j=1 in the third equation are solved consecutively for i = 1, · · · ,k.
In this way, the orthonormalized vectors {v j,n}i−1

j=1 at the current time step tn serve as inputs in the
scheme of the vector ṽi,n, which could be more appropriate than using the vectors at the previous
time step in the explicit scheme. However, this computational strategy leads to the coupling of the
schemes of {ṽi,n} and the orthonormalization procedure, which makes the numerical analysis more
intricate.

Concerning these difficulties, we derive novel analysis methods to carry out error estimates in
subsequent sections.

2.2. Auxiliary estimates

We prove several auxiliary estimates to support the error estimates.

Lemma 1 For 1 ≤ m < i ≤ k, there exist positive constants Q0 and Q1, which are independent from
m, i and n, such that the following estimate holds

∥ṽ⊤i,nṽm,n∥ ≤ Q0τ

m

∑
l=1

∥ṽl,n − vl,n∥+Q1τ
2.
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Proof By the definitions of ṽi,n and ṽm,n we have

ṽ⊤i,nṽm,n = τγ

(
v⊤m,n−1J(xn)ṽi,n −2

i−1

∑
j=1

v⊤m,n−1v j,nv⊤j,nJ(xn)ṽi,n

+ṽ⊤m,nJ(xn)
⊤vi,n−1 −2

m−1

∑
j=1

v⊤j,nvi,n−1v⊤j,nJ(xn)ṽm,n

)
+O(τ2)

=:
4

∑
l=1

Al +O(τ2).

(2.6)

By v⊤m,nv j,n = δm, j we rewrite A2 as

A2 =−2τγ

i−1

∑
j=1

v⊤m,n−1v j,nv⊤j,nJ(xn)ṽi,n

=−2τγ

i−1

∑
j=1

(v⊤m,n−1 − v⊤m,n)v j,nv⊤j,nJ(xn)ṽi,n −2τγv⊤m,nJ(xn)ṽi,n,

(2.7)

which leads to

A1 +A2 +A3 = τγ
(
v⊤m,n−1J(xn)ṽi,n − v⊤m,nJ(xn)ṽi,n

)
+τγ

(
ṽ⊤m,nJ(xn)

⊤vi,n−1 − v⊤m,nJ(xn)ṽi,n
)

−2τγ

i−1

∑
j=1

(v⊤m,n−1 − v⊤m,n)v j,nv⊤j,nJ(xn)ṽi,n =: B1 +B2 +B3.

(2.8)

By the splitting

vm,n−1 − vm,n = (vm,n−1 − ṽm,n)+(ṽm,n − vm,n) (2.9)

and (2.4), B1 could be bounded as

|B1|= τγ|(v⊤m,n−1 − v⊤m,n)J(xn)ṽi,n| ≤ Qτ
2 +Qτ∥ṽm,n − vm,n∥.

In a similar manner we bound B3 by

|B3|= 2τγ

∣∣∣∣ i−1

∑
j=1

(v⊤m,n−1 − v⊤m,n)v j,nv⊤j,nJ(xn)ṽi,n

∣∣∣∣≤ Qτ
2 +Qτ∥ṽm,n − vm,n∥.

We then apply the symmetry of J(xn) to bound B2 as

|B2|= τγ|(ṽ⊤m,n − v⊤m,n)J(xn)vi,n−1 + v⊤m,nJ(xn)(vi,n−1 − ṽi,n)|
≤ Qτ

2 +Qτ∥ṽm,n − vm,n∥.
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We finally bound A4 as

|A4| =

∣∣∣∣2τγ

m−1

∑
j=1

v⊤j,nvi,n−1v⊤j,nJ(xn)ṽm,n

∣∣∣∣
=

∣∣∣∣2τγ

m−1

∑
j=1

(v⊤j,n − ṽ⊤j,n + ṽ⊤j,n − v⊤j,n−1)vi,n−1v⊤j,nJ(xn)ṽm,n

∣∣∣∣
≤ Qτ

2 +Qτ

m−1

∑
j=1

∥v j,n − ṽ j,n∥.

We incorporate the preceding estimates to complete the proof. □

Lemma 2 For 1 ≤ j ≤ k, there exist positive constants Q2 and Q3, which are independent from j and
n, such that the following estimate holds

∣∣∥ṽ j,n∥2 −1
∣∣≤ Q2τ

j−1

∑
l=1

∥ṽl,n − vl,n∥+Q3τ
2.

Proof From the definition of ṽ j,n we have

∥ṽ j,n∥2 = 1+2τγ

(
v⊤j,n−1 −2

j−1

∑
l=1

v⊤j,n−1vl,nv⊤l,n

)
J(xn)ṽ j,n

−2τγv⊤j,n−1J(xn)v j,n−1 +O(τ2),

which, together with (2.4), implies

∣∣∥ṽ j,n∥2 −1
∣∣= ∣∣∣∣2τγv⊤j,n−1J(xn)(ṽ j,n − v j,n−1)

−4τγ

j−1

∑
l=1

v⊤j,n−1(vl,n − ṽl,n + ṽl,n − vl,n−1)v⊤l,nJ(xn)ṽ j,n +O(τ2)

∣∣∣∣
≤ Q2τ

j−1

∑
l=1

∥ṽl,n − vl,n∥+Q3τ
2.

Thus we complete the proof. □

3. Estimate of v j,n − ṽ j,n

In Section 2.2 we could observe that the estimates of several quantities depend on the norm of v j,n− ṽ j,n.
However, we will find in the following derivations that the estimate of v j,n− ṽ j,n in turn depends on these
quantities. To resolve this issue, we carry out a multi-variable circulating induction procedure (cf. the
proof of Theorem 4) to bound v j,n − ṽ j,n in this section.
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For Ḡ > Q3Q4 + kQ1 where Q1 and Q3 are introduced in Lemmas 1-2 and Q4 > 1 represents the
bound of {ṽ j,n}k,N

j=1,n=0, there exists an intermediate constant G > 0 such that

Ḡ > Q3Q4 + kG and G > Q1.

In particular, as Q4 > 1, we have Ḡ > Q3. Then for τ small enough the following inequalities hold

Q0τkḠ+Q1 + kG2τ2

(1−Q2τ3kḠ−Q3τ2 − kG2τ4)1/2 ≤ G,

Q4(Q2τkḠ+Q3 + kG2τ2)+ kG
(1−Q2τ3kḠ−Q3τ2 − kG2τ4)1/2 ≤ Ḡ.

(3.1)

In subsequent proofs, we always choose sufficiently small step size τ such that the condition (3.1) is
satisfied.

To start the induction, we need to estimate the properties of the numerical solutions at the first few
steps.

Lemma 3 Under the condition (3.1), the following estimates hold for 1 ≤ n ≤ N

|ṽ⊤i,nv1,n| ≤ Gτ
2, 1 < i ≤ k; ∥ṽ j,n − v j,n∥ ≤ Ḡτ

2, 1 ≤ j ≤ 2.

Proof We apply Lemma 2 to obtain

∥ṽ1,n − v1,n∥=
∥∥∥∥ ṽ1,n

∥ṽ1,n∥
(∥ṽ1,n∥−1)

∥∥∥∥≤
∣∣∥ṽ1,n∥2 −1

∣∣≤ Q3τ
2 ≤ Ḡτ

2.

Then for 1 < i ≤ k, we apply Lemma 1 and (3.1) to obtain

|ṽ⊤i,nv1,n|=
|ṽ⊤i,nṽ1,n|

(∥ṽ1,n∥2)1/2 ≤
Q0τ∥ṽ1,n − v1,n∥+Q1τ2

(1−Q3τ2)1/2

≤ Q0Ḡτ3 +Q1τ2

(1−Q3τ2)1/2 =
Q0Ḡτ +Q1

(1−Q3τ2)1/2 τ
2 ≤ Gτ

2.

We incorporate the above two estimates and Lemma 2 to bound Y2,n as

Y2,n =
(
∥ṽ2,n∥2 − (ṽ⊤2,nv1,n)

2)1/2

∈
(
1± (Q2τ∥ṽ1,n − v1,n∥+Q3τ

2 +G2
τ

4)
)1/2

∈
(
1± (Q2Ḡτ

3 +Q3τ
2 +G2

τ
4)
)1/2

,

which further implies
|Y2,n −1| ≤ |Y 2

2,n −1| ≤ Q2Ḡτ
3 +Q3τ

2 +G2
τ

4.
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We invoke these estimates into the expression of v2,n − ṽ2,n to get

∥v2,n − ṽ2,n∥ =
1

Y2,n
∥(1−Y2,n)ṽ2,n − (ṽ⊤2,nv1,n)v1,n∥

≤ Q4(Q2Ḡτ3 +Q3τ2 +G2τ4)+Gτ2(
1− (Q2Ḡτ3 +Q3τ2 +G2τ4)

)1/2

=
Q4(Q2Ḡτ +Q3 +G2τ2)+G(

1− (Q2Ḡτ3 +Q3τ2 +G2τ4)
)1/2 τ

2 ≤ Ḡτ
2.

Thus we complete the proof. □

Theorem 4 Under the condition (3.1), the following estimate holds for 1 ≤ n ≤ N

∥vi,n − ṽi,n∥ ≤ Ḡτ
2, 1 ≤ i ≤ k.

Proof We prove this theorem by induction for the following two relations

(A) : max
m<i≤k

∥ṽ⊤i,nvm,n∥ ≤ Gτ
2 for some 1 ≤ m ≤ k−1;

(B) : ∥v j,n − ṽ j,n∥ ≤ Ḡτ
2 for some 1 ≤ j ≤ k.

Lemma 3 implies that (A) holds for m = 1 and (B) holds for 1 ≤ j ≤ 2. Suppose

(A) holds for 1 ≤ m ≤ m∗−1 and (B) holds for 1 ≤ j ≤ m∗ (3.2)

for some 1 ≤ m∗ < k−1. Then we remain to show that

(A) holds for m = m∗ and (B) holds for j = m∗+1

for the sake of mathematical induction.
We use Lemma 2 and (A) with 1 ≤ m ≤ m∗−1 ( by induction hypotheses (3.2)) to bound Ym∗,n by

Ym∗,n =

(
∥ṽm∗,n∥2 −

m∗−1

∑
j=1

(ṽ⊤m∗,nv j,n)
2
)1/2

∈
[

1±
(

Q2τ

m∗−1

∑
l=1

∥ṽl,n − vl,n∥+Q3τ
2 +(m∗−1)G2

τ
4
)]1/2

∈
[
1±

(
Q2(m∗−1)Ḡτ

3 +Q3τ
2 +(m∗−1)G2

τ
4)]1/2

,

(3.3)

where in the above equation Ym∗,n ∈ [1± (· · ·)]1/2 means [1− (· · ·)]1/2 ≤Ym∗,n ≤ [1+(· · ·)]1/2. We then
invoke the induction hypotheses (3.2), (3.3), the condition (3.1) and Lemmas 1-2 into the expression of
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ṽ⊤i,nvm∗,n to obtain for m∗ < i ≤ k

|ṽ⊤i,nvm∗,n| =
1

Ym∗,n

∣∣∣∣ṽ⊤i,nṽm∗,n −
m∗−1

∑
j=1

(ṽ⊤m∗,nv j,n)(ṽ⊤i,nv j,n)

∣∣∣∣
≤ 1

Ym∗,n

(
Q0τ

m∗

∑
l=1

∥ṽl,n − vl,n∥+Q1τ
2 +(m∗−1)G2

τ
4
)

≤ Q0τm∗Ḡ+Q1 +(m∗−1)G2τ2

(1−Q2τ3(m∗−1)Ḡ−Q3τ2 − (m∗−1)G2τ4)1/2 τ
2 ≤ Gτ

2,

which implies that (A) holds for m = m∗. We then use Lemma 2 and (A) with 1 ≤ m ≤ m∗ to bound
Ym∗+1,n by

Ym∗+1,n =

(
∥ṽm∗+1,n∥2 −

m∗

∑
j=1

(ṽ⊤m∗+1,nv j,n)
2
)1/2

∈
[

1±
(

Q2τ

m∗

∑
l=1

∥ṽl,n − vl,n∥+Q3τ
2 +m∗G2

τ
4
)]1/2

∈
[
1±

(
Q2m∗Ḡτ

3 +Q3τ
2 +m∗G2

τ
4)]1/2

,

(3.4)

which implies
|1−Ym∗+1,n| ≤ |1−Y 2

m∗+1,n| ≤ Q2m∗Ḡτ
3 +Q3τ

2 +m∗G2
τ

4.

We invoke this and (A) with 1 ≤ m ≤ m∗ in vm∗+1,n − ṽm∗+1,n to get

∥vm∗+1,n − ṽm∗+1,n∥

=
1

Ym∗+1,n

∥∥∥∥(1−Ym∗+1,n)ṽm∗+1,n −
m∗

∑
j=1

(ṽ⊤m∗+1,nv j,n)v j,n

∥∥∥∥
≤ Q4(Q2τm∗Ḡ+Q3 +m∗G2τ2)+m∗G

(1−Q2τ3m∗Ḡ−Q3τ2 −m∗G2τ4)1/2 τ
2 ≤ Ḡτ

2,

(3.5)

which implies that (B) holds for j = m∗+1 and thus completes the proof. □

4. Error estimates

We prove error estimates for the semi-implicit scheme (2.3). Define the errors

ex
n := x(tn)− xn, evi

n := vi(tn)− vi,n, 1 ≤ n ≤ N, 1 ≤ i ≤ k.

To bound ex
n, we derive the reference equation from the first equation of (2.1) via the forward Euler

discretization

x(tn) = x(tn−1)+ τβ

(
I −2

k

∑
j=1

v j(tn−1)v j(tn−1)
⊤
)

F(x(tn−1))+O(τ2).
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Then we subtract the scheme of xn in (2.3) from this equation and apply almost the same derivation as
[44, Equation 4.14] to obtain

∥ex
n∥ ≤ Qτ

n−1

∑
m=1

k

∑
j=1

∥e
v j
m ∥+Qτ, 1 ≤ n ≤ N. (4.1)

We observe that ∥ex
n∥ is bounded in terms of ∥e

v j
n ∥, which is estimated in the following theorem.

Theorem 5 Under the Assumption A, the following estimate holds for the semi-implicit scheme (2.3)
for τ sufficiently small

∥ex
n∥+

k

∑
i=1

∥evi
n ∥ ≤ Qτ, 1 ≤ n ≤ N.

Here Q is independent from τ , n and N.

Proof we derive the reference equation from the second equation of (2.1) via the backward Euler
discretization for 1 ≤ i ≤ k

vi(tn) = vi(tn−1)+ τγ

(
I − vi(tn)vi(tn)⊤

−2
i−1

∑
j=1

v j(tn)v j(tn)⊤
)

J(x(tn))vi(tn)+O(τ2)

= vi(tn−1)+ τγ

(
I −2

i−1

∑
j=1

v j(tn)v j(tn)⊤
)

J(x(tn))vi(tn)

−τγvi(tn−1)vi(tn−1)
⊤J(x(tn))vi(tn−1)+Cn

(4.2)

where
Cn = τγ

(
vi(tn−1)vi(tn−1)

⊤J(x(tn))vi(tn−1)

−vi(tn)vi(tn)⊤J(x(tn))vi(tn)
)
+O(τ2).

We then substitute ṽi,n by vi,n − (vi,n − ṽi,n) in the scheme of ṽi,n in (2.3) to obtain

vi,n = vi,n−1 + τγ

(
I −2

i−1

∑
j=1

v j,nv⊤j,n

)
J(xn)vi,n − τγvi,n−1v⊤i,n−1J(xn)vi,n−1 +Dn

where

Dn =−τγ

(
I −2

i−1

∑
j=1

v j,nv⊤j,n

)
J(xn)(vi,n − ṽi,n)+(vi,n − ṽi,n).

We subtract this equation from (4.2) to obtain

evi
n = evi

n−1 + τγ
(
J(x(tn))vi(tn)− J(xn)vi,n

)
−τγ

(
vi(tn−1)vi(tn−1)

⊤J(x(tn))vi(tn−1)− vi,n−1v⊤i,n−1J(xn)vi,n−1
)

−2τγ

i−1

∑
j=1

[
v j(tn)v j(tn)⊤J(x(tn))vi(tn)− v j,nv⊤j,nJ(xn)vi,n

]
+Cn −Dn.

(4.3)
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We introduce intermediate terms to bound the third right-hand side term of (4.3) as

∥vi(tn−1)vi(tn−1)
⊤J(x(tn))vi(tn−1)− vi,n−1v⊤i,n−1J(xn)vi,n−1∥

= ∥evi
n−1vi(tn−1)

⊤J(x(tn))vi(tn−1)+ vi,n−1(e
vi
n−1)

⊤J(x(tn))vi(tn−1)

+vi,n−1v⊤i,n−1(J(x(tn))− J(xn))vi(tn−1)+ vi,n−1v⊤i,n−1J(xn)e
vi
n−1∥

≤ Q∥evi
n−1∥+Q∥ex

n∥.

We apply Theorem 4 to bound Dn as
∥Dn∥ ≤ Qτ

2.

The other right-hand side terms of (4.3) could be bounded similarly, leading to

∥evi
n ∥ ≤ ∥evi

n−1∥+Qτ
(
∥ex

n∥+∥evi
n ∥+∥evi

n−1∥
)
+Qτ

i−1

∑
j=1

∥e
v j
n ∥+Qτ

2

≤ ∥evi
n−1∥+Qτ

(
∥evi

n ∥+∥evi
n−1∥

)
+Qτ

2
n−1

∑
m=1

k

∑
j=1

∥e
v j
m ∥

+Qτ

i−1

∑
j=1

∥e
v j
n ∥+Qτ

2.

Adding this equation from i = 1 to k and denoting Rn := ∥ev1
n ∥+ · · ·+∥evk

n ∥ yield

Rn ≤ Rn−1 +Qτ(Rn−1 +Rn)+Qτ
2

n−1

∑
m=1

Rm +Qτ
2. (4.4)

Adding this equation from n = 1 to n∗ and using

τ
2

n∗

∑
n=1

n−1

∑
m=1

Rm = τ
2

n∗−1

∑
m=1

n∗

∑
n=m+1

Rm ≤ T τ

n∗−1

∑
m=1

Rm

and R0 = 0 we get

Rn∗ ≤ Qτ

n∗

∑
n=1

Rn +Qτ, (4.5)

which implies

Rn∗ ≤
1

1−Qτ

(
Qτ

n∗−1

∑
n=1

Rn +Qτ

)
≤ Qτ

n∗−1

∑
n=1

Rn +Qτ.

Then an application of the discrete Gronwall inequality leads to

Rn ≤ Qτ, 1 ≤ n ≤ N.

Plugging this estimate back to (4.1) yields

∥ex
n∥ ≤ Qτ

n−1

∑
m=1

Rm +Qτ ≤ Qτ,

which completes the proof. □
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5. Convergence of GMRES solver

For implementation, we apply the GMRES method to solve the semi-implicit system (2.3). To prove
the convergence rate of the GMRES solver, we reformulate the semi-implicit schemes in (2.3) into the
following form {

Gxn = a,

Hiṽi,n = bi, 2 ≤ i ≤ k,
(5.1)

where

G = I − τβ

(
I −2

k

∑
j=1

v j,n−1v⊤j,n−1

)
L ,

a = xn−1 + τβ

(
I −2

k

∑
j=1

v j,n−1v⊤j,n−1

)
N (xn−1),

Hi = I − τγ

(
I −2

i−1

∑
j=1

v j,nv⊤j,n

)
J(xn),

bi = vi,n−1 − τγ(v⊤i,n−1J(xn)vi,n−1)vi,n−1.

(5.2)

To prove the desired results, we refer the following convergence estimate for the GMRES method [30].

Theorem 6 At the step m of the GMRES iteration on solving the linear system Ax = b, where b ∈RN ,
A ∈ RN×N and x(m) refers to the numerical solution at this step, the following estimate holds for the
residual rm = b−Ax(m)

∥rm∥
∥b∥

≤ inf
pm∈Pm

∥pm(A)∥, (5.3)

where Pm = {p(z) = ∑
m
i=0 aizi|p(0) = 1,ai ∈ R,0 ≤ i ≤ m}.

Based on the convergence result, we derive the convergence rate of the GMRES for solving (5.1) in
the following theorem.

Theorem 7 If the time step size τ satisfies

τ ≤ q
max{γ max∥x∥≤Qx ∥J(x)∥,β∥L ∥}

, q ∈ (0,1),

where Qx is the bound of ∥xn∥ for 1 ≤ n ≤ N introduced above (2.4), then the GMRES method for
solving (5.1) converges for m ≥ 0

∥ri,m∥
∥bi∥

≤ qm for 2 ≤ i ≤ k,
∥rm∥
∥a∥

≤ qm,

where ṽ(m)
i,n and x(m)

n refer to the GMRES numerical solutions of ṽi,n and xn, respectively, at the step m

and the residuals are defined as ri,m = bi −Hiṽ
(m)
i,n for 1 ≤ i ≤ k and rm = a−Gx(m)

n .

Remark 3 This theorem indicates that under suitable selection of the time step size τ , the GMRES
solver converges rapidly such that only a few iterations are required in practice.
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Proof We first consider the system Hiṽi,n = bi. We select the polynomial pm(z) = (1− z)m in Theorem
6 to obtain

∥ri,m∥
∥bi∥

≤ ∥(I −Hi)
m∥ ≤ ∥I −Hi∥m. (5.4)

Since {v(n)j }i
j=1 are orthonormal vectors, I −2∑

i−1
j=1 v j,nv⊤j,n preserves the l2 norm such that

∥I −Hi∥ ≤ τγ

∥∥∥∥I −2
i−1

∑
j=1

v j,nv⊤j,n

∥∥∥∥∥J(xn)∥= τγ∥J(xn)∥. (5.5)

We incorporate the above two equations to get

∥ri,m∥
∥bi∥

≤ (τγ∥J(xn)∥)m. (5.6)

Thus if we choose the time step size τ ≤ q
γ∥J(xn)∥ for some q ∈ (0,1), we reach the convergence estimate

∥ri,m∥
∥bi∥ ≤ qm. Similarly, for the GMRES solver on the system Gxn = a we have the following convergence

estimate based on Theorem 6

∥rm∥
∥a∥

≤ ∥(I −G)m∥ ≤ ∥I −G∥m ≤ (τβ∥L ∥)m. (5.7)

If we set τ ≤ q
β∥L ∥2

for some q ∈ (0,1), we get the estimate of rm in this theorem. We incorporate the
above two convergence results to complete the proof. □

6. Numerical experiments

In this section, we carry out numerical experiments to test the convergence rate (denoted by “CR” in
tables) of the semi-implicit numerical scheme (2.3) and compare the behavior of the semi-implicit
(denoted by “SI”) and explicit (denoted by “EX”) schemes in computing the saddle points and
constructing the solution landscapes. In practice, we adopt the dimer method [21] with the dimer length
l > 0 to efficiently evaluate the product of J(x) and a vector v as follows

J(x)v =
F(x+ lv)−F(x− lv)

2l
+O(l2)≈ F(x+ lv)−F(x− lv)

2l
.

It is worth mentioning that the numerical analysis results in previous sections still hold true if we
substitute the product of J(x) and the vector in the numerical scheme by its dimer approximation since
the dimer length could be chosen as O(τ) such that the reminder O(l2) of the dimer approximation is
indeed the high-order perturbation O(τ2).

6.1. Accuracy tests

We consider the saddle dynamics for the Eckhardt surface [6]

E(x1,x2) = exp(−x2
1 − (x2 +1)2)

+exp(−x2
1 − (x2 −1)2)+4exp

(
−3

x2
1 + x2

2
2

)
+

x2
2

2
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and compute its index-1 saddle point with the initial conditions

x0 =

[
−3
2

]
, v1,0 =

1√
5

[
−1
2

]
and index-2 saddle point with the initial conditions

x0 =

[
−3
2

]
, v1,0 =

1√
5

[
−1
2

]
, v2,0 =

1√
5

[
2
1

]
.

As the exact solutions to the high-index saddle dynamics are not available, numerical solutions
computed under τ = 2−13 serve as the reference solutions. We set β = γ = T = 1 for simplicity.
Numerical results are presented in Tables 1-2, which demonstrate the first-order accuracy of the
semi-implicit scheme (2.3) as proved in Theorem 5.

TABLE 1 Convergence rates of computing
index-1 saddle point of Eckhardt surface.

τ maxn ∥ex
n∥ CR maxn ∥ev1

n ∥ CR
1/32 1.62E-02 3.55E-03
1/64 8.02E-03 1.01 1.75E-03 1.02
1/128 3.97E-03 1.02 8.65E-04 1.02
1/256 1.95E-03 1.03 4.25E-04 1.03

TABLE 2 Convergence rates of computing index-2 saddle point of
Eckhardt surface.

τ maxn ∥ex
n∥ CR maxn ∥ev1

n ∥ CR maxn ∥ev2
n ∥ CR

1/32 1.16E-02 2.83E-03 2.83E-03
1/64 5.74E-03 1.02 1.40E-03 1.02 1.40E-03 1.02
1/128 2.84E-03 1.02 6.91E-04 1.02 6.91E-04 1.02
1/256 1.39E-03 1.03 3.39E-04 1.03 3.39E-04 1.03

We then consider the saddle dynamics for the stingray function [12]

E(x1,x2) = x2
1 +(x1 −1)x2

2

and compute its index-1 saddle point with the initial conditions

x0 =

[
0
1

]
, v1,0 =

1√
5

[
1
2

]
and index-2 saddle point with the initial conditions

x0 =

[
0
1

]
, v1,0 =

1√
5

[
1
2

]
, v2,0 =

1√
5

[
−2
1

]
.

The parameters are chosen as before and numerical results are presented in Tables 3-4, which again
show the first-order accuracy of the semi-implicit scheme (2.3) as proved in Theorem 5.
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TABLE 3 Convergence rates of computing
index-1 saddle point of stingray function.

τ maxn ∥ex
n∥ CR maxn ∥ev1

n ∥ CR
1/32 3.63E-02 8.12E-03
1/64 1.78E-02 1.03 4.14E-03 0.97
1/128 8.78E-03 1.02 2.08E-03 1.00
1/256 4.31E-03 1.03 1.03E-03 1.01

TABLE 4 Convergence rates of computing index-2 saddle point of
stingray function.

τ maxn ∥ex
n∥ CR maxn ∥ev1

n ∥ CR maxn ∥ev2
n ∥ CR

1/32 8.69E-02 2.04E-02 2.04E-02
1/64 4.55E-02 0.93 1.04E-02 0.98 1.04E-02 0.98
1/128 2.31E-02 0.97 5.19E-03 1.00 5.19E-03 1.00
1/256 1.15E-02 1.00 2.57E-03 1.02 2.57E-03 1.02

6.2. Comparison between SI and EX schemes in finding saddle points

In this experiment we compare the behavior of semi-implicit (denoted by “SI”) and explicit (denoted
by “EX”) schemes (2.3) and (2.5) based on a Rosenbrock type function

ER(x1,x2) = a(x2 − x2
1)

2 +b(1− x1)
2.

Comparison 1: Pathway convergence. Let (a,b) = (−30,0.5) and in this case x∗ := (1,1) is an
index-1 saddle point. The Hessian of ER at x∗ has two eigenvalues −0.20 and 299.20, which leads to
the Hessian condition number about −1496. We select the initial values as

x0 =

[
0.5
0.5

]
, v1,0 =

1√
2

[
1
1

]
(6.1)

and compute three curves in Figure 2(left), which shows that though the numerical solutions computed
under both the semi-implicit and explicit schemes could reach the saddle point x∗, the SI solution
provides a much better approximation for the reference solution of the searching pathway (i.e. EX
solution under τ = 1/3000 shown in Figure 2(left)) than the EX solution under the same step size
τ = 1/300. Furthermore, the EX solution under τ = 1/3000 and the IS solution under τ = 1/300 have
almost the same curves, which indicates that the semi-implicit scheme admits a much larger step size
(10 times of that for explicit scheme in this example).

Comparison 2: Convergence to saddle point. We set (a,b) = (0.1,−300) in ER(x,y) and x∗ = (1,1)
is again an index-1 saddle point. The Hessian of ER at x∗ has two eigenvalues −0.20 and 599.20, which
implies a large Hessian condition number about −2992. We choose the same initial values as (6.1) and
present the distance ∥xn −x∗∥ computed under EX and SI in Figure 2(right), which indicates that under
the same step size τ = 1/400, the SI solution approaches the saddle point x∗ much faster than the EX
solution. All the observations in this section demonstrate the advantages of the proposed semi-implicit
scheme compared with the commonly-used explicit scheme.



SEMI-IMPLICIT METHOD OF HIGH-INDEX SADDLE DYNAMICS 17

0 0.2 0.4 0.6 0.8 1

x
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

0 5 10 15 20 25 30 35 40

t
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l2
 n

o
r
m

 o
f 
x

n
-
x

*

FIG. 1. (left) Numerical trajectories of x(t) = (x1(t),x2(t)) under T = 20 and different step sizes and schemes; (right) Plots of
∥xn − x∗∥ under T = 40 and different schemes.
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FIG. 2. (left) Numerical trajectories of x(t) = (x1(t),x2(t)) under T = 20 and different step sizes and schemes; (right) Plots of
∥xn − x∗∥ under T = 40 and different schemes.

6.3. Comparison between SI and EX schemes in constructing solution landscapes

We compare the solution landscapes of the following Allen-Cahn equation computed by both methods

u̇ = F(u) := κuxx +u−u3, (6.2)

where −1 ≤ u ≤ 1 is an order parameter and κ is the diffusion coefficient. The computation region
is [0,1] with the uniform mesh size 2−7 in discretization of spatial operators. For any κ > 0, u1 ≡
1,u−1 ≡ −1 and u0 ≡ 0 are three stationary solutions of equation (6.2). It is clear that both u1 and
u−1 are steady states, while u0 is the highest-index saddle point with different index for different κ .
Using u1 as the root state, we compute the solution landscape by the upward search [37] with both
semi-implicit schemes and explicit schemes, where the multiplications of the Hessian and the vector in
schemes are approximated by the dimer method [38]. Due to the high dimension of the problem, the
GMRES method is applied for solving the SI scheme.
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We first compare the largest step sizes τ in both methods that guarantee the convergence of the
schemes under different κ and indexes of latent saddle points (denoted by “k-SD”). The numerical
results are shown in the Table 5, which indicates that much larger time steps could be used in the SI
scheme than those in the EX scheme, e.g. the former could be hundreds or even thousands of times more
than the later. Furthermore, for a fixed κ , the maximum steps of the EX scheme keep nearly unchanged
with the increment of the index, while those for the SI scheme become larger, which suggests that the SI
scheme has greater advantage (more stable and efficient) when finding saddle points with higher index.

TABLE 5 Maximal step sizes τ for the SI and EX schemes.
SI κ = 0.02 κ = 0.005 κ = 0.0025 κ = 0.00125 κ = 0.001

11-SD 3.83
9-SD 2.82 2.56
7-SD > 5 2.62 1.86
5-SD >5 3.63 1.15 7.44E-01
3-SD 2.78 2.12 1.52 5.91E-01 5.61E-01
1-SD 1.03 1.00 6.97E-01 5.02E-01 5.02E-01
EX κ = 0.02 κ = 0.005 κ = 0.0025 κ = 0.00125 κ = 0.001

11-SD 1.24E-02
9-SD 9.94E-03 1.23E-02
7-SD 4.95E-03 9.91E-03 1.23E-02
5-SD 2.47E-03 4.95E-03 9.88E-03 1.23E-02
3-SD 6.14e-4 2.47E-03 4.93E-03 9.84E-03 1.23E-02
1-SD 6.14e-4 2.47E-03 4.93E-03 9.81E-03 1.23E-02

We then compare the solution landscapes with different κ and numerical schemes in Figure 3.
Each image in Figure 3 represents a stationary solution. Because of the periodic boundary condition,
a stationary solution after translation is still a stationary solution, and only one phase is presented.
Each column with several images displays a solution landscape. We present three pairs of columns
with different κ in Figure 3, and the two columns in each pair are solution landscapes computed by
different schemes. For κ = 0.02,0.0025,0.001, the step sizes for EX scheme are 0.0005, 0.004, 0.01,
respectively, while we pick τ = 0.4 for SI scheme for all cases. It is clear from Figure 3 that both
methods generate almost the same solution landscapes, while the SI scheme admits much larger step
size.

To further demonstrate the advantages of the SI method, we compare the CPU times (denoted by
“CPU”), the numbers of iterations (denoted by “Niter”) and the number of queries of F (denoted by
“NF ”) in the two schemes until the convergence of the algorithm (the stopping criteria is always chosen
as ∥F∥ ≤ 10−4). Here the Niter for EX scheme implies the number of time steps until convergence. In
practical problems, evaluating F could be expensive or time-consuming and thus we expect to reduce
NF by SI method. We fix κ = 0.001 and the step sizes for SI and EX schemes are chosen as 0.4 and
0.012, respectively, where the later is nearly the maximal allowed step given in Table 5. Numerical
experiments are presented in Table 6, which indicate that the SI method significantly reduces the CPU
times and numbers of iterations and queries of F , which fully demonstrate the advantages of the SI
method.
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FIG. 3. Comparison of solution landscapes computed by SI and EX schemes for the phase field model (6.2) under different κ .
For κ = 0.02,0.0025,0.001, the step sizes for EX scheme are 0.0005, 0.004, 0.01, respectively, while τ = 0.4 for SI scheme for
all cases. All these step sizes are chosen based on the maximal step sizes proposed in Table 5.

7. Concluding remarks

In this paper we prove the error estimates for the semi-implicit scheme of high-index saddle dynamics
and the convergence of the GMRES solver, which provides theoretical supports for numerical
implementation of saddle dynamics in, e.g., constructing the solution landscape. The main contribution
lies in developing novel analysis such as the multi-variable circulating induction procedure in Theorem
4 to accommodate the “loss of orthonormal property” on the schemes of ṽi,n in (2.3) and the coupling
between the computation of eigenvectors and the orthonormalization procedure. Extensive numerical
experiments are carried out from different aspects to compare the explicit and semi-implicit schemes
and demonstrate the advantages of the later.

It is worth mentioning that the developed methods could be naturally extended to analyze the
semi-implicit numerical scheme of generalized high-index saddle dynamics for dynamic (non-gradient)
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TABLE 6 Comparison of CPU, Niter and NF between the SI and
EX schemes.

EX with τ = 0.012 SI with τ = 0.4
Index Niter NF CPU(s) Niter NF CPU(s)

11 35148 808404 52.7 1047 170684 14.2
9 16147 306793 21.3 479 75221 5.94
7 6559 98385 5.76 234 43707 3.64
5 26764 294404 16.9 988 123447 10.9
3 66305 464135 26.0 2511 100338 10.8
1 81567 244701 14.3 3116 94044 9.97

systems [13, 37], i.e.,
dx
dt

=

(
I −2

k

∑
j=1

v jv⊤j

)
F(x),

dvi

dt
= (I − viv⊤i )J (x)vi −

i−1

∑
j=1

v jv⊤j (J (x)+J (x)⊤)vi, 1 ≤ i ≤ k.
(7.1)

Here J (x) refers to the Jacobian of F(x), which is in general not symmetric. Compared with the
high-index saddle dynamics (2.1) for the gradient systems with the symmetric Hessian J(x), 2J(x) in
the dynamics of {vi}k

i=1 in (2.1) is substituted by the symmetrization J (x)+J (x)⊤, which is the
key to ensure the validity of the preceding derivations, especially the Lemma 1. To be specific, for the
generalized high-index saddle dynamics (7.1), the last right-hand side term of (2.7) will become

−τγv⊤m,n(J (xn)+J (xn)
⊤)ṽi,n,

where the J (xn) and J (xn)
⊤ exactly match those in A1 and A3, respectively. Consequently the B1

and B2 in (2.8) become

B1 +B2 = τγ
(
v⊤m,n−1J (xn)ṽi,n − v⊤m,nJ (xn)ṽi,n

)
+τγ

(
ṽ⊤m,nJ (xn)

⊤vi,n−1 − v⊤m,nJ (xn)
⊤ṽi,n

)
,

which essentially avoids the differences like J (xn)
⊤ − J (xn) that do not generate the desired

numerical accuracy. In summary, by virtue of the symmetrization, the numerical accuracy is preserved
throughout the proof.

There are several other potential extensions of the current work that deserve further exploration.
For instance, the techniques could be employed and improved to analyze the semi-implicit numerical
scheme for constrained high-index saddle dynamics [33, 41]:

dx
dt

=

(
I −2

k

∑
j=1

v jv⊤j

)
F(x),

dvi

dt
=

(
I − viv⊤i −2

i−1

∑
j=1

v jv⊤j

)
H (x)[vi]

−A(x)
(
A(x)⊤A(x)

)−1
(

∇
2c(x)

dx
dt

)⊤
vi, 1 ≤ i ≤ k.

(7.2)
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Here c(x)= (c1(x), · · · ,cm(x))= 0 represents the m equality constraints and A(x)= (∇c1(x), · · · ,∇cm(x)).
In the constrained high-index saddle dynamics (7.2), H (x) refers to the Riemannian Hessian, which is
difficult to analyze and approximate in practice and thus brings additional difficulties for the numerical
analysis that we will investigate in the near future.
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