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Abstract. Quasiperiodic systems are important space-filling ordered structures, without decay
and translational invariance. How to solve quasiperiodic systems accurately and efficiently is a great
challenge. A useful approach, the projection method (PM) [J. Comput. Phys., 256 (2014), pp. 428--
440], has been proposed to compute quasiperiodic systems. Various studies have demonstrated that
the PM is an accurate and efficient method to solve quasiperiodic systems. However, there is a lack
of theoretical analysis of the PM. In this paper, we present a rigorous convergence analysis of the
PM by establishing a mathematical framework of quasiperiodic functions and their high-dimensional
periodic functions. We also give a theoretical analysis of the quasiperiodic spectral method (QSM)
based on this framework. Results demonstrate that the PM and QSM both have exponential decay,
and the QSM (PM) is a generalization of the periodic Fourier spectral (pseudospectral) method.
Then, we analyze the computational complexity of the PM and QSM in calculating quasiperiodic
systems. The PM can use a fast Fourier transform, while the QSM cannot. Moreover, we investigate
the accuracy and efficiency of the PM, QSM, and periodic approximation method in solving the
linear time-dependent quasiperiodic Schr\"odinger equation.
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1. Introduction. Quasiperiodic systems are a natural extension of periodic sys-
tems. The earliest quasiperiodic system can be traced back to the study of the
three-body problem [1]. Many physical systems can fall into the set of quasiperiodic-
ity, including periodic systems, incommensurate structures, quasicrystals, many-body
problems, polycrystalline materials, and quasiperiodic quantum systems [1, 2, 3, 4].
The mathematical study of quasiperiodic orders is a beautiful synthesis of geometry,
analysis, algebra, dynamic system, and number theory [5, 6]. The theory of quasiperi-
odic functions, even more general almost periodic functions, has been well developed
to study quasiperiodic systems in mathematics [7, 8, 9]. However, how to numerically
solve quasiperiodic systems in an accurate and efficient way is still a great challenge.

Generally speaking, quasiperiodic systems, related to irrational numbers, are
space-filling ordered structures without decay or translational invariance. This raises
difficulty in numerically computing quasiperiodic systems. To study such important
systems, several numerical methods have been developed. A widely used approach, the
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354 KAI JIANG, SHIFENG LI, AND PINGWEN ZHANG

periodic approximation method (PAM), employs a periodic function to approximate
the quasiperiodic function [10]. The conventional viewpoint is that the approxima-
tion error could uniformly decay as the supercell gradually becomes large. However,
a recent theoretical analysis has demonstrated that the error of the PAM may not
uniformly decrease as the calculation area increases [11]. The second method is the
quasiperiodic spectral method (QSM), which approximates a quasiperiodic function
by a finite summation of trigonometric polynomials based on the continuous Fourier--
Bohr transform [10]; see also subsection 3.1. The third approach is the projection
method (PM) [12], based on the fact that the quasiperiodic system can be embedded
into a high-dimensional periodic system. Then, the PM can accurately calculate the
high-dimensional periodic system over a torus in a pseudospectral manner. Mean-
while, the PM is efficient due to the availability of a fast Fourier transform (FFT).
Finally, the PM obtains the quasiperiodic system by choosing a corresponding irra-
tional slice of the high-dimensional torus by the projection matrix. Extensive stud-
ies have demonstrated that the PM can be used to compute quasiperiodic systems
to high precision, including quasicrystals [13, 14], incommensurate quantum systems
[15, 16, 17], topological insulators [18], and grain boundaries [19, 20]. However, the
PM still has a lack of corresponding theoretical guarantees.

In this work, we present a rigorous theoretical analysis of numerical methods for
solving quasiperiodic systems. We establish the relationship between quasiperiodic
functions and their corresponding high-dimensional periodic functions based on the
idea of the PM. These mathematical results provide a theoretical framework to ana-
lyze the convergence of the PM, as well as the QSM. We also present another error
analysis framework of the QSM without using high-dimensional periodic functions.
These theoretical results demonstrate that both the PM and QSM have exponential
convergence. Moreover, we analyze the computational complexity of the PM and
QSM in solving quasiperiodic systems. The PM can use an FFT by introducing dis-
crete Fourier--Bohr transform (see subsection 3.2), while the QSM cannot. Further
analysis reveals that the QSM (PM) is an extension of the periodic Fourier spectral
(pseudospectral) method. Finally, we investigate the accuracy and efficiency of the
PM, QSM, and PAM in solving the linear time-dependent quasiperiodic Schr\"odinger
equation (TQSE).

2. Preliminaries. Before our analysis, we give some preliminaries on quasiperi-
odic and periodic functions in this section.

2.1. Preliminaries of quasiperiodic functions. Let us recall the definition
of the quasiperiodic function [9]. Denote

\BbbM d\times n = \{ \bfitM = (\bfitm 1, . . . ,\bfitm n)\in \BbbR d\times n :\bfitm 1, . . . ,\bfitm n are \BbbQ -linearly independent\} ,

and define \bfitP \in \BbbM d\times n as the projection matrix.

Definition 2.1. A d-dimensional function f(\bfitx ) is quasiperiodic if there exists a
continuous n-dimensional periodic function F (n\geq d) that satisfies f(\bfitx ) = F (\bfitP T\bfitx ),
where \bfitP is the projection matrix.

In particular, when n= d and \bfitP is nonsingular, f(\bfitx ) is periodic. When n\rightarrow \infty ,
f is an almost periodic function [7]. For convenience, F in Definition 2.1 is called
the parent function of f in the following content. QP(\BbbR d) represents the space of
all quasiperiodic functions. In section 4, we will show that f and F can be uniquely
determined by each other when the projection matrix \bfitP is given.
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NUMERICAL METHODS OF QUASIPERIODIC SYSTEMS 355

Let KT = \{ \bfitx : \bfitx \in \BbbR d, | xj | \leq T, j = 1, . . . , d\} be the cube in \BbbR d. The mean value
\scrM \{ f(\bfitx )\} of f \in QP(\BbbR d) is defined as

\scrM \{ f(\bfitx )\} = lim
T\rightarrow +\infty 

1

(2T )d

\int 
\bfits +KT

f(\bfitx )d\bfitx :=⨍f(\bfitx )d\bfitx ,

where the limit on the right side exists uniformly for all \bfits \in \BbbR d. An elementary
calculation shows that

\scrM \{ ei\bfitlambda 
T\bfitx e - i\bfitbeta T\bfitx \} =

\Biggl\{ 
1, \bfitlambda =\bfitbeta ,

0, \bfitlambda \not =\bfitbeta .
(2.1)

Correspondingly, the continuous Fourier--Bohr transform of f(\bfitx ) is

\^f\bfitlambda =\scrM \{ f(\bfitx )e - i\bfitlambda T\bfitx \} ,(2.2)

where \bfitlambda \in \BbbR d. Denote \Lambda = \{ \bfitlambda : \bfitlambda = \bfitP \bfitk , \bfitk \in \BbbZ n\} , and the Fourier series associated
with the quasiperiodic function f(\bfitx ) can be written as

f(\bfitx )\sim 
\sum 
\bfitk \in \BbbZ n

\^f\bfitlambda \bfitk 
ei\bfitlambda 

T
\bfitk \bfitx ,(2.3)

where \bfitlambda \bfitk = \bfitP \bfitk \in \Lambda are Fourier exponents and \^f\bfitlambda \bfitk 
(defined in (2.2)) are Fourier

coefficients. To simplify the notation, denote \^f\bfitk = \^f\bfitlambda \bfitk 
. Let

QP1(\BbbR d) =

\Biggl\{ 
f \in QP(\BbbR d) :

\sum 
\bfitk \in \BbbZ n

| \^f\bfitk | <+\infty 

\Biggr\} 
,

with norm \| f\| \scrL \infty (\BbbR d) = sup\bfitx \in \BbbR d | f(\bfitx )| .
In general, the convergence of the Fourier series (2.3) is a challenging problem;

see [9] for some sufficient criteria. The following conclusion presents an important
convergence property of a quasiperiodic function.

Theorem 2.2 ([25], Chapter 1.3). If the Fourier series of a quasiperiodic function
is uniformly convergent, then the sum of the series is the given function.

If the Fourier series of the quasiperiodic function is absolutely convergent, it is
also uniformly convergent. Therefore, for f \in QP1(\BbbR d), we have

f(\bfitx ) =
\sum 
\bfitk \in \BbbZ n

\^f\bfitk e
i\bfitlambda T

\bfitk \bfitx .

As a consequence, we can obtain a subspace QP2(\BbbR d) of QP(\BbbR d)

QP2(\BbbR d) =
\Bigl\{ 
f \in QP(\BbbR d) :\scrM \{ | f | 2\} <+\infty 

\Bigr\} 
equipped with norm

\| f\| 2\scrL 2(\BbbR d) =\scrM \{ | f | 2\} =
\sum 
\bfitk \in \BbbZ n

| \^f\bfitk | 2(2.4)

and the inner product (\cdot , \cdot )QP2(\BbbR d)

(f1, f2)QP2(\BbbR d) =⨍f1(\bfitx ) \=f2(\bfitx )d\bfitx .
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356 KAI JIANG, SHIFENG LI, AND PINGWEN ZHANG

Equality (2.4) is Parseval's identity. Now we introduce the Hilbert space of quasiperi-
odic functions. Denote | \bfitx | =

\sum d
j=1 | xj | with for all \bfitx \in \BbbR d. For any m \in \BbbN 0 = \{ m \in 

\BbbZ : m > 0\} , the Sobolev space H\alpha 
QP (\BbbR d) comprises all quasiperiodic functions with

partial derivatives order \alpha \geq 1 with respect to the inner product (\cdot , \cdot )\alpha 

(f1, f2)\alpha = (f1, f2)QP2(\BbbR d) +
\sum 

| m| =\alpha 

(\partial m\bfitx f1, \partial 
m
\bfitx f2)QP2(\BbbR d)

and endowed with norm \| f\| 2\alpha =
\sum 

\bfitk \in \BbbZ n(1 + | \bfitlambda \bfitk | 2)\alpha | \^f\bfitk | 2 and seminorm | f | 2\alpha =\sum 
\bfitk \in \BbbZ n | \bfitlambda \bfitk | 2\alpha | \^f\bfitk | 2.

2.2. Preliminaries of periodic functions. Let \BbbT n = (\BbbR /2\pi \BbbZ )n be the n-
dimensional torus; then the Fourier transform of F (\bfity ) defined on \BbbT n

\^F\bfitk =
1

| \BbbT n| 

\int 
\BbbT n

e - i\bfitk T\bfity F (\bfity )d\bfity , \bfitk \in \BbbZ n,(2.5)

and

L\infty (\BbbT n) =

\Biggl\{ 
F (\bfity ) :

\sum 
\bfitk \in \BbbZ n

| \^F\bfitk | <+\infty 

\Biggr\} 
.

Furthermore, denote the Hilbert space on \BbbT n

L2(\BbbT n) =
\Bigl\{ 
F (\bfity ) : \langle F,F \rangle <+\infty 

\Bigr\} 
,

equipped with inner product

\langle F1, F2\rangle =
1

| \BbbT n| 

\int 
\BbbT n

F1
\=F2 d\bfity .

For any integer \alpha \geq 0, the \alpha -derivative Sobolev space on \BbbT n is

H\alpha (\BbbT n) = \{ F \in L2(\BbbT n) : \| F\| \alpha <\infty \} ,

where \| F\| \alpha =
\Bigl( \sum 

\bfitk \in \BbbZ n(1 + \| \bfitk \| 2\alpha 2 )| \^F\bfitk | 2
\Bigr) 1/2

, with \| \bfitk \| 22 =
\sum n

j=1 | kj | 2. The seminorm

of H\alpha (\BbbT n) can be defined as | F | \alpha =
\Bigl( \sum 

\bfitk \in \BbbZ n \| \bfitk \| 2\alpha 2 | \^F\bfitk | 2
\Bigr) 1/2

.

3. Algorithms. In this paper, our purpose is to establish the theoretical analysis
of the QSM and PM. In this section, we introduce these algorithms before delving
into the numerical analysis. Moreover, we present the implementation framework of
the PM by defining the discrete Fourier--Bohr transform of quasiperiodic functions.

For an integer N \in \BbbN 0 and a given projection matrix \bfitP \in \BbbM d\times n, denote

Kn
N = \{ \bfitk = (kj)

n
j=1 \in \BbbZ n :  - N \leq kj <N\} 

and

\Lambda d
N = \{ \bfitlambda =\bfitP \bfitk : \bfitk \in Kn

N\} \subset \Lambda .(3.1)

Obviously, the order of the set \Lambda d
N is \#(\Lambda d

N ) = (2N)n. The finite dimensional linear
subspace of QP(\BbbR d) is

SN = span\{ ei\bfitlambda 
T\bfitx , \bfitx \in \BbbR d, \bfitlambda \in \Lambda d

N\} .
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NUMERICAL METHODS OF QUASIPERIODIC SYSTEMS 357

We denote \scrP N : QP(\BbbR d) \mapsto \rightarrow SN the projection operator. For a quasiperiodic function
f(\bfitx )\in QP1(\BbbR d) and its Fourier exponent \bfitlambda \bfitk \in \Lambda , we can split it into two parts:

f(\bfitx ) =
\sum 

\bfitk \in Kn
N

\^f\bfitk e
i\bfitlambda T

\bfitk \bfitx +
\sum 

\bfitk \in \BbbZ n/Kn
N

\^f\bfitk e
i\bfitlambda T

\bfitk \bfitx =\scrP Nf + (f  - \scrP Nf).(3.2)

Next, we present the QSM and PM, respectively.

3.1. Quasiperiodic spectral method. The QSM directly approximates the
quasiperiodic function f by \scrP Nf ,

f(\bfitx )\approx \scrP Nf(\bfitx ) =
\sum 

\bfitk \in Kn
N

\^f\bfitk e
i\bfitlambda T

\bfitk \bfitx , \bfitx \in \BbbR d,

where the quasiperiodic Fourier coefficient \^f\bfitk is obtained by the continuous Fourier--
Bohr transform (2.2). We will give the error analysis of the QSM in subsection 5.1 and
describe the numerical implementation of solving a quasiperiodic system in subsection
6.1.1. Note that quasiperiodic Fourier coefficients in the QSM are obtained through
the continuous Fourier--Bohr transform (2.2), resulting in the QSM being unable to use
an FFT. A further computational complexity analysis will be presented in subsection
6.1.1.

3.2. Projection method. The PM embeds the quasiperiodic function f(\bfitx ) into
a high-dimensional parent function F (\bfity ), then directly replaces the discrete quasiperi-
odic Fourier coefficients with the discrete parent Fourier coefficients [10, 12]. We can
use the periodic Fourier spectral method to obtain the parent Fourier coefficients.
Concretely, we first discretize the tours \BbbT n. Without loss of generality, we consider a
fundamental domain [0,2\pi )n and assume that the discrete nodes in each dimension
are the same, i.e., N1 = N2 = \cdot \cdot \cdot = Nn = 2N , N \in \BbbN 0. The spatial discrete size
h = \pi /N . The spatial variables are evaluated on the standard numerical grid \BbbT n

N

with grid points \bfity \bfitj = (y1,j1 , y2,j2 , . . . , yn,jn), y1,j1 = j1h, y2,j2 = j2h, . . . , yn,jn = jnh,
0\leq j1, j2, . . . , jn < 2N . We define the grid function space

\scrG N := \{ F :\BbbZ n \mapsto \rightarrow \BbbC : F is\BbbT n
N -periodic\} .

Given any periodic grid functions F, G\in \scrG N , the \ell 2-inner product is defined as

\langle F,G\rangle N =
1

(4\pi N)n

\sum 
\bfity \bfitj \in \BbbT n

N

F (\bfity \bfitj )G(\bfity \bfitj ).

For \bfitk , \ell \in \BbbZ n, we have the discrete orthogonality condition

\langle ei\bfitk 
T\bfity \bfitj , ei\ell 

T\bfity \bfitj \rangle N =

\Biggl\{ 
1, \bfitk = \ell + 2N\bfitm , \bfitm \in \BbbZ n,

0, otherwise.
(3.3)

The discrete Fourier coefficient of F \in \scrG N is

\~F\bfitk = \langle F, ei\bfitk 
T\bfity \bfitj \rangle N , \bfitk \in Kn

N .(3.4)

The PM directly takes \~f\bfitk = \~F\bfitk . We define the discrete Fourier--Bohr transform of
quasiperiodic function f(\bfitx ) as

f(\bfitx \bfitj ) =
\sum 

\bfitlambda \bfitk \in \Lambda d
N

\~f\bfitk e
i\bfitlambda T

\bfitk \bfitx \bfitj ,(3.5)
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358 KAI JIANG, SHIFENG LI, AND PINGWEN ZHANG

where collocation points \bfitx \bfitj = \bfitP \bfity \bfitj , \bfity \bfitj \in \BbbT n
N . The trigonometric interpolation of

quasiperiodic function is

INf(\bfitx ) =
\sum 

\bfitlambda \bfitk \in \Lambda d
N

\~f\bfitk e
i\bfitlambda T

\bfitk \bfitx .(3.6)

Consequently, INf(\bfitx j) = f(\bfitx j). From the implementation, the PM can use the
n-dimensional FFT to obtain quasiperiodic Fourier coefficients by introducing the
discrete Fourier--Bohr transform (3.5). The concrete computational complexity of the
PM for solving quasiperiodic systems will be shown in subsection 6.1.2.

Remark 3.1. From the above description, the QSM and PM are generalizations of
the Fourier spectral method and Fourier pseudospectral method, respectively. When
f(\bfitx ) is periodic, i.e., n = d and the projection matrix \bfitP \in \BbbM d\times d is nonsingular, the
QSM (PM) reduces to the periodic Fourier spectral (pseudospectral) method.

4. Theoretical framework. From the implementation framework of the PM
presented in subsection 3.2, exploring the relationship between quasiperiodic functions
and their parent functions is a prerequisite for its convergence analysis. Here, we prove
that the quasiperiodic Fourier coefficients \^f\bfitk of (2.2) are equal to their parent Fourier
coefficients \^F\bfitk of (2.5).

Theorem 4.1. For a given quasiperiodic function

f(\bfitx ) = F (\bfitP T\bfitx ), \bfitx \in \BbbR d,

where F (\bfity ) is its parent function defined on the tours \BbbT n and \bfitP is the projection
matrix, we have

\^f\bfitk = \^F\bfitk , \bfitk \in \BbbZ n,(4.1)

where \^f\bfitk and \^F\bfitk are defined by (2.2) and (2.5), respectively.

We will prove Theorem 4.1 based on Birkhoff's ergodic theorem [26, 27]. Let us
start with some basic definitions. Let \Omega be a set. A \sigma -algebra of \Omega is a collection
\scrB of subsets of \Omega satisfying the following three conditions: (i) \Omega \in \scrB ; (ii) if B \in \scrB ,
then \Omega \setminus B \in \scrB ; (iii) if Bn \in \scrB for n\geq 1, then

\bigcup \infty 
n=1Bn \in \scrB . We call the pair (\Omega ,\scrB ) a

measurable space. The Lebesgue measure on (\Omega ,\scrB ) is a function \mu :\scrB \mapsto \rightarrow \BbbR + satisfying
\mu (\emptyset ) = 0 and \mu (

\bigcup \infty 
n=1Bn) =

\sum \infty 
n=1 \mu (Bn) whenever \{ Bn\} \infty n=1 is a sequence of members

of \scrB that are pairwise disjoint subsets of \Omega . A finite measure space is a triple (\Omega ,\scrB , \mu ),
where (\Omega ,\scrB ) is a measurable space and \mu is a finite measure on (\Omega ,\scrB ). We say that
(\Omega ,\scrB , \mu ) is a probability space or a normalized measure space if \mu (\Omega ) = 1.

Definition 4.2. Suppose that (\Omega 1,\scrB 1, \mu 1) and (\Omega 2,\scrB 2, \mu 2) are probability spaces.
(i) A transformation \phi : \Omega 1 \mapsto \rightarrow \Omega 2 is a measure if \phi  - 1(\scrB 2)\subset \scrB 1;
(ii) A transformation \phi : \Omega 1 \mapsto \rightarrow \Omega 2 is measure-preserving if \phi is measureable and

\mu 1(\phi 
 - 1B2) = \mu 2(B2), for each B2 \in \scrB 2.

Definition 4.3. Let (\Omega ,\scrB , \mu ) be a probability space. A measure-preserving trans-
formation \phi : \Omega \mapsto \rightarrow \Omega is called ergodic if the only member B \in \scrB with \phi  - 1B = B
satisfying \mu (B) = 1 or \mu (B) = 0.

Lemma 4.1 gives an equivalent condition of ergodicity.

Lemma 4.1 (Theorem 1.6 [26]). Let (\Omega ,\scrB , \mu ) be a probability space, and let \phi :
\Omega \mapsto \rightarrow \Omega be measure-preserving mapping; then the following statements are equivalent:
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NUMERICAL METHODS OF QUASIPERIODIC SYSTEMS 359

(i) \phi is ergodic;
(ii) If f is measurable and f \circ \phi = f a.e., then f is constant a.e.

The high-dimensional Birkhoff's ergodic theorem reads as follows.

Theorem 4.4 ([27]). Let f(\bfitz ) : \Omega \mapsto \rightarrow \BbbC be integrable, and let the measure-
preserving transformation \phi \bfitx , \bfitx \in \BbbR d satisfy

\phi 0\bfitz = \bfitz , \phi \bfitx 1+\bfitx 2\bfitz = \phi \bfitx 1(\phi \bfitx 2\bfitz ), \bfitz \in \Omega 

for any \bfitx 1,\bfitx 2 \in \BbbR d. Then,

⨍f(\phi \bfitx \bfitz )d\bfitx = f\ast (\bfitz )

exists for almost all \bfitz in \Omega . Moreover,\int 
E

f\ast (\bfitz )d\bfitz =

\int 
E

f(\bfitz )d\bfitz ,

where E \subset \Omega is the invariant subset under \phi \bfitx .

In this work, \Omega =E =\BbbT n. Given a projection matrix \bfitP = (\bfitp 1,\bfitp 2, . . . ,\bfitp n)\in \BbbM d\times n,
denote the parameterized translation

\phi \bfitx \bfitP (z1, . . . , zn) = (z1 + \bfitp T
1 \bfitx , . . . , zn + \bfitp T

n\bfitx ) (mod 1),(4.2)

where ``mod 1"" means that each coordinate remains its fractional part. Proposition
4.2 will show that \phi \bfitx \bfitP is ergodic in probability space (\BbbT n,\scrB , \mu ) when \mu is a Lebesgue
measure.

Proposition 4.2. If \bfitP \in \BbbM d\times n, then the parameterized translation \phi \bfitx \bfitP defined
by (4.2) is ergodic with respect to the Lebesgue measure.

Proof. The parameterized translation \phi \bfitx \bfitP is measure-preserving with respect to
the Lebesgue measure \mu . The torus \BbbT n is an invariant set under the translation \phi \bfitx \bfitP 
since \phi \bfitx \bfitP (\bfitz )\in \BbbT n for each \bfitz \in \BbbT n. Let \chi be a bounded measurable function invariant
under \phi \bfitx \bfitP , for example, the characteristic function of an invariant set \BbbT n. Then, we
have

\chi \BbbT n (\phi 
\bfitx 
\bfitP (\bfitz )) = \chi 

(\phi \bfitx 
\bfitP 

) - 1(\BbbT n)
(\bfitz ) = \chi \BbbT n (\bfitz ).(4.3)

Without causing confusion, (4.3) can be rewritten as \chi (\phi \bfitx \bfitP (\bfitz )) = \chi (\bfitz ). Considering
the Fourier expansion of \chi ,

\chi (\bfitz ) =
\sum 
\bfitk \in \BbbZ n

\^\chi 
\bfitk 
ei\bfitk 

T \bfitz ,

we have

\chi (\phi \bfitx \bfitP (\bfitz )) =
\sum 
\bfitk \in \BbbZ n

\^\chi 
\bfitk 
ei\bfitk 

T (z1+\bfitp T
1 \bfitx ,...,zn+\bfitp T

n\bfitx ) =
\sum 
\bfitk \in \BbbZ n

\^\chi 
\bfitk 
ei\bfitk 

T (\bfitp T
1 \bfitx ,...,\bfitp T

n\bfitx )ei\bfitk 
T \bfitz .

Due to the \phi \bfitx \bfitP -invariance of \chi and the uniqueness of Fourier coefficients \^\chi 
\bfitk 
, we can

obtain

\^\chi 
\bfitk 
= \^\chi 

\bfitk 
ei\bfitk 

T (\bfitp T
1 \bfitx ,...,\bfitp T

n\bfitx );
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360 KAI JIANG, SHIFENG LI, AND PINGWEN ZHANG

i.e.,

\^\chi 
\bfitk 
(1 - ei\bfitk 

T (\bfitp T
1 \bfitx ,...,\bfitp T

n\bfitx )) = 0.

This means that \^\chi 
\bfitk 
= 0 or

\bfitk T (\bfitp T
1 \bfitx , . . . ,\bfitp 

T
n\bfitx ) = (\bfitP \bfitk )T\bfitx :=m\in 2\pi \BbbZ .(4.4)

Since \bfitp 1, . . . ,\bfitp n are rationally independent, then for \bfitk \not = 0 and m\in 2\pi \BbbZ , the solution
\bfitx of (4.4) is countable at most. Obviously, there exists \bfitx 0 \in \BbbR d such that (\bfitP \bfitk )T\bfitx 0 /\in 
2\pi \BbbZ is true for \bfitk \not = 0; then \^\chi 

\bfitk 
= 0. Therefore, \chi is a constant outside of a set measure

zero, which means that \phi \bfitx \bfitP is ergodic from Lemma 4.1.

The proof of Theorem 4.1 is as follows.

Proof. From the definitions of \^f\bfitk and \^F\bfitk , (4.1) is equivalent to

⨍e - i\bfitlambda T
\bfitk \bfitx f(\bfitx )d\bfitx =

1

| \BbbT n| 

\int 
\BbbT n

e - i\bfitk T\bfity F (\bfity )d\bfity ;

i.e., we need to prove that

⨍e - i(\bfitP \bfitk )T\bfitx F (\bfitP T\bfitx )d\bfitx =
1

| \BbbT n| 

\int 
\BbbT n

e - i\bfitk T\bfity F (\bfity )d\bfity .(4.5)

Denote G(\bfity ) = e - i\bfitk T\bfity F (\bfity ). Equation (4.5) can be rewritten as

⨍G(\bfitP T\bfitx )d\bfitx =
1

| \BbbT n| 

\int 
\BbbT n

G(\bfity )d\bfity .(4.6)

According to the parameterized translation \phi \bfitx \bfitP defined in (4.2), (4.6) is equivalent to

⨍G(\phi \bfitx \bfitP (0))d\bfitx =
1

| \BbbT n| 

\int 
\BbbT n

G(\bfity )d\bfity .(4.7)

Applying the ergodicity of \phi \bfitx \bfitP proved in Proposition 4.2 and Theorem 4.4, (4.7) is
true. The proof of Theorem 4.1 is completed.

We take a one-dimensional quasiperiodic function as an example to demonstrate
Theorem 4.1, which can be embedded into a two-dimensional periodic system, as
shown in Figure 1. In Figure 1(a), we lift the definition area (blue line) of a one-
dimensional quasiperiodic function to two-dimensional periodic lattice as an irrational
line by a projection matrix \bfitP = (1,

\surd 
3). Then, the irrational line can be reduced to a

two-dimensional unit cell by modulo arithmetic due to the two-dimensional periodic-
ity, as shown in Figure 1(b) and Figure 1(c). The irrational slice is infinite, and these
moduled lines become dense in the two-dimensional unit cell. Therefore, as Theorem
4.1 states, the one-dimensional quasiperiodic Fourier coefficient can be replaced by
the two-dimensional parent Fourier coefficient.

Applying Theorem 4.1, we have the following two corollaries.

Corollary 4.3. The quasiperiodic function f(\bfitx ) and its parent function are
uniquely determined by each other when the projection matrix \bfitP is given.
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NUMERICAL METHODS OF QUASIPERIODIC SYSTEMS 361

(a) The line \bfitP T x embedded
in a two-dimensional periodic
lattice

(b) Step 1: Modulo \bfitP T x
along y1-axis

(c) Step 2: Modulo \bfitP T x
along y2-axis after Step 1

Fig. 1. The process of modulo a two-dimensional irrational slice \bfitP T x, where \bfitP = (1,
\surd 
3), x\in \BbbR .

Proof. On one hand, when the parent function and the projection matrix \bfitP are
given, the quasiperiodic function f(\bfitx ) is obviously unique.

On the other hand, we prove that, when the projection matrix \bfitP is given, f(\bfitx )
has a unique parent function. Assume that there exist two distinct parent functions
F (\bfity ) and G(\bfity ) such that

f(\bfitx ) = F (\bfitP T\bfitx ), f(\bfitx ) =G(\bfitP T\bfitx ).

From Theorem 4.1, we can obtain \^F\bfitk = \^f\bfitk = \^G\bfitk , \bfitk \in \BbbZ n, where \^F\bfitk and \^G\bfitk are
obtained by the continuous Fourier--Bohr transform, respectively. According to the
uniqueness theorem [9], then it follows that F (\bfity )\equiv G(\bfity ).

Note that the uniqueness theorem in Bohr's work states that the quasiperiodic
function is uniquely determined by quasiperiodic Fourier coefficients, which are ob-
tained by the continuous Fourier--Bohr transform [7]. In contrast, Corollary 4.3 states
the uniqueness property that arises from the relation between the quasiperiodic func-
tion and its parent function.

Furthermore, we can establish an isomorphism relation between a quasiperiodic
function space and its parent function space. Denote

Tri(\BbbT n) =

\Biggl\{ 
F (\bfity ) =

\sum 
\bfitk \in \BbbZ n

\^c\bfitk e
i\bfitk T\bfity , \bfity \in \BbbT n :

\sum 
\bfitk \in \BbbZ n

| \^c\bfitk | <\infty 

\Biggr\} 
.

For a given projection matrix \bfitP \in \BbbM d\times n, we define the subspace of QP(\BbbR d)

W\bfitP (\BbbR d) = \{ f(\bfitx )\in \BbbC (\BbbR d) : f(\bfitx ) = F (\bfitP T\bfitx ), F \in Tri(\BbbT n), \bfitP \in \BbbM d\times n\} .

Define a mapping \varphi \bfitP : Tri(\BbbT n) \mapsto \rightarrow W\bfitP (\BbbR d); then we can easily prove that \varphi \bfitP is
isomorphic from Corollary 4.3.

Corollary 4.4. For a given function f(\bfitx ) \in QP(\BbbR d), where F (\bfity ) is its parent
function, we have the following properties:

(i) F (\bfity )\in L\infty (\BbbT n) if and only if f(\bfitx )\in QP1(\BbbR d).
(ii) F (\bfity )\in L2(\BbbT n) if and only if f(\bfitx )\in QP2(\BbbR d).
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362 KAI JIANG, SHIFENG LI, AND PINGWEN ZHANG

Proof. For f(\bfitx ) \in QP1(\BbbR d), we have f(\bfitx ) =
\sum 

\bfitk \in \BbbZ n
\^f\bfitk e

i(\bfitP \bfitk )T\bfitx . Denote the pe-

riodic function g(\bfity ) =
\sum 

\bfitk \in \BbbZ n
\^f\bfitk e

i\bfitk T\bfity . Obviously, f(\bfitx ) = g(\bfitP T\bfitx ); i.e., g(\bfity ) is the
parent function of f(\bfitx ). Applying Corollary 4.3 and Theorem 4.1 leads to

F (\bfity ) = g(\bfity ) =
\sum 
\bfitk \in \BbbZ n

\^F\bfitk e
i\bfitk T\bfity .(4.8)

The Fourier coefficient \^F\bfitk is calculated by (2.5), and the Fourier series of the parent
function F (\bfity ) is convergent; i.e., F (\bfity ) \in L\infty (\BbbT n). Similarly, we can prove that
conclusion (i) is sufficient. Conclusion (ii) can be proved similarly.

Applying Parseval's equality (2.4) and Corollary 4.4, for any F1, F2 \in Tri(\BbbT n)
and f1, f2 \in W\bfitP (\BbbR d), we have

\| F\| 2L2 =
\sum 
\bfitk \in \BbbZ n

| \^c\bfitk | 2, \| f\| 2\scrL 2(\BbbR d) =
\sum 
\bfitk \in \BbbZ n

| \^c\bfitk | 2.

Therefore, \| f\| \scrL 2(\BbbR d) = \| \varphi \bfitP F\| \scrL 2(\BbbR d) = \| F\| L2 ; i.e., \varphi \bfitP is an isometric mapping in the
sense of \scrL 2(\BbbR d). The isomorphic mapping \varphi \bfitP is a useful tool for error estimates of
QSM and PM; see Theorem 5.1 and Theorem 5.3, respectively.

5. Error estimate.

5.1. Error analysis of the QSM. The error analysis of the QSM is built on
the relation between the quasiperiodic function and its parent function. Therefore,
we first give the truncation error of the periodic Fourier spectral method [21].

Lemma 5.1. For each F \in H\alpha (\BbbT n), there exists a constant C, independent of F
and N , such that

\| \scrP NF  - F\| L2 \leq CN\mu  - \alpha | F | \alpha .

In the following, we will state the error estimate of the QSM in \scrL 2(\BbbR d)- and
\scrL \infty (\BbbR d)-norm sense, respectively.

Theorem 5.1. Suppose that f(\bfitx ) \in QP(\BbbR d) and that its parent function F (\bfity ) \in 
H\alpha (\BbbT n) with \alpha \geq 0. Then, there exists a constant C, independent of F and N , such
that

\| \scrP Nf  - f\| \scrL 2(\BbbR d) \leq CN - \alpha | F | \alpha .

Proof. Obviously, Corollary 4.4 implies that f \in QP2(\BbbR d). Since the mapping \varphi \bfitP 

is isometric in the sense of \scrL 2(\BbbR d), from Lemma 5.1, we have

\| \scrP Nf  - f\| \scrL 2(\BbbR d) = \| \scrP N\varphi \bfitP F  - \varphi \bfitP F\| \scrL 2(\BbbR d) = \| \varphi \bfitP \scrP NF  - \varphi \bfitP F\| \scrL 2(\BbbR d)

= \| \scrP NF  - F\| L2 \leq CN - \alpha | F | \alpha .

This completes the proof.

Another way of proving Theorem 5.1 is presented in Appendix A.

Theorem 5.2. Suppose that f(\bfitx )\in QP1(\BbbR d) and that its parent function F (\bfity )\in 
H\alpha (\BbbT n) with \alpha > q > n/2. There exists a constant Ct, independent of F and N , such
that

\| \scrP Nf  - f\| \scrL \infty (\BbbR d) \leq CtN
q - \alpha | F | \alpha .
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Proof. Applying Theorem 4.1 and the Cauchy--Schwarz inequality, we obtain

\| \scrP Nf  - f\| \scrL \infty (\BbbR d) = sup
\bfitx \in \BbbR n

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitk \in \BbbZ n/Kn
N

\^f\bfitk e
i(\bfitP \bfitk )T\bfitx 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sum 

\bfitk \in \BbbZ n/Kn
N

| \^f\bfitk | 

\leq 

\left(  \sum 
\bfitk \in \BbbZ n/Kn

N

(1 + \| \bfitk \| 22) - q

\right)  1/2\left(  \sum 
\bfitk \in \BbbZ n/Kn

N

(1 + \| \bfitk \| 22)q| \^f\bfitk | 2
\right)  1/2

\leq CNq - \alpha 

\left(  \sum 
\bfitk \in \BbbZ n/Kn

N

(1 + \| \bfitk \| 22) - q

\right)  1/2\left(  \sum 
\bfitk \in \BbbZ n/Kn

N

\| \bfitk \| 2\alpha  - 2q
2 \cdot (1+\| \bfitk \| 22)q| \^f\bfitk | 2

\right)  1/2

\leq C2q/2Nq - \alpha 

\left(  \sum 
\bfitk \in \BbbZ n/Kn

N

(1 + \| \bfitk \| 22) - q

\right)  1/2\Biggl( \sum 
\bfitk \in \BbbZ n

\| \bfitk \| 2\alpha 2 \cdot | \^f\bfitk | 2
\Biggr) 1/2

=C2q/2Nq - \alpha 

\left(  \sum 
\bfitk \in \BbbZ n/Kn

N

(1 + \| \bfitk \| 22) - q

\right)  1/2\Biggl( \sum 
\bfitk \in \BbbZ n

\| \bfitk \| 2\alpha 2 \cdot | \^F\bfitk | 2
\Biggr) 1/2

\leq CtN
q - \alpha | F | \alpha .

The last inequality holds due to
\sum 

\bfitk \in \BbbZ n/Kn
N
(1 + \| \bfitk \| 22) - q <\infty when q > n/2.

Besides, we can also directly give the error analysis of the QSM without using the
parent function; see Appendix B for details. These results also show that the QSM
has an exponential convergence rate.

5.2. Error analysis of the PM. The PM grasps the essence that the quasiperi-
odic function can be embedded into its parent function. Assume that the Fourier
series in (4.8) converges to F (\bfity ) at every grid point of \BbbT n

N . Applying the discrete
orthogonality (3.3), the discrete parent Fourier coefficient of (3.4) becomes

\~F\bfitk = \langle F, ei\bfitk 
T\bfity \bfitj \rangle N =

\Biggl\langle \sum 
\ell \in \BbbZ n

\^F\ell e
i\ell T\bfity \bfitj , ei\bfitk 

T\bfity \bfitj 

\Biggr\rangle 
N

= \^F\bfitk +
\sum 

\bfitm \in \BbbZ n
\ast 

\^F\bfitk +2N\bfitm , \bfitk \in Kn
N ,(5.1)

where \BbbZ n
\ast =\BbbZ n/\{ 0\} . Recall that \bfitlambda \bfitk =\bfitP \bfitk , and from (5.1), we have

\sum 
\bfitk \in Kn

N

\~F\bfitk e
i\bfitlambda T

\bfitk \bfitx =
\sum 

\bfitk \in Kn
N

\^F\bfitk e
i\bfitlambda T

\bfitk \bfitx +
\sum 

\bfitk \in Kn
N

\left(  \sum 
\bfitm \in \BbbZ n

\ast 

\^F\bfitk +2N\bfitm 

\right)  ei\bfitlambda 
T
\bfitk \bfitx .

From Theorem 4.1 and (3.6), we obtain

\sum 
\bfitlambda \bfitk \in \Lambda d

N

\~f\bfitk e
i\bfitlambda T

\bfitk \bfitx =
\sum 

\bfitlambda \bfitk \in \Lambda d
N

\^f\bfitk e
i\bfitlambda T

\bfitk \bfitx +
\sum 

\bfitlambda \bfitk \in \Lambda d
N

\left(  \sum 
\bfitm \in \BbbZ n

\ast 

\^f\bfitk +2N\bfitm 

\right)  ei\bfitlambda 
T
\bfitk \bfitx .

It follows that

INf =\scrP Nf +RNf,

where

\scrP Nf =
\sum 

\bfitlambda \bfitk \in \Lambda d
N

\^f\bfitk e
i\bfitlambda T

\bfitk \bfitx , RNf =
\sum 

\bfitlambda \bfitk \in \Lambda d
N

\left(  \sum 
\bfitm \in \BbbZ n

\ast 

\^f\bfitk +2N\bfitm 

\right)  ei\bfitlambda 
T
\bfitk \bfitx .
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Similar to the periodic Fourier pseudospectral method, INf and RNf represent the
interpolation and the aliasing part, respectively. As a consequence, we have

f  - INf = (f  - \scrP Nf) - RNf.

Thus, the approximation error of PM consists of two parts: the truncation error
f  - \scrP Nf as the QSM has and the aliasing error RNf . The truncation error estimates
of Theorems 5.1 and 5.2 for QSM are also valid for PM. The aliasing error will
be analyzed in the following content. The \scrL 2(\BbbR d)- and \scrL \infty (\BbbR d)-estimates of the
interpolation error f  - INf are stated as follows, respectively.

Theorem 5.3. Suppose that f(\bfitx ) \in QP(\BbbR d) and that its parent function F (\bfity ) \in 
H\alpha (\BbbT n) with \alpha \geq 0. There exists a constant C, independent of F and N , such that

\| INf  - f\| \scrL 2(\BbbR d) \leq CN - \alpha | F | \alpha .

Proof. Corollary 4.4 tells us that f \in QP2(\BbbR d). Since \varphi \bfitP (\scrP NF ) =\scrP N (\varphi \bfitP F ) and
\varphi \bfitP (RNF ) =RN (\varphi \bfitP F ), we obtain

\| INf  - f\| \scrL 2(\BbbR d) \leq \| f  - \scrP Nf\| \scrL 2(\BbbR d) + \| RNf\| \scrL 2(\BbbR d)

= \| \varphi \bfitP F  - \scrP N (\varphi \bfitP F )\| \scrL 2(\BbbR d) + \| RN (\varphi \bfitP F )\| \scrL 2(\BbbR d)

= \| \varphi \bfitP F  - \varphi \bfitP (\scrP NF )\| \scrL 2(\BbbR d) + \| \varphi \bfitP (RNF )\| \scrL 2(\BbbR d)

= \| F  - \scrP NF\| L2 + \| RNF\| L2 .

Reference [21] (see its section 5.1.3) shows that

\| RNF\| L2 \leq C1N
 - \alpha | F | \alpha ,

where C1 is independent of F and N . Then, the proof is completed by combining
Lemma 5.1.

Another way of proving Theorem 5.3 is provided in Appendix C.

Theorem 5.4. Suppose that f(\bfitx )\in QP1(\BbbR d) and that its parent function F (\bfity )\in 
H\alpha (\BbbT n) with \alpha > q > n/2. There exists a constant Cp, independent of F and N , such
that

\| INf  - f\| \scrL \infty (\BbbR d) \leq CpN
q - \alpha | F | \alpha .

Proof. According to the definition of \| \cdot \| \scrL \infty (\BbbR d), we have

\| INf  - f\| \scrL \infty (\BbbR d) \leq 
\sum 

\bfitlambda \bfitk \in \Lambda /\Lambda d
N

| \^f\bfitk | +
\sum 

\bfitlambda \bfitk \in \Lambda d
N

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitm \in \BbbZ n
\ast 

\^f\bfitk +2N\bfitm 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .(5.2)

From Theorem 5.2, it follows that\sum 
\bfitlambda \bfitk \in \Lambda /\Lambda d

N

| \^f\bfitk | \leq CtN
q - \alpha | f | \alpha ,

where \alpha > q > n/2. For the second term on the right side of inequality (5.2), combining
it with the Cauchy--Schwarz inequality, we can obtain

\sum 
\bfitlambda \bfitk \in \Lambda d

N

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitm \in \BbbZ n
\ast 

\^f\bfitk +2N\bfitm 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| =
\sum 

\bfitk \in Kn
N

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitm \in \BbbZ n
\ast 

\^F\bfitk +2N\bfitm 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sum 

\bfitk \in Kn
N

\sum 
\bfitm \in \BbbZ n

\ast 

\bigm| \bigm| \bigm| \^F\bfitk +2N\bfitm 

\bigm| \bigm| \bigm| 
\leq 

\left[  \sum 
\bfitk \in Kn

N

\sum 
\bfitm \in \BbbZ n

\ast 

(1+\| \bfitk +2N\bfitm \| 22) - \alpha 

\right]  1
2

\cdot 

\left[  \sum 
\bfitk \in Kn

N

\sum 
\bfitm \in \BbbZ n

\ast 

(1+\| \bfitk +2N\bfitm \| 22)\alpha | \^F\bfitk +2N\bfitm | 2
\right]  1

2

.
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NUMERICAL METHODS OF QUASIPERIODIC SYSTEMS 365

For \bfitk \in Kn
N and \bfitm \in \BbbZ n

\ast , we have \| \bfitk + 2N\bfitm \| 22 \geq N2. Furthermore, for \alpha > q, it
follows that\left[  \sum 

\bfitk \in Kn
N

\sum 
\bfitm \in \BbbZ n

\ast 

(1 + \| \bfitk + 2N\bfitm \| 22) - \alpha 

\right]  1
2

=

\left[  \sum 
\bfitk \in Kn

N

\sum 
\bfitm \in \BbbZ n

\ast 

(1 + \| \bfitk + 2N\bfitm \| 22)q - \alpha \cdot (1 + \| \bfitk + 2N\bfitm \| 22) - q

\right]  1
2

= (1+N2)
q - \alpha 

2 \cdot 

\left[  \sum 
\bfitk \in Kn

N

\sum 
\bfitm \in \BbbZ n

\ast 

(1 + \| \bfitk + 2N\bfitm \| 22) - q

\right]  1
2

\leq 2
q - \alpha 

2 Nq - \alpha \cdot 

\left[  \sum 
\bfitk \in Kn

N

\sum 
\bfitm \in \BbbZ n

\ast 

(1 + \| \bfitk + 2N\bfitm \| 22) - q

\right]  1
2

.

When q > n/2, the series S :=
\sum 

\bfitk \in Kn
N

\sum 
\bfitm \in \BbbZ n

\ast 
(1+\| \bfitk +2N\bfitm \| 22) - q converges. There-

fore,

\sum 
\bfitlambda \bfitk \in \Lambda d

N

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitm \in \BbbZ n
\ast 

\^f\bfitk +2N\bfitm 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 2

q - \alpha 
2 Nq - \alpha S1/2 \cdot 

\left[  \sum 
\bfitk \in Kn

N

\sum 
\bfitm \in \BbbZ n

\ast 

(1 + \| \bfitk + 2N\bfitm \| 22)\alpha | \^F\bfitk +2N\bfitm | 2
\right]  1

2

\leq 2q/2Nq - \alpha S1/2| F | \alpha =CaN
q - \alpha | F | \alpha .

Then,

\| INf  - f\| \scrL \infty (\BbbR d) \leq CtN
q - \alpha | F | \alpha +CaN

q - \alpha | F | \alpha =CpN
q - \alpha | F | \alpha .

6. Application. In section 5, we have provided prior estimates of the PM and
QSM. In this section, we further investigate the accuracy and efficiency of numerical
methods for solving the quasiperiodic system. The TQSE with a spatially quasiperi-
odic solution is an important quasiperiodic system [16, 30, 31, 32]. Concretely, con-
sider

i\psi t(x, t) = - 1

2
\psi xx(x, t) + v(x)\psi (x, t), (x, t)\in \BbbR \times [0, T ],(6.1)

with incommensurate potential v(x) =
\sum 

\lambda \in \Lambda 1
\^v\lambda e

i\lambda x, where \Lambda 1 = \{ 1, - 1,
\surd 
5, - 

\surd 
5\} 

and \^v\lambda = 1. Let the initial value \psi 0(x) =
\sum 

\lambda \in \Lambda 2
\^c\lambda e

i\lambda x, x \in \BbbR , with \Lambda 2 = \{ \lambda =

m+ n
\surd 
5 :m,n \in \BbbZ , - 32\leq m,n\leq 31\} and \^c\lambda = e - (| n| +| m| ). Therefore, the projection

matrix is \bfitP = (1,
\surd 
5). The product term of the wave function \psi (x, t) and poten-

tial function v(x), a convolution in the reciprocal space, allows us to examine the
performance of different methods.

In the following, we employ the QSM, PM, and PAM to discretize (6.1) in the
space direction and the second-order operator splitting (OS2) method in the time
direction. In each interval [0,2\pi ), we use 2N discrete points, corresponding to the
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366 KAI JIANG, SHIFENG LI, AND PINGWEN ZHANG

number of basis functions of the QSM. Here, we are concerned with the accuracy
of spatial quasiperiodic solution; therefore, the final time T can be arbitrary. For
simplicity, we choose T = 0.001. The time step size \tau = 1 \times 10 - 7 ensures that the
time truncation error does not affect the spatial approximation error.

6.1. Numerical implementation.

6.1.1. QSM discretization. As subsection 3.1 states, the QSM approximates
the wave function \psi (x, t) in a finite-dimensional space

\psi (x, t)\approx \scrP N\psi (x, t) =
\sum 

\lambda \in \Lambda N

\^\psi \lambda (t)e
i\lambda x.

The quasiperiodic Fourier coefficient \^\psi \lambda is obtained by the continuous Fourier--Bohr
transform (2.2). \Lambda N is defined by (3.1) with d= 1 and n= 2. \#(\Lambda N ) = (2N)2 :=D.
Then, the TQSE (6.1) is discretized as

i
\sum 

\lambda \in \Lambda N

d \^\psi \lambda (t)

dt
ei\lambda x =

1

2

\sum 
\lambda \in \Lambda N

| \lambda | 2 \^\psi \lambda (t)e
i\lambda x +

\Biggl( \sum 
\lambda \in \Lambda 1

\^v\lambda e
i\lambda x

\Biggr) \Biggl( \sum 
\lambda \in \Lambda N

\^\psi \lambda (t)e
i\lambda x

\Biggr) 
.

(6.2)

Making the inner product of (6.2) by ei\beta x and applying the orthogonality (2.1), we
obtain

i
d \^\psi \beta (t)

dt
=

1

2
| \beta | 2 \^\psi \beta (t) +

\sum 
\lambda \in \Lambda N

\^v\beta  - \lambda 
\^\psi \beta (t), \beta \in \Lambda N .(6.3)

By applying the OS2 method to the semidiscrete equation (6.3), we can obtain
the fully discrete scheme as given in Appendix D.1. Since the QSM cannot use an
FFT, the computational cost of solving (6.3) in each time step is dominated by the
convolution calculation with computational complexity of O(D2).

6.1.2. PM discretization. The PM is a generalized Fourier pseudospectral
method. As a sequence, the PM can further discretize x variable through the collo-
cation points xj = \bfitP \bfity j with \bfity \bfitj = (j1\pi /N, j2\pi /N) \in \BbbT 2

N , 0 \leq j1, j2 < 2N . We can
expand the spatial function by discrete Fourier--Bohr expansion

\psi (xj , t)\approx IN\psi (xj , t) =
\sum 

\bfitlambda \in \Lambda N

\~\psi \lambda (t)e
i\lambda xj j = 0,1, . . . ,D - 1,

where \~\psi \lambda (t) = \~\Psi \bfitk (t) = \langle \Psi , ei\bfitk 
T\bfity \bfitj \rangle N , \lambda =\bfitP \bfitk , and D= (2N)2 is the number of spatial

nodes.
Denote that V (\bfity ) is the parent function of v(x). Similarly, we can expand v(x)

using the discrete Fourier--Bohr transform. The TQSE (6.1) is discretized as

i
\sum 

\lambda \in \Lambda N

d \~\psi \lambda (t)

dt
ei\lambda xj =

1

2

\sum 
\lambda \in \Lambda N

| \lambda | 2 \~\psi \lambda (t)e
i\lambda xj +

\Biggl( \sum 
\lambda \in \Lambda 1

\~v\lambda e
i\lambda xj

\Biggr) \Biggl( \sum 
\lambda \in \Lambda N

\~\psi \lambda (t)e
i\lambda xj

\Biggr) 
,

(6.4)

where \~v\lambda = \langle V, ei\bfitk 
T\bfity \bfitj \rangle N . Taking the discrete inner product of (6.4) by ei\beta xj and

applying the discrete orthogonality (3.3) yields

i
d \~\psi \beta (t)

dt
=

1

2
| \beta | 2 \~\psi \beta (t) +

\sum 
\lambda \in \Lambda N

\~v\beta  - \lambda 
\~\psi \lambda (t), \beta \in \Lambda N .(6.5)
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NUMERICAL METHODS OF QUASIPERIODIC SYSTEMS 367

Similarly, the OS2 method can be applied to discretize the semidiscrete equation
(6.5). The corresponding fully discrete scheme can be found in Appendix D.2. Mean-
while, we can use an FFT to efficiently compute the convolution terms in (6.5) based
on the discrete Fourier--Bohr transform. Therefore, the computational complexity of
the PM in each time step is the level of O(D logD).

6.1.3. PAM discretization. The PAM, using a periodic system to approximate
the quasiperiodic systems, is a widely used approach to addressing quasiperiodic sys-
tems [10]. Here, we use a periodic Schr\"odinger equation over a finite fundamental re-
gion [0,2\pi L), L\in \BbbN 0 to approximate the TQSE. Then, we can use the periodic Fourier
pseudospectral method to solve the approximated periodic Schr\"odinger equation. We
use D= 2ML discrete points to discretize the one-dimensional periodic system. The
computational complexity in each time step is at the level of O((2ML) log(2ML)).
Appendix D.3 provides the implementation of the PAM of solving the TQSE.

6.2. Numerical results. In this subsection, we present numerical results of
solving the TQSE (6.1) by using the PM, QSM, and PAM. All algorithms are coded
by MSVC++ 14.29 on Visual Studio Community 2019. The FFT used in the PM
and PAM is based on the software FFTW 3.3.5 [33]. All computations are carried
out on a workstation with an Intel Core 2.30GHz CPU, 16GB RAM. The reference
solution \psi \ast (x,T ) is obtained by using the PM with a time step size \tau = 1\times 10 - 7, a
fine mesh size h = \pi /128, and a final time T = 0.001. In our numerical results, we
mainly show the numerical error eN and CPU time of three algorithms. First, we
give the calculation formula of the eN of the QSM, PM, and PAM. Denote the exact
solution of the TQSE

\psi \ast (x,T ) =
\sum 
\lambda \in \Lambda 

\~\psi \ast 
\lambda (T )e

i\lambda x.

In the QSM, from Parseval's equality, the numerical error is

e2N = \| \psi \ast (x,T ) - \scrP N\psi (x,T )\| 2\scrL 2(\BbbR )

= lim
K\rightarrow +\infty 

1

2K

\int K

 - K

| \psi \ast (x,T ) - \scrP N\psi (x,T )| 2 dx

=
\sum 

\lambda \in \Lambda N

| \~\psi \ast 
\lambda (T ) - \^\psi \lambda (T )| 2.

In the PM, we can obtain

e2N = \| \psi \ast (x,T ) - IN\psi (x,T )\| 2\scrL 2(\BbbR ) =
\sum 

\lambda \in \Lambda N

| \~\psi \ast 
\lambda (T ) - \~\psi \lambda (T )| 2.

In the PAM, assume that the exact solution of the periodic Schr\"odinger system (D.5)
is

\varphi \ast (x,T ) =
\sum 
k\in \BbbZ 

\~\psi \ast 
k(T )e

ikx, x\in [0,2\pi L).

The numerical solution obtained by the PAM is

\varphi M (x,T ) =
\sum 

k\in \Lambda PAM
M

\~\varphi k(T )e
ikx, x\in [0,2\pi L),
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368 KAI JIANG, SHIFENG LI, AND PINGWEN ZHANG

where \Lambda PAM
M = \{ k \in \BbbZ :  - LM \leq k < LM\} is a finite subset of \BbbZ containing a subset

of \{ k \in \BbbZ : k= [L\lambda ], \lambda \in \Lambda N\} . Then, we can compute the numerical error

e2M = \| \varphi \ast (x,T ) - \varphi M (x,T )\| L2([0,2\pi L)) =
\sum 

k\in \Lambda PAM
M

| \~\psi \ast 
k(T ) - \~\varphi k(T )| 2.

Therefore, the errors of three methods are all measured by the convergence of corre-
sponding Fourier coefficients. Note that both the QSM and PM calculate the global
quasiperiodic system over \BbbR , while the PAM only computes a periodic approximation
system on a fundamental period [0,2\pi L).

We present the numerical results of the PAM with M = 4N . For convenience,
we use eN to replace eM . Through extensive experiments, we adopt N = 8 (also see
Table 1) in the PAM to ensure enough numerical accuracy of discretizing TQSE.

Figure 2(a) shows the approximation error obtained by the PAM with N = 8. The
approximation error eN of the PAM exhibits an oscillation phenomenon as the domain
size L increases. This behavior can be attributed to the Diophantine approximation

Table 1
Numerical error eN of the PM, QSM, and PAM for different N .

N 2 4 8 16 32

PM 4.132e-03 7.569e-04 2.543e-05 1.702e-08 1.748e-12
QSM 4.132e-03 7.569e-04 2.543e-05 1.702e-08 1.903e-12

PAM (L= 17) 1.907e-02 1.900e-02 1.899e-02 1.899e-02 1.899e-02

PAM (L= 72) 4.536e-03 4.449e-03 4.449e-03 4.449e-03 4.449e-03
PAM (L= 305) 1.376e-03 1.052e-03 1.051e-03 1.051e-03 1.051e-03

PAM (L= 1292) 9.219e-04 2.529e-04 2.480e-04 2.480e-04 2.480e-04

(a) In the PAM, the relationship between the numerical error eN and L with N = 8.

(b) Diophantine approximation error

Fig. 2. Approximation error of the PAM as the domain size L increases.
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NUMERICAL METHODS OF QUASIPERIODIC SYSTEMS 369

Fig. 3. The relationship between the numerical error eN and N .

error, i.e., using rational numbers to approximate the irrational number. As depicted
in Figure 2(b), the Diophantine approximation error \{ L

\surd 
5\} := | L

\surd 
5 - [L

\surd 
5]| , where

[\alpha ] denotes the nearest integer to \alpha , does not uniformly decrease with an increase
of L due to the arithmetic property of irrational number

\surd 
5. The relevant function

approximation theory on the PAM can refer to [11]. For specific values of L, such as 17,
72, 305, and 1292, the Diophantine approximation error as well as the approximation
error eN can gradually decrease.

Then, we compare the approximation error eN of the PM, QSM, and PAM. Table
1 shows the eN of three algorithms as discrete points increase. Figure 3 gives a visual
image to show the convergence rate. For the PAM, we only present these results when
L= 17, 72, 305, 1292. The approximation error of the PAM consists of the quasiperi-
odic approximation error determined by the Diophantine approximation error \{ L

\surd 
5\} 

and the numerical discrete error of solving a periodic Schr\"odinger system (D.5). The
quasipepriodic approximation error is mainly controlled by the Diophantine approxi-
mation error. The numerical discrete error is dependent on the discrete points. Once
L is fixed, the discrete points achieve a critical value; then the eN of the PAM cannot
decrease, as shown in Table 1. Therefore, the eN of the PAM is mainly determined
by the quasiperiodic approximation error. Theoretically, the eN of the PAM can de-
crease by choosing a large and reasonable L. However, the resulting computational
cost could be unbearable. More significantly, L cannot go to infinity in the numerical
computation. As a result, the quasiperiodic approximation error cannot be avoided.
Table 1 also shows that the QSM and PM both have exponentially convergent rates
in solving the TQSE, consistent with the error estimates in section 5. Besides, the
aliasing error \| RN\psi \| \scrL 2(\BbbR ) of PM is almost smaller than the level of 10 - 12, even for
the 4\times 4 grid.

We examine the efficiency of three methods by comparing CPU time in solving the
TQSE, as shown in Table 2. These results demonstrate that the CPU time required
by the QSM increases dramatically with an increase of N due to the invalidity of the
FFT. In contrast, the PM can greatly save computational amounts by using an FFT.
The CPU time of the PAM has a similar behavior as the PM due to the availability of
the FFT. However, the PAM is less efficient than the PM since the PAM needs more
discrete nodes.

Finally, combining the data in Table 1 and Table 2, we plot the relationship
between eN and CPU time in Figure 4. These results show that the PM is a high-
precision and efficient algorithm in solving the TQSE (6.1).
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Table 2
Required CPU time (s) of the PM, QSM, and PAM for different N .

N 2 4 8 16 32

PM 0.051 0.077 0.237 0.716 2.873
QSM 0.125 1.020 13.366 198.301 3347.355

PAM (L= 17) 0.331 0.593 1.146 2.554 4.204
PAM (L= 72) 0.994 1.833 3.741 7.382 15.947

PAM (L= 305) 6.497 12.853 27.451 64.089 109.709

PAM (L= 1292) 28.625 50.074 114.273 247.594 494.179

Fig. 4. The relationship between the numerical error eN and CPU time (s) when N =
2,4,8,16,32, respectively.

7. Discussion and conclusions. In this paper, we present the convergence
analysis of the PM and QSM by revealing the relation between quasiperiodic func-
tions and their parent functions. These results demonstrate that the PM and QSM
have exponential decay both in \scrL 2(\BbbR d)- and \scrL \infty (\BbbR d)-norm and that the QSM (PM) is
an extension of the periodic Fourier spectral (pseudospectral) method. We also ana-
lyze the computational complexity of these methods. The PM can use an FFT, while
the QSM cannot. Finally, we adopt a one-dimensional TQSE to show the accuracy
and efficiency of the PM, QSM, and PAM in solving quasiperiodic systems. Numer-
ical results demonstrate that the PM and QSM also have exponential convergence,
while the approximation error of the PAM is mainly dominated by the Diophantine
approximation error. These results show that the PM is an accurate and efficient
method for solving quasiperiodic systems. It is the first theoretical work of the PM.
This work encourages us to further investigate the error estimates of the PM and
QSM in a general function space, as well as the development of advanced numerical
methods and theories for solving more quasiperiodic systems.

Appendix A. The proof of Theorem 5.1.

Proof. For \bfitk \in Kn
N , it follows that \| \bfitk \| 2 \leq 

\surd 
nN . By the Cauchy--Schwarz in-

equality and applying Theorem 4.1, we have

\| \scrP Nf  - f\| 2\scrL 2(\BbbR d) =
\sum 

\bfitk \in \BbbZ n/Kn
N

| \^f\bfitk | 2 \leq CN - 2\alpha 
\sum 

\bfitk \in \BbbZ n/Kn
N

\| \bfitk \| 2\alpha 2 | \^f\bfitk | 2

=CN - 2\alpha 
\sum 

\bfitk \in \BbbZ n/Kn
N

\| \bfitk \| 2\alpha 2 | \^F\bfitk | 2 \leq CN - 2\alpha | F | 2\alpha .

This completes the proof.
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Appendix B. Error analysis of the QSM without the help of parent
functions. Here, we present an approximation analysis of the QSM in the quasiperi-
odic function space by imposing some assumptions on the projection matrix.

Theorem B.1. Suppose that f(\bfitx ) \in H\alpha 
QP (\BbbR d) and that the nonzero minimum

singular value \sigma min(\bfitP ) of the projection matrix \bfitP satisfies \sigma min(\bfitP ) > \theta > 0. Then,
there exists a constant C(\theta ), independent of f and N , such that

\| \scrP Nf  - f\| \scrL 2(\BbbR d) \leq C(\theta )N - \alpha | f | \alpha .

Proof. For \bfitk \in Kn
N , it follows that \| \bfitk \| 2 \leq 

\surd 
nN . By the Cauchy--Schwarz in-

equality, we have

\| \scrP Nf  - f\| 2\scrL 2(\BbbR d) =
\sum 

\bfitk \in \BbbZ n/Kn
N

| \^f\bfitk | 2 =
\sum 

\bfitlambda \in \Lambda /\Lambda d
N

| \^f\bfitlambda | 2

\leq (\sigma min(\bfitP )CN) - 2\alpha 
\sum 

\bfitlambda \in \Lambda /\Lambda d
N

\| \bfitlambda \| 2\alpha 2 | \^f\bfitlambda | 2 \leq C(\theta )N - 2\alpha | f | 2\alpha .

This completes the proof.

Theorem B.2. Suppose that f(\bfitx ) \in H\alpha 
QP (\BbbR d), that the nonzero minimum sin-

gular value \sigma min(\bfitP ) of the projection matrix \bfitP satisfies \sigma min(\bfitP ) > \theta > 0, and that
\alpha > q > d/2. Then, there exists a constant C(\theta ), independent of f and N , such that

\| \scrP Nf  - f\| \scrL \infty (\BbbR d) \leq C(\theta )Nq - \alpha | f | \alpha .

Proof. Applying the Cauchy--Schwarz inequality, we obtain

\| \scrP Nf  - f\| \scrL \infty (\BbbR d) = sup
\bfitx \in \BbbR n

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitk \in \BbbZ n/Kn
N

\^f\bfitk e
i(\bfitP \bfitk )T\bfitx 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sum 

\bfitk \in \BbbZ n/Kn
N

| \^f\bfitk | =
\sum 

\bfitlambda \in \Lambda /\Lambda d
N

| \^f\bfitlambda | 

\leq 

\left(  \sum 
\bfitlambda \in \Lambda /\Lambda d

N

\| \bfitlambda \|  - 2q
2

\right)  1/2\left(  \sum 
\bfitlambda \in \Lambda /\Lambda d

N

\| \bfitlambda \| 2q2 | \^f\bfitlambda | 2
\right)  1/2

=

\left(  \sum 
\bfitlambda \in \Lambda /\Lambda d

N

\| \bfitlambda \|  - 2q
2

\right)  1/2\left(  \sum 
\bfitlambda \in \Lambda /\Lambda d

N

\| \bfitlambda \| 2q - 2\alpha 
2 \| \bfitlambda \| 2\alpha 2 | \^f\bfitlambda | 2

\right)  1/2

\leq C[\sigma min(\bfitP )N ]q - \alpha 

\left(  \sum 
\bfitlambda \in \Lambda /\Lambda d

N

\| \bfitlambda \|  - 2q
2

\right)  1/2\left(  \sum 
\bfitlambda \in \Lambda /\Lambda d

N

\| \bfitlambda \| 2\alpha 2 | \^f\bfitlambda | 2
\right)  1/2

\leq C[\sigma min(\bfitP )N ]q - \alpha 

\left(  \sum 
\bfitlambda \in \Lambda /\Lambda d

N

\| \bfitlambda \|  - 2q
2

\right)  1/2\Biggl( \sum 
\bfitlambda \in \Lambda 

| \bfitlambda | 2\alpha | \^f\bfitlambda | 2
\Biggr) 1/2

=C(\theta )Nq - \alpha | f | \alpha .

The last inequality holds due to
\sum 

\bfitlambda \in \Lambda /\Lambda d
N
\| \bfitlambda \|  - 2q

2 <\infty when q > d/2.
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Appendix C. Another proof of Theorem 5.3. According to the definition
of \scrL 2(\BbbR d)-norm, we have

\| f  - INf\| 2\scrL 2(\BbbR d) =
\sum 

\bfitlambda \bfitk \in \Lambda /\Lambda d
N

| \^f\bfitk | 2 +
\sum 

\bfitlambda \bfitk \in \Lambda d
N

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitm \in \BbbZ n
\ast 

\^f\bfitk +2N\bfitm 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

= \| f  - \scrP Nf\| 2\scrL 2(\BbbR d) + \| RNf\| 2\scrL 2(\BbbR d).

Recall that \| \bfitk \| 22 =
\sum n

j=1 | kj | 2, and by the Cauchy--Schwarz inequality, we have

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitm \in \BbbZ n
\ast 

\^f\bfitk +2N\bfitP \bfitm 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitm \in \BbbZ n
\ast 

\^F\bfitk +2N\bfitm 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitm \in \BbbZ n
\ast 

(1 + \| \bfitk + 2N\bfitm \| 22) - 
\alpha 
2 \cdot (1 + \| \bfitk + 2N\bfitm \| 22)

\alpha 
2 \^F\bfitk +2N\bfitm 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

\leq 
\sum 

\bfitm \in \BbbZ n
\ast 

(1 + \| \bfitk + 2N\bfitm \| 22) - \alpha \cdot 
\sum 

\bfitm \in \BbbZ n
\ast 

(1 + \| \bfitk + 2N\bfitm \| 22)\alpha | \^F\bfitk +2N\bfitm | 2.

Since | kj | \leq N, j = 1, . . . , n, for | mj | \geq 1, it follows that

| kj + 2Nmj | \geq 2N | mj |  - | kj | \geq (2| mj |  - 1)N > 1.

Thus, for \bfitm \in \BbbZ n with | mj | \geq 1, we have

(1 + \| \bfitk + 2N\bfitm \| 22) - \alpha =

\left[  1 + n\sum 
j=1

| kj + 2Nmj | 2
\right]   - \alpha 

\leq 

\left[  1 + n\sum 
j=1

((2| mj |  - 1)N)2

\right]   - \alpha 

\leq N - 2\alpha 

\left[  n\sum 
j=1

(2| mj |  - 1)2

\right]   - \alpha 

.

Then,

\sum 
\bfitm \in \BbbZ n

\ast 

(1 + \| \bfitk + 2N\bfitm \| 22) - \alpha \leq N - 2\alpha 
n\sum 

r=1

2rCr
n

+\infty \sum 
m1=1

\cdot \cdot \cdot 
+\infty \sum 

mr=1

\left[  r\sum 
j=1

(2| mj |  - 1)2

\right]   - \alpha 

.

When \alpha > r/2, the series
\sum +\infty 

m1=1 \cdot \cdot \cdot 
\sum +\infty 

mr=1

\Bigl[ \sum r
j=1(2| mj |  - 1)2

\Bigr]  - \alpha 

converges. For

\alpha >n/2, we have

S :=
\sum 

\bfitm \in \BbbZ n
\ast 

\left[  d\sum 
j=1

(2| mj |  - 1)

\right]   - \alpha 

<\infty .
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Therefore,

\| RNf\| 2\scrL 2(\BbbR d) =
\sum 

\bfitk \in Kn
N

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfitm \in \BbbZ n
\ast 

\^F\bfitk +2N\bfitm 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

\leq N - 2\alpha S \cdot 
\sum 

\bfitk \in Kn
N

\sum 
\bfitm \in \BbbZ n

\ast 

(1 + \| \bfitk + 2N\bfitm \| 22)\alpha | \^F\bfitk +2N\bfitm | 2

\leq N - 2\alpha S \cdot 2\alpha 
\sum 

\bfitk \in Kn
N

\sum 
\bfitm \in \BbbZ n

\ast 

\| \bfitk + 2N\bfitm \| 2\alpha 2 | \^F\bfitk +2N\bfitm | 2

\leq 2\alpha N - 2\alpha S| F | 2\alpha .

Applying Lemma 5.1 yields

\| f  - INf\| \scrL 2(\BbbR d) \leq CN - \alpha | F | \alpha .

Appendix D. Fully discrete scheme of the TQSE (6.1). We apply the
OS2 method to solving semidiscrete equations (6.3) and (6.5) in the time direction.
Meanwhile, we present the implementation details of the PAM to solve the TQSE
(6.1). Let \tau be the time size, and let the mth time iteration step tm =m\tau .

D.1. Fully discrete scheme using the QSM. From tm to tm+1, the OS2
scheme consists of three steps to solving (6.3).

Step 1: Consider the following ordinary differential equation for t\in [tm, tm+\tau /2],

i
d \^\psi \beta (t)

dt
=

1

2
| \beta | 2 \^\psi \beta (t),(D.1)

with initial value \^\psi \beta (tm). We can analytically solve (D.1) and obtain

\^\phi \beta (tm) = \^\psi \beta 

\Bigl( 
tm +

\tau 

2

\Bigr) 
= e - (i\beta 2\tau )/4 \^\psi \beta (tm).(D.2)

Step 2: Consider (D.3) for t\in [tm, tm+1],

i
d \^\psi \beta (t)

dt
=
\sum 

\lambda \in \Lambda N

\^v\beta  - \lambda 
\^\psi \lambda (t) := g(t, \^\psi \beta (t)),(D.3)

with initial value \^\phi \beta (tm). To address the convolution term, we apply the fourth-order
Runge--Kutta (RK4) method to solve (D.3) in the reciprocal space. Concretely, let
k1 = g(tm, \^\phi \beta (tm)), k2 = g(tm+\tau /2, \^\phi \beta (tm)+\tau k1/2), k3 = g(tm+\tau /2, \^\phi \beta (tm)+\tau k2/2),
and k4 = g(tm+ \tau , \^\phi \beta (tm)+ \tau k3); then \^\phi \beta (tm+1) = \^\phi \beta (tm)+ \tau (k1+2k2+2k3+k4)/6.

Step 3: Still consider (D.1), but with initial value \^\phi \beta (tm+1) for t\in [tm+\tau /2, tm+1];
then we can obtain \^\psi \beta (tm+1) analytically.

Here, we analyze the computational complexity for each time step. In Steps 1
and 3, the QSM can analytically solve (D.1), resulting in D multiplication operators,
respectively. In Step 2, due to the RK4 scheme and convolution summations, there
are 8D2 + 14D operators. Therefore, the computational complexity of the QSM in
solving (6.1) is the level of O(D2).

D.2. Fully discrete scheme using the PM. From tm to tm+1, the OS2
scheme also contains three steps in solving (6.5). Step 1 and Step 3 are similar to
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Appendix D.1. In Step 2, we can calculate the convolution terms of (6.5) by using a
two-dimensional FFT; we obtain

\Phi (\bfity \bfitj , tm) =
\sum 

\bfitk \in K2
N

\~\Phi \bfitk (tm)ei\bfitk 
T\bfity \bfitj ,

where \~\Phi \bfitk (tm) is obtained by Step 1. Consider the equation for t\in [tm, tm+1],

i\Psi t = V (\bfity \bfitj )\Psi (\bfity \bfitj , t) :=w(t,\Psi (\bfity \bfitj , t)),(D.4)

where the initial value is \Phi (\bfity \bfitj , tm) and V (\bfity ) is the parent function corresponding to
v(x). To make a fair comparison with the QSM, we still use the RK4 to solve (D.4)
in physical space. Let k1 = w(tm,\Phi (\bfity \bfitj , tm)), k2 = w(tm + \tau /2,\Phi (\bfity \bfitj , tm) + \tau k1/2),
k3 = w(tm + \tau /2,\Phi (\bfity \bfitj , tm) + \tau k2/2), and k4 = w(tm + \tau ,\Phi (\bfity \bfitj , tm) + \tau k3); then
\Phi (\bfity \bfitj , tm+1) = \Phi (\bfity \bfitj , tm) + \tau (k1 + 2k2 + 2k3 + k4)/6. Again using an FFT, we obtain
\~\phi \beta (tm+1) = \langle \Phi , ei\bfitk 

T\bfity \bfitj \rangle N .
Next, we analyze the computational complexity of each time step. Similarly, the

differential systems in Steps 1 and 3 can be analytically solved in the reciprocal space,
resulting in D multiplication operators, respectively. In Step 2, due to the availability
of the FFT, the convolutions in (6.5) can be economically calculated in physical space
as a dot product as shown in (D.4), which raises O(D logD) operators. Therefore,
the computational complexity of the PM in solving (6.1) is the level of O(D logD).

D.3. Implementation of the PAM of solving the TQSE (6.1). We give
the implementation of the PAM to solve the TQSE (6.1). In the PAM, we use a one-
dimensional periodic Schr\"odinger equation (PSE) to approximate the TQSE (6.1) over
a finite region [0,2\pi L). Concretely, we use the periodic functions u(x) and \varphi (x, t) to
approximate v(x) and \psi (x, t), respectively. Denote

\Lambda (u) = \{ h\in \BbbZ : h= [L\lambda ], \lambda \in \Lambda 1\} ;

then

u(x) =
\sum 

h\in \Lambda (u)

\^uhe
ihx, x\in [0,2\pi L),

where \^uh = \^u[L\lambda ] = \^v\lambda = 1. Therefore, the PAM solves the one-dimensional PSE

i
d\varphi (x, t)

dt
= - 1

2

\partial 2\varphi (x, t)

\partial 2x
+ u(x)\varphi (x, t), (x, t)\in [0,2\pi L)\times [0, T ],(D.5)

where the initial periodic function \varphi 0(x) is the approximate periodic function of
\psi 0(x). We use the periodic Fourier pseudospectral method and the OS2 method
to discretize (D.5) in space and time directions, respectively. Since the PAM can use
one-dimensional FFT to solve (D.5) and the number of grid points is 2ML, then the
computational complexity is O((2ML) log(2ML)) of each time step.

REFERENCES

[1] H. Poincar\'e, Sur le probl\'eme des trois corps et les \'equations de la dynamique, Acta Math.,
13 (1890), pp. A3--A270.

[2] D. Shechtman, I. Blech, D. Gratias, and J. Cahn, Metallic phase with long-range orienta-
tional order and no translational symmetry, Phys. Rev. Lett., 53 (1984), pp. 1951--1953.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

6/
24

 to
 1

15
.2

7.
20

7.
19

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



NUMERICAL METHODS OF QUASIPERIODIC SYSTEMS 375

[3] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-
Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Na-
ture, 556 (2018), pp. 43--50.

[4] A. Sutton, Irrational interfaces, Prog. Mater. Sci., 36 (1992), pp. 167--202.
[5] M. Baake and U. Grimm, Aperiodic Order : Volume 1, A Mathematical Invitation, Cambridge

University Press, 2013.
[6] T. C. Lubensky, Symmetry, elasticity, and hydrodynamics in quasiperiodic structures, in Ape-

riodicity and Order: Introduction to Quasicrystals 1, M. V. Jaric, ed., 1988, pp. 199--280.
[7] H. Bohr, Almost Periodic Functions, Chelsea, New York, 1947.
[8] A. Besicovitch, Almost Periodic Functions, Dover Publications, New York, 1954.
[9] B. Levitan and V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge

University Press, 1982.
[10] K. Jiang and P. Zhang, Numerical mathematics of quasicrystals, Proc. Int. Cong. Math., 3

(2018), pp. 3575--3594.
[11] K. Jiang, S. Li, and P. Zhang, On the Approximation of Quasiperiodic Functions with Dio-

phantine Frequencies by Periodic Functions, preprint, arXiv:2304.04334, 2023.
[12] K. Jiang and P. Zhang, Numerical methods for quasicrystals, J. Comput. Phys., 256 (2014),

pp. 428--440.
[13] K. Barkan, M. Engel, and R. Lifshitz, Controlled self-assembly of periodic and aperiodic

cluster crystals, Phys. Rev. Lett., 113 (2014), 098304.
[14] K. Jiang, J. Tong, P. Zhang, and A. Shi, Stability of two-dimensional soft quasicrystals in

systems with two length scales, Phys. Rev. E, 92 (2015), 042159.
[15] Y. Zhou, H. Chen, and A. Zhou, Plane wave methods for quantum eigenvalue problems of

incommensurate systems, J. Comput. Phys., 384 (2019), pp. 99--113.
[16] X. Li and K. Jiang, Numerical simulation for quasiperiodic quantum dynamical systems,

J. Numer. Methods Comput. Appl., 42 (2021), pp. 3--17 (in Chinese).
[17] Z. Gao, Z. Xu, Z. Yang, and F. Ye, Pythagoras superposition principle for localized eigen-

states of two-dimensional moir\'e lattices, Phys. Rev. A, 108 (2023), 013513.
[18] C. Wang, F. Liu, and H. Huang, Effective model for fractional topological corner modes in

quasicrystals, Phys. Rev. Lett., 129 (2022), 056403.
[19] D. Cao, J. Shen, and J. Xu, Computing interface with quasiperiodicity, J. Comput. Phys.,

424 (2021), 109863.
[20] K. Jiang, W. Si, and J. Xu, Tilt grain boundaries of hexagonal structures: A spectral view-

point , SIAM J. Appl. Math., 82 (2022), pp. 1267--1286.
[21] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods: Fundamentals in

Single Domains, Springer, Berlin, 2006.
[22] P. Bohl, \"Uber die Darstellung von Funktionen einer Variablen durch trigonometrishe Reihen

mit mehrer Variablen proportionalen Argumenten, Dorpat/Tartu, 1893.
[23] H. Bohr, Zur Theorie fastperiodischer Funktionen I-II, Acta Math., 45 (1925), pp. 29--127 and

46 (1925), pp. 101--214.
[24] R. Iannacci, A. Bersani, G. DeIl'Acqua, and P. Santucci, Embedding theorems for Sobolev-

Besicovitch spaces of almost periodic functions, Z. Anal. Anwend., 17 (1998), pp. 443--457.
[25] C. Corduneanu, Almost Periodic Functions, 2nd ed., Chelsea, New York, 1989.
[26] P. Walters, An Introduction to Ergodic Theory, Springer, Berlin, 1982.
[27] H. Pitt, Some generalizations of the ergodic theorem, Math. Proc. Cambridge, 38 (1942),

pp. 325--343.
[28] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, Amsterdam, 1972.
[29] B. Yann, Approximation by Algebraic Numbers, Cambridge University Press, 2004.
[30] P. Wang, Y. Zheng, X. Chen, C. Huang, Y. Kartashov, L. Torner, V. Konotop, and F.

Ye, Localization and delocalization of light in photonic moir\'e lattices, Nature, 577 (2020),
pp. 42--46.

[31] J. Bourgain and W. Wang, Anderson localization for time quasi-periodic random Schr\"odinger
and wave equations, Comm. Math. Phys., 248 (2004), pp. 429--466.

[32] T. Wang, H. Chen, A. Zhou, and Y. Zhou, Layer-Splitting methods for time-dependent
Schr\"odinger equations of incommensurate systems, Commun. Comput. Phys., 30 (2021),
pp. 1474--1498.

[33] M. Frigo and S. Johnson, The design and implementation of FFTW3, Proc. IEEE, 93 (2005),
pp. 216--231.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

6/
24

 to
 1

15
.2

7.
20

7.
19

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2304.04334

	Introduction
	Preliminaries
	Preliminaries of quasiperiodic functions
	Preliminaries of periodic functions

	Algorithms
	Quasiperiodic spectral method
	Projection method

	Theoretical framework
	Error estimate
	Error analysis of the QSM
	Error analysis of the PM

	Application
	Numerical implementation
	QSM discretization
	PM discretization
	PAM discretization

	Numerical results

	Discussion and conclusions
	References
	Appendix A. The proof of Theorem 5.1
	Error analysis of the QSM without the help of parent functions
	Appendix C. Another proof of Theorem 5.3
	Appendix D. Fully discrete scheme of the TQSE (6.1)
	Fully discrete scheme using the QSM
	Fully discrete scheme using the PM
	Implementation of the PAM of solving the TQSE (<0:xref 0:ref-type="disp-formula" 0:rid="disp22" >6.1</0:xref>)


