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Abstract. Quasiperiodic systems are important space-filling ordered structures, without decay
and translational invariance. How to solve quasiperiodic systems accurately and efficiently is a great
challenge. A useful approach, the projection method (PM) [J. Comput. Phys., 256 (2014), pp. 428—
440], has been proposed to compute quasiperiodic systems. Various studies have demonstrated that
the PM is an accurate and efficient method to solve quasiperiodic systems. However, there is a lack
of theoretical analysis of the PM. In this paper, we present a rigorous convergence analysis of the
PM by establishing a mathematical framework of quasiperiodic functions and their high-dimensional
periodic functions. We also give a theoretical analysis of the quasiperiodic spectral method (QSM)
based on this framework. Results demonstrate that the PM and QSM both have exponential decay,
and the QSM (PM) is a generalization of the periodic Fourier spectral (pseudospectral) method.
Then, we analyze the computational complexity of the PM and QSM in calculating quasiperiodic
systems. The PM can use a fast Fourier transform, while the QSM cannot. Moreover, we investigate
the accuracy and efficiency of the PM, QSM, and periodic approximation method in solving the
linear time-dependent quasiperiodic Schrédinger equation.
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1. Introduction. Quasiperiodic systems are a natural extension of periodic sys-
tems. The earliest quasiperiodic system can be traced back to the study of the
three-body problem [1]. Many physical systems can fall into the set of quasiperiodic-
ity, including periodic systems, incommensurate structures, quasicrystals, many-body
problems, polycrystalline materials, and quasiperiodic quantum systems [1, 2, 3, 4].
The mathematical study of quasiperiodic orders is a beautiful synthesis of geometry,
analysis, algebra, dynamic system, and number theory [5, 6]. The theory of quasiperi-
odic functions, even more general almost periodic functions, has been well developed
to study quasiperiodic systems in mathematics [7, 8, 9]. However, how to numerically
solve quasiperiodic systems in an accurate and efficient way is still a great challenge.

Generally speaking, quasiperiodic systems, related to irrational numbers, are
space-filling ordered structures without decay or translational invariance. This raises
difficulty in numerically computing quasiperiodic systems. To study such important
systems, several numerical methods have been developed. A widely used approach, the
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periodic approximation method (PAM), employs a periodic function to approximate
the quasiperiodic function [10]. The conventional viewpoint is that the approxima-
tion error could uniformly decay as the supercell gradually becomes large. However,
a recent theoretical analysis has demonstrated that the error of the PAM may not
uniformly decrease as the calculation area increases [11]. The second method is the
quasiperiodic spectral method (QSM), which approximates a quasiperiodic function
by a finite summation of trigonometric polynomials based on the continuous Fourier—
Bohr transform [10]; see also subsection 3.1. The third approach is the projection
method (PM) [12], based on the fact that the quasiperiodic system can be embedded
into a high-dimensional periodic system. Then, the PM can accurately calculate the
high-dimensional periodic system over a torus in a pseudospectral manner. Mean-
while, the PM is efficient due to the availability of a fast Fourier transform (FFT).
Finally, the PM obtains the quasiperiodic system by choosing a corresponding irra-
tional slice of the high-dimensional torus by the projection matrix. Extensive stud-
ies have demonstrated that the PM can be used to compute quasiperiodic systems
to high precision, including quasicrystals [13, 14], incommensurate quantum systems
[15, 16, 17], topological insulators [18], and grain boundaries [19, 20]. However, the
PM still has a lack of corresponding theoretical guarantees.

In this work, we present a rigorous theoretical analysis of numerical methods for
solving quasiperiodic systems. We establish the relationship between quasiperiodic
functions and their corresponding high-dimensional periodic functions based on the
idea of the PM. These mathematical results provide a theoretical framework to ana-
lyze the convergence of the PM, as well as the QSM. We also present another error
analysis framework of the QSM without using high-dimensional periodic functions.
These theoretical results demonstrate that both the PM and QSM have exponential
convergence. Moreover, we analyze the computational complexity of the PM and
QSM in solving quasiperiodic systems. The PM can use an FFT by introducing dis-
crete Fourier—Bohr transform (see subsection 3.2), while the QSM cannot. Further
analysis reveals that the QSM (PM) is an extension of the periodic Fourier spectral
(pseudospectral) method. Finally, we investigate the accuracy and efficiency of the
PM, QSM, and PAM in solving the linear time-dependent quasiperiodic Schrédinger
equation (TQSE).

2. Preliminaries. Before our analysis, we give some preliminaries on quasiperi-
odic and periodic functions in this section.

2.1. Preliminaries of quasiperiodic functions. Let us recall the definition
of the quasiperiodic function [9]. Denote

MP>*" = {M = (my,...,m,) € R>*" :m,,... m, are Q-linearly independent},

and define P € M*" as the projection matrix.

DEFINITION 2.1. A d-dimensional function f(x) is quasiperiodic if there exists a
continuous n-dimensional periodic function F (n > d) that satisfies f(x) = F(PTx),
where P is the projection matrix.

In particular, when n =d and P is nonsingular, f(x) is periodic. When n — oo,
f is an almost periodic function [7]. For convenience, F' in Definition 2.1 is called
the parent function of f in the following content. QP(R?) represents the space of
all quasiperiodic functions. In section 4, we will show that f and F' can be uniquely
determined by each other when the projection matrix P is given.
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Let Kr={x:x €R? |z;| <T, j=1,...,d} be the cube in R?. The mean value
M{f(x)} of f€QP(RY) is defined as

o B ][
MUf(@)} = i / @)= Ji@)ds

where the limit on the right side exists uniformly for all s € R?. An elementary
calculation shows that

(2.1) M{er me=iBTmy _ 5 s,

0, AN#L.
Correspondingly, the continuous Fourier-Bohr transform of f(x) is
(22) = M{f(@)e > "),

where A € R%. Denote A = {\: A= Pk, k € Z"}, and the Fourier series associated
with the quasiperiodic function f(x) can be written as

(2.3) F@)~ Y fae™e,
keZn

where Ay, = Pk € A are Fourier exponents and f}\k (defined in (2.2)) are Fourier
coeflicients. To simplify the notation, denote fr = fx,. Let

QP (R) = {f cQP®Y): Y Il < +oo} 7

keczn

with norm || ]| ¢ (re) = Supgege | ()]

In general, the convergence of the Fourier series (2.3) is a challenging problem;
see [9] for some sufficient criteria. The following conclusion presents an important
convergence property of a quasiperiodic function.

THEOREM 2.2 ([25], Chapter 1.3). If the Fourier series of a quasiperiodic function
s uniformly convergent, then the sum of the series is the given function.

If the Fourier series of the quasiperiodic function is absolutely convergent, it is
also uniformly convergent. Therefore, for f € QP1(R%), we have

fl@) =Y fuee®,

kezn

As a consequence, we can obtain a subspace QPs(R?) of QP(R?)

QP2 (RY) = { f € QPR?) : M{|f[*} < +o0}
equipped with norm

(2.4) 1122y = MASIPY = D el

kczZn

and the inner product (-,-)qp,(rd)

(f1, f2)Qp,re) = ffl(w)fz(w) de.
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Equality (2.4) is Parseval’s identity. Now we introduce the Hilbert space of quasiperi-
odic functions. Denote || = Z?zl |z;| with for all z € R%. For any m € Ng = {m €
Z :m > 0}, the Sobolev space Hg p(R?) comprises all quasiperiodic functions with
partial derivatives order o > 1 with respect to the inner product (-,+)q

(f1: f2)a = (f1. f2)grarey + D, (O f1.05" F2) Py (o)

|m|=a

and endowed with norm ||f|2 = 3,50 (1 + [A[?)?|fi]? and seminorm [f|2 =
Dezn [ Mel* | fel?.

2.2. Preliminaries of periodic functions. Let T" = (R/27Z)™ be the n-
dimensional torus; then the Fourier transform of F(y) defined on T"

A 1
(2.5) Fro=——
IT™| Jon

e+ YR (y)dy, ke,

and

L®(T") = {F(y): 37 1Fl <+oo}.

kezn

Furthermore, denote the Hilbert space on T"™
L3(T") = {F(y) (F,F) < +oo},
equipped with inner product

1 _
<F1’F2>:7n Fngdy
T Jrn

For any integer o > 0, the a-derivative Sobolev space on T" is

H(T") = {F € L*(T") : | F|| < 00},

. 1/2
where [|Fllo = ( Siezn (14 [KIZ)I ) with |53 = 27, [k . The seminorm
1/2

of H*(T"™) can be defined as |F|, = (zkezn \|k||§“\ﬁ‘k|2)

3. Algorithms. In this paper, our purpose is to establish the theoretical analysis
of the QSM and PM. In this section, we introduce these algorithms before delving
into the numerical analysis. Moreover, we present the implementation framework of
the PM by defining the discrete Fourier—-Bohr transform of quasiperiodic functions.

For an integer N € Ny and a given projection matrix P € M%*™, denote

K%:{k:(k‘j)?:l ez —NSk‘j<N}
and
(3.1) ALY ={A=Pk:kc Ky} CA.

Obviously, the order of the set A% is #(A%) = (2N)™. The finite dimensional linear
subspace of QP(R?) is

Sy = span{eD‘Tm, zeRY Ae AL}
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We denote Py : QP(R?) +— Sy the projection operator. For a quasiperiodic function
f(x) € QP1(R?) and its Fourier exponent Ag € A, we can split it into two parts:

(3.2) f@)= Y fue =4 3" fue™ T =Py f+ (f ~ Pyf).

keKT, kezZn /KT,
Next, we present the QSM and PM, respectively.

3.1. Quasiperiodic spectral method. The QSM directly approximates the
quasiperiodic function f by Pn f,

f@)=Pxfl)= > fee™ = zeR?

kEKT

where the quasiperiodic Fourier coefficient fk is obtained by the continuous Fourier—
Bohr transform (2.2). We will give the error analysis of the QSM in subsection 5.1 and
describe the numerical implementation of solving a quasiperiodic system in subsection
6.1.1. Note that quasiperiodic Fourier coefficients in the QSM are obtained through
the continuous Fourier-Bohr transform (2.2), resulting in the QSM being unable to use
an FFT. A further computational complexity analysis will be presented in subsection
6.1.1.

3.2. Projection method. The PM embeds the quasiperiodic function f(x) into
a high-dimensional parent function F'(y), then directly replaces the discrete quasiperi-
odic Fourier coefficients with the discrete parent Fourier coefficients [10, 12]. We can
use the periodic Fourier spectral method to obtain the parent Fourier coefficients.
Concretely, we first discretize the tours T". Without loss of generality, we consider a
fundamental domain [0,27)" and assume that the discrete nodes in each dimension
are the same, i.e., Ny = Ny =--- = N,, = 2N, N € Ny. The spatial discrete size
h = w/N. The spatial variables are evaluated on the standard numerical grid T%

with grid points y; = (Y115 Y2,j25 -+ Ynjn )» Y152 = J1hs Y25, = G2l Yn g, = Jnh,
0<j1,72,---,Jn <2N. We define the grid function space

Gy :={F:7Z"— C: Fis TR -periodic}.
Given any periodic grid functions F, G € Gy, the ¢?-inner product is defined as

1 _
(F,G)n = @nNy" Z F(y;)G(y;)-
y; €TY
For k, £ € Z™, we have the discrete orthogonality condition
, , 1, k=£+2Nm, meZ",
(3.3) <e’kTyj , ewTyj N = + m, m
0, otherwise.
The discrete Fourier coefficient of F' € Gy is
(3.4) Fo=(Fe*" %)y, keK%.

The PM directly takes fr = Fj. We define the discrete Fourier—Bohr transform of
quasiperiodic function f(x) as

(3.5) Flaj)= > fue™*®,

Ak EA'Z\’,
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where collocation points x; = Py, y; € Tx. The trigonometric interpolation of
quasiperiodic function is

(3.6) Inf(z)= > free®.

AkEA‘]i\]

Consequently, I f(z;) = f(x;). From the implementation, the PM can use the
n-dimensional FFT to obtain quasiperiodic Fourier coefficients by introducing the
discrete Fourier—Bohr transform (3.5). The concrete computational complexity of the
PM for solving quasiperiodic systems will be shown in subsection 6.1.2.

Remark 3.1. From the above description, the QSM and PM are generalizations of
the Fourier spectral method and Fourier pseudospectral method, respectively. When
f(z) is periodic, i.e., n = d and the projection matrix P € M?*¢ is nonsingular, the
QSM (PM) reduces to the periodic Fourier spectral (pseudospectral) method.

4. Theoretical framework. From the implementation framework of the PM
presented in subsection 3.2, exploring the relationship between quasiperiodic functions
and their parent functions is a prerequisite for its convergence analysis. Here, we prove
that the quasiperiodic Fourier coefficients fk of (2.2) are equal to their parent Fourier
coefficients Fy, of (2.5).

THEOREM 4.1. For a given quasiperiodic function
f(x)=F(PTx), xcR?

where F(y) is its parent function defined on the tours T™ and P is the projection
matriz, we have

(4.1) fro="Fy, kezZ",

where fr, and Fy, are defined by (2.2) and (2.5), respectively.

We will prove Theorem 4.1 based on Birkhoff’s ergodic theorem [26, 27]. Let us
start with some basic definitions. Let €2 be a set. A o-algebra of Q is a collection
B of subsets of Q satisfying the following three conditions: (i) 2 € B; (ii) if B € B,
then Q\B € B; (iii) if B,, € B for n > 1, then |, B, € B. We call the pair (Q,B) a
measurable space. The Lebesgue measure on (£, B) is a function p : B+ R* satisfying
w(@)=0and pu(U,~, Bn) => o, (By) whenever {B,,}°2 is a sequence of members
of B that are pairwise disjoint subsets of 2. A finite measure space is a triple (2, B, ),
where (2, B) is a measurable space and p is a finite measure on (2, 8). We say that
(2, B, 1) is a probability space or a normalized measure space if pu(2) = 1.

DEFINITION 4.2. Suppose that (21,81, 1) and (Q2, Ba, u2) are probability spaces.

(i) A transformation ¢ : Qs Qq is a measure if ¢~ 1(Bg) C By;

(ii) A transformation ¢ : Q1 — Qo is measure-preserving if ¢ is measureable and

p1(¢~1By) = pua(Bs), for each By € Bs.

DEFINITION 4.3. Let (2, B, 1) be a probability space. A measure-preserving trans-
formation ¢ : Q — Q is called ergodic if the only member B € B with ¢~ 'B = B
satisfying u(B) =1 or u(B)=0.

Lemma 4.1 gives an equivalent condition of ergodicity.

LEMMA 4.1 (Theorem 1.6 [26]). Let (2,B,u) be a probability space, and let ¢ :
Q — Q be measure-preserving mapping; then the following statements are equivalent:
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(i) ¢ is ergodic;
(ii) If f is measurable and fod= f a.e., then f is constant a.e.
The high-dimensional Birkhoff’s ergodic theorem reads as follows.
THEOREM 4.4 ([27]). Let f(z) : Q +— C be integrable, and let the measure-
preserving transformation ¢%, x € R? satisfy

POz =z, ¢TIz = 4" (572), z€Q

for any x1, x5 € RE. Then,

]€”(¢”Z)dw =f"(2)

ezists for almost all z in Q). Moreover,

| r@a= [ fea.

where E C Q) is the invariant subset under ¢*.
In this work, Q = E = T". Given a projection matrix P = (py,ps,...,p,,) € M?*",
denote the parameterized translation

(4.2) 05 (21,. .. 20) = (21 + Pl ). .. 20 + L) (MOd 1),

where “mod 1”7 means that each coordinate remains its fractional part. Proposition
4.2 will show that ¢% is ergodic in probability space (T™, B, ) when p is a Lebesgue
measure.

PROPOSITION 4.2. If P € M®" then the parameterized translation ¢% defined
by (4.2) is ergodic with respect to the Lebesque measure.

Proof. The parameterized translation ¢% is measure-preserving with respect to
the Lebesgue measure p. The torus T™ is an invariant set under the translation ¢%
since ¢H(z) € T" for each z € T". Let x be a bounded measurable function invariant
under ¢%, for example, the characteristic function of an invariant set T". Then, we
have

(4.3) Xen (9P(2)) = X 431 en) (2) = X (2)-

Without causing confusion, (4.3) can be rewritten as x(¢%(2)) = x(z). Considering
the Fourier expansion of y,

~ kT
X(z) = E Xkel z
keZn
we have
T T T I T T
X(Qb?D (Z)) _ § b ezk (z21+P] @20 +P, @) § R ezk: (py ..., pnm)eik z
kezn keczn

Due to the ¢%-invariance of x and the uniqueness of Fourier coefficients y, , we can
obtain

- T T T
L e Pl ple),

Xy =
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ie.,

11— eikT(ple,.i.,pr)) —0.

This means that x, =0 or
(4.4) k' (pTx, ... ,ple)=(Pk)Tz:=me2rZ.

Since pq, ..., P, are rationally independent, then for k # 0 and m € 27Z, the solution
x of (4.4) is countable at most. Obviously, there exists o € R? such that (Pk)Tz( ¢
277 is true for k # 0; then x, =0. Therefore, x is a constant outside of a set measure
zero, which means that ¢% is ergodic from Lemma 4.1. ]

The proof of Theorem 4.1 is as follows.

Proof. From the definitions of fi and Fj, (4.1) is equivalent to

. 1 .
]é_lkz"’f(w) dr = — e * VP (y) dy;
[T"| Jpn

i.e., we need to prove that

1

(4.5) ]é_i(P"‘)T‘”F(PTw) do = —
|T™| Jn

e_ikTyF(y) dy.

Denote G(y) =e~*"¥F(y). Equation (4.5) can be rewritten as

(4.6) ][G(PTa:) dr = |’IF71"\ . G(y)dy.

According to the parameterized translation ¢% defined in (4.2), (4.6) is equivalent to

1
(4.7) ][G(QS?:(O))dw T /s G(y) dy.
Applying the ergodicity of ¢% proved in Proposition 4.2 and Theorem 4.4, (4.7) is
true. The proof of Theorem 4.1 is completed. ]

We take a one-dimensional quasiperiodic function as an example to demonstrate
Theorem 4.1, which can be embedded into a two-dimensional periodic system, as
shown in Figure 1. In Figure 1(a), we lift the definition area (blue line) of a one-
dimensional quasiperiodic function to two-dimensional periodic lattice as an irrational
line by a projection matrix P = (1,4/3). Then, the irrational line can be reduced to a
two-dimensional unit cell by modulo arithmetic due to the two-dimensional periodic-
ity, as shown in Figure 1(b) and Figure 1(c). The irrational slice is infinite, and these
moduled lines become dense in the two-dimensional unit cell. Therefore, as Theorem
4.1 states, the one-dimensional quasiperiodic Fourier coefficient can be replaced by
the two-dimensional parent Fourier coefficient.

Applying Theorem 4.1, we have the following two corollaries.

COROLLARY 4.3. The quasiperiodic function f(x) and its parent function are
uniquely determined by each other when the projection matriz P is given.
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Y2 P’y Y2
Q
0 U1 0 Y 0 W
(a) The line PTz embedded (b) Step 1: Modulo PTz (c) Step 2: Modulo PTx
in a two-dimensional periodic  along y;-axis along ys-axis after Step 1
lattice

F1G. 1. The process of modulo a two-dimensional irrational slice PT z, where P = (1, \/g), z eR.

Proof. On one hand, when the parent function and the projection matrix P are
given, the quasiperiodic function f(x) is obviously unique.

On the other hand, we prove that, when the projection matrix P is given, f(x)
has a unique parent function. Assume that there exist two distinct parent functions
F(y) and G(y) such that

f(z) = F(P"), f(@)=G(P ).

From Theorem 4.1, we can obtain F’k = fk = G’k, k € 7", where F’k and G'k are
obtained by the continuous Fourier-Bohr transform, respectively. According to the
uniqueness theorem [9], then it follows that F(y)=G(y). o

Note that the uniqueness theorem in Bohr’s work states that the quasiperiodic
function is uniquely determined by quasiperiodic Fourier coefficients, which are ob-
tained by the continuous Fourier—Bohr transform [7]. In contrast, Corollary 4.3 states
the uniqueness property that arises from the relation between the quasiperiodic func-
tion and its parent function.

Furthermore, we can establish an isomorphism relation between a quasiperiodic
function space and its parent function space. Denote

Tri(T") = {F(y) > cee® Y yeT: > el <oo}.

keczn keczn

For a given projection matrix P € M4*"  we define the subspace of QP(RY)
Wp(RY) = {f(x) e C(RY): f(x) = F(P'x), F € Tvi(T"), P € M¥*"},

Define a mapping ¢p : Tri(T") — Wp(R?); then we can easily prove that pp is
isomorphic from Corollary 4.3.

COROLLARY 4.4. For a given function f(x) € QP(R?), where F(y) is its parent
function, we have the following properties:

(i) F(y) € L>(T") if and only if f(x) € QP;(RY).

(i) F(y) € L3(T") if and only if f(x) € QPy(RY).
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Proof. For f(x) € QP1(RY), we have f(x) =Y pezn free!®PR) = Denote the pe-
riodic function g(y) = > pcpm frue™® v, Obviously, f(x) = g(PTx); ie., g(y) is the

parent function of f(x). Applying Corollary 4.3 and Theorem 4.1 leads to

(4.8) Fly)=g(y)= Y Fre*'v.
kezZm

—_

The Fourier coefficient Fy, is calculated by (2.5), and the Fourier series of the parent
function F(y) is convergent; i.e., F(y) € L°°(T™). Similarly, we can prove that
conclusion (i) is sufficient. Conclusion (ii) can be proved similarly. 0

Applying Parseval’s equality (2.4) and Corollary 4.4, for any Fy, F» € Tri(T")
and f1, fo € Wp(R?), we have

1ENZ2 = D (el 111 22may = D lexl*
keZn keZn

Therefore, || f| z2rey) = loPFllz2we) = [|F||L2; i-e., ¢p is an isometric mapping in the
sense of £L2(R%). The isomorphic mapping ¢p is a useful tool for error estimates of
QSM and PM; see Theorem 5.1 and Theorem 5.3, respectively.

5. Error estimate.

5.1. Error analysis of the QSM. The error analysis of the QSM is built on
the relation between the quasiperiodic function and its parent function. Therefore,
we first give the truncation error of the periodic Fourier spectral method [21].

LEMMA 5.1. For each F € H*(T™), there exists a constant C, independent of F'
and N, such that
H/PNF - F”L"’ < CN“_O‘|F|Q.
In the following, we will state the error estimate of the QSM in £2(R9)- and
£>°(R%)-norm sense, respectively.

THEOREM 5.1. Suppose that f(x) € QP(R?) and that its parent function F(y) €
H*(T") with o > 0. Then, there exists a constant C, independent of F' and N, such
that

IPNf = fllcomay S CON™|Flq-

Proof. Obviously, Corollary 4.4 implies that f € QP2(R?). Since the mapping ¢p
is isometric in the sense of £2(R?), from Lemma 5.1, we have

IPNf = fllc2way = IPnopE — ppF| r2ray = |9pPNE — 0P F|| £2(ra)
= ||'PNF — FHL2 < CN7Q|F|Q.

This completes the proof. 0
Another way of proving Theorem 5.1 is presented in Appendix A.

THEOREM 5.2. Suppose that f(x) € QP,(R?) and that its parent function F(y) €
H*(T") with « > q >n/2. There exists a constant Cy, independent of F' and N, such
that

IPNf = fllzoomay < Ce NI Fq.
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Proof. Applying Theorem 4.1 and the Cauchy—Schwarz inequality, we obtain

A T ~
||PNf—f||aw(Rd)=Supn Z fre! PR < Z | fiel

xTE

keZrn /KT, keZn /KT
1/2 1/2
< > K3 Yo IR
kezn /KT kezn /KT
1/2 1/2
SCNT [ Y (+K3) Do IR IRl fil
keZn /KT keZn /KT,
1/2 12
<CEPNT YT (14 K5) <Z ||k||§a'|fk|2>
keZn KT, kezn
1/2 12
Rl (D SRR B O WIS
kezZn /KT, kezn
< CyNI™%|Flq.
The last inequality holds due to ZkeZ"/K}\‘,(l +||k||3) 7% < oo when ¢ >n/2. |

Besides, we can also directly give the error analysis of the QSM without using the
parent function; see Appendix B for details. These results also show that the QSM
has an exponential convergence rate.

5.2. Error analysis of the PM. The PM grasps the essence that the quasiperi-
odic function can be embedded into its parent function. Assume that the Fourier
series in (4.8) converges to F(y) at every grid point of T%,. Applying the discrete
orthogonality (3.3), the discrete parent Fourier coefficient of (3.4) becomes

(5.1) Fyp=(F,e*" ¥i)y = < 3 Fee“Tyj,eikTya-> =Fu+ Y Freponm, k€KY,
eczn N mez?

where Z7 =7"/{0}. Recall that A, = Pk, and from (5.1), we have
Z FreiMie — Z Freiie 4 Z Z Frronm | €%,
kEKT, kEKT, kEKT \meznr
From Theorem 4.1 and (3.6), we obtain
DT S FECSN S [ Sl W PSS
AEAY AEAY A€AL, \MELL
It follows that
Inf=Pnf+Rn/,
where

Pnf= Z fkei)‘gw, Ryf= Z Z frranm ek,

AEAY A€AY, \MEZL
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Similar to the periodic Fourier pseudospectral method, Iy f and Ry f represent the
interpolation and the aliasing part, respectively. As a consequence, we have

f=Inf=(f=Pnf)—Rn/f.

Thus, the approximation error of PM consists of two parts: the truncation error
f—"Pnf as the QSM has and the aliasing error Ry f. The truncation error estimates
of Theorems 5.1 and 5.2 for QSM are also valid for PM. The aliasing error will
be analyzed in the following content. The L£2(R?)- and L£>(R?)-estimates of the
interpolation error f — I f are stated as follows, respectively.

THEOREM 5.3. Suppose that f(x) € QP(RY) and that its parent function F(y) €
H*(T") with o > 0. There exists a constant C, independent of F and N, such that

Inf = flle2ay SCN ™| Fla.
Proof. Corollary 4.4 tells us that f € QPy(R?). Since pp(PyF) =Py (ppF) and
ep(RNF)=Rn(opF), we obtain
N f = fllz2way SN = Pnfllc2way + 1 BN fll 22 ray
=|lepF — Pn(epF) c2®a) + | BN (0P F) | 2 (ma)
=|lepF —@p(PNF) c2®ae) + op (BN F)| 22 (ma)
=|F = PnFlr2 + | RN F]| 2.
Reference [21] (see its section 5.1.3) shows that
RN Flp2 < CtN~%|Fla,

where C1 is independent of F' and N. Then, the proof is completed by combining
Lemma 5.1. ]

Another way of proving Theorem 5.3 is provided in Appendix C.

THEOREM 5.4. Suppose that f(x) € QP,(R?) and that its parent function F(y) €
H*(T™) with o> q>n/2. There exists a constant C,, independent of F' and N, such
that

”INf - fHZ:OO(Rd) < Cqu_a‘F‘a-

Proof. According to the definition of || - [| zo (re), We have

(5:2) Inf=Fllee@an < > fel+ D | D frronm|.

ALEA/AY, ALEAY |MELY
From Theorem 5.2, it follows that
Z |fk|§Cth_a|f‘m
ALEA/AY

where « > ¢ > n/2. For the second term on the right side of inequality (5.2), combining
it with the Cauchy—Schwarz inequality, we can obtain

S Frrovm = XY Feonm|< 3 S | Fesonm|
ALEAY |MELY keK}, |meLy keKY, meZy
3 3
<D0 X ks2Nm) = D0 Y (I [k+2Nm5)* Figanm|®
keKY meln keKT meln
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For k ¢ K3, and m € Z7

" we have ||k +2Nm||3 > N2 Furthermore, for a > ¢, it
follows that

Y 4k +2Nm3)

kCKT, mezn

=Y. > A+[k+2Nm[3) - (1+ [k +2Nm]|3)™
kEKT, meLn

A+NHZ YT > 1+ [lk+2Nm]f3)
kEKY, meZn

<2NTY | YT N (14 [k +2Nm3) ¢
kEK, meLr

When ¢ >n/2, the series S := ZkeK}y > mezn (14 [|k+2Nm|3)~9 converges. There-
fore, )

S S Gerowm

AkeA‘jV mezL?

SIS

<2FNITOGY2 NN (1 ke 2Nm3)° Fiepanom
keK}, meZn

< 212N SV |, = C, NI~ | F|,.
Then,

1N = fllgoomay S CeNT|Fla + CaNT"%|Flo = CpNT™%|Fla.

6. Application. In section 5, we have provided prior estimates of the PM and
QSM. In this section, we further investigate the accuracy and efficiency of numerical
methods for solving the quasiperiodic system. The TQSE with a spatially quasiperi-
odic solution is an important quasiperiodic system [16, 30, 31, 32]. Concretely, con-
sider

(6.) () = — 5 () + (@) ), (1) ER X (0,7,

with incommensurate potential v(x) = >\ 5, 0xe™® where A = {1,—1,v/5,—/5}
and oy = 1. Let the initial value ¢o(x) = > \cp, Exe™, x € R, with Ay = {\ =
m+nvVs:mneZ,—32<m,n< 31} and é) = e~ (Inl+Iml) - Therefore, the projection
matrix is P = (1,v/5). The product term of the wave function v(z,t) and poten-
tial function v(z), a convolution in the reciprocal space, allows us to examine the
performance of different methods.

In the following, we employ the QSM, PM, and PAM to discretize (6.1) in the
space direction and the second-order operator splitting (OS2) method in the time
direction. In each interval [0,27), we use 2N discrete points, corresponding to the
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number of basis functions of the QSM. Here, we are concerned with the accuracy
of spatial quasiperiodic solution; therefore, the final time T can be arbitrary. For
simplicity, we choose T' = 0.001. The time step size 7 = 1 x 10~7 ensures that the
time truncation error does not affect the spatial approximation error.

6.1. Numerical implementation.

6.1.1. QSM discretization. As subsection 3.1 states, the QSM approximates
the wave function v (z,t) in a finite-dimensional space

b, t) = Prp(a, )= Y dat)e™”.

AEAN

The quasiperiodic Fourier coefficient 1%\ is obtained by the continuous Fourier—Bohr
transform (2.2). Ay is defined by (3.1) with d=1 and n=2. #(Ay)= (2N)?:=D.
Then, the TQSE (6.1) is discretized as

(6.2)

i Z dwgt(t)ei)\xzi Z |>\| ’l/) () z)\:z: (ZU)\G > <Z 7,[1>\ z/\z>.

AEAN AEAN AEAL AEAN

Making the inner product of (6.2) by e*#* and applying the orthogonality (2.1), we
obtain

i
(1)

(6.3) 2

W|¢ + > dpadp(t), BEAN

AEAN

By applying the OS2 method to the semidiscrete equation (6.3), we can obtain
the fully discrete scheme as given in Appendix D.1. Since the QSM cannot use an
FFT, the computational cost of solving (6.3) in each time step is dominated by the
convolution calculation with computational complexity of O(D?).

6.1.2. PM discretization. The PM is a generalized Fourier pseudospectral
method. As a sequence, the PM can further discretize x variable through the collo-
cation points z; = Py, with y; = (j17/N,jor/N) € T}, 0 < j1,j2 < 2N. We can
expand the spatial function by discrete Fourier-Bohr expansion

Yo, t) = Inp(zs,t)= > a(t)e™ j=0,1,....D—1,

AEAN

where ¢ (t) = U (t) = (T, e““Tya‘)N, A= Pk, and D = (2N)? is the number of spatial
nodes.

Denote that V(y) is the parent function of v(z). Similarly, we can expand v(z)
using the discrete Fourier-Bohr transform. The TQSE (6.1) is discretized as

(6.4)

; Z d'l/)(;\ z)\xj :7 Z |)\| ’L/J z/\xj_’_ (Z 5)\€i)\;cj> < Z ,(;)\(t)ei)\xj>7

AEAN )\EAN AEA, ANEAN

where 0y = (V, e““Tya‘>N. Taking the discrete inner product of (6.4) by e*’%i and
applying the discrete orthogonality (3.3) yields

dwﬁ( ) _

(6.5) -

\/3| Ua(t)+ Y p-xa(t), BEAx.

AEAN
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Similarly, the OS2 method can be applied to discretize the semidiscrete equation
(6.5). The corresponding fully discrete scheme can be found in Appendix D.2. Mean-
while, we can use an FFT to efficiently compute the convolution terms in (6.5) based
on the discrete Fourier—Bohr transform. Therefore, the computational complexity of
the PM in each time step is the level of O(Dlog D).

6.1.3. PAM discretization. The PAM, using a periodic system to approximate
the quasiperiodic systems, is a widely used approach to addressing quasiperiodic sys-
tems [10]. Here, we use a periodic Schrédinger equation over a finite fundamental re-
gion [0,27L), L € Ny to approximate the TQSE. Then, we can use the periodic Fourier
pseudospectral method to solve the approximated periodic Schrédinger equation. We
use D =2M L discrete points to discretize the one-dimensional periodic system. The
computational complexity in each time step is at the level of O((2M L)log(2ML)).
Appendix D.3 provides the implementation of the PAM of solving the TQSE.

6.2. Numerical results. In this subsection, we present numerical results of
solving the TQSE (6.1) by using the PM, QSM, and PAM. All algorithms are coded
by MSVC++ 14.29 on Visual Studio Community 2019. The FFT used in the PM
and PAM is based on the software FFTW 3.3.5 [33]. All computations are carried
out on a workstation with an Intel Core 2.30 GHz CPU, 16 GB RAM. The reference
solution ¢*(x,T) is obtained by using the PM with a time step size 7 =1 x 1077, a
fine mesh size h = 7/128, and a final time 7' = 0.001. In our numerical results, we
mainly show the numerical error ey and CPU time of three algorithms. First, we
give the calculation formula of the ey of the QSM, PM, and PAM. Denote the exact
solution of the TQSE

)= 3 Gi(D)e.
AeA

In the QSM, from Parseval’s equality, the numerical error is
ex =10 (@, T) = Pnop(a, T)||Z22 )

— 2
= lim 2K/ " (2, T) — Poytb (e, ) da

= D AT — (D).

AEAN

In the PM, we can obtain

ey =10 (@, T) = In (@, T)l[Zoy = D [WOA(T (7).

AN
In the PAM, assume that the exact solution of the periodic Schrodinger system (D.5)
is
T)=Y ¢p(T)e™, xe(0,2rL).
keZ
The numerical solution obtained by the PAM is
wm(z,T) = Z or(T)e*®, 2z e[0,2nL),

keAbAM
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where AYAM ={k €Z:—LM <k < LM} is a finite subset of Z containing a subset
of {k€Z:k=[L\, A€ Ay}. Then, we can compute the numerical error

e =" (@,T) — onr (@, T) | 2(0,271)) = Z [0(T) = (T

keADAM

Therefore, the errors of three methods are all measured by the convergence of corre-
sponding Fourier coefficients. Note that both the QSM and PM calculate the global
quasiperiodic system over R, while the PAM only computes a periodic approximation
system on a fundamental period [0,27L).

We present the numerical results of the PAM with M = 4N. For convenience,
we use ey to replace ep;. Through extensive experiments, we adopt N =8 (also see
Table 1) in the PAM to ensure enough numerical accuracy of discretizing TQSE.

Figure 2(a) shows the approximation error obtained by the PAM with N =8. The
approximation error ey of the PAM exhibits an oscillation phenomenon as the domain
size L increases. This behavior can be attributed to the Diophantine approximation

TABLE 1
Numerical error ey of the PM, QSM, and PAM for different N.

N 2 4 8 16 32
PM 4.132e-03 7.569e-04 2.543e-05 1.702e-08 1.748e-12
QSM 4.132e-03 7.569e-04 2.543e-05 1.702e-08 1.903e-12
PAM (L =17) 1.907e-02 1.900e-02 1.899e-02 1.899e-02 1.899e-02
PAM (L="72) 4.536e-03 4.449e-03 4.449e-03 4.449e-03 4.449e-03
PAM (L =305) 1.376e-03 1.052e-03 1.051e-03 1.051e-03 1.051e-03
PAM (L =1292) 9.219e-04 2.529e-04 2.480e-04 2.480e-04 2.480e-04
T T T T ,’l‘ + L— T T T -i-N T
hy /-‘_ * \\\ ’+‘"‘~+’,,‘\_\ l’ +
le-1 -,’ ll // “ ,I \+/ ‘\ 1 T
-"_ I ‘\ ,l ‘\ l’
& le2fF II ’ ! I, \\ ” 7
Y v C
v vt
le3 "I‘ \\ ,I B
Y]
lo-g Lt L 1 1 1 | L L 1 L 1 1
17 7 204 305 433 523 604 758 827 1012 1121 1292 1391 1530
L

(a) In the PAM, the relationship between the numerical error ey and L with N = 8.

10°

\LV5 — [LVE|

10

(b) Diophantine approximation error

Fic. 2. Approzimation error of the PAM as the domain size L increases.
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le-6

en

—fPM
leSf  —p-QSM

~=-PAM(L = 17)

(
PAM(L = 72)
le-10 - —¥—PAM(L = 305)
~O-PAM(L = 1202)

le-12 -

L 1 1 L 1
2 4 8 16 32

Fi1G. 3. The relationship between the numerical error ey and N.

error, i.e., using rational numbers to approximate the irrational number. As depicted
in Figure 2(b), the Diophantine approximation error {Lv/5} := |Lv/5 — [L\/5]|, where
[a] denotes the nearest integer to a, does not uniformly decrease with an increase
of L due to the arithmetic property of irrational number v/5. The relevant function
approximation theory on the PAM can refer to [11]. For specific values of L, such as 17,
72, 305, and 1292, the Diophantine approximation error as well as the approximation
error ey can gradually decrease.

Then, we compare the approximation error ey of the PM, QSM, and PAM. Table
1 shows the ey of three algorithms as discrete points increase. Figure 3 gives a visual
image to show the convergence rate. For the PAM, we only present these results when
L=17,72, 305, 1292. The approximation error of the PAM consists of the quasiperi-
odic approximation error determined by the Diophantine approximation error {L+/5}
and the numerical discrete error of solving a periodic Schrodinger system (D.5). The
quasipepriodic approximation error is mainly controlled by the Diophantine approxi-
mation error. The numerical discrete error is dependent on the discrete points. Once
L is fixed, the discrete points achieve a critical value; then the ey of the PAM cannot
decrease, as shown in Table 1. Therefore, the ey of the PAM is mainly determined
by the quasiperiodic approximation error. Theoretically, the ey of the PAM can de-
crease by choosing a large and reasonable L. However, the resulting computational
cost could be unbearable. More significantly, L cannot go to infinity in the numerical
computation. As a result, the quasiperiodic approximation error cannot be avoided.
Table 1 also shows that the QSM and PM both have exponentially convergent rates
in solving the TQSE, consistent with the error estimates in section 5. Besides, the
aliasing error [|[Ryv| z2r) of PM is almost smaller than the level of 107'2, even for
the 4 x 4 grid.

We examine the efficiency of three methods by comparing CPU time in solving the
TQSE, as shown in Table 2. These results demonstrate that the CPU time required
by the QSM increases dramatically with an increase of N due to the invalidity of the
FFT. In contrast, the PM can greatly save computational amounts by using an FFT.
The CPU time of the PAM has a similar behavior as the PM due to the availability of
the FFT. However, the PAM is less efficient than the PM since the PAM needs more
discrete nodes.

Finally, combining the data in Table 1 and Table 2, we plot the relationship
between ey and CPU time in Figure 4. These results show that the PM is a high-
precision and efficient algorithm in solving the TQSE (6.1).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/16/24 to 115.27.207.196 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

370 KAI JIANG, SHIFENG LI, AND PINGWEN ZHANG

TABLE 2
Required CPU time (s) of the PM, QSM, and PAM for different N.

N 2 4 8 16 32
PM 0.051 0.077 0.237 0.716 2.873
QSM 0.125 1.020 13.366 198.301 3347.355
PAM (L =17) 0.331 0.593 1.146 2.554 4.204
PAM (L ="72) 0.994 1.833 3.741 7.382 15.947
PAM (L = 305) 6.497 12.853 27.451 64.089 109.709
PAM (L =1292) 28.625 50.074 114.273 247.594 494.179

le-2,

le-4

le-6

le-8

le-10

le-12

I 1 1 1 1 1 1
0.1 0.5 3 30 100 500 3000

F1G. 4. The relationship between the numerical error en and CPU time (s) when N =
2,4,8,16, 32, respectively.

7. Discussion and conclusions. In this paper, we present the convergence
analysis of the PM and QSM by revealing the relation between quasiperiodic func-
tions and their parent functions. These results demonstrate that the PM and QSM
have exponential decay both in £2(R%)- and £>°(R?)-norm and that the QSM (PM) is
an extension of the periodic Fourier spectral (pseudospectral) method. We also ana-
lyze the computational complexity of these methods. The PM can use an FFT, while
the QSM cannot. Finally, we adopt a one-dimensional TQSE to show the accuracy
and efficiency of the PM, QSM, and PAM in solving quasiperiodic systems. Numer-
ical results demonstrate that the PM and QSM also have exponential convergence,
while the approximation error of the PAM is mainly dominated by the Diophantine
approximation error. These results show that the PM is an accurate and efficient
method for solving quasiperiodic systems. It is the first theoretical work of the PM.
This work encourages us to further investigate the error estimates of the PM and
QSM in a general function space, as well as the development of advanced numerical
methods and theories for solving more quasiperiodic systems.

Appendix A. The proof of Theorem 5.1.

Proof. For k € K7, it follows that ||k|2 < v/nN. By the Cauchy—Schwarz in-
equality and applying Theorem 4.1, we have

IPNf = Flze@ay= D>, |flP<CNT2* >~ |k[5*fel®

keZ" /KT keZr /Ky,

=CN7* Y k|3 |E® <ONT2FL.
keZn /KT

This completes the proof. 0
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Appendix B. Error analysis of the QSM without the help of parent
functions. Here, we present an approximation analysis of the QSM in the quasiperi-
odic function space by imposing some assumptions on the projection matrix.

THEOREM B.1. Suppose that f(x) € HEp(RY) and that the nonzero minimum
singular value omin(P) of the projection matriz P satisfies omin(P) > 60 > 0. Then,
there exists a constant C(0), independent of f and N, such that

IPNf = fllc2may S CO)NTY fla-

Proof. For k € K7, it follows that ||k|2 < v/nN. By the Cauchy—Schwarz in-
equality, we have

IPNS = o= D lP= > AP

ke / K} XEA/AY,
< (omin(P)ON)>* 3 A/ <CONT| .
AEA/AY,
This completes the proof. 0

THEOREM B.2. Suppose that f(x) € HgP(Rd), that the nonzero minimum sin-
gular value omin(P) of the projection matriz P satisfies omin(P) > 0 > 0, and that
a>q>d/2. Then, there exists a constant C(0), independent of f and N, such that

1PN = fllzoeay < COINTfla

Proof. Applying the Cauchy—Schwarz inequality, we obtain

[Pxf = fllze @y = sup > foe' PR e < > Afkl= D> 1A

xe

keZ K3, keZn /K7, AEA/AY,
1/2 1/2
< D I o IABIAR
AEA/AY, XEA/AY,
1/2 1/2
= X I Do IR A
AEA/A AEA/A
1/2 1/2
<Clomin(P)NIT [ > |AIz™ > IAIBAR
AEA/AS, AEA/AY,
1/2 12
<cimn @i | 5 ) (S )
AEA/AY, AEA
=CONT[f]a-
The last inequality holds due to 325 /a4 IAll5%? < 0o when ¢ > d/2. O
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Appendix C. Another proof of Theorem 5.3. According to the definition
of £L2(R%)-norm, we have

||f—INf||f:2(Rd): Z | fiel” + Z ka+2Nm

Ak,EA/A(]iV AkEA(Ji\] mEZ:}
=If = P Sl zagay + 1B 1122 oe)-
Recall that ||k||3 = > |k;|?, and by the Cauchy-Schwarz inequality, we have

2 2

Z fk+2NPm = Z FkJrQNm

mezn mezn

=| > (+[lk+2Nm|3)"% - (1+ [k +2Nm|3)? Feronm

mezr
< D (+[k+2NmlB) - (1 + [k +2Nm3) | Fagonml
mezL} mezLy

Since |k;| <N, j=1,...,n, for |m;| > 1, it follows that
Ky + 2N > 2Ny | — k| > (2my] = )N > 1,

Thus, for m € Z" with |m;| > 1, we have

—x

1+ [k +2Nm|3)~" = |1+ > |k; +2Nm;|?
j=1

-« -
n

< 1+Z((2\mj|—1)N)2 SN2 (2fmy] - 1)

j=1

Then,

—Q

> (+|[lk+2Nm|3) "> <N~ 2“Z2TC’T Z Z 22|mj|f1)2

mezZy mi=1 me=1

When o > 7/2, the series $7° ... 5+ {Z’T_ (2lm;] — 1)2}7 converges. For

mi=1 my=1 j=1
a>n/2, we have

—Q

d
S::Z _212\m]|71 < 00.
j=
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Therefore,

IBN flZeay= D | D Frronm

kEKT |meZy

<NT2G 3N (U e+ 2Nm D) Feponm?
keEK, meln

SNTS2% 373 [k 2NmE Fponml?
keK} meln
<2ON28|F|2.

Applying Lemma 5.1 yields
If = Infllc2ray S CN™|Fa.

Appendix D. Fully discrete scheme of the TQSE (6.1). We apply the
OS2 method to solving semidiscrete equations (6.3) and (6.5) in the time direction.
Meanwhile, we present the implementation details of the PAM to solve the TQSE
(6.1). Let 7 be the time size, and let the mth time iteration step t,, =mr.

D.1. Fully discrete scheme using the QSM. From t,, to t,,+1, the OS2
scheme consists of three steps to solving (6.3).
Step 1: Consider the following ordinary differential equation for ¢ € [ty,, tm +7/2],

dip (t)

(D.1) i

1 N
= §|ﬁ|2¢ﬁ(t)7
with initial value 9g(t,,). We can analytically solve (D.1) and obtain
~ ~ T (s 27_ ~
(D.Q) ¢B(tm) =Yg (tm + 5) =e U8 )/4wﬁ(tm)'

Step 2: Consider (D.3) for t € [t, tm11],

dp(t) _

(D.3) i

S Gaata(t) =gt Ds(2)),

AEAN

with initial value qgg (tm). To address the convolution term, we apply the fourth-order
Runge-Kutta (RK4) method to solve (D.3) in the reciprocal space. Concretely, let
k1= g(tm, dp(tm)), k2 = g(tm+7/2,05(tm) +7k1/2), ks = g(tm+7/2,dp(tm)+7k2/2),
and ky = g(tm, + 7, ¢(tm) + Tks); then ¢p(tms1) = @p(tm) + 7(k1 + 2ka + 2k3 + kq) /6.

Step 3: Still consider (D.1), but with initial value qgg (tmg1) fort € [ty +7/2,tmi1];
then we can obtain 1/}5(tm+1) analytically.

Here, we analyze the computational complexity for each time step. In Steps 1
and 3, the QSM can analytically solve (D.1), resulting in D multiplication operators,
respectively. In Step 2, due to the RK4 scheme and convolution summations, there
are 8D? + 14D operators. Therefore, the computational complexity of the QSM in
solving (6.1) is the level of O(D?).

D.2. Fully discrete scheme using the PM. From ¢,, to t,4+1, the OS2
scheme also contains three steps in solving (6.5). Step 1 and Step 3 are similar to
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Appendix D.1. In Step 2, we can calculate the convolution terms of (6.5) by using a
two-dimensional FFT; we obtain

~ o T
(I)(ijtm>: Z q)k(tm)elk Yi,
keK?

where ®p(t,,) is obtained by Step 1. Consider the equation for ¢ € [t tmt1]s
(D.4) iV =V (y;)¥(y;,t) = w(t, ¥(y;,t)),

where the initial value is ®(y;,,,) and V (y) is the parent function corresponding to
v(x). To make a fair comparison with the QSM, we still use the RK4 to solve (D.4)
in physical space. Let ki = w(tm, ®(y;,tm)), k2 = w(tm +7/2,2(y;,tm) + 7k1/2),
ks = w(tm + 7/2,9(y;,tm) + 7h2/2), and ky = w(ty, + 7,9(y;,tm) + Tk3); then
Dy, tmr1) = P(Y,tm) + 7(k1 + 2k + 2k3 + k4) /6. Again using an FFT, we obtain
Pp(tm+1) = (,e’ ¥i) .

Next, we analyze the computational complexity of each time step. Similarly, the
differential systems in Steps 1 and 3 can be analytically solved in the reciprocal space,
resulting in D multiplication operators, respectively. In Step 2, due to the availability
of the FFT, the convolutions in (6.5) can be economically calculated in physical space
as a dot product as shown in (D.4), which raises O(Dlog D) operators. Therefore,
the computational complexity of the PM in solving (6.1) is the level of O(Dlog D).

D.3. Implementation of the PAM of solving the TQSE (6.1). We give
the implementation of the PAM to solve the TQSE (6.1). In the PAM, we use a one-
dimensional periodic Schrodinger equation (PSE) to approximate the TQSE (6.1) over
a finite region [0,27L). Concretely, we use the periodic functions u(z) and ¢(z,t) to
approximate v(x) and ¥ (z,t), respectively. Denote

Au)={heZ:h=[L\, € A1 };

then

where @y, = iz = 0x = 1. Therefore, the PAM solves the one-dimensional PSE

T 2 X
(D.5) id“”;t’t) :%a gggj) +u(@)p(e,t), (z,1)€[0,2xL) x [0,7],

where the initial periodic function ¢g(z) is the approximate periodic function of
Yo(xz). We use the periodic Fourier pseudospectral method and the OS2 method
to discretize (D.5) in space and time directions, respectively. Since the PAM can use
one-dimensional FFT to solve (D.5) and the number of grid points is 2M L, then the
computational complexity is O((2M L)log(2M L)) of each time step.
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