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Abstract. Quasiperiodic systems, related to irrational numbers, are space-filling structures
without decay or translation invariance. How to accurately recover these systems, especially for
low-regularity cases, presents a big challenge in numerical computation. In this paper, we propose
a new algorithm, the finite points recovery (FPR) method, which is available for both continuous
and low-regularity cases, to address this challenge. The FPR method first establishes a homomor-
phism between the lower-dimensional definition domain of quasiperiodic function and the higher-
dimensional torus, and then recovers the global quasiperiodic system by employing an interpolation
technique with finite points in the definition domain without dimensional lifting. Furthermore, we
develop accurate and efficient strategies of selecting finite points according to the arithmetic prop-
erties of irrational numbers. The corresponding mathematical theory, convergence analysis, and
computational complexity analysis on choosing finite points are presented. Numerical experiments
demonstrate the effectiveness and superiority of the FPR approach in recovering both continuous
quasiperiodic functions and piecewise constant Fibonacci quasicrystals while existing spectral meth-
ods encounter difficulties in recovering piecewise constant quasiperiodic functions.
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1. Introduction. Quasiperiodic systems, related to irrational numbers, have at-
tracted extensive attention due to their fascinating mathematical properties [31, 5, 27,
28, 4]. Quasiperiodic behavior is widely observed in physics and materials sciences,
such as many-body celestial systems, quasicrystals, incommensurate systems, poly-
crystalline materials, and quantum systems [29, 32, 9, 8, 20, 17]. Among all quasiperi-
odic systems, the low-regularity case is of particular interest, such as the discrete
Schr\"odinger operator with quasiperiodic potential, the Fibonacci photonic quasicrys-
tal, and the discrete time quasicrystal [1, 2, 3, 6, 12, 33, 38, 10, 26, 35, 34, 13, 14, 36].

Quasiperiodic systems pose significant challenges for numerical computation and
corresponding theoretical analysis, due to their space-filling order without decay.
Several numerical methods have been developed to address quasiperiodic systems.
A widely used method, the periodic approximation method (PAM), employs peri-
odic systems to approximate quasiperiodic systems over a finite domain, correspond-
ing to using rational numbers to approximate irrational numbers in reciprocal space.
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1714 KAI JIANG, QI ZHOU, AND PINGWEN ZHANG

PAM only approximates partial quasiperiodic systems and inevitably brings the ratio-
nal approximation error, unless the period becomes infinity [19]. Numerical examples
have demonstrated that the rational approximation error plays a dominate role in
numerically computing quasiperiodic systems [22, 21]. An accurate algorithm is the
quasiperiodic spectral method (QSM) [23]. Based on the Fourier--Bohr transforma-
tion, QSM can expand quasiperiodic functions with trigonometric polynomials. The-
oretical analysis has shown that QSM has exponential convergence for smooth cases
[18]. However, when dealing with nonlinear problems, the computational cost of QSM
becomes unaffordable due to the unavailability of the fast Fourier transform (FFT).
Another accurate approach is the projection method (PM) that captures the essential
feature of quasiperiodic systems which can be embedded into higher-dimensional peri-
odic systems [22]. PM is an extension of the periodic Fourier pseudospectral method.
The spectral allocation technique is employed to represent quasiperiodic functions by
introducing the discrete Fourier--Bohr transformation. PM has exponential conver-
gence for smooth systems and can utilize FFT to reduce computational complexity
[18].

Existing Galerkin spectral approaches, especially PM, have made progress in nu-
merically solving quasiperiodic systems, including quasicrystals [22, 21], incommensu-
rate quantum systems [24, 11], topological insulators [37], and grain boundaries [8, 20].
However, none of these methods is suitable for solving low-regularity quasiperiodic
problems. For example, consider the piecewise dielectric function of a one-dimensional
(1D) Fibonacci photonic quasicrystal (see Example 5.5 for details). Figure 1 shows the
numerical result obtained by the PM method, which is completely inconsistent with
the exact value. Moreover, the Gibbs phenomenon appears in a neighborhood of the
jump discontinuity. Hence, accurately recovering global low-regularity quasiperiodic
systems remains an open problem, which motivates the development of new numerical
algorithms.

In this work, we pay attention to developing a new algorithm for recovering both
continuous and low-regularity quasiperiodic systems. Our contributions are summa-
rized as follows.

\bullet We propose a new approach, the finite points recovery (FPR) method, for
accurately recovering arbitrary dimensional quasiperiodic systems. A homo-
morphism between the lower-dimensional definition domain of the quasiperi-
odic function and the higher-dimensional torus is established. Based on this
homomorphism, the FPR method recovers the global quasiperiodic system
by employing an interpolation technique with finite points in the definition
domain without dimensional lifting.

(a) Exact value (b) Result solved by PM method

Fig. 1. Comparison of the exact value and the numerical result obtained by the PM method
for the piecewise dielectric function when x \in [1000,1020). Note: color appears only in the online
article.
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RECOVER QUASIPERIODIC SYSTEMS BY FINITE POINTS 1715

\bullet We classify quasiperiodic systems into two categories according to the arith-
metic properties of irrational numbers: badly approximable systems and good
approximable systems. For each category, we employ distinct strategies for fi-
nite point selection within the FPR method, to ensure accuracy and efficiency
in the recovery process.

\bullet We provide a detailed exposition of the mathematical theory underlying the
FPR method, along with rigorous proofs. Moreover, we present the conver-
gence analysis of the algorithm and the computational complexity analysis
on choosing finite points.

\bullet We apply the FPR method to recover two classes of quasiperiodic systems, in-
cluding continuous quasiperiodic functions and piecewise constant Fibonacci
quasicrystals. Numerical experiments demonstrate the effectiveness and su-
periority of the FPR approach in recovering the above two classes, while the
PM method fails to handle low-regularity systems.

The rest of this paper is organized as follows. In section 2, we give necessary
notations and preliminary knowledge. In section 3, we establish a homomorphism
between the lower-dimensional definition domain of the quasiperiodic function and
the higher-dimensional torus. In section 4, we propose the FPR method, analyze its
convergence and computational complexity, and discuss the impact of the arithmetic
properties of irrational numbers. In section 5, we show the accuracy and superiority
of the FPR method in handling both continuous and low-regularity quasiperiodic
systems. In section 6, we carry out the summary and give an outlook of future work.

2. Preliminaries. In this section, we introduce the requisite notations and pre-
liminary knowledge. \bfitI n is the n-order identity matrix. \BbbN + denotes the set of all
positive integers. The Cartesian product of two sets, X and Y , denoted by X \times Y ,
is the set of all ordered pairs (x, y), where x and y are elements of X and Y , re-
spectively. Xd denotes the Cartesian product of d sets X. \BbbT n = \BbbR n/\BbbZ n is the
n-dimensional torus. rank\BbbR (rank\BbbQ ) denotes the rank of a set of vectors or a matrix
over the number field \BbbR (\BbbQ ). dim\BbbR (dim\BbbQ ) denotes the dimension of a space over
\BbbR (\BbbQ ). For a vector \bfitalpha = (\alpha i)

n
i=1 \in \BbbR n, [\bfitalpha ] is the round down symbol of \bfitalpha in each

coordinate variable, and the infinity norm of \bfitalpha is defined by \| \bfitalpha \| \infty :=max1\leq i\leq n | \alpha i| .
For a region \scrH = \{ \bfits = (si)

n
i=1 : \alpha i \leq si \leq \beta i\} \subset \BbbR n, the vector \langle \scrH \rangle := (\beta i  - \alpha i)

n
i=1

measures the size of \scrH and \langle \scrH \rangle i denotes its ith component.
For an n-dimensional periodic function F (\bfits ), there exists a set of primitive vectors

\{ \bfita 1, . . . ,\bfita n\} that forms a basis of \BbbR n. The corresponding Bravais lattice is

\scrB := \{ \bfitR \in \BbbR n :\bfitR = \ell 1\bfita 1 + \cdot \cdot \cdot + \ell n\bfita n, \ell = (\ell i)
n
i=1 \in \BbbZ n\} .

For each \bfitR \in \scrB , F (\bfits ) satisfies F (\bfits +\bfitR ) = F (\bfits ). The unit cell of F (\bfits ), denoted by \Omega ,
is the fundamental domain

\Omega := \{ \bfits =w1\bfita 1 + \cdot \cdot \cdot +wn\bfita n :\bfitw = (wi)
n
i=1 \in [0,1)n\} .

There always exists an invertible linear transformation such that the basis \{ \bfita 1, . . . ,\bfita n\} 
can be transformed into a standard orthonormal basis \{ \bfite 1, . . . ,\bfite n\} . This enables us
to set forth all the theoretical analysis in this paper based on the assumption that the
unit cell is a cube \Omega = [0,1)n.

Before we proceed, let's provide some required definitions.

Definition 2.1. A matrix \bfitP \in \BbbR d\times n is the projection matrix if it belongs to the
set \BbbP d\times n defined as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1716 KAI JIANG, QI ZHOU, AND PINGWEN ZHANG

\BbbP d\times n := \{ \bfitP = (\bfitp 1, . . . ,\bfitp n)\in \BbbR d\times n : rank\BbbR (\bfitP ) = d, rank\BbbQ (\bfitp 1, . . . ,\bfitp n) = n\} .
Definition 2.2. A d-dimensional function f(\bfitx ) is quasiperiodic, if there exists

an n-dimensional periodic function F (\bfits ) and a projection matrix \bfitP \in \BbbP d\times n, such that
f(\bfitx ) = F (\bfitP T\bfitx ) for all \bfitx \in \BbbR d. F (\bfits ) is called the parent function of f(\bfitx ), and we
refer to \BbbR d as the physical space and \BbbR n as the superspace.

Definition 2.3. Let \scrG be a set in the physical space \BbbR d and \bfitP \in \BbbP d\times n be a
projection matrix. The lift map \scrL is defined by

\scrL : \scrG \rightarrow \BbbR n,

\bfitx \mapsto \rightarrow \bfitP T\bfitx .

Remark 2.1. Let \scrS := \scrL (\BbbR d) be a subspace of \BbbR n. From the definition of the lift
map \scrL , dim\BbbR (\scrS ) = d and dim\BbbQ (\scrS ) = n. For convenience, we refer to \scrS as an irrational
slice in superspace \BbbR n. It is straightforward to show that \scrL is an isomorphism from
\BbbR d to \scrS .

Remark 2.2. The irrational slice \scrS contains one and only one lattice point \bfitR \in \scrB 
(see Chapter 2.5 in [27]). For convenience, we set 0= (0, . . . ,0)\in \scrS . For general cases,
only one translation operation is required for the entire Bravais lattice.

Definition 2.4. For any set \scrH of superspace \BbbR n, the modulo map \scrM is defined
by

\scrM : \scrH \rightarrow \BbbT n,

\bfits \mapsto \rightarrow \bfits ,

where \bfits := \bfits + \BbbZ n is a left coset of \BbbZ n. We denote the image of \scrH under \scrM by
\scrH :=\scrM (\scrH ) =\scrH /\BbbZ n.

Remark 2.3. The modulo map \scrM is a natural homomorphism from \BbbR n to \BbbT n

with \BbbR n =\BbbR n/\BbbZ n =\BbbT n and Ker(\scrM ) =\BbbZ n.

Remark 2.4. \BbbT n and \Omega are equivalent under the sense of isomorphism. Specifi-
cally, we can define an isomorphism \Phi : \BbbT n \rightarrow \Omega that maps each coset of \BbbT n to its
representative in \Omega .

3. \bfscrS is dense in \BbbT \bfitn . In this section, we first observe that the n-dimensional
irrational slice \scrS , after the modulo operation, is dense in \BbbT n. We then provide a
rigorous proof of this observation. Next, we introduce a homomorphism between \BbbR d

and \BbbT n. Finally, we establish a close relationship between the arithmetic properties
of irrational numbers and Diophantine approximation systems.

3.1. Observation. In this subsection, we are concerned with the distribution of
\scrS = \scrM (\scrS ) in \BbbT n. To describe the process of the modulo map \scrM acting on \scrS , we
present an equivalent expression of \scrS . Since dim\BbbR (\scrS ) = d, we can decompose each
point \bfits \in \scrS as \bfits = (\bfitt ,\bfitr )T , where \bfitt = (ti)

d
i=1, \bfitr = (ri)

n - d
i=1 , and ri (i= 1, . . . , n - d) is a

linear function of t1, . . . , td, i.e.,

ri = ri(t1, \cdot \cdot \cdot , td) = \alpha i1t1 + \cdot \cdot \cdot + \alpha idtd,

where \alpha ij \in \BbbR , j = 1, . . . , d. Let us introduce matrices \bfitA \in \BbbR (n - d)\times d and \bfitQ \in \BbbR n\times d,
where

\bfitA =

\left[   \alpha 11 \cdot \cdot \cdot \alpha 1d

...
...

\alpha n - d,1 \cdot \cdot \cdot \alpha n - d,d

\right]   

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RECOVER QUASIPERIODIC SYSTEMS BY FINITE POINTS 1717

and

\bfitQ =

\biggl[ 
\bfitI d

\bfitA 

\biggr] 
.

Using these two matrices, we can express the slice \scrS as

\scrS = \{ \bfits = (\bfitt ,\bfitr )T : \bfitr =\bfitA \bfitt , \bfitt \in \BbbR d\} 
= \{ \bfits = (\bfitt ,\bfitr )T : \bfits =\bfitQ \bfitt , \bfitt \in \BbbR d\} .

(3.1)

Remark 3.1. The matrix \bfitQ has similar properties to \bfitP T . Specifically, its row
vectors \bfitq 1, . . . , \bfitq n \in \BbbR d satisfy rank\BbbQ (\bfitq 1, . . . ,\bfitq n) = n and rank\BbbR (\bfitQ ) = d. In fact, \bfitP T

can be transformed into \bfitQ by a linear transformation over \BbbQ .

We take an example to display the above observation. Consider a 2D irrational
slice \scrS = \{ \bfits = (t, r)T : r=

\surd 
2t, t\in \BbbR \} , Figure 2 illustrates the process of modulo map

\scrM acting on \scrS within 9 unit cells. The horizontal and vertical axes in the 2D plane
are denoted as the t-axis and r-axis, respectively. The modulo operation is divided
into two steps, first along the t-axis (see Figure 2(b)) and then along the r-axis (see
Figure 2(c)). The resulting slice family of \scrS after the modulo operation is denoted as
\scrS . Figure 3 shows that \scrS becomes denser in \BbbT 2 as the range of t increases.

Let \scrR := \{ 0\} \times \{ \bfitr = \bfitA \bfitt : \bfitt \in \BbbZ d\} and \scrD := \{ 0\} \times \BbbT n - d (0 = (0, . . . ,0)T \in \BbbR d);
then \scrR = \scrR /\BbbZ n = \{ 0\} \times \{ \bfitr = \bfitA \bfitt : \bfitt \in \BbbZ d\} /\BbbZ n - d = \scrS \cap \scrD . Figure 2(c) shows that
the distribution of \scrS in \BbbT n can be completely determined by the distribution of \scrR 
in \scrD , i.e., the distribution of \{ \bfitr = \bfitA \bfitt : \bfitt \in \BbbZ d\} /\BbbZ n - d in \BbbT n - d. It inspires us to

(a) S before modulo. (b) Step 1: Modulo S along
the t-axis.

(c) Step 2: Modulo S along the
r-axis after step 1.

Fig. 2. Illustration of the process of modulo a 2D irrational slice \scrS = \{ \bfits = (t, r)T : r =
\surd 
2t, t \in 

\BbbR \} . The images depict the modulo process within 9 unit cells. Note: color appears only in the online
article.

(a) t ∈ [0, 10) (b) t ∈ [0, 30) (c) t ∈ [0, 70)

Fig. 3. \scrS in \BbbT 2, where irrational slice \scrS = \{ \bfits = (t, r)T : r =
\surd 
2t, t \in \BbbR \} . Note: color appears

only in the online article.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

6/
24

 to
 1

15
.2

7.
20

7.
19

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1718 KAI JIANG, QI ZHOU, AND PINGWEN ZHANG

develop a rigorous mathematical theory of the observation ``\scrS is dense in \BbbT n"", which
is presented in the next subsection.

3.2. Theoretical analysis. In this subsection, we abstract the above observa-
tion into a mathematical theorem and present a rigorous proof. Then we introduce a
homomorphism between \BbbR d and \BbbT n. Let us first introduce this theorem.

Theorem 3.1. For any irrational slice \scrS \subset \BbbR n, \scrS =\scrM (\scrS ) is dense in \BbbT n.

Before the proof, we need to give the definition of dense subset in the space \BbbR n,
as well as the k-variable Kronecker theorem.

Definition 3.2. Let V1 \subset V2 \subseteq \BbbR n; the subset V1 is dense in V2 if for any \bfits 2 \in V2

and any \epsilon > 0, there exists an \bfits 1 \in V1 such that \| \bfits 1  - \bfits 2\| \infty < \epsilon .

Lemma 3.3 (k-variable Kronecker theorem [15]). Given k real numbers \alpha 1, . . . ,
\alpha k, assume that 1, \alpha 1, . . . , \alpha k are \BbbQ -linearly independent; then the point set \{ (\alpha 1, . . . ,
\alpha k)

Tm :m\in \BbbZ \} /\BbbZ k is dense in \BbbT k.

With these preparations, we start the proof of Theorem 3.1.

Proof. First, let us establish the equivalence between ``\scrS =\scrM (\scrS ) is dense in \BbbT n""
and ``\{ \bfitr = \bfitA \bfitt : \bfitt \in \BbbZ d\} /\BbbZ n - d is dense in \BbbT n - d."" From Definition 3.2, \scrS = \scrM (\scrS )
is dense in \BbbT n means that for each \bfits \ast = (\bfitt \ast ,\bfitr \ast )T \in \BbbT n and \epsilon > 0, there exists an
\bfits = (\bfitt ,\bfitA \bfitt )T \in \scrS such that \| \bfits  - \bfits \ast \| \infty < \epsilon . Let \bfitb \ast := \bfitr \ast  - \bfitA \bfitt \ast ; then \bfitb \ast \in \BbbT n - d.
The arbitrariness of \bfits \ast in \BbbT n implies the arbitrariness of \bfitb \ast in \BbbT n - d. Meanwhile, let
\bfitt \prime := [\bfitt ] \in \BbbZ d; then \bfits \prime = (\bfitt \prime ,\bfitA \bfitt \prime )T \in \scrS satisfies \bfitA \bfitt \prime = \bfitA \bfitt \prime  - \bfitA \bfitt \prime = \bfitA \bfitt  - \bfitA \bfitt := \bfitb .
Note that \| \bfits  - \bfits \ast \| \infty < \epsilon implies \| \bfitb  - \bfitb \ast \| \infty < \epsilon . Then for each \bfitb \ast \in \BbbT n - d and \epsilon > 0,
there exists a \bfitt \prime \in \BbbZ d such that \| \bfitA \bfitt \prime  - \bfitb \ast \| \infty < \epsilon , which exactly means ``\{ \bfitr =\bfitA \bfitt : \bfitt \in 
\BbbZ d\} /\BbbZ n - d is dense in \BbbT n - d"". Here, we have completed the proof for one direction of
the equivalence, and the proof for the other direction can be obtained similarly from
the above process.

Next, we use the induction method on the dimension d of \bfitt to prove that ``\{ \bfitr =
\bfitA \bfitt : \bfitt \in \BbbZ d\} /\BbbZ n - d is dense in \BbbT n - d."" When d = 1, \bfitA = (\alpha 11, . . . , \alpha n - 1,1)

T , \bfitQ =
(1, \alpha 11, . . . , \alpha n - 1,1)

T , and the elements of \bfitQ are \BbbQ -linearly independent. By Lemma
3.3, \{ (\alpha 11, . . . , \alpha n - 1,1)

Tm : m \in \BbbZ \} /\BbbZ n - 1 is dense in \BbbT n - 1. Hence, \{ \bfitr = \bfitA t : t \in 
\BbbZ \} /\BbbZ n - 1 is dense in \BbbT n - 1. Assume that the conclusion holds when d = k  - 1, we
prove that it also holds for d= k in two cases.

Case 1: Suppose that the kth column of matrix \bfitA consists entirely of rational
numbers, i.e., \alpha 1k, . . . , \alpha n - k,k \in \BbbQ . Note that

\bfitr =\bfitA \bfitt =

\left[   \alpha 11 \cdot \cdot \cdot \alpha 1,k - 1 \alpha 1k

...
...

...
\alpha n - k,1 \cdot \cdot \cdot \alpha n - k,k - 1 \alpha n - k,k

\right]   
\left[   t1...
tk

\right]   
=

\left[   \alpha 11 \cdot \cdot \cdot \alpha 1,k - 1

...
...

\alpha n - k,1 \cdot \cdot \cdot \alpha n - k,k - 1

\right]   
\left[   t1

...
tk - 1

\right]   +

\left[   \alpha 1k

...
\alpha n - k,k

\right]   tk.

Define matrices \bfitA 1 \in \BbbR (n - k)\times (k - 1) and \bfitQ 1 \in \BbbR (n - 1)\times (k - 1) as follows:

\bfitA 1 :=

\left[   \alpha 11 \cdot \cdot \cdot \alpha 1,k - 1

...
...

\alpha n - k,1 \cdot \cdot \cdot \alpha n - k,k - 1

\right]   , \bfitQ 1 :=

\biggl[ 
\bfitI k - 1

\bfitA 1

\biggr] 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RECOVER QUASIPERIODIC SYSTEMS BY FINITE POINTS 1719

Let \bfitt 1 = (ti)
k - 1
i=1 and \bfitr 1 =\bfitA 1\bfitt 1. Since \alpha 1k, . . . , \alpha n - k,k are rational, 1 and \alpha ik are \BbbQ -

linearly dependent for all i\in \{ 1, . . . , n - k\} . This implies that the row vectors of\bfitQ 1 are
\BbbQ -linearly independent. Otherwise, suppose that there exists i \in \{ 1, . . . , n - k\} such
that the ith row of \bfitA 1 and all rows of \bfitI k - 1 are \BbbQ -linearly dependent. Meanwhile, 1
and \alpha ik are also \BbbQ -linearly dependent. It follows that the ith row of \bfitA and all rows of
\bfitI k are \BbbQ -linearly dependent, which is contradictory to the properties of \bfitQ . According
to the inductive hypothesis, if \{ \bfitr 1 =\bfitA 1\bfitt 1 : \bfitt 1 \in \BbbZ k - 1\} /\BbbZ n - k is dense in \BbbT n - k, then
\{ \bfitr = \bfitr 1 + (\alpha 1k, . . . , \alpha n - k,k)

T tk : tk \in \BbbZ \} /\BbbZ n - k is dense in \BbbT n - k.
Case 2: Suppose that in the kth column of \bfitA , there are at most q elements

that are \BbbQ -linearly independent with 1. Without loss of generality, we assume that
\alpha n - k - q+1,k, . . . , \alpha n - k,k are the q linearly independent elements in the kth column of
\bfitA . Denote

\bfitA 1 :=

\left[          

\alpha 11 \cdot \cdot \cdot \alpha 1,k - 1 0
...

...
\alpha n - k - q,1 \cdot \cdot \cdot \alpha n - k - q,k - 1 0

0 \cdot \cdot \cdot 0 \alpha n - k - q+1,k

...
...

...
0 \cdot \cdot \cdot 0 \alpha n - k,k

\right]          
\in \BbbR (n - k)\times k

and

\bfitA 2 :=

\left[   \alpha n - k - q+1,1 \cdot \cdot \cdot \alpha n - k - q+1,k - 1

...
...

\alpha n - k,1 \cdot \cdot \cdot \alpha n - k,k - 1

\right]   \in \BbbR q\times (k - 1).

Then, we can express \bfitr as

\bfitr =\bfitA \bfitt =\bfitA 1\bfitt +\bfitA 2

\left[   t1
...

tk - 1

\right]   +

\left[   \alpha 1k

...
\alpha n - k - q,k

\right]   tk.

Let \bfitr 1 = (\bfitr 11,\bfitr 12)
T :=\bfitA 1\bfitt , where

\bfitr 11 =

\left[   \alpha 11 \cdot \cdot \cdot \alpha 1,k - 1

...
...

\alpha n - k - q,1 \cdot \cdot \cdot \alpha n - k - q,k - 1

\right]   
\left[   t1

...
tk - 1

\right]   :=\bfitA 11\bfitt 1,

\bfitr 12 =

\left[   \alpha n - k - q+1,k

...
\alpha n - k,k

\right]   tk.

Let

\bfitQ 11 :=

\biggl[ 
\bfitI k - 1

\bfitA 11

\biggr] 
\in \BbbR (n - q - 1)\times (k - 1);

then the row vectors of \bfitQ 11 are \BbbQ -linearly independent. Otherwise, the same reason
as in Case 1 gives a contradiction. Again from the inductive hypothesis, \{ \bfitr 11 =
\bfitA 11\bfitt 1 : \bfitt 1 \in \BbbZ k - 1\} /\BbbZ n - k - q is dense in \BbbT n - k - q. Moreover, 1, \alpha n - k - q+1,k, . . . , \alpha n - k,k
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1720 KAI JIANG, QI ZHOU, AND PINGWEN ZHANG

are \BbbQ -linearly independent. From Lemma 3.3, \{ \bfitr 12 = (\alpha n - k - q+1,k, . . . , \alpha n - k,k)
T tk :

tk \in \BbbZ \} /\BbbZ q is dense in \BbbT q. Therefore, \{ \bfitr 1 = (\bfitr 11,\bfitr 12)
T \} /\BbbZ n - k is dense in \BbbT n - k, and

then \{ \bfitr = \bfitr 1 +\bfitA 2\bfitt 1 + (\alpha 1k, . . . , \alpha n - k - q,k)
T tk\} /\BbbZ n - k is dense in \BbbT n - k.

To summarize, we have proven that \{ \bfitr = \bfitA \bfitt : \bfitt \in \BbbZ d\} /\BbbZ n - d is dense in \BbbT n - d.
Consequently, \scrS is dense in \BbbT n.

Further, we introduce a homomorphism between \BbbR d and \BbbT n.

Definition 3.4. A combination map \scrC is defined as the composition of the lift
map \scrL : \scrG \rightarrow \BbbR n and the modulo map \scrM :\BbbR n \rightarrow \BbbT n, denoted by

\scrC :=\scrM \circ \scrL ,

where the symbol \circ represents the composition of two maps.

Remark 3.2. The combination map \scrC is a homomorphism from \BbbR d to \BbbT n. More-
over, from Theorem 3.1, \scrC (\BbbR d) is dense in \BbbT n.

Based on this homomorphism, we can obtain the following theorem which plays
a crucial role in our proposed FPR method.

Theorem 3.5. If f(\bfitx ) is a d-dimensional quasiperiodic function, there exists a
parent function F (\bfits ) and a projection matrix \bfitP \in \BbbP d\times n, such that f(\bfitx ) = F (\bfitP T\bfitx )
for all \bfitx \in \BbbR d. Then

f(\bfitx ) = F (\scrC (\bfitx )) \forall \bfitx \in \BbbR d,

where the combination map \scrC is defined by Definition 3.4.

Proof. From the definition of \scrL ,

f(\bfitx ) = F (\scrL (\bfitx )) \forall \bfitx \in \BbbR d.

Further, from the periodicity of F (\bfits ),

F (\bfits ) = F (\scrM (\bfits )) \forall \bfits \in \BbbR n.

Therefore,

f(\bfitx ) = F (\scrM (\scrL (\bfitx ))) = F (\scrC (\bfitx )) \forall \bfitx \in \BbbR d.

Using the homomorphism \scrC and Theorem 3.5, we can locate the point in a unit
cell of the parent function, corresponding to a point in physical space, and obtain the
value of the parent function at this point. This allows us to directly carry out our
algorithm in the physical space based on finite points, without the need of dimensional
lifting.

3.3. \bfscrS = \BbbT \bfitn 
or \bfscrS \not = \BbbT \bfitn 

. In this subsection, we further explore whether \scrS =\BbbT n

or not. From the proof of Theorem 3.1, this question is equivalent to whether \{ \bfitr =
\bfitA \bfitt : \bfitt \in \BbbZ d\} /\BbbZ n - d = \BbbT n - d holds true or not. It is closely related to the Diophantine
approximation problem. For a given matrix \bfitA \in \BbbR k\times d, and for each \varepsilon > 0, \bfitr 0 \in \BbbT k,
we want to know whether there exists a solution \bfitt \in \BbbZ d satisfying the k-dimensional
Diophantine system

\| \bfitA \bfitt /\BbbZ k  - \bfitr 0\| \infty \leq \varepsilon .(3.2)

Remark 3.3. For a d-dimentional quasiperiodic function f(\bfitx ), if its projection
matrix \bfitP \in \BbbR d\times n fulfills that \bfitP T can be linearly transformed over \BbbQ into the form
\bfitQ = (\bfitI d,\bfitA )T , then we refer to f(\bfitx ) as being related to the (n  - d)-dimensional
Diophantine system (3.2).
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RECOVER QUASIPERIODIC SYSTEMS BY FINITE POINTS 1721

Definition 3.6. For each positive \varepsilon , \scrG (\varepsilon ) is the least region of the Diophantine
system (3.2), if \langle \scrG (\varepsilon )\rangle \in \BbbN d

+ and \scrG (\varepsilon ) contains a solution \bfitt \in \BbbZ d of (3.2).

Lemma 3.7 (Chapter 1.3 in [27]). For each matrix \bfitA \in \BbbR k\times d, the least region
\scrG (\varepsilon ) satisfies

\langle \scrG (\varepsilon )\rangle i \geq 
1

2\varepsilon k
, i= 1, . . . , d.

Next, we discuss the Diophantine approximation systems from two aspects, badly
approximable systems and good approximable systems, based on the arithmetic prop-
erties of irrational numbers in \bfitA .

3.3.1. Badly approximable systems.
Definition 3.8. A matrix \bfitA \in \BbbR k\times d is badly approximable, if there exists a

sequence of positive integers C1, . . . ,Cd, such that the least region \scrG (\varepsilon ) fulfills

1

2\varepsilon k
\leq \langle \scrG (\varepsilon )\rangle i \leq 

Ci

\varepsilon k
, i= 1, . . . , d.

When \bfitA is a badly approximable matrix, we call (3.2) a badly approximable system.

Remark 3.4. When k = 1, \bfitA becomes a badly approximable irrational number.
The set of badly approximable irrational numbers has the same cardinality as \BbbR . In
particular, all quadratic irrational numbers are badly approximable [7].

Remark 3.5. The upper bound of \langle \scrG (\varepsilon )\rangle well controls the existence range of the
solution, which is also known as the rapid filling property of badly approximable
systems [27].

Lemma 3.9 (Chapter 1.3 in [27]). When \bfitA is a badly approximable matrix, there
exists a positive constant C such that, for each \bfitt \in \BbbZ d\setminus \{ 0\} and \bfitr 0 \in \BbbT k,

\| \bfitA \bfitt /\BbbZ k  - \bfitr 0\| \infty \geq C

\| \bfitt \| k\infty 
> 0.(3.3)

For badly approximable systems, (3.3) implies that there is no \bfitt \in \BbbZ d such that
\bfitA \bfitt /\BbbZ k = \bfitr 0 holds for any \bfitr 0 \in \BbbT k. Therefore, when k = n - d, the first conclusion of
this subsection comes out naturally.

Theorem 3.10. When \bfitA \in \BbbR (n - d)\times d is a badly approximable matrix, \{ \bfitr = \bfitA \bfitt :
\bfitt \in \BbbZ d\} /\BbbZ n - d \not =\BbbT n - d, i.e., \scrS \not =\BbbT n.

3.3.2. Good approximable systems.
Definition 3.11. An irrational number \alpha is good approximable, if its continued

fraction expansion \alpha = [a0, a1, . . . , an, . . .] satisfies

lim
n\rightarrow \infty 

an =\infty .

Remark 3.6. The set of good approximable numbers contains all Liouville numbers
(see [25] for the definition of Liouville numbers). Meanwhile, some famous transcen-
dental numbers, like e and \pi , are not Liouville numbers, but good approximation
numbers. Good approximable numbers form the complement of the set of badly
approximable numbers within the set of irrational numbers [27].

Definition 3.12. A matrix \bfitA \in \BbbR k\times d is good approximable if all irrational num-
bers in matrix \bfitA are good approximable. When \bfitA is good approximable, we call (3.2)
a good approximable system.
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1722 KAI JIANG, QI ZHOU, AND PINGWEN ZHANG

Differently from badly approximable systems, good approximable systems have
arbitrary approximation property [16]. It means that when \bfitA is good approximable,
for each \bfitr 0 \in \BbbT k, there exists a \bfitt \in \BbbZ d such that \bfitA \bfitt /\BbbZ k = \bfitr 0. Then we obtain the
following conclusion when k= n - d.

Theorem 3.13. When \bfitA \in \BbbR (n - d)\times d is a good approximable matrix, \{ \bfitr = \bfitA \bfitt :
\bfitt \in \BbbZ d\} /\BbbZ n - d =\BbbT n - d, i.e., \scrS =\BbbT n.

4. Algorithm and analysis. From Theorem 3.5, the global information of a
quasiperiodic function is contained in the unit cell of the parent function. However,
in practice, performing calculations in superspace may lead to an unbearable compu-
tational complexity. In this section, we propose a new algorithm, the FPR method,
to recover the global quasiperiodic function by employing an interpolation technique
with finite points in physical space. We also present the convergence analysis of the
FPR method and the computational complexity of choosing finite points.

4.1. FPR method. In this subsection, we present the FPR method in a step-
by-step way. Assume that the projection matrix \bfitP \in \BbbP d\times n of the quasiperiodic
function f(\bfitx ) is known, and \bfitP T can be linearly transformed over \BbbQ into the form
\bfitQ = (\bfitI d,\bfitA )T . Given a target point \bfitx \ast \in \BbbR d, the FPR method has three steps to
obtain an approximate value of f(\bfitx \ast ).

Select region \scrG . The FPR method uses finite points in physical space to recover
the global quasiperiodic function. These finite points fall in a finite region \scrG \subset \BbbR d,
which need to be determined in the first step. The selection principle of \scrG is that \scrC (\scrG )
is relatively uniform distributed in \Omega . Actually, the arithmetic properties of irrational
numbers in the projection matrix \bfitP can provide a fast way for the selection of \scrG . We
will give a more deep discussion in subsection 4.2.

Shrink region \scrG . For the target point \bfitx \ast , its image under the lift map \scrL is denoted
as \bfits \ast = (\bfitt \ast ,\bfitr \ast )T . Define \bfitb \ast :=\bfitA [\bfitt \ast ] \in [0,1)n - d. Given h > 0 and \varepsilon > 0, we traverse
the points in \scrG \cap \BbbZ d to find n - d pairs of (\bfitx i+,\bfitx i - ), i= 1, . . . , n - d, such that

| bi+i  - (b\ast i + h/2)| \leq \varepsilon /2 and | bi+j  - b\ast i | \leq \varepsilon /2 \forall j \in \{ 1, . . . , n - d\} \setminus \{ i\} ,
| bi - i  - (b\ast i  - h/2)| \leq \varepsilon /2 and | bi - j  - b\ast i | \leq \varepsilon /2 \forall j \in \{ 1, . . . , n - d\} \setminus \{ i\} ,

where

\bfitb i+ :=\bfitA \bfitt i+, \bfits i+ = (\bfitt i+,\bfitr i+)T :=\scrL (\bfitx i+),

\bfitb i - :=\bfitA \bfitt i - , \bfits i - = (\bfitt i - ,\bfitr i - )T :=\scrL (\bfitx i - ).

Note that the traverse process in \scrG \cap \BbbZ d can be performed simultaneously in each
dimension.

Furthermore, according to \bfits \ast = (\bfitt \ast ,\bfitr \ast )T := \scrM (\bfits \ast ), the region \scrG can be shrunk
to

\bigcup 
\scrG i, where

\scrG i := \{ \bfitx \in \BbbR d :\bfitx =\bfitx i + \bfitt \ast +\bfitx h,\bfitx 
i \in \{ \bfitx i+,\bfitx i - \} ,\bfitx h \in [ - h/2, h/2)d\} , i= 1, . . . , n - d.

\scrC (
\bigcup 
\scrG i) can directly enclose an interpolation element \Theta in \Omega , and the size of interpo-

lation element \Theta fulfills

h - \varepsilon \leq \| \langle \Theta \rangle \| \infty \leq h+ \varepsilon ,

where h is the target value of \langle \Theta \rangle in each dimensional, and \varepsilon determines the deviation
range of \langle \Theta \rangle in the actual selection. In concrete implementation, we usually choose

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

6/
24

 to
 1

15
.2

7.
20

7.
19

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



RECOVER QUASIPERIODIC SYSTEMS BY FINITE POINTS 1723

\varepsilon < h/10 to ensure that \langle \Theta \rangle is mainly controlled by h and hardly affected by \varepsilon .
To facilitate a clearer comprehension of this step, Figure 4 presents the process of
determining \scrG i in the \bfitt \times ri plane. Here, the vertical axis exclusively considers the
i-dimension in the \bfitr -axis.

Interpolation recovery. To approximate f(\bfitx \ast ) by the k-degree Lagrange interpo-
lation formula (LIF-k), we first select K = (k+1)n interpolation nodes \{ \bfittau i \in \BbbR d : i=
1, . . . ,K\} in

\bigcup 
\scrG i. These nodes correspond to a point set \{ \scrC (\bfittau i)\} Ki=1, which forms an

interpolation element \Theta in \Omega . Before interpolation, affine transforming the irregular
interpolation element into a rectangular shape is necessary. Then the corresponding
interpolation basis functions \{ \phi i : \BbbR n \rightarrow \BbbR : i = 1, . . . ,K\} are determined. Finally,
combining Theorem 3.5,

f(\bfitx \ast )\approx \Pi kF (\bfits \ast ) =

K\sum 
i=1

F (\scrC (\bfittau i))\phi i(\bfits \ast ) =

K\sum 
i=1

f(\bfittau i)\phi i(\bfits \ast ),

where \Pi k is the LIF-k transformation. According to Theorem 3.1, as the region \scrG 
expands, \scrC (\scrG ) gradually becomes dense in \Omega , and the approximation accuracy of
\Pi kF (\bfits \ast ) is improved accordingly.

Remark 4.1. The LIF used in the FPR method can be replaced by other inter-
polation methods, and the shape of the interpolation element can also be changed.
One can make appropriate adjustments according to specific problems in the FPR
framework.

Algorithm 4.1 summarizes the above steps of the FPR method.

Fig. 4. Process of determining \scrG i. Here, the vertical axis exclusively considers the i-dimension
in the \bfitr -axis. Note: color appears only in the online article.

Algorithm 4.1. FPR method.

Require: projection matrix \bfitP \in \BbbP d\times n, target point \bfitx \ast \in \BbbR d

1: Select region \scrG \subset \BbbR d

2: Shrink region \scrG to
\bigcup 
\scrG i

3: Interpolation recovery
\bullet Select interpolation nodes in

\bigcup 
\scrG i

\bullet Use affine transformation to obtain rectangular interpolation element
\bullet Calculate interpolation basis functions
\bullet Calculate interpolation result \Pi kF (\bfits \ast )
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1724 KAI JIANG, QI ZHOU, AND PINGWEN ZHANG

Remark 4.2. The FPR method, recovering global quasiperiodic functions from
finite points, is fundamentally based on two principles. First, there exists a homo-
morphism \scrC between the definition domain \BbbR d of the quasiperiodic function and the
high-dimensional torus \BbbT n; see Definition 3.4 and Remark 3.2. From this, Theorem
3.5 demonstrates that f(\bfitx ) = F (\scrC (\bfitx )) for all \bfitx \in \BbbR d, which implies that f(\bfitx ) over
\BbbR d is totally contained in F (\BbbT n). Then, we can employ interpolation techniques to
recover f(\bfitx ) over \BbbR d from finite points.

4.2. How to select region \bfscrG . In the process of selecting region \scrG , we have
observed that, in many cases, a relatively small region \scrG can result in a uniform
distribution of \scrC (\scrG ) in \Omega . Nevertheless, the distinct arithmetic properties of the
irrational numbers in the projection matrices can influence the degree of uniformity
in the distribution. For example, consider two different maps \scrC 1 and \scrC 2, which are
determined by projection matrices \bfitP 1 = (1,

\surd 
2) and \bfitP 2 = (1, \pi ), respectively. When

\scrG = [0,30), the distribution of \scrC 1(\scrG ) appears to be more uniform than that of \scrC 2(\scrG ),
as depicted in Figure 5. Subsequently, we delve into the distribution characteristics of
\scrC (\scrG ) in two distinct categories: badly approximable systems and good approximable
systems. Furthermore, we provide the respective selection strategies for the region \scrG 
within each category.

4.2.1. Badly approximable systems. As proved in Theorem 3.1, the distri-
bution of \scrC (\scrG ) in \Omega is characterized by the distribution of \{ \bfitr =\bfitA \bfitt : \bfitt \in \scrG \cap \BbbZ d\} /\BbbZ n - d

in [0,1)n - d. When A \in \BbbR (n - d)\times d is a badly approximable matrix, it has the rapid
filling property mentioned in Remark 3.5. Specifically, given an \varepsilon > 0, there is a least
region \scrG with

(1/2)\varepsilon  - (n - d) \leq \langle \scrG (\varepsilon )\rangle i \leq Ci\varepsilon 
 - (n - d), i= 1, . . . , d,(4.1)

such that for each \bfitr 0 \in [0,1)n - d, the (n - d)-dimensional Diophantine system

\| \bfitA \bfitt /\BbbZ n - d  - \bfitr 0\| \infty \leq \varepsilon 

has a solution \bfitt \in \scrG (\varepsilon )\cap \BbbZ d. Thus, \{ \bfitr =\bfitA \bfitt : \bfitt \in \scrG (\varepsilon )\cap \BbbZ d\} /\BbbZ n - d is dense in [0,1)n - d,
and then \scrC (\scrG (\varepsilon )) is dense in \Omega .

The rapid filling property offers an efficient way to select region \scrG for badly
approximable systems. Actually, \varepsilon measures the filling precision, and \scrG (\varepsilon ) is the
filling cost of achieving \varepsilon . For instance, we consider a badly approximable irrational
number \alpha =

\surd 
2. Table 1 shows the \langle \scrG (\varepsilon )\rangle required for different filling precisions \varepsilon .

Specifically, given an \varepsilon > 0, we traverse through \BbbN + to search for a minimum point t\ast 

such that

\| 
\surd 
2t\ast /\BbbZ  - 0\| \infty \leq \varepsilon 

(a) C1(G) in Tn (b) C2(G) in Tn

Fig. 5. \scrC i(\scrG ) in \BbbT n, i= 1,2, where \scrG = [0,30); \scrC 1 and \scrC 2 are determined by projection matrices
\bfitP 1 = (1,

\surd 
2) and \bfitP 2 = (1, \pi ), respectively. Note: color appears only in the online article.
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RECOVER QUASIPERIODIC SYSTEMS BY FINITE POINTS 1725

Table 1
Required \langle \scrG (\varepsilon )\rangle for the badly approximable irrational number \alpha =

\surd 
2 under different filling

precisions \varepsilon .

\varepsilon 1.0e-02 1.0e-03 1.0e-04 1.0e-05 1.0e-06

\langle \scrG (\varepsilon )\rangle 9.9e+01 9.85e+02 5.74e+03 1.14e+05 1.13e+06

Table 2
Required \langle \scrG (\varepsilon )\rangle for the good approximable irrational number \pi under different filling precision \varepsilon .

\varepsilon 1.0e-03 1.0e-04 1.0e-05 1.0e-06 1.0e-07

\langle \scrG (\varepsilon )\rangle 2.05e+05 4.16e+05 6.25e+06 1.27e+08 >1.0e+10

holds, and then \langle \scrG (\varepsilon )\rangle = t\ast . Results demonstrate an inverse relationship between \varepsilon 
and \langle \scrG (\varepsilon )\rangle .

Therefore, when using the FPR method to recover the quasiperiodic functions
related to badly approximable systems, we can directly select the region \scrG to reach
the upper bound of \langle \scrG (\varepsilon )\rangle , i.e., \scrG fulfills

\langle \scrG \rangle i =Ci\varepsilon 
 - (n - d), i= 1, . . . , d,(4.2)

where Ci is the smallest integer upper bound of \langle \scrG (\varepsilon )\rangle i\varepsilon (n - d).

4.2.2. Good approximable systems. For each good approximable system,
there is no uniform upper bound of \langle \scrG (\varepsilon )\rangle that grows linearly with respect to \varepsilon  - (n - d),
indicating the absence of the rapid filling property. Consequently, the determination
of \scrG under this category cannot proceed in the same manner as it does for badly
approximable systems. For example, consider the good approximable system

\| \pi t/\BbbZ  - r0\| \infty \leq \varepsilon \forall r0 \in \BbbT ,(4.3)

where \pi is a well-known transcendental number. Table 2 presents the \langle \scrG (\varepsilon )\rangle of the
good approximable system (4.3) required for each given filling precision \varepsilon . \langle \scrG (\varepsilon )\rangle 
shows an exponential-like growth behavior, without an inverse relationship between
\langle \scrG (\varepsilon )\rangle and \varepsilon .

However, we can also propose a convenient and efficient approach of selecting
\scrG for the quasiperiodic function related to a good approximable system. According
to Lemma 3.7, the lower bound \langle \scrG (\varepsilon )\rangle i \geq (1/2)\varepsilon  - (n - d), i = 1, . . . , d, holds for each
Diophantine system. It allows us, for the good approximable system, to adopt the
lower bound \langle \scrG \rangle i = (1/2)\varepsilon  - (n - d), i= 1, . . . , d to determine \scrG , named the computable
region. In this way, for a given \varepsilon the size of \scrG can be immediately determined without
traversing, resulting in a significant reduction of computational costs.

4.3. Computational complexity analysis. Here, we analyze the computa-
tional complexity of the FPR method for recovering a required interpolation point
\bfitx \ast . Assume that the size of interpolation element \Theta \subset \Omega fulfills

h - \varepsilon \leq \| \langle \Theta \rangle \| \infty \leq h+ \varepsilon ,

where \varepsilon is the filling precision satisfying \varepsilon < h/10. Here we fix \varepsilon = h/\~c, where
constant \~c > 10. N = 1/h denotes the degree of freedom of spatial discrete nodes.
Then \| \langle \scrG \rangle \| \infty =C\varepsilon  - (n - d) =C(\~cN)n - d, where C =maxdi=1Ci. The traverse process in
\scrG \cap \BbbZ d can be performed simultaneously in each dimension, and computing \| \bfitb i - \bfitb \ast \| \infty 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1726 KAI JIANG, QI ZHOU, AND PINGWEN ZHANG

consumes O(n  - d) times of subtraction. Hence, the computational complexity of
obtaining the interpolation element of \bfitx \ast is

O (d(n - d)\| \langle \scrG \rangle \| \infty ) =O
\Bigl( 
d(n - d)C\varepsilon  - (n - d)

\Bigr) 
=O

\bigl( 
Nn - d

\bigr) 
.

To use an n-dimensional LIF-k, K = (k + 1)n interpolation nodes are required.
Thus, the computational complexity of interpolation is O(K). Since K \ll N , the
computational complexity of the FPR method is at the level of O

\bigl( 
Nn - d

\bigr) 
. It is worth

emphasizing that when using the FPR method for practical problems, the interpola-
tion nodes can be predetermined, which means that the computational cost of using
the FPR method could be almost negligible.

4.4. Convergence analysis. In this subsection, we provide the convergence
analysis of the FPR method for recovering a target point within an interpolation
element \Theta \subset \Omega \subset \BbbR n. To facilitate this analysis, we introduce the following multi-
index notations. For a vector \bfitalpha = (\alpha i)

n
i=1 \in \BbbR n, | \bfitalpha | := \alpha 1 + \cdot \cdot \cdot + \alpha n. \scrC \bfitalpha (\BbbR n)

denotes the set of functions on \BbbR n with \alpha i-order continuous derivatives along the ith
coordinate direction. For a function F (\bfits )\in \scrC \bfitalpha (\BbbR n), its \bfitalpha -order derivative is

D\bfitalpha F (\bfits ) :=
\partial | \bfitalpha | F (\bfits )

\partial s\alpha 1
1 \cdot \cdot \cdot \partial s\alpha n

n
.

Define space \scrL 2(\Omega ) := \{ F : \| F\| \scrL 2(\Omega ) <\infty \} , where \| F\| \scrL 2(\Omega ) = (
\int 
\Omega 
| F (\bfits )| 2d\bfits )1/2. For

any integer m \geq 0, the Hilbert space on \Omega is \scrH m(\Omega ) := \{ F \in \scrL 2(\Omega ) : \| F\| m,\Omega < \infty \} ,
where \| F\| m,\Omega = (

\sum 
| \bfitalpha | \leq m \| D\bfitalpha F\| 2\scrL 2(\Omega ))

1/2. The seminorm of \scrH m(\Omega ) is | F | m,\Omega =

(
\sum 

| \bfitalpha | =m \| D\bfitalpha F\| 2\scrL 2(\Omega ))
1/2.

Definition 4.1. Two elements \Theta and \^\Theta are affine equivalent, if there is an
invertible affine transformation

\scrA : \^\Theta \rightarrow \Theta ,

\^\bfits \mapsto \rightarrow \bfits =\bfitB \^\bfits + \bfitb ,

where \bfitB \in \BbbR n\times n is an invertible matrix and \bfitb \in \BbbR n.

Lemma 4.2 (see [30]). If two elements \Theta and \^\Theta are affine equivalent, for any
F \in \scrH m(\Theta ), let

\^F : F \circ \scrA ;

then \^F \in \scrH m( \^\Theta ) and there is a positive constant C =C(m,n) such that

| \^F | m,\^\Theta \leq C\| \bfitB \| m| det(\bfitB )|  - 1
2 | F | m,\Theta ,

| F | m,\Theta \leq C\| \bfitB  - 1\| m| det(\bfitB )| 12 | \^F | m,\^\Theta .

Here, \| \cdot \| is the Euclidean norm.

Lemma 4.3 (see [30]). The matrix \bfitB defined in Definition 4.1 satisfies

\| \bfitB \| \leq h\Theta 

\^\rho \^\Theta 

, \| \bfitB  - 1\| \leq 
\^h\^\Theta 

\rho \Theta 
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RECOVER QUASIPERIODIC SYSTEMS BY FINITE POINTS 1727

where \Biggl\{ 
h\Theta =diam\Theta , \rho \Theta = sup\{ diam\Gamma : closed ball \Gamma \subset \Theta \} ,
\^h\^\Theta =diam\^\Theta , \^\rho \^\Theta = sup\{ diam\Gamma : closed ball \Gamma \subset \^\Theta \} .

Note that the interpolation element \Theta is a regular shape, i.e., there exists a
constant \kappa > 0 such that h\Theta /\rho \Theta \leq \kappa . Denote Pk( \^\Theta ) as the space consisting of
polynomials of degree k or less in \^\Theta , and \^\Pi k as the LIF-k operator over \^\Theta . We have
the convergence result of the FPR method.

Theorem 4.4. If 0 \leq m \leq k + 1, then for \^\Pi k \in \scrL (\scrH k+1( \^\Theta );\scrH m( \^\Theta )), \^\Pi k
\^F = \^F

for each \^F \in Pk( \^\Theta ). Here, \scrL (A;B) denotes the set of linear operators from space A
to space B. Over the interpolation element \Theta (affine equivalent with \^\Theta ), operator \Pi k

fulfills

(\Pi kF )\^= \^\Pi k
\^F , \^F \in Pk( \^\Theta ).

Then there is a constant C such that

\| F  - \Pi kF\| m,\Theta \leq Chk+1 - m
\Theta | F | k+1,\Theta , F \in \scrH k+1(\Theta ).

Proof. Since there is no error in the process of selecting finite points, the only error
in the FPR method comes from the interpolation error. According to the interpolation
error analysis in [30], the above conclusion can be established.

5. Numerical experiments. In this section, we present two classes of quasiperi-
odic systems to show the performance of the FPR method. One class is analytical
quasiperiodic functions, another is a piecewise constant quasicrystal.

We use the \ell \infty -norm to measure the error between numerical result and exact
result, denoted as e(\langle \Theta \rangle ) with respect to the interpolation element \Theta . Then we can
estimate the order of accuracy by calculating the logarithmic ratio of errors between
two successive refinements

Order = log2

\biggl( 
e(2\langle \Theta \rangle )
e(\langle \Theta \rangle )

\biggr) 
.

To apply the FPR method for recovering d-dimensional quasiperiodic functions
related to badly approximable systems, given a filling precision \varepsilon , we select the region
\scrG given by

\scrG = [0,C1\varepsilon 
 - (n - d))\times \cdot \cdot \cdot \times [0,Cd\varepsilon 

 - (n - d)),

where n is the dimension of the superspace and Ci (i= 1, . . . , d) is determined by

Ci = max
j=0,\cdot \cdot \cdot ,4

\langle \scrG (\varepsilon j)\rangle i\varepsilon n - d
j , \varepsilon j = 10 - 2 - j .

Since j is small, determining constant Ci (i = 1, . . . , d) in this way consumes almost
no computational cost.

As discussed in subsection 4.2.2, for the quasiperiodic functions related to good
approximable systems, we select the computable region

\scrG = [0,0.5\varepsilon  - (n - d))d.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1728 KAI JIANG, QI ZHOU, AND PINGWEN ZHANG

5.1. Continuous quasiperiodic functions. In this subsection, we present four
different continuous quasiperiodic functions to demonstrate the accuracy and effi-
ciency of the FPR method. The first three examples are related to badly approximable
systems, and the last one is related to a good approximable system.

Example 5.1. Consider a 1D quasiperiodic function

f(x) = cosx+ cos
\surd 
2x, x\in \BbbR .(5.1)

f(x) can be embedded into the 2D periodic function F (\bfits ) = cos\bfits , \bfits = (s1, s2)
T \in \BbbR 2

using the projection matrix \bfitP = (1,
\surd 
2). The unit cell of F (\bfits ) is \Omega = [0,2\pi )2. Since\surd 

2 is a badly approximable irrational number, the corresponding Diophantine system
has the rapid filling property. Table 3 shows the inverse relationship between the filling
precision \varepsilon and the size of region \scrG (\varepsilon ). Therefore, selecting a relatively smaller region
\scrG for the FPR method is sufficient to recover the global information of quasiperiodic
function (5.1).

First, we use the FPR method with 2D LIF-1 in \scrG = [0,8\varepsilon  - 1) to recover (5.1) when
x\in [6284,6286). Figure 6 shows the node selection of the FPR method with two sizes
of interpolation elements. For each target point x\ast \in [6284,6286), its image \bfits \ast under
the combination map \scrC is marked with a red dot. We have circled each interpolation
element \Theta that contains the target point using yellow dashed lines. Four blue dots
in each \Theta are used as interpolation nodes. In Figure 6(a), the size of interpolation
elements is \langle \Theta \rangle = (0.4,0.3). After one refinement, the size of the interpolation element
becomes \langle \Theta \rangle = (0.2,0.15), as shown in Figure 6(b).

Table 4 records the errors and accuracy orders obtained by using the FPR method
with 2D LIF-1, LIF-3, and LIF-5 to recover the quasiperiodic function (5.1) when
x \in [6284,6286). As Theorem 4.4 predicts, using higher-order interpolation methods
can obtain better approximation accuracy.

Next, we further present the power of the FPR method on recovering the global
quasiperiodic function with finite points. Here, we select the region \scrG = [0,8000)
and the size of the interpolation elements \langle \Theta \rangle = (0.4,0.3). In this case, we only

Table 3
Required \langle \scrG (\varepsilon )\rangle with different filling precision \varepsilon for projection matrix \bfitP = (1,

\surd 
2).

\varepsilon 1.0e-02 1.0e-03 1.0e-04 1.0e-05 1.0e-06

\langle \scrG (\varepsilon )\rangle /2\pi 9.90e+01 9.85e+02 5.74e+03 1.14e+05 1.13e+06

(a) = (0.4, 0.3) (b) = (0.2, 0.15)

Fig. 6. Node selection for the FPR method with 2D LIF-1 when solving the quasiperiodic func-
tion (5.1), x\in [6284,6286), with different sizes of interpolation elements \Theta . Note: color appears only
in the online article.
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RECOVER QUASIPERIODIC SYSTEMS BY FINITE POINTS 1729

Table 4
Error of FPR method when recovering quasiperiodic function (5.1) for different interpolation

element sizes \langle \Theta \rangle .

FPR with 2D LIF-1 FPR with 2D LIF-3 FPR with 2D LIF-5

\langle \Theta \rangle Error Order \langle \Theta \rangle Error Order \langle \Theta \rangle Error Order

(0.4, 0.3) 2.8035e-02 (0.8, 0.3) 2.6990e-03 (1.2, 0.3) 9.6976e-05
(0.2, 0.15) 7.0599e-03 1.99 (0.4, 0.15) 1.7661e-04 3.93 (0.6, 0.15) 1.6192e-06 5.90

(0.1, 0.075) 1.7681e-03 2.00 (0.2, 0.075) 1.1204e-05 3.98 (0.3, 0.075) 2.5909e-08 5.97
(0.05, 0.0375) 4.4219e-04 2.00 (0.1, 0.0375) 7.0414e-07 3.99 (0.15, 0.0375) 4.0196e-10 6.01

Fig. 7. Comparison of the exact value fe and the recovered result fr by the FPR method with
2D LIF-1 for quasiperiodic function (5.1) when x \in [106,106 + 80). Note: color appears only in the
online article.

need 320 interpolation nodes to recover the global information of f(x). Figure 7
compares the recovered result by the FPR method and the exact value of (5.1) when
x\in [106,106 + 80). The error between the two is 3.1147e-02.

Example 5.2. Consider a 1D quasiperiodic function

f(x) = cosx+ cos
\surd 
2x+ cos

\surd 
3x, x\in \BbbR .(5.2)

Compared with Example 5.1 only containing one irrational frequency
\surd 
2, this

quasiperiodic function f(x) has two irrational frequencies
\surd 
2 and

\surd 
3. Correspond-

ingly, f(x) should embed into the three-dimensional (3D) periodic function F (\bfits ) =
cos\bfits with unit cell \Omega = [0,2\pi )3, through the projection matrix \bfitP = (1,

\surd 
2,
\surd 
3). Due

to
\surd 
2 and

\surd 
3 both being quadratic irrational numbers, f(x) is related to a badly

approximable system. There is an inverse relationship between the size of \scrG (\varepsilon ) and
the filling precision \varepsilon as shown in Table 5. Concretely, the size of \scrG (\varepsilon ) is the maximum
size of \scrG (\varepsilon ) produced by \bfitP 1 = (1,

\surd 
2) and \bfitP 2 = (1,

\surd 
3) for a given filling precision

\varepsilon . From this example, one can find that, as the dimension of superspace increases,
however, the required interpolation points in \scrG still belong to \BbbR . It demonstrates that
the FPR method is a no-lift algorithm.

We then employ the FPR method with 3D LIF-1 in the region \scrG = [0,9\varepsilon  - 1), to
recover (5.2) when x \in [6284,6286). The 3D LIF-1 requires eight interpolation nodes
within each interpolation element \Theta . Figure 8 shows the node selection for the FPR
method with two sizes of interpolation elements. Table 6 lists the error and accuracy
order, consistent with the prediction by Theorem 4.4.

Example 5.3. Consider a 2D quasiperiodic function

f(x, y) = cosx+ cos
\surd 
2x+ cosy, (x, y)\in \BbbR 2.(5.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1730 KAI JIANG, QI ZHOU, AND PINGWEN ZHANG

Table 5
Filling precision \varepsilon and required \langle \scrG (\varepsilon )\rangle for different projection matrices.

\varepsilon 1.0e-02 1.0e-03 1.0e-04 1.0e-05 1.0e-06

\langle \scrG (\varepsilon )\rangle /2\pi for \bfitP 1 = (1,
\surd 
2) 9.90e+01 9.85e+02 5.74e+03 1.14e+05 1.13e+06

\langle \scrG (\varepsilon )\rangle /2\pi for \bfitP 2 = (1,
\surd 
3) 9.70e+01 1.35e+03 7.95e+03 1.10e+05 7.99e+05

\langle \scrG (\varepsilon )\rangle /2\pi for \bfitP = (1,
\surd 
2,
\surd 
3) 9.90e+01 1.35e+03 7.95e+03 1.14e+05 1.13e+06

Table 6
Error of 3D LIF-1 FPR method for recovering quasiperiodic function (5.2) with interpolation

element sizes \langle \Theta \rangle .

\langle \Theta \rangle Error Order

(0.4, 0.4, 0.3) 1.1214e-01
(0.2, 0.2, 0.15) 2.7964e-02 2.00

(0.1, 0.1, 0.075) 6.9445e-03 2.01

(0.05, 0.05, 0.0375) 1.7093e-03 2.02

Table 7
Required \langle \scrG (\varepsilon )\rangle of different filling precisions \varepsilon for projection matrix (5.4).

\varepsilon 1.0e-02 1.0e-03 1.0e-04 1.0e-05 1.0e-06

\langle \scrG (\varepsilon )\rangle 1/2\pi 9.90e+01 9.85e+02 5.74e+03 1.14e+05 1.13e+06
\langle \scrG (\varepsilon )\rangle 2/2\pi 1.0 1.0 1.0 1.0 1.0

(a) = (0.4, 0.4, 0.3) (b) = (0.2, 0.2, 0.15)

Fig. 8. Node selection for 3D LIF-1 FPR method with different interpolation elements \Theta to
recover quasiperiodic function (5.2) on the interval [6284,6286). Note: color appears only in the
online article.

There exists a projection matrix

\bfitP =

\biggl[ 
1

\surd 
2 0

0 0 1

\biggr] 
(5.4)

such that f(x, y) = F (\bfitP T (x, y)T ), where F (\bfits ) = cos\bfits , \bfits \in \BbbR 3, is the parent function
of f(x, y). The unit cell is \Omega = [0,2\pi )3. Table 7 shows the inverse relationship
between the filling precision \varepsilon and \langle \scrG \rangle 1. Since f(x, y) is periodic in the y direction,
it is sufficient to take \langle \scrG \rangle 2 as 2\pi . Therefore, given the filling precision \varepsilon , we select
\scrG = [0,8\varepsilon  - 1)\times [0,2\pi ).

We use the FPR method with 3D LIF-1 to recover (5.3) when (x, y)T \in [6284,
6286)2. The 3D LIF-1 requires eight interpolation nodes in each interpolation element
\Theta . Figure 9 shows the node selection for the FPR method with different interpolation
elements. Table 8 records the error and accuracy order, which is consistent with
theoretical results.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RECOVER QUASIPERIODIC SYSTEMS BY FINITE POINTS 1731

(a) = (0.8, 0.3, 0.3) (b) = (0.4, 0.15, 0.15)

Fig. 9. Node selection of the FPR method with 3D LIF-1 when recovering quasiperiodic function
(5.3), (x, y)\in [6284,6286)2, with different sizes of interpolation elements \Theta . Note: color appears only
in the online article.

Table 8
Error for the FPR method with 3D LIF-1 when solving quasiperiodic function (5.3) for inter-

polation element sizes \langle \Theta \rangle .

\langle \Theta \rangle Error Order

(0.8, 0.3, 0.3) 1.1654e-01

(0.4, 0.15, 0.15) 2.6666e-02 2.13

(0.2, 0.075, 0.075) 5.8759e-03 2.18

Table 9
Required sizes \langle \scrG \rangle of computable region \scrG for different filling precisions \varepsilon .

\varepsilon 1.0e-02 1.0e-03 1.0e-04 1.0e-05 1.0e-06

\langle \scrG \rangle /2\pi 5.0e+01 5.0e+02 5.0e+03 5.0e+04 5.0e+05

Table 10
Error of the FPR method with 2D LIF-1 of recovering quasiperiodic function (5.5) with inter-

polation element sizes \langle \Theta \rangle .

\langle \Theta \rangle Error Order

(0.4048, 0.3) 1.1717e-01
(0.2024, 0.15) 2.0538e-02 2.51

(0.1012, 0.075) 5.1695e-03 1.99
(0.0667, 0.0375) 1.6952e-03 1.61

(0.0328, 0.0188) 4.2629e-04 1.99

Example 5.4. Consider a 1D quasiperiodic function with a transcendental fre-
quency \pi :

f(x) = cosx+ cos\pi x, x\in \BbbR .(5.5)

The projection matrix is \bfitP = (1, \pi ). Since \pi is a good approximable number, we
can directly select finite points in the computable region \scrG = [0,0.5\varepsilon  - 1) as discussed
in subsection 4.2.2. The sizes of required computable region \scrG with different filling
precisions \varepsilon are shown in Table 9.

We apply the FPR method with 2D LIF-1 to recover (5.5) when x\in [6284,6286).
As demonstrated in Example 5.1, we similarly choose interpolation elements within
\Omega = [0,2\pi )2 according to different target points. Table 10 shows that the recovery
error gradually decreases as the interpolation elements decrease in size. Note that
the interpolated element size cannot be exactly halved as in the three examples above

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1732 KAI JIANG, QI ZHOU, AND PINGWEN ZHANG

due to the selection of the computable region \scrG , leading to the accuracy order of the
FPR method exhibiting fluctuations.

5.2. Piecewise constant quasicrystals.
Example 5.5. Consider a 1D Fibonacci photonic quasicrystal as shown in Figure

10(a), which is a black line in a 2D tiling [35, 34]. The blue (white) square has side
length A (B), and its corresponding dielectric constant is \varepsilon A = 4.84 (\varepsilon B = 2.56).
The sequence satisfies Fn = Fn - 2 + Fn - 1, n = 1,2, . . ., with F1 = B, F2 = A, and
limj\rightarrow \infty Fj+1/Fj = (1+

\surd 
5)/2 := \lambda .

Let the angle \phi be defined by tan\phi = \lambda . The 2D tiling can be transformed into a
periodic structure by a rotation matrix defined as\biggl[ 

sin\phi cos\phi 
cos\phi  - sin\phi 

\biggr] 
.

All unit cells are surrounded by the yellow border in Figure 10(a). Figure 10(b) shows
the dielectric constant over the unit cell \Omega = [0,1.9)2. Therefore, the projection matrix
of the 1D Fibonacci photonic quasicrystal is \bfitP = (sin\phi , cos\phi ).

Given the filling precision \varepsilon = 10 - 3, we select the computable region \scrG = [0,500)
according to Table 9. When we select the size of interpolation elements \langle \Theta \rangle =
(0.08,0.08), only 480 interpolation nodes are needed to recover the global dielectric
constant of the 1D Fibonacci photonic quasicrystal. Figure 11(b) shows the recovered
dielectric constant of the 1D Fibonacci photonic quasicrystal when x \in [1000,1020).
The FPR method can accurately recover the dielectric constant at continuous points

(a) 1D Fibonacci photonic quasicrystal structure
in 2D tilling

(b) Parent function F (s) in Ω

Fig. 10. 1D Fibonacci photonic quasicrystal and its parent function F (\bfits ) in \Omega = [0,1.9)2.
Note: color appears only in the online article.

(a) Exact value (b) FPR with 2D LIF-1

Fig. 11. Comparison of the exact value and the numerical result obtained by the FPR method
for the dielectric constant of a 1D Fibonacci photonic quasicrystal when x\in [1000,1020). Note: color
appears only in the online article.
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Fig. 12. Dielectric constant of 1D Fibonacci photonic quasicrystal recovered by the FPR method
with 2D LIF-1 when x\in [106,106 + 80). Note: color appears only in the online article.

compared with the exact value as shown in Figure 11(a). Moreover, the FPR method
is capable of seizing the position of discontinuity points. Meanwhile, we present
Figure 12 to demonstrate the effectiveness of the FPR method for recovering the
global function.

6. Conclusion and outlook. This paper is concerned with developing a new
algorithm for recovering both continuous and low-regularity quasiperiodic systems.
Differently from the existing spectral Galerkin methods, we propose the FPR method
for accurately recovering the global quasiperiodic system using an interpolation tech-
nique based on finite points. To theoretically support our method, we establish a
homomorphism between the physical space of a quasiperiodic function and the high-
dimensional torus. Moreover, by exploiting the arithmetic properties of irrational
numbers, we design the FPR method with exquisite algorithmic steps to ensure ac-
curacy and efficiency in the recovery process. We also present the corresponding con-
vergence analysis and computational complexity analysis. We apply our algorithm
to solve two classes of quasiperiodic problems: continuous quasiperiodic functions
and a piecewise constant Fibonacci quasicrystal. Numerical results show the effec-
tiveness and superiority of the FPR approach, while the PM method fails to recover
the low-regularity quasiperiodic systems. Furthermore, the experiments conclusively
demonstrate that the FPR method, as a nonlifting algorithm, exhibits substantial
computational advantages compared to the state-of-the-art PM.

There remains much work to be done based on the proposed method. First, we
aim to extend the convergence analysis of the FPR method to a more general form
that can accommodate low-regularity parent functions. Second, we intend to intro-
duce a parallel strategy and improve the selection method of sampling points in the
algorithm implementation, especially for high-dimensional problems. Third, we plan
to develop the FPR method to handle singularly quasiperiodic systems by integrat-
ing the adaptive strategy. Finally, we will apply the FPR method to more intricate
quasiperiodic systems, such as quasiperiodic Schr\"odinger equations/operators, and
quasiperiodic homogenization problems. We aim to discover exotic phenomena and
physical laws, and to develop corresponding convergence theories. These abovemen-
tioned endeavors will not only enrich the theoretical foundations of the FPR method,
but also contribute to practical applications in diverse fields, such as physics, engi-
neering, and materials science.
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