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We develop and analyze numerical discretization to the constrained high-index saddle dynamics, the

dynamics searching for the high-index saddle points confined on the high-dimensional unit sphere.

Compared with the saddle dynamics without constraints, the constrained high-index saddle dynamics

has more complex dynamical forms, and additional operations such as the retraction and vector

transport are required due to the constraint, which significantly complicate the numerical scheme and

the corresponding numerical analysis. Furthermore, as the existing numerical analysis results usually

depend on the index of the saddle points implicitly, the proved numerical accuracy may be reduced if the

index is high in many applications, which indicates the lack of robustness with respect to the index. To

address these issues, we derive the error estimates for numerical discretization of the constrained high-

index saddle dynamics on high-dimensional sphere, and then improve it by providing an index-robust

error analysis in an averaged norm by adjusting the relaxation parameters. The developed results provide

mathematical supports for the accuracy of numerical computations.

Keywords: saddle dynamics; saddle point; solution landscape; error estimate; index-robust.

1. Introduction

High-index saddle dynamics provides a powerful instrument in systematically finding the high-index

saddle points and construction of the solution landscape [3, 8, 29, 30, 31, 36]. It has been applied to

study various applications in physical and engineering problems [12, 13, 14, 25, 26, 29, 32, 34, 35, 37].

Here the index of saddle point refers to the Morse index characterized by the maximal dimension

of a subspace on which its Hessian operator is negative definite [21]. If the additional nonlinear

equality constraints exist, the constrained high-index saddle dynamics [27] was proposed for solving

the constrained saddle point problems such as the Thomson problem [24] and the Bose–Einstein

Condensation [2]. However, due to the strong nonlinearities of the coupled equations in high-index

saddle dynamics, rigorous numerical analysis are less considered compared with the growing numerical

implementations in applications.

There exist a couple of works investigating the convergence rate of the numerical saddle point to

the target saddle point via sophisticated derivations [1, 4, 6, 7, 9, 10, 11, 15, 16, 17, 18, 20, 22, 33]. In
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contrast, conventional error analysis between the exact solutions of the continuous saddle dynamics

and their numerical approximations in terms of the step size provides the dynamical convergence

of numerical solutions to the saddle dynamics, which provides important physical information

such as transition pathway and theoretically ensure the accuracy of construction of the solution

landscape [13, 31, 38]. In [38], a first-order numerical scheme for the high-index saddle dynamics

without constraints was rigorously analyzed. However, due to the nonlinear equality constraint in the

constrained high-index saddle dynamics, more complex dynamical form is encountered and additional

operations in the numerical scheme such as the retraction and vector transport are required [27], which

significantly complicate the numerical scheme and the corresponding numerical analysis. Furthermore,

the pointwise-in-time error estimate

‖x(tn)− xn‖+
k

∑
i=1

‖vi(tn)− vi,n‖ ≤ Qτ (1.1)

was proved in [38], where {xn,v1,n, · · · ,vk,n} serve as the numerical approximations of the state variable

and corresponding eigenvectors {x(t),v1(t), · · · ,vk(t)} at the time step tn. However, the proof in [38]

indicates that the positive constant Q depends on the index k of saddle point. In some practical

applications such as the Thomson problem, which considers the minimal-energy configuration of a

group of classical charged particles confined on a sphere which interact with each other via a Coulomb

potential [23, 24], the dimension of the energy function and the index k of saddle point can be very

high. In this case, the accuracy in (1.1) could be reduced by the large factor Q.

Concerning the aforementioned issues, we aim to prove the error estimates of the numerical

discretization to constrained high-index saddle dynamics on the high-dimensional unit sphere. The

main difficulties we overcome lie in the complicated (nonlinear) forms of this dynamical system and

the corresponding numerical scheme, which contains the retraction of the position x and the transport

and orthonormalization procedure of the vectors due to the sphere constraint. In particular, these features

distinguishes the numerical analysis of saddle dynamics from those for ordinary differential equations.

We then improve the analysis by developing an index-robust error estimate, i.e., the constant Q in

(1.1) is independent from k, in an averaged norm by adjusting the relaxation parameters α and β .

These results provide theoretical supports for the numerical accuracy of discretization of constrained

high-index saddle dynamics and construction of solution landscapes for complex systems.

The rest of the paper is organized as follows: In Section 2 we present formulations of the constrained

high-index saddle dynamics and its numerical scheme. In Section 3 we prove auxiliary estimates, based

on which we derive error estimates for the discretization of constrained high-index saddle dynamics in

Section 4. Numerical experiments are performed in Section 5 to substantiate the theoretical findings.

In Section 6, we prove index-robust error estimates for the numerical scheme in an averaged norm by

adjusting the relaxation parameters. We finally address concluding remarks in the last section.

2. Discretization of constrained high-index saddle dynamics

In this section we present the constrained high-index saddle dynamics on the high-dimensional unit

sphere, as well as the corresponding numerical scheme.

2.1. Formulation of constrained high-index saddle dynamics

Given a C3 function E(x) with x ∈ R
d and define the corresponding natural force F : Rd → R

d and the

negative Hessian H ∈ R
d×d by F(x) = −∇E(x) and H(x) = −∇2E(x). It is clear that H(x) = H(x)⊤.
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Then the saddle dynamics for an index-k saddle point of E(x) with 1 ≤ k ∈ N on the unit sphere Sd−1

reads [27]























dx

dt
= α

(

I − xx⊤−2
k

∑
j=1

v jv
⊤
j

)

F(x),

dvi

dt
= β

(

I− xx⊤− viv
⊤
i −2

i−1

∑
j=1

v jv
⊤
j

)

H(x)vi +βxv⊤i F(x), 1 ≤ i ≤ k,

(2.1)

equipped with the initial conditions

x = X0 ∈ Sd−1, vi(0) =Vi,0 such that V⊤
i,0Vj,0 = δi j, 1 ≤ i, j ≤ k.

Here α and β are positive relaxation parameters. In the original work [27], these parameters are chosen

as α = β = 1, and it was proved that the solutions x and {vi}k
i=1 of (2.1) satisfy

x ∈ Sd−1, v⊤i x = 0, v⊤i v j = δi j, 1 ≤ i, j ≤ k,t ≥ 0, (2.2)

and a linearly stable steady state of (2.1) is an index-k saddle point of E(x).
Compared with the classical high-index saddle dynamics without constraints [30],























dx

dt
= α

(

I −2
k

∑
j=1

v jv
⊤
j

)

F(x),

dvi

dt
= β

(

I − viv
⊤
i −2

i−1

∑
j=1

v jv
⊤
j

)

H(x)vi, 1 ≤ i ≤ k,

(2.3)

constrained high-index saddle dynamics (2.1) exhibits a stronger coupling between x(t) and {vi(t)}k
i=1

with several additional terms and has more properties (cf. (2.2)) that we need to preserve in designing

numerical methods, which distinguishes the current work from the existing numerical analysis for (2.3).

Throughout the paper we make the following regular assumptions on the force and the Hessian:

Assumption A: There exists constants L1,L2 ≥ 0 such that the following linearly growth and local

Lipschitz conditions

‖H(x2)−H(x1)‖+‖F(x2)−F(x1)‖ ≤ L1‖x2 − x1‖,

‖F(x)‖ ≤ L1(1+‖x‖), x,x1,x2 ∈ Sd−1,

as well as the boundedness of F and H on Sd−1

max
x∈Sd−1

(

‖F(x)‖+‖H(x)‖
)

≤ L2

hold. Here ‖ · ‖ refers to the standard l2 norm of a vector or a matrix.

2.2. Numerical scheme

We consider the numerical approximation of the constrained index-k saddle dynamics (2.1) for some

k ≥ 1 on the time interval (0,T ] for some T > 0. Define a uniform partition {tn}N
n=0 of [0,T ] with the
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mesh size τ . We discretize the first-order derivative by the explicit Euler scheme to get the reference

equations for constrained index-k saddle dynamics (2.1)



































































x(tn) = x(tn−1)+ τα

(

I − x(tn−1)x(tn−1)
⊤

−2
k

∑
j=1

v j(tn−1)v j(tn−1)
⊤
)

F(x(tn−1))+O(τ2),

vi(tn) = vi(tn−1)+ τβ

(

I− x(tn−1)x(tn−1)
⊤− vi(tn−1)vi(tn−1)

⊤

−2
i−1

∑
j=1

v j(tn−1)v j(tn−1)
⊤
)

H(x(tn−1))vi(tn−1)

+τβx(tn−1)vi(tn−1)
⊤F(x(tn−1))+O(τ2), 1 ≤ i ≤ k.

(2.4)

Then we drop the truncation errors to obtain a first-order scheme of (2.1)







































































































x̃n = xn−1 + τα

(

I − xn−1x⊤n−1 −2
k

∑
j=1

v j,n−1v⊤j,n−1

)

F(xn−1),

xn =
x̃n

‖x̃n‖
,

ṽi,n = vi,n−1 + τβ

(

I − xn−1x⊤n−1 − vi,n−1v⊤i,n−1

−2
i−1

∑
j=1

v j,n−1v⊤j,n−1

)

H(xn−1)vi,n−1

+τβxn−1v⊤i,n−1F(xn−1), 1 ≤ i ≤ k,

v̂i,n = ṽi,n − ṽ⊤i,nxnxn, 1 ≤ i ≤ k,

vi,n =
1

Yi,n

(

v̂i,n −
i−1

∑
j=1

(v̂⊤i,nv j,n)v j,n

)

, 1 ≤ i ≤ k

(2.5)

for 1 ≤ n ≤ N and

x0 = X0, vi,0 =Vi,0, Yi,n :=

(

‖v̂i,n‖2 −
i−1

∑
j=1

(v̂⊤i,nv j,n)
2

)1/2

, 1 ≤ i ≤ k.

The second equation of (2.5) represents the retraction in order to ensure that xn ∈ Sd−1. The last

two equations of (2.5), which stand for the vector transport and the Gram-Schmidt orthonormalization

procedure [27], respectively, aim to ensure the last two properties of (2.2), that is,

v⊤i,nxn = 0, v⊤i,nv j,n = δi j, 1 ≤ i, j ≤ k, 0 ≤ n ≤ N. (2.6)

Compared with the numerical schemes for index-k saddle dynamics without constraints, see e.g. [38],

the additional operations like the retraction and vector transport in (2.5) caused from the sphere

constraint make this scheme more complex and intensify the coupling of x and {vi}k
i=1 that will

significantly complicate the numerical analysis in subsequent sections.
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3. Auxiliary estimates

We first prove several auxiliary estimates to support the error estimates.

Lemma 1 Under the Assumption A, the following estimate holds for 1 ≤ n ≤ N

‖xn − x̃n‖=
∣

∣1−‖x̃n‖
∣

∣≤ 2α2L2
2τ2.

Proof . We multiply x⊤n−1 on both sides of the first equation of (2.5) and use (2.6) to obtain

x⊤n−1x̃n = 1.

We then multiply x̃⊤n on both sides of the first equation of (2.5) and use x⊤n−1v j,n−1 = 0 for 1 ≤ j ≤ k

and the above equation to obtain

‖x̃n‖2 = 1+ τα

(

x̃⊤n − x⊤n−1−2
k

∑
j=1

(x̃⊤n − x⊤n−1)v j,n−1v⊤j,n−1

)

F(xn−1),

which, together with the Assumption A and the norm-preserving property of

I−2
k

∑
j=1

v j,n−1v⊤j,n−1, (3.1)

yields
∣

∣‖x̃n‖2 −1
∣

∣≤ ταL2‖x̃n − xn−1‖.
Similarly, by the first equation of (2.5) again we have

‖x̃n − xn−1‖=
∥

∥

∥

∥

τα

(

I − xn−1x⊤n−1 −2
k

∑
j=1

v j,n−1v⊤j,n−1

)

F(xn−1)

∥

∥

∥

∥

≤ 2ταL2.

Combining the above two equations yields

∣

∣‖x̃n‖−1
∣

∣≤
∣

∣‖x̃n‖2 −1
∣

∣≤ 2α2L2
2τ2,

and we incorporate this with

‖xn − x̃n‖=
∥

∥

∥

∥

x̃n

‖x̃n‖
(1−‖x̃n‖)

∥

∥

∥

∥

=
∣

∣1−‖x̃n‖
∣

∣

to complete the proof. �

Lemma 2 Under the Assumption A, the following estimates hold for 1 ≤ n ≤ N

∣

∣ṽ⊤m,nṽi,n

∣

∣≤ Qβ 2τ2, 1 ≤ m < i ≤ k;

∣

∣‖ṽi,n‖2 −1
∣

∣≤ Qβ 2τ2, 1 ≤ i ≤ k.

Here the positive constant Q is independent from n, N, τ , k, α and β .
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Proof . To prove the first estimate, we apply the properties in (2.6) to calculate the product ṽ⊤m,nṽi,n for

1 ≤ m < i ≤ k

ṽ⊤m,nṽi,n = τβ
(

v⊤m,n−1H(xn−1)vi,n−1 −2v⊤m,n−1H(xn−1)vi,n−1

+v⊤m,n−1H(xn−1)
⊤vi,n−1

)

+ τ2β 2(· · · ) = τ2β 2(· · · )

where we used the fact that first-order term is exactly zero by the symmetry of H. In order to specify

the dependence of the estimates of the terms in (· · · ) on k, we observe that the only factor in the scheme

of ṽi,n (or ṽm,i) in (2.5) that relates to k is

i−1

∑
j=1

v j,n−1v⊤j,n−1H(xn−1)vi,n−1,

which could be considered as a projection of H(xn−1)vi,n−1 with the norm less or equal to

‖H(xn−1)vi,n−1‖ ≤ L2. By this means, the index k is absorbed and the estimate of (· · · ) is independent

from k, which leads to
∣

∣ṽ⊤m,nṽi,n

∣

∣≤ Qβ 2τ2, 1 ≤ m < i ≤ k. (3.2)

To estimate ‖ṽi,n‖, we multiply v⊤i,n−1 on both sides of the third equation of (2.5) and apply (2.6) to

obtain for 1 ≤ i ≤ k

v⊤i,n−1ṽi,n = 1. (3.3)

We then multiply xn−1 on both sides of the third equation of (2.5) and apply (2.6) to obtain for 1 ≤ i ≤ k

x⊤n−1ṽi,n = τβv⊤i,n−1F(xn−1), (3.4)

which implies

ṽ⊤i,nxn−1x⊤n−1 = τβv⊤i,n−1F(xn−1)x
⊤
n−1. (3.5)

We finally multiply ṽ⊤i,n on both sides of the third equation of (2.5) and apply (2.6), (3.3), (3.4) and (3.5)

to obtain

ṽ⊤i,nṽi,n = 1+ τβ

(

ṽ⊤i,n − τβv⊤i,n−1F(xn−1)x
⊤
n−1 − v⊤i,n−1

−2
i−1

∑
j=1

(ṽ⊤i,n − v⊤i,n−1)v j,n−1v⊤j,n−1

)

H(xn−1)vi,n−1

+τ2β 2
(

v⊤i,n−1F(xn−1)
)2
,

which, together with

‖ṽi,n − vi,n−1‖2 = ṽ⊤i,nṽi,n −2ṽ⊤i,nvi,n−1 +1 = ṽ⊤i,nṽi,n −1, (3.6)

implies

‖ṽi,n − vi,n−1‖2 ≤ Qτβ‖ṽi,n − vi,n−1‖+Qτ2β 2. (3.7)

As this equation leads to

‖ṽi,n − vi,n−1‖ ≤
Qτβ +

√

Q2τ2β 2 +4Qτ2β 2

2
≤ Qβτ ,
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we incorporate this with (3.6) and (3.7) to find that

∣

∣ṽ⊤i,nṽi,n −1
∣

∣≤ Qβ 2τ2,

which completes the proof. �

Lemma 3 Suppose the Assumption A holds, α = β and
√

2βL2τ ≤ 1− θ for some 0 < θ < 1, then

the following estimates hold for 1 ≤ n ≤ N

‖v̂i,n − ṽi,n‖ ≤ Qβ 2τ2, 1 ≤ i ≤ k;

∣

∣v̂⊤m,nv̂i,n

∣

∣≤ Q(β 2 +β 4)τ2, 1 ≤ m < i ≤ k;
∣

∣‖v̂i,n‖2 −1
∣

∣≤ Q(β 2 +β 4)τ2, 1 ≤ i ≤ k.

Here the positive constant Q is independent from n, N, τ , k, α and β .

Proof . By the fourth equation of (2.5) we have

‖v̂i,n − ṽi,n‖=
∣

∣ṽ⊤i,nxn

∣

∣.

By the first and the third equations in (2.5), direct calculations show that

∣

∣ṽ⊤i,nxn

∣

∣=
1

‖x̃n‖
∣

∣τ
(

βv⊤i,n−1F(xn−1)+αF(xn−1)
⊤vi,n−1

−2αv⊤i,n−1F(xn−1)
)

+ τ2αβ (· · · )
∣

∣.

Note that the first-order term in this equation is exact zero if α = β . By Lemma 1 we have

1

‖x̃n‖
≤ 1

1−2α2L2
2τ2

≤ 1

1− (1−θ)2
≤ 1

θ
.

Thus we obtain from the above equations that

‖v̂i,n − ṽi,n‖=
∣

∣ṽ⊤i,nxn

∣

∣≤ Qβ 2τ2. (3.8)

For 1 ≤ m ≤ i ≤ k we get

v̂⊤m,nv̂i,n = ṽ⊤m,nṽi,n − x⊤n ṽi,nx⊤n ṽm,n.

If m < i, we apply Lemma 2 and (3.8) to obtain

∣

∣v̂⊤m,nv̂i,n

∣

∣≤ Q(β 2 +β 4)τ2.

If m = i we again employ Lemma 2 and (3.8) to get

∣

∣‖v̂i,n‖2 −1
∣

∣=
∣

∣‖ṽi,n‖2 −1− (x⊤n ṽi,n)
2
∣

∣≤ Q(β 2 +β 4)τ2.

Thus we complete the proof. �
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Lemma 4 Suppose the Assumption A holds, α = β and
√

2βL2τ ≤ 1− θ for some 0 < θ < 1, the

following estimate holds for 1 ≤ n ≤ N and τ sufficiently small

‖vi,n − v̂i,n‖ ≤ Qτ2, 1 ≤ i ≤ k. (3.9)

Here the positive constant Q is independent from n, N and τ but may depend on k, α and β .

Proof . Based on Lemma 3, the proof could be performed by the same techniques as [38, Lemma 4.2]

and is thus omitted. �

4. Index-dependent error estimate

We present error estimates for the scheme (2.5). Note that in this section, the constant Q in the main

theorem may depend on the index k, which implies that the corresponding estimate is not index-robust.

An improvement for analyzing an index-robust error estimate in an averaged norm is given in Section

6.

We bound the errors

ex
n := x(tn)− xn, evi

n := vi(tn)− vi,n, 1 ≤ n ≤ N, 1 ≤ i ≤ k.

based on the following lemma.

Lemma 5 Suppose there exists a non-negative sequence {Zn}N
n=0 with Z0 = 0 satisfying

Zn ≤ Zn−1 +AτZn−1+Bτ2
n−1

∑
m=1

Zm +Cτ2 (4.1)

for 1 ≤ n ≤ N and for some non-negative constants A, B and C with A+BT 6= 0. Then the following

estimate of Zn holds

Zn ≤
C

A+BT

(

e(A+BT )T −1
)

τ , 1 ≤ n ≤ N.

Proof . We first prove by induction that

Zn ≤
C

A+BT

(

(1+Aτ +BTτ)n −1
)

τ , 1 ≤ n ≤ N. (4.2)

It is clear that (4.2) holds for n = 1. Suppose (4.2) holds for 1 ≤ n ≤ ñ− 1. Then we invoke these

estimates in (4.1) to obtain

Zñ ≤
C

A+BT

(

(1+Aτ +BTτ)ñ−1 −1
)

τ
(

1+Aτ +Bτ2(ñ−1)
)

+Cτ2

≤ C

A+BT

(

(1+Aτ +BTτ)ñ − (1+Aτ +BτT)
)

τ +Cτ2

=
C

A+BT

(

(1+Aτ +BTτ)ñ −1
)

τ − C

A+BT
(Aτ +BτT)τ +Cτ2

=
C

A+BT

(

(1+Aτ +BTτ)ñ −1
)

τ .
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That is, (4.2) holds for n = ñ and thus for any 1 ≤ n ≤ N by mathematical induction. We then apply the

following estimate

(1+Aτ +BTτ)n =
(

1+(A+BT)τ
)

1
(A+BT)τ

(A+BT)T ≤ e(A+BT)T

to complete the proof. �

Theorem 1 Suppose the Assumption A holds, α = β and
√

2βL2τ ≤ 1−θ for some 0 < θ < 1. Then

the following estimate holds

‖ex
n‖+En ≤ Qτ , 1 ≤ n ≤ N, Em :=

k

∑
j=1

‖e
v j
m ‖.

Here Q is independent from τ , n and N but may depend on k, α and β .

Proof . We subtract the first equation of (2.4) from that of (2.5) to obtain

ex
n = ex

n−1 + τα

(

I − x(tn−1)x(tn−1)
⊤

−2
k

∑
j=1

v j(tn−1)v j(tn−1)
⊤
)

F(x(tn−1))

−τα

(

I − xn−1x⊤n−1 −2
k

∑
j=1

v j,n−1v⊤j,n−1

)

F(xn−1)

+O(τ2)+ (x̃n − xn)

= ex
n−1 + τα

(

F(x(tn−1))−F(xn−1)
)

−τα
(

x(tn−1)x(tn−1)
⊤F(x(tn−1))− xn−1x⊤n−1F(xn−1)

)

−2τα
k

∑
j=1

(

v j(tn−1)v j(tn−1)
⊤F(x(tn−1))

−v j,n−1v⊤j,n−1F(xn−1)
)

+O(τ2)+ (x̃n − xn).

(4.3)

We bound the forth term on the right-hand side of (4.3) as

∥

∥

∥

∥

τ
k

∑
j=1

(

v j(tn−1)v j(tn−1)
⊤F(x(tn−1))− v j,n−1v⊤j,n−1F(xn−1)

)

∥

∥

∥

∥

≤ τ
k

∑
j=1

∥

∥e
v j

n−1v j(tn−1)
⊤F(x(tn−1))+ v j,n−1(e

v j

n−1)
⊤F(x(tn−1))

+v j,n−1v⊤j,n−1(F(x(tn−1))−F(xn−1))
∥

∥≤ Qτ
(

En−1 +‖ex
n−1‖

)

.

(4.4)

Here we used the projection nature of the third difference (i.e. the summation containing F(x(tn−1))−
F(xn−1)) such that Q is independent from k. The other right-hand side terms could be bounded in a
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similar manner. We thus obtain from (4.3) and Lemma 1 that

‖ex
n‖ ≤ ‖ex

n−1‖+Qτ‖ex
n−1‖+QτEn−1+Qτ2. (4.5)

An application of the standard discrete Gronwall inequality yields

‖ex
n‖ ≤ Qτ

n−1

∑
m=1

Em +Qτ , 1 ≤ n ≤ N. (4.6)

We then subtract the third equation of (2.4) from that of (2.5) and split vi(tn)− ṽi,n as

vi(tn)− ṽi,n = evi
n +(vi,n − v̂i,n)+ (v̂i,n − ṽi,n)

to obtain
evi

n = e
vi
n−1 + τβ

(

H(x(tn−1))vi(tn−1)−H(xn−1)vi,n−1

)

− τβ
[

vi(tn−1)vi(tn−1)
⊤H(x(tn−1))vi(tn−1)

−vi,n−1v⊤i,n−1H(xn−1)vi,n−1

]

− τβ
[

x(tn−1)x(tn−1)
⊤H(x(tn−1))vi(tn−1)

−xn−1x⊤n−1H(xn−1)vi,n−1

]

−2τβ
i−1

∑
j=1

[

v j(tn−1)v j(tn−1)
⊤H(x(tn−1))vi(tn−1)

−v j,n−1v⊤j,n−1H(xn−1)vi,n−1

]

+ τβ
[

x(tn−1)vi(tn−1)
⊤F(x(tn−1))− xn−1v⊤i,n−1F(xn−1)

]

− (vi,n − v̂i,n)− (v̂i,n − ṽi,n)+O(τ2).

(4.7)

We apply Lemmas 3 and 4 and similar derivations as (4.3) to get

‖evi
n ‖ ≤ ‖e

vi
n−1‖+Qτ

(

‖ex
n−1‖+‖e

vi
n−1‖

)

+QτEn−1+Qτ2.

Adding this equation from i = 1 to k and using (4.6) we obtain

En ≤ En−1 +QτEn−1+Qτ2
n−1

∑
m=1

Em +Qτ2. (4.8)

Then an application of Lemma 5 leads to the conclusion of the theorem. �

5. Numerical experiments

In this section, we carry out numerical experiments to test the numerical accuracy of the scheme (2.5).

For practical applications of the constrained high-index saddle dynamics (2.1) we refer [27] for more

details. Let T = α = β = 1, ‖ex‖ := max1≤n≤N ‖x(tn)− xn‖, ‖evi‖ := max1≤n≤N ‖vi(tn)− vi,n‖ for

1 ≤ i ≤ k and we use numerical solutions computed under τ = 2−13 as the reference solutions due to

the unavailability of the exact solutions.
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5.1. Accuracy test

We consider the index-1 constrained saddle dynamics for the 4-well potential proposed in [5]

E(x1,x2) = x4
1 − px2

1 + x4
2 − x2

2 +qx2
1x2

2 (5.1)

with the initial conditions

X0 =
1√
2
(1,1), V1 =

1√
2
(−1,1)

and the parameters

(i) (p,q) = (5,1), (ii) (p,q) = (10,5).

Numerical results are presented in Tables 1-2, which demonstrate the first-order accuracy of the scheme

(2.5) as proved in Theorem 1.

TABLE 1 Convergence rates for surface (5.1) under

the parameter (i).

τ ‖ex‖ conv. rate ‖ev1‖ conv. rate

1/25 2.31E-02 2.31E-02

1/26 1.15E-02 1.01 1.15E-02 1.02

1/27 5.67E-03 1.02 5.67E-03 1.02

1/28 2.79E-03 1.02 2.79E-03 1.03

TABLE 2 Convergence rates for surface (5.1) under

the parameter (ii).

τ ‖ex‖ conv. rate ‖ev1‖ conv. rate

1/25 5.40E-02 5.40E-02

1/26 2.63E-02 1.04 2.63E-02 1.04

1/27 1.29E-02 1.02 1.29E-02 1.02

1/28 6.31E-03 1.03 6.31E-03 1.03

5.2. Dynamic convergence

We consider the index-1 constrained saddle dynamics for the Rosenbrock type function

E(x1,x2,x3) = a(
√

3x2 −3x2
1)

2 +b(
√

3x1 −1)2 +a(
√

3x3 −3x2
2)

2 +b(
√

3x2 −1)2 (5.2)

equipped with the parameters a = 2, b =−9.8, T = 5 and different initial conditions

X0 =
1√
29

(2,−3,4), X ′
0 =

1√
3
(−1,−1,1), V1,0 =

1√
2
(1,1,0).

Under the given parameters, this surface has an index-1 saddle point located at

(

1√
3
,

1√
3
,

1√
3

)

.
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Numerical results are presented in Figure 1, which shows that the numerical saddle dynamics could

reach the target saddle point under different initial values, even though the curvature of the Rosenbrock

type function is complicated. Furthermore, the dynamic convergence of the numerical saddle dynamics

as the step size τ decreases is observed, which demonstrates that the proposed scheme is appropriate

for computing the dynamic pathways for constructing the solution landscapes, e.g. [13, 27, 28, 31].

FIG. 1. Pathway convergence of constrained saddle dynamics under different initial values.

6. Index-robust numerical analysis

In previous sections, we develop error estimates for the numerical discretization (2.5) of the constrained

high-index saddle dynamics (2.1). However, as the constant Q in the estimate of Theorem 1 depends on

k, the numerical accuracy could be reduced if k is large enough in real applications. In other words, the

estimate in Theorem 1 is not index-robust. Therefore, we aim to develop an index-robust error estimate

in this section to eliminate the dependence of k on Q in Theorem 1, which serves as an improvement

for the previous results.

The key ideas to achieve this goal lie in adjusting the relaxation parameter and estimating the errors

in the averaged norm. Suppose

α = β ≤ Q0

k
(6.1)

for some positive constant Q0. Furthermore, the following averaged norm ‖ · ‖A is defined for any

sequence of vectors {gi}k
i=1

‖g‖A :=
1

k

k

∑
i=1

‖gi‖.
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Based on these presumptions, we immediately obtain from Lemmas 1–3 that for 1 ≤ n ≤ N

‖xn − x̃n‖ ≤ M
τ2

k2
, ‖v̂i,n − ṽi,n‖ ≤ M

τ2

k2
, 1 ≤ i ≤ k,

∣

∣v̂⊤m,nv̂i,n

∣

∣≤ M
τ2

k2
, 1 ≤ m < i ≤ k,

∣

∣‖v̂i,n‖2 −1
∣

∣≤ M
τ2

k2
, 1 ≤ i ≤ k.

(6.2)

Here the constant M is independent from τ , n, N, α , β and k. To prove the desired results, the Lemma

4 and the Theorem 1 need to be re-estimated in the following subsections.

6.1. Re-estimation of Lemma 4

We re-estimate Lemma 4 such that the constant Q in (3.9) is independent from k. Though the derivations

of the re-estimation follow the ideas of the proof of Lemma 4 in [38, Lemma 4.2], there are essential

differences in that the condition (6.1) is invoked to eliminate the dependence of the constants Q on k

throughout the derivations.

Lemma 6 Suppose the Assumption A and (6.1) hold, then the following estimate holds for 1 ≤ n ≤ N

and for τ small enough

‖vi,n − v̂i,n‖ ≤ Qτ2, 1 ≤ i ≤ k.

Here the positive constant Q is independent from n, N, τ , α , β and k.

Proof . Let G > M be a fixed positive number where M is defined in (6.2). Then we firstly prove that, if

τ satisfies the constraint

M+ τ2G2

(

1−Mτ2 −G2τ4
)1/2

≤ G, (6.3)

then the following estimates hold

|v̂⊤i,nvm,n| ≤ G
τ2

k2
, 1 ≤ m < i ≤ k. (6.4)

Note that the condition (6.3) is independent from k and is valid if τ is sufficiently small. We prove this

argument by induction on the subscription m. For m = 1 we apply (6.2), the last equation of (2.5) as

well as (6.3) to obtain for 1 < i ≤ k

|v̂⊤i,nv1,n|=
|v̂⊤i,nv̂1,n|

(‖v̂1,n‖2)1/2
≤ Mτ2/k2

(1−Mτ2/k2)1/2
≤ M

(1−Mτ2)1/2

τ2

k2
≤ G

τ2

k2
. (6.5)
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Thus, (6.4) holds with m = 1. Suppose (6.4) holds for 1 ≤ m < m∗ for some 1 ≤ m∗ < k−1. Then we

invoke (6.4) with 1 ≤ m < m∗ and (6.2) into the expression of v̂⊤i,nvm∗,n to obtain for m∗ < i ≤ k

|v̂⊤i,nvm∗,n| =

∣

∣

∣

∣

v̂⊤i,nv̂m∗,n −
m∗−1

∑
j=1

(v̂⊤m∗,nv j,n)(v̂
⊤
i,nv j,n)

∣

∣

∣

∣

(

‖v̂m∗,n‖2 −
m∗−1

∑
j=1

(v̂⊤m∗,nv j,n)
2

)1/2

≤
M

τ2

k2
+(m∗−1)

G2τ4

k4

(

1−M
τ2

k2
− (m∗−1)

G2τ4

k4

)1/2

≤ M+G2τ2

(

1−Mτ2− τ4G2
)1/2

τ2

k2
≤ G

τ2

k2
, m∗ < i ≤ k.

That is, (6.4) holds for m = m∗ and thus holds for any 1 ≤ m < k by mathematical induction.

Similar to the above derivations, there exists a constant Q > 0 independent from n, N, τ , α , β and

k such that for 1 ≤ i ≤ k and 1 ≤ n ≤ N

(1−Qτ2)1/2 ≤ |Yi,n| ≤ (1+Qτ2)1/2. (6.6)

Note that this implies

|1−Yi,n| ≤ |1−Yi,n|(1+Yi,n) = |Y 2
i,n −1| ≤ Qτ2. (6.7)

Then we remain to estimate vi,n − v̂i,n for 1 ≤ i ≤ k. According to the definition of vi,n we have

vi,n − v̂i,n =
1

Yi,n

(

(1−Yi,n)v̂i,n −
i−1

∑
j=1

(v̂⊤i,nv j,n)v j,n

)

,

which, together with (6.2), (6.4), (6.6) and (6.7), implies

‖vi,n − v̂i,n‖ ≤ 1

|Yi,n|

(

|1−Yi,n|‖v̂i,n‖+
i−1

∑
j=1

|v̂⊤i,nv j,n|
)

≤ Q|1−Yi,n|+Qk
τ2

k2
≤ Qτ2.

Thus we complete the proof. �

Remark 1 From the proof of Lemma 6 we note that the same conclusion could be obtained under

a weaker constraint on β than (6.1), that is, the power of k on the denominator could be less than 1.

However, we will show in the next proof that (6.1) is necessary.

6.2. Index-robust error estimate

We prove an index-robust error estimate for the numerical scheme (2.5) in the averaged norm ‖ · ‖A to

the constrained high-index saddle dynamics (2.1) in the following theorem.
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Theorem 2 Suppose the Assumption A and (6.1) hold and
√

2βL2τ ≤ 1−θ for some 0 < θ < 1, then

the following estimate holds for τ sufficiently small

‖ex
n‖+‖ev

n‖A ≤ Qτ , 1 ≤ n ≤ N, ‖ev
n‖A =

1

k

k

∑
j=1

‖e
v j
n ‖= 1

k
En.

Here Q is independent from τ , n, N, α , β and k.

Proof . For the estimate of ex
n, we observe from (4.3) that only its fourth right-hand side term could

result in the dependence of Q on k. As this term was carefully estimated in (4.4), in which the constant

Q is independent from k, we could apply similar derivations as those for (4.6) in the proof of Theorem

1 and the condition (6.1) to obtain

‖ex
n‖ ≤ Q

τ

k

n−1

∑
m=1

Em +Qτ = Qτ
n−1

∑
m=1

‖ev
m‖A +Qτ , 1 ≤ n ≤ N. (6.8)

For the estimate of e
vi
n from (4.7), it suffices to pay attention on the difference of two summations

τβ

∥

∥

∥

∥

i−1

∑
j=1

[

v j(tn−1)v j(tn−1)
⊤H(x(tn−1))vi(tn−1)

−v j,n−1v⊤j,n−1H(xn−1)vi,n−1

]

∥

∥

∥

∥

≤ τβ

∥

∥

∥

∥

i−1

∑
j=1

[

e
v j

n−1v j(tn−1)
⊤H(x(tn−1))vi(tn−1)

+v j,n−1(e
v j

n−1)
⊤H(x(tn−1))vi(tn−1)

+v j,n−1v⊤j,n−1(H(x(tn−1))−H(xn−1))vi(tn−1)

+v j,n−1v⊤j,n−1H(xn−1)e
vi

n−1

]

∥

∥

∥

∥

≤ Qτ

k

(

En−1 +‖ex
n−1‖+‖e

vi
n−1‖

)

.

(6.9)

Here the constant Q is independent from α , β and k. Then similar estimates as those for (4.5) yield

‖evi
n ‖ ≤ ‖e

vi

n−1‖+Q
τ

k

(

‖ex
n−1‖+‖e

vi

n−1‖
)

+Q
τ

k
En−1 +Qτ2.

Adding this equation from i = 1 to k and multiplying the resulting equation by k−1 lead to

‖ev
n‖A ≤ ‖ev

n−1‖A +Q
τ

k
‖ex

n−1‖+Q
τ

k
‖ev

n−1‖A +Qτ‖ev
n−1‖A +Qτ2.

We invoke (6.8) to obtain

‖ev
n‖A ≤ ‖ev

n−1‖A +Q
τ2

k

n−1

∑
m=1

‖ev
m‖A +Qτ‖ev

n−1‖A +Qτ2.

Then an application of Lemma 5 leads to the conclusion of the theorem. �
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7. Concluding remarks

In this paper we prove error estimates for numerical approximation to constrained high-index saddle

dynamics, which extends the existing results for the classical high-index saddle dynamics without

constraints in the literature. We then improve the proved results by developing an index-robust error

estimate for the proposed numerical scheme in an averaged norm by adjusting the relaxation parameters

α and β . These results provide theoretical supports for the numerical accuracy of discretization of

constrained high-index saddle dynamics.

It is worth mentioning that the current work mainly focuses on the constrained high-index saddle

dynamics on the finite interval t ∈ [0,T ] and prove error estimates to show the dynamic convergence of

numerical solutions. For most applications, the target saddle point x∗ could be reached within a certain

number of iterations, which corresponds to a finite T as imposed in the current work. Nevertheless,

the convergence to the saddle point is theoretically determined by the rate of x(t) → x∗ as t → ∞,

which suggests the error estimate of xn − x∗ for n → ∞ as those for optimization algorithms. In a very

recent work [19] such convergence analysis for the high-index saddle dynamics without constraints is

performed. However, due to the stronger coupling between x and {vi}k
i=1 in the constrained case, it is

not straightforward to extend the methods in [19] to analyze the convergence of xn − x∗ for numerical

methods to the constrained high-index saddle dynamics (2.1) and we will investigate this interesting

topic in the near future.
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