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Abstract. In this paper, we propose a deep spatio-temporal forecasting model (Deep-
STF) for multi-site weather prediction post-processing by using both temporal and
spatial information. In our proposed framework, the spatio-temporal information is
modeled by a CNN (convolutional neural network) module and an encoder-decoder
structure with the attention mechanism. The novelty of our work lies in that our model
takes full account of temporal and spatial characteristics and obtain forecasts of mul-
tiple meteorological stations simultaneously by using the same framework. We apply
the DeepSTF model to short-term weather prediction at 226 meteorological stations in
Beijing. It significantly improves the short-term forecasts compared to other widely-
used benchmark models including the Model Output Statistics method. In order to
evaluate the uncertainty of the model parameters, we estimate the confidence inter-
vals by bootstrapping. The results show that the prediction accuracy of the DeepSTF
model has strong stability. Finally, we evaluate the impact of seasonal changes and to-
pographical differences on the accuracy of the model predictions. The results indicate
that our proposed model has high prediction accuracy.
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1 Introduction

Weather forecasting has always been a matter of general concern. Accurate weather fore-
casts can reduce the adverse effects caused by extreme weather, reduce economic losses,
and have an important impact on various industries such as tourism and transporta-
tion. Nowadays, as supercomputers gradually enter a period of rapid development, nu-
merical weather prediction (NWP) has become a major technical method and research
direction in the field of weather forecasting. The idea of numerical weather prediction
was first proposed by Bjerknes [3] in the early 20th century and achieved rapid devel-
opment afterwards [6, 32]. Nevertheless, NWP forecasts often carry significant system-
atic bias. Hence, post-processing has become standard practice since at least Glahn et
al. (1972) [19], in which Glahn et al. demonstrated a version of model output statistics
(MOS) that improves the raw NWP forecast accuracy. The MOS method has been widely
used since it was proposed [1, 10, 18, 21, 39, 44]. Besides MOS, other statistical algorithms
are commonly adopted in post-processing of weather prediction, such as Kalman filter-
ing [13,14,28,43], the analog ensemble [12], anomaly numerical-correction with observa-
tions [29] and Markov Chain models [5, 37].

In addition to traditional statistical methods, machine learning and artificial neural
networks [25] are gradually being widely used in weather forecasting [4, 7, 20, 31, 40,
41, 45, 46]. Haochen Li et al. [26] proposed a model output machine learning (MOML)
method for grid temperature forecasting. The results showed a better performance than
the ECMWF (European Centre for Medium-range Weather Forecasts) model without
post-processing and the traditional post-processing methods MOS, especially for win-
ter. Huan Zheng et al. [48] used k-means algorithm to divide the samples into several
categories based on the similarity of weather in historical days and proposed a new ex-
treme gradient boosting (XGBoost) model for short-term wind power forecasting. Rasp
et al. [30] established a fully-connected neural network to predict the 2-m temperature
in Germany. The results showed that the neural network approach significantly out-
performs traditional statistical methods. Zaytar et al. [47] established the seq2seq model
based on LSTM (Long Short-Term Memory), and made end-to-end [25] predictions on the
temperature, humidity, and wind speed of 9 cities in Morocco. The experimental results
were better than traditional statistical methods. In the prediction of extreme weather fore-
casts, Ashesh Chattopadhyay et al. [8] proposed CapsNets to predict the geographic area
of extreme surface temperature in North America. The results show that the multivariate
data-driven framework is expected to achieve accurate extreme weather predictions.

In the field of weather forecasting, it is often necessary to consider the impact of both
temporal and spatial characteristics. Xingjian Shi et al. [33] proposed the convolutional
LSTM (ConvLSTM) and used it to build an end-to-end trainable model for the precipita-
tion nowcasting problem. Experiments showed that the ConvLSTM network can capture
spatio-temporal correlations. Due to the shortcoming of ConvLSTM to model the dy-
namic changes of clouds, Xingjian Shi introduced a new precipitation prediction model
named TrajGRU (Trajectory Gate Recurrent Unit) that can actively learn the location-
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variant structure for recurrent connections [34]. Ghaderi et al. [17] took the wind speed
prediction of 57 stations in the northeastern United States as an example and built an
LSTM-based spatio-temporal forecast model, which can obtain the wind speed prediction
results of all stations at the same time. Karevan et al. [24] established a 2-layer stacked
LSTM model based on spatio-temporal modeling to predict the temperature. In the 2-
layer stacked LSTM model, the hidden state of the first LSTM layer is used as the input
of the second LSTM. Experiments show that the predictability of the stacked LSTM model
is improved compared to the traditional LSTM model. More references to previous work
on spatio-temporal forecasting can be found in [35].

Traditional post-processing methods usually establish a prediction model for each
site separately, which do not accurately reproduce or optimally exploit the spatial cor-
relation between nearby sites. Although the individual model of each site can capture
the characteristics of the site, the model of one site may not be suitable for the pre-
diction of other sites. When the number of sites is huge, this method needs to build a
great number of models, which is very inefficient. Therefore, it is necessary to establish a
multi-site prediction model. Motivated by this observation, we present a new prediction
model called Deep Spatio-Temporal Forecasting Model (DeepSTF). This model is con-
cerned with short-term multi-site forecasting using both temporal data as well as spatial
information. In the extraction of temporal features, a BiGRU-based Encoder-Decoder
model with attention mechanisms is established. To extract spatial features, firstly, a
CNN model is constructed to obtain the spatial information of the numerical forecasts
around each station; Secondly, the latitude, longitude and altitude of the station are en-
coded with a fully-connected network to reflect the differences between stations. The
main contributions of our work are the fact that our model takes full account of temporal
and spatial characteristics and obtain forecasts of all meteorological stations at the same
time by using one framework. We apply the DeepSTF model to the short-term weather
prediction of 226 stations in Beijing to forecast the changes of 4 meteorological factors
in the next 3 days: temperature, relative humidity, average wind speed, and gust wind
speed. The results show that our framework significantly improves the short-term fore-
casts compared to a set of widely-used benchmarks models.

The remainder of the paper is organized as follows. In Section 2, we describe the prob-
lem and data in this study. In Section 3, we elaborate on the proposed architecture of the
deep spatio-temporal forecasting model. Section 4 verifies our model on the short-term
weather forecast in Beijing and analyzes the adaptability of the model under different
months and stations. The conclusions and future work are finally drawn in Section 5.

2 Problem and data description

2.1 Problem description

In this paper, We focus on the short-term weather prediction in Beijing. In this problem,
there are 226 stations that need to be predicted. They are distributed in all municipal
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districts of Beijing and involve different terrains. If we use the traditional method to es-
tablish a prediction model for each station separately, there will be more repetitive work.
In practical applications, it will face the problems of storage inconvenience and difficulty
in maintenance. Hence, for 226 meteorological observatories in Beijing, we conduct a
multi-site prediction, forecasting the changes in temperature, relative humidity, average
wind speed, and gust wind speed in the next 72 hours. In this case study, our model
makes 8 times of forecast every day (i.e. 2:00, 5:00, ··· , 23:00). At each forecasting time,
the model will predict the weather conditions every 3 hours for the next 3 coming days
(namely 24 predictions in total).

2.2 Data description

In the post-processing of weather forecast, there are two types of data commonly used:
meteorological observational data and numerical weather prediction data.

Historical observational data. The observational data is measured by various meteo-
rological stations at time intervals, including some meteorological factors such as tem-
perature and relative humidity. We record S = (s1,s2,··· ,sK) as the set of stations that
need to be forecasted. For each meteorological observation station sk, the meteorological
observational data is recorded as Xk.

Xk={xl,m}l=1,2,···,L, m=1,2,···,M, (2.1)

where L is the length of the time series of observations, its time interval is usually 1 hour.
M is the number of meteorological factors.

In this problem, the historical observational data covers 226 meteorological stations.
These stations’ distribution is shown in Fig. 1 , covering all the municipal jurisdictions
in Beijing. The time range of the observational data is January 1, 2015 to November 30,
2017 and the interval is 1 hour. There are 8 meteorological observation factors including
temperature, air pressure, relative humidity, precipitation, average wind speed, average
wind direction, gust wind speed and gust wind direction. Several stations have missing
data, which are completed by using linear interpolation.

Numerical weather prediction data. The NWP data contains the grid forecast results
for a region in the next few days. Compared with the observational data, it contains more
meteorological factors, such as the total cloud cover, snow depth, and mean sea level
pressure. The NWP data divides the area into a uniform grid, and usually cannot accu-
rately correspond to a certain weather observation station. We assume that the length of
the prediction time series of NWP data in each prediction period is T. For example, if
a model has maximum lead time of 240 hours and makes a forecast every 3 hours, this
means that during the prediction period (0-240h), the models forecast time series length
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Figure 1: Distribution of meteorological stations in Beijing. The green dots represent the weather stations.

is T=8. Then the NWP data for each prediction period can be written as

P=
{

pt
z,g1 ,g2

}t=1,2,···,T

z=1,2,···,Z, g1=1,2,···,G1, g2=1,2,···,G2

, (2.2)

where Z is the number of meteorological predictors and the size of the NWP mesh is
G1×G2.

For NWP data, we use the data from the ECMWF-IFS (the European Centre for
Medium-Range Weather Forecast Integrated Forecasting System global model). The time
range is from January 15, 2015 to November 30, 2017 and the spatial range is 35◦N ∼
45◦N, 110◦E ∼ 120◦E. The data are initialized at UTC 00:00 and UTC 12:00 each day,
forecasting the weather changes in the next 240 hours. The forecast interval for the
first 72 hours is 3 hours, while the remaining is 6 hours. The spatial resolution on
the ground is 0.125◦×0.125◦ (≈ 13km×13km), while at high altitudes the resolution is
0.25◦×0.25◦ (≈ 26km×26km). After deleting some unnecessary predictors (e.g. land-
sea mask), the NWP data include 44 predictors such as 2-meter temperature, 10 meter V
wind component, and mean sea level pressure, among which there are 24 high altitude
variables (listed in Table 1). To ensure data consistency, firstly, the time interval is uni-
fied to 3 hours by using linear interpolation; secondly, the spatial resolution is unified to
0.125◦×0.125◦ by using bi-linear interpolation.
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Table 1: Information of the predictors taken from ECMWF-IFS.

Predictors

100 meter U wind component Low cloud cover Sea surface temperature

100 meter V wind component Large-scale precipitation Temperature [500 hPa]

10 meter U wind component Mean sea level pressure Temperature [850 hPa]

10 meter V wind component Potential vorticity [1000 hPa] Total cloud cover

2 meter dewpoint temperature Potential vorticity [500 hPa] Total column water

2 meter temperature Potential vorticity [850 hPa] Total column water vapour

Convective available potential energy Specific humidity [1000 hPa] Total precipitation

Divergence [1000 hPa] Specific humidity [500 hPa] U wind component [500 hPa]

Divergence [500 hPa] Specific humidity [850 hPa] U wind component [850 hPa]

Divergence [850 hPa] Relative humidity [1000 hPa] V wind component [500 hPa]

Zero Degree Level Relative humidity [500 hPa] V wind component [850 hPa]

Forecast albedo Relative humidity [850 hPa] Vertical velocity [1000 hPa]

Geopotential height [1000 hPa] Snow depth Vertical velocity[500 hPa]

Geopotential height [500 hPa] Snowfall Vertical velocity [850 hPa]

Geopotential height [850 hPa] Skin temperature

3 The DeepSTF model

3.1 Network architecture

In this section, we elaborate on the proposed architecture of the Deep Spatio-Temporal
Forecasting Model (DeepSTF). Our framework implements end-to-end short-term pre-
diction of meteorological factors. We establish a model based on BiGRU (Bidirectional
Gated Recurrent Unit) to extract temporal features, and a model based on a CNN (convo-
lutional neural network) and a fully-connected network to extract spatial features, which
fully reflects the relationship of meteorological factors between time and space. Because
the model incorporates the regional information of NWP data and the geographic coor-
dinates of the stations, the model can be trained with data from multiple weather sta-
tions simultaneously, reducing the disadvantages of traditional single-site prediction al-
gorithms. It is suitable for multi-site forecasting of various conventional meteorological
factors such as temperature, relative humidity, etc.

The core composition of DeepSTF is an Encoder-Decoder structure, which is usually
used to solve sequence-to-sequence generation problems, such as machine translation
in natural language processing. Therefore, the Encoder-Decoder model is also called
Seq2seq model [11, 38]. In the encoding stage, the model can convert the input sequence
into a fixed-length vector. In the decoding stage, the previously generated fixed vector
will be converted into an output sequence. The weather forecast problem is a time series
prediction, and the input historical weather data and the output future weather condi-
tions are all sequences, so it is suitable to adopt the Seq2seq model. The Encoder-Decoder
model is a model framework. In specific implementation, we can choose different deep
learning models to combine, in this paper, we use the BiGRU [11] model as the encoder
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and decoder. GRU is a variant of the LSTM (Long Short-Term Memory, [22]) model,
which simplifies the network structure based on the forget gate and update gate mecha-
nism. The BiGRU model contains two GRUs, one taking the input in a forward direction,
and the other in a backwards direction, which can reflect the impact of the before and
after time series on the current moment. In addition, in response to the problem of the
disappearance of gradients in the Seq2seq model, which is the information loss caused
by the conversion of the input sequence to the fixed-length vector, we introduced the at-
tention mechanism [2]. The attention mechanism assigns corresponding weights to the
data at different moments of the input sequence. In the weather forecast, it can pay more
attention to the information of historical weather conditions and improve the long-term
prediction accuracy.

As shown in Fig. 2, the model outputs predict values of each meteorological factor
at n time points in the future, which is denoted as Ŷ =(ŷ1,ŷ2,··· ,ŷn), while the true val-
ues is recorded as Y . The input data consist of three parts, among which the time and
geographic coordinates are defined as W . It is encoded by a fully-connected neural net-
work to obtain the expression D = [d1,d2,···,dn], where dj = (d1,j,d2,j,··· ,dh,j)

T is an h-
dimensional column vector at time j (j = 1,··· ,n). The historical observational data is
recorded as X and the NWP data is recorded as P= [P1,P2,···,Pn], where Pj is the grid
data of the NWP data at time j. They are processed through the Encoder-Decoder model
to get Q = [q1,q2,···,qn], where qj = (q1,j,q2,j,··· ,qh,j)

T is an h-dimensional column vec-
tor at time j. Then we concatenate Q and D to obtain the prediction sequence through
a fully-connected network. We use the Mean Square Error (MSE) as the loss function.
The DeepSTF algorithm is illustrated by the pseudo-code in Algorithm 1. We refer to the
existing experience for parameter settings of deep learning network like VGGNet [36] to
set the hyperparameters (the number of neurons, layers, and the convolution kernel size,
etc.) of our neural network structure, and the details of each sub-module are described
as follows.

Algorithm 1 The calculation procedure of the DeepSTF model

Input:

ǫ – the loss of model convergence.
W – time and geographic coordinates.
X – historical observational data.
P – the NWP data.
Output: Y – the true value of weather factors.
repeat

1: D=Fully-Connected(W)
2: Q=Encoder-Decoder(X ,P)
3: Concatenate Q and D to get V =(D;Q)
4: Ŷ =Fully-Connected(V)
5: Loss=MSE(Y ,Ŷ)

until Loss≤ǫ
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Figure 2: The Architecture of Deep Spatio-Temporal Forecasting Model (DeepSTF). The blue dotted frame on
the left is the input part of the model, and the gray box is the Encoder-Decoder module of the model.

3.2 Model inputs

Based on the known data, we select the appropriate input for feature construction. Each
part of the input is described below in detail.

1) Time and geographic coordinates. In the multi-site forecast, the forecast lead time,
the day of the year, the month, and the hour are used as time features. The spatial
features include the longitude, latitude, and altitude of the station. We also consid-
ered the difference between the site and the nearest grid point by calculating the
latitude and longitude difference and distance between them. Through the above
analysis, time and geographic coordinates features have a total of 10 dimensions.

2) Historical observational data. We use the hourly observational data of the past
48 hours before the start forecast time, including 8 meteorological factors: tem-
perature, pressure, relative humidity, wind direction, wind speed, gust wind direc-
tion, gust wind speed and precipitation, which fully reflect the changes in historical
weather.

3) Numerical weather prediction data. The NWP grid data contains 44 forecast pre-
dictors as shown in Table 1. For each station, we need to extract its corresponding
numerical forecast results from the NWP data. In the traditional weather forecast-
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ing algorithm, the interpolation method is usually used to obtain the numerical
forecast results of the corresponding stations [26]. In this paper, We establish a
CNN model for the NWP data to extract grid forecast information around the sta-
tion, which fully reflects the spatial characteristics of the numerical prediction.

3.3 Encoding for the historical observational data

In the encoder part, the model mainly processes the historical real-time monitoring data
of meteorological stations. To extract the information of historical weather more compre-
hensively, a 3-layer BiGRU model is adopted. The number of neurons in each layer is
256, and the input dimension is (48×8), which represents 48-hour historical time series
and 8 meteorological predictors. At the time t, the hidden layer vector ht is related to the
historical weather conditions xt, the previous hidden layer vector, and the next hidden
layer vector, which can be written as:

ht = f (ht−1,xt,ht+1), t=1,2,··· ,48. (3.1)

3.4 Decoding for the forecast period

In the decoder stage, a 3-layer BiGRU model with attention mechanism is used, and the
number of neurons in each layer is 256. First, the decoder receives the last hidden layer
vector of the encoder for initialization. Then, at each prediction time step i in the decoder
stage, the hidden layer vector can be written as

hi= g(hi−1, p̂i,ci), i=1,2,··· ,24, (3.2)

where hi−1 is the hidden layer vector at the previous moment, p̂i is the feature vector of
the numerical forecast at this moment, which is obtained from the NWP result Pi through
CNN encoding. ci is the attention vector related to the output of the encoder.

In the traditional weather post-processing algorithm, the nearest neighbor interpo-
lation is usually used for the grid data to obtain the numerical prediction results of the
station, which lacks the extraction of spatial features. To obtain the spatial connection
of meteorological factors, we establish a CNN model on the processing of numerical
weather forecast results. Specifically, we take the nearest grid point of the station as the
center and extract the surrounding 9×9 grid data, which is nearly 120km×120km, so it
is enough to reflect the weather conditions around the weather station. Fig. 3 shows the
extraction process. After extraction, a CNN model is used on the extracted grid data to
obtain the spatial features. The input of the CNN model is 9×9 grid data of 44 prediction
variables. The 3×3 convolution kernel whit 64 output channels (Conv3-64) is used for
spatial feature extraction. Finally, the results are integrated into the decoder through a
fully-connected layer with 256 neurons (FC-256). The structure of the CNN is shown in
Table 2.
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Figure 3: The extraction process of the NWP data. The red dot represents the meteorological observation
station, and the surrounding 9×9 grid area is extracted with the station as the center.

Table 2: The structure of the CNN model.

Input (44×9×9)

Conv3-64

Conv3-64

Maxpool(2×2)

FC-256

Decoder

3.5 Feature modeling for time and geographic coordinates

For time and geographic coordinates, we combine the time information corresponding
to the predicted time, such as year, month, and hour, and the geographic coordinates
corresponding to the station. Then establish a 3-layer fully-connected model, where the
number of neurons in each layer is 256. By modeling the characteristics of time and
geographic coordinates, the model can fully reflect the characteristics of different stations
and different prediction times.

3.6 Model output

In the final prediction output stage, we first combine the features of time and geographic
coordinates with the output of the Encoder-Decoder stage, and then establish a fully-
connected model to get the prediction sequence. As shown in the Fig. 2, at each pre-
diction time step i, we will concatenate di and qi to obtain vi, and then input it into the
fully-connected layer. The fully-connected model has 3 layers, and the number of neu-
rons in each layer is 1024, 512, 256 respectively. Through the above analysis, we can see
that the entire model fully considers the characteristics of space and time, reflecting the
relationship of meteorological factors in the time and space dimension.
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4 Numerical experiments

4.1 Experimental settings

Data set division. According to the description of historical observational data and
ECMWF-IFS data, we select 500,000 samples from 2015-01-15 to 2016-09-30 randomly
as the training set. The data from 2016-10-01 to 2016-10-31 is used as the validation set,
and the data from 2016-11-01 to 2017-10-31 is used as the test set.

Model training. We choose AdamW as the optimizer. AdamW is an improvement of
Adam [27], which can improve the generalization ability. When the neural network needs
regular terms, replacing Adam with AdamW will get better performance. For the acti-
vation function, ReLU is used in our model. ReLU can effectively reduce the problem of
gradient disappearance and is widely used in deep learning [25]. The initial learning rate
is 3×e−4, the batch size is 64 and the loss function is MSE. To accelerate the convergence
speed in the experiment, the BatchNorm structure is added, which reduces the adverse
effects caused by the overfitting problem at the same time [23]. In the second half of the
training process, convergence tends to be slow, so we reduce the learning rate for further
converge the model. The specific approach is to reduce the learning rate by 10% for every
5 steps of training.

Evaluation criteria. To measure and evaluate the performance of different methods,
Root Mean Squared Errors (RMSE) and Accuracy (ACC) are adopted. The calculation
method of ACC is different depending on the meteorological predictors. For temperature
and relative humidity, we need to judge whether the error between the predicted value
and the true value is within a certain threshold. The calculation formula is

ACC1=
|I|

N
, I={i

∣

∣ |yi− ŷi|≤ θ}, (4.1)

where yi,ŷi represent the true value and the predicted value, N is the total number of
samples, θ is the threshold. For temperature θ = 2 Degrees Celsius, and for relative hu-
midity θ=10%. To calculate the accuracy of wind speed, we first need to divide the wind
speed into corresponding levels as shown in Table 3, and then determine the forecast
score according to the difference between the predicted level and the real level [16]. The
calculation can be written as

ACC2=

N

∑
i=1

si

N
, (4.2)

where si represents the forecast score of the i-th sample, which ranges from 0 to 1. Note
that di,d̂i are the actual and predicted levels of wind speed respectively, then the forecast
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Table 3: Wind speed and levels (m/s).

Wind Speed Wind Levels

<0.3 0

<1.6 1

<3.4 2

<5.5 3

<8.0 4

<10.8 5

<13.9 6

<17.2 7

<20.8 8

<24.5 9

<28.5 10

<32.7 11

≥32.7 12

score si can be calculated as

si =























1, |di− d̂i|=0,

0.6, |di− d̂i|=1,

0.4, |di− d̂i|=2,

0, otherwise.

(4.3)

4.2 Comparison of different model structures

To verify the rationality of the model structure, we first use temperature prediction as an
example and compare a variety of model structures in the experiment. In these model
structures, we use the XGBoost [9] algorithm as the baseline and compare the impact of
the BiGRU model, Seq2seq framework, attention mechanism, and CNN module on the
prediction results. We test these models on the validation set, and then make predictions
on the test set. Table 4 shows the results of each model in the temperature prediction
on the test set. It can be seen that the prediction results of all models exceed the results
of ECMWF-IFS. It shows that the post-processing algorithm of weather forecasting has a
good correction effect on the numerical prediction results.

Compared with ECMWF-IFS, the prediction accuracy of XGBoost has significantly
improved. The BiGRU model uses only one bidirectional GRU without a seq2seq struc-
ture, which has no obvious advantage over XGBoost. The Seq2seq model uses the classic
seq2seq model without introducing an attention mechanism, and in the processing of
NWP data, the nearest neighbor interpolation is used to approximate the station’s nu-
merical prediction results without considering the spatial characteristics. This model is
improved by about 3% compared to BiGRU, which shows that the seq2seq model can
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Table 4: Comparison of different models in temperature forecasting.

Model RMSE ACC

ECMWF-IFS 2.94 56.72%

XGBoost 2.65 63.37%

BiGRU 2.69 63.15%

Seq2seq 2.57 66.08%

AttnSeq2seq 2.54 67.45%

CNNseq2seq 2.50 68.41%

DeepSTF 2.41 70.03%

Figure 4: RMSE (left) and ACC (right) of different models in temperature forecasting. The prediction results
of the DeepSTF model are better than others, which has the lowest RMSE and highest accuracy.

combine historical observational data with numerical forecast data better, and can obtain
more accurate prediction results than a single BiGRU. The AttnSeq2seq model introduces
an attention mechanism on basic seq2seq, and the prediction accuracy is improved. This
shows that the attention mechanism can pay more attention to the information of histor-
ical observational data, and at the same time will reduce the vanishing gradient prob-
lem. The CNNseq2seq model establishes a CNN model on the NWP data during the
decoder stage of seq2seq to extract the spatial features of the numerical forecast grid
data. Compared with the seq2seq model, the accuracy is improved by about 2%, which
shows that the model can better reflect the spatial connection of meteorological predic-
tors. The DeepSTF model proposed in this paper integrates the above models, adopts
the seq2seq structure, introduces an attention mechanism, and establishes a CNN model
to extract spatial features. The prediction accuracy of DeepSTF has reached 70% on the
temperature prediction problem, which is about 13% higher than ECMWF-IFS, which is
the best performance among all models.

To fully evaluate the results, Fig. 4 shows the variation trend of RMSE and ACC
of 0-72 h temperature forecasting. It can be clearly seen from the figure that the accu-
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(a) Temperature (b) Relative humidity

(c) Average wind speed (d) Gust wind speed

Figure 5: Comparison of the predicted value and the observation value. The prediction results of the DeepSTF
model are closer to the true values in each meteorological factor than other models.

racy of all models gradually decreases with the increase of the lead time. Except this,
the post-processing algorithms tested in this article have made significant corrections to
the ECMWF-IFS prediction results. Especially the AttnSeq2seq model with the attention
mechanism and the CNNseq2seq model with the spatial feature extraction, both have
significantly improved the predictive ability, which achieves 80% accuracy in the 3-hour
forecast. After combining the advantages of these two models, the DeepSTF model has
achieved better prediction results than others. The accuracy of the 3-hour forecast ex-
ceeds 80%, even in the 72-hour forecast, the accuracy rate exceeds 65%. Compared with
other post-processing algorithms, the DeepSTF model significantly improves forecast ac-
curacy.

The above comparative analysis of different model structures illustrates the rational-
ity of the DeepSTF model structure. Then we use DeepSTF for the prediction of other
meteorological factors on the test set. Fig. 5 shows the variation trend between the real
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(a) Average wind speed (b) Gust wind speed

Figure 6: Cases with a poor predict performance. At the point where the wind speed changes suddenly, the
model prediction result is not accurate.

value and predicted value of each meteorological factor in the forecast period. It can be
seen that both the DeepSTF model and the XGBoost model can effectively correct the
ECMWF-IFS data, and DeepSTF is closer to the true value than XGBoost. This indicates
that the deep neural network with a more complicated structure can extract the temporal
and spatial characteristics better than the traditional machine learning model, and make
more accurate predictions. Furthermore, we also analyze some cases where the predic-
tion effect is unsatisfying. We find that when the observed value changes rapidly, the
model cannot achieve an accurate prediction effect. As shown in Fig. 6, this situation is
more obvious in the prediction of average wind speed and gust wind speed. The reason
is that the training data does not contain many extremely rapid changing values, which
makes our model more likely to predict the meteorological factors in a relatively smooth
trend.

4.3 Comparison of multi-site and single-site forecast

Since there are 226 stations that need to be forecasted in Beijing, there are many draw-
backs to establishing a prediction model for each station, such as more repetitive work
and inconvenient storage. Therefore, in view of the shortcomings of the traditional
single-site forecasting model, a new multi-site forecasting model named DeepSTF is es-
tablished in this paper. For each meteorological factor, the number of models is reduced
from the original hundreds to only one, which greatly reduces the cost of training and
storage. To analyze the advantages of the multi-site forecasting model, we compare the
prediction results of the multi-site model with the single-site model. For the single-
site prediction model, we selected the univariate MOS algorithm [15] and the MOML
model [26, 42] based on machine learning, both of which have achieved good results in
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Table 5: Comparison of accuracy between multi-site and single-site forecasting.

Predictors ECMWF-IFS
Single-site Multi-site

MOS MOML XGBoost DeepSTF

Temperature 56.72% 67.06% 69.52% 63.37% 70.03%

Relative humidity 47.46% 60.41% 68.87% 60.81% 70.34%

Average wind speed 73.77% 83.14% 83.80% 83.31% 84.44%

Gust wind speed 64.46% 74.03% 76.18% 75.17% 77.05%

Figure 7: Comparison of prediction accuracy between different models. Among the four predicted meteorological
factors, the DeepSTF model has achieved the best accuracy.

weather forecasting. We establish MOS and MOML models for each station separately.
The inputs include the historical observational data of each station and the NWP data of
the surrounding grid points, and the outputs are the predicted values of the meteorolog-
ical factors of the station for the next 72 hours.

The comparison of prediction results between multi-site and single-site forecasting
on the test set is shown in Table 5 and Fig. 7. It can be seen that the XGBoost model for
multi-site forecasting has a lower temperature accuracy than MOS, while the accuracy of
other variables has been slightly improved. However, compared with the MOML model,
the prediction accuracy of XGBoost is worse. This indicates that multi-site forecasting
requires higher model complexity due to the integration of meteorological conditions of
different terrains, and it is necessary to build a deeper model to extract spatial features
better.

The multi-site forecasting model DeepSTF based on deep learning spatio-temporal
modeling has deeply extracted the temporal and spatial features, and the accuracy of
each factor exceeds the single-site forecasting model MOML. Therefore, the deep neural
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network model that combines time and space features has a greater advantage in ex-
tracting space features than the single-site model, which fully reflects the relationship
between meteorological factors in the time dimension and space dimension. It reduces
the number of models and improves the accuracy of prediction at the same time.

4.4 Confidence interval estimation of the forecast accuracy

In order to evaluate the uncertainty of the model parameters, we use the bootstrap
method to construct random samples on the test set, yielding the distribution of the pre-
diction accuracy and obtaining the confidence intervals. Specifically, we sample the test
data with replacement, obtaining 20,000 pieces of data for each re-sampling. Then we
calculate the prediction accuracy of the re-sampling. After repeating this process 1000
times, we obtain the distribution of prediction accuracy.

Tables 6-9 show the accuracy distribution and 95% confidence interval estimation of
temperature, relative humidity, average wind speed and gust wind speed respectively.
We can see that the multi-site post-processing algorithm proposed in this paper has
strong prediction stability and robustness. Especially the DeepSTF model, which can
significantly improve the prediction accuracy compared to ECMWF-IFS and the baseline
model XGBoost.

Table 6: Accuracy distribution of the temperature forecasting.

Model Average Standard deviation 95% confidence interval

ECMWF-IFS 56.05% 0.0014 [55.79%,57.36%]

XGBoost 63.40% 0.0012 [63.19%,63.65%]

DeepSTF 70.01% 0.0012 [69.71%,71.20%]

Table 7: Accuracy distribution of the relative humidity forecasting.

Model Average Standard deviation 95% confidence interval

ECMWF-IFS 47.25% 0.0014 [47.04%,47.60%]

XGBoost 60.80% 0.0013 [60.55%,61.10%]

DeepSTF 70.32% 0.0010 [70.13%,70.57%]

Table 8: Accuracy distribution of the average wind speed forecasting.

Model Average Standard deviation 95% confidence interval

ECMWF-IFS 73.82% 0.0007 [73.68%,73.97%]

XGBoost 83.30% 0.0005 [83.20%,83.42%]

DeepSTF 84.44% 0.0005 [84.33%,84.55%]
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Table 9: Accuracy distribution of the gust wind speed forecasting.

Model Average Standard deviation 95% confidence interval

ECMWF-IFS 64.24% 0.0010 [64.05%,64.49%]

XGBoost 75.17% 0.0006 [75.06%,75.29%]

DeepSTF 77.08% 0.0005 [76.93%,77.14%]

4.5 Model evaluation on different months and stations

Since the weather forecast has differences and continuity in time and space, in this section
we compare the forecast accuracy at different months and different stations to evaluate
the adaptability of the model, and we use temperature prediction as an example for de-
tailed analysis.

Fig. 8 shows the accuracy of temperature forecasts for different months. We can see
that XGBoost and DeepSTF both exceed the ECMWF-IFS in every month, and the Deep-
STF model has the best predicted performance. From the perspective of different months,
the prediction accuracy of the DeepSTF model is relatively stable than ECMWF-IFS. Es-
pecially from 2016-11 to 2017-03, the accuracy has been maintained above 70%, which
indicates that the model has good adaptability and is less affected by seasonal changes.
Fig. 9 shows the heat map of the forecast accuracy of each station in Beijing. It can be
seen that ECMWF-IFS has a higher forecast accuracy in the southeast of Beijing, while
the mountainous area of the northwest is seriously affected by the terrain, resulting in
low accuracy. Both the XGBoost model and the DeepSTF model have a significant im-

Figure 8: Accuracy of temperature forecast in different months. The DeepSTF model outperforms ECMWF-IFS
and XGBoost in each month and can maintain high accuracy under seasonal changes.
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Figure 9: Accuracy distribution of temperature forecast in Beijing. The darker the color, the higher the forecast
accuracy of the station. The DeepSTF model improves the forecasts compared to ECMWF-IFS and XGBoost
at different stations, especially in the mountains stations.

provement over the ECMWF-IFS, especially the DeepSTF model, which can still maintain
high accuracy in mountainous areas. Therefore, the multi-site prediction model DeepSTF
proposed in this paper has better adaptability in time and space than ECMWF-IFS and
maintains a higher accuracy rate at the same time.

5 Conclusions and future work

In this paper, a deep neural network DeepSTF based on spatio-temporal modeling is con-
structed for multi-site weather forecasting. In our proposed framework, we model the
spatio-temporal information by an encoder-decoder structure with an attention mecha-
nism and a CNN module. The novelty of our work mainly includes three points: first,
we realize the forecasting of multiple stations by using one framework. This framework
can better integrate spatial features and has good robustness, which is suitable for the
overall prediction of a large number of stations. Second, the DeepSTF model combines
the seq2seq structure, the attention mechanism, and the CNN module, and adds the geo-
graphic coordinates of the station, which fully reflects the relationship of meteorological
factors between time and space. Third, compared with ECMWF-IFS, our model achieves
a more refined short-term forecast, increasing the 2 forecast periods per day of ECMWF-
IFS to 8 per day, which is more meaningful for the practical application of weather fore-
casting.

To verify the prediction ability of the model, we make short-term forecasts for the next
three days at 226 stations in Beijing. The meteorological factors include temperature, rel-
ative humidity, average wind speed, and gust wind speed. We first use temperature
prediction as an example to conduct a full comparison experiment on different model
structures, to explore the influence of the seq2seq structure, attention mechanism, and the
CNN module on the prediction results. Experimental results show that a network that
contains all these modules outperforms a network that does not, which illustrates the ra-
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tionality of the structure of the DeepSTF model. In the comparison experiment with the
conventional single-site forecast, the DeepSTF model shows performance improvements
compared to other baselines, including the MOML based on machine learning and the
univariate MOS. It can be seen that the DeepSTF model has a greater advantage in the
extraction of the spatial and temporal features of meteorological predictors. Compared
with the traditional single-site forecast model, it not only greatly reduces the number
of models, but also improves the accuracy of the prediction. Finally, we evaluate the
impact of seasonal changes and topographical differences on the accuracy of the model
predictions. The results show that the accuracy of the DeepSTF model is relatively more
stable between different months, and it can maintain high accuracy in mountainous re-
gions with complex terrain. This indicates that our proposed model is more accurate and
robust even under seasonal changes and terrain differences.

In summary, our framework outperforms existing baselines in the post-processing of
numerical weather prediction. In the practical application of weather forecasting, it is
more suitable for the aggregate prediction of a large number of stations. In the future, we
will further optimize the network structure to extract the spatio-temporal features more
deeply. Moreover, we will apply the model to predict more meteorological factors, espe-
cially extreme weather such as typhoons and rainstorms, which will be more challenging
in forecasting.
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