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A VARIABLE-SEPARATION METHOD FOR NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS WITH RANDOM INPUTS\ast 

QIUQI LI\dagger AND PINGWEN ZHANG\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we consider a variable-separation (VS) method to solve the nonlinear
partial differential equations (PDEs) with random inputs. The aim of the VS method is to get a sep-
arated representation of the Galerkin solution for nonlinear PDEs with random inputs. An essential
ingredient of the proposed method is the construction of the optimal stochastic basis functions. The
nonlinearity can affect the computation efficiency and may bring challenges for the construction of the
optimal stochastic basis functions. In order to overcome the difficulty, we develop the VS method such
that the optimal stochastic basis functions are generated in an incremental constructive man- ner. At
each enrichment step, a stochastic basis function is determined by the linearized equation deduced
from the nonlinear problems at hand. The computation of the VS method decomposes into an offline
phase and an online phase. The linearization of the construction for stochastic basis functions can
significantly improve the computation efficiency in both offline and online stages. We first describe
the VS method for nonlinear stochastic problems in a general framework. Then two nonlinear mod-
els with random inputs are considered to formulate the details and methodologies of the proposed
method, namely, the nonlinear elliptic equations and the steady Navier--Stokes equations.
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1. Introduction. Many complex real-world models in science and engineering
usually involve nonlinear terms and often contain some uncertainties because of lack-
ing enough knowledge about the physical properties and measurement noise. The
uncertainties are often parameterized by random variables to explore the uncertainty
propagation for these models. Therefore, such complex models with uncertainties
can be described by the nonlinear partial differential equations (PDEs) with random
inputs (e.g., model coefficients and forcing terms). In this work, we consider the nu-
merical simulation methods for stochastic nonlinear problems and discuss the related
applications.

To quantify the effects of parameters and estimate unknown parameter values
from data usually require thousands to millions of realizations. This may bring chal-
lenges for numerical simulation, especially when quantifying nonlinear, multiphysics,
multiscale, or coupled biological phenomena. In order to overcome the difficulty, many
numerical methods have been proposed to construct the approximate solutions, i.e.,
surrogate models for the complex physical and engineering systems in recent decades.
Spectral stochastic methods (e.g., [23, 24, 33]) have been extensively investigated to
explore the uncertainty propagation in the last two decades. Most of these approaches,
such as L2 projection [26, 32], Galerkin projections [2, 21, 31], regression [3], and
stochastic interpolation [1, 22, 36, 44, 45], attempt to find a functional expansion
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A724 QIUQI LI AND PINGWEN ZHANG

for the random solution based on a suitable set of basis functions of random vari-
ables, which are independent of the models. Model reduction methods [33] have been
proposed to reduce the computation complexity especially when the original mod-
els are expensive to perform numerical simulations. These construct an approximate
model with lower dimensionality but still describes important aspects of the original
model. The reduced basis (RB) method is one of the model order reduction meth-
ods, arising from the field of structure mechanics, fluid dynamics. The RB method
usually provides an efficient and reliable approximation of input-output relationship
[4, 9, 10, 11, 12, 18, 27, 38, 39].

Another class of model reduction methods attempt to get a separated represen-
tation of the solution for stochastic problems in a systematic enrichment manner. As
an example, a proper generalized decomposition (PGD) method has been proposed
for solving stochastic PDEs [15, 33, 34, 35] in recent years. The PGD method is
devoted to constructing optimal RB from a double orthogonality criterion. To get the
separated representation of the solution requires that a few uncoupled deterministic
problems are solved by classical deterministic solution techniques, and some stochastic
algebraic equations are solved by classical spectral stochastic methods. In this paper,
we propose a new variable-separation (VS) method for the nonlinear PDEs with ran-
dom inputs to get a separated representation for the solution without iterations at
each enrichment step. There have been a few works investigating the model reduction
methods of parametric nonlinear models; see [9, 13, 18, 38, 40] for the RB methods,
and refer to [20, 34, 42] for the PGD methodologies.

The main idea of the VS method is to construct the quasi-optimal separated
representations

u(x,\bfitomega ) \approx 
N\sum 
i=1

\zeta i(\bfitomega )hi(x)(1.1)

in a systematic enrichment manner. At each enrichment step k, we need to solve a
deterministic problem induced by the original model with a fixed sample \bfitomega k to obtain
the deterministic functions hk(x). After that, the stochastic functions \zeta k(\bfitomega ) can be
determined by an algebraic equation. For the VS method, each of the stochastic func-
tions \zeta k(\bfitomega ) can be expressed explicitly by the previous functions \{ \zeta i(\bfitomega )\} k - 1

i=1 , model
coefficients, and forcing terms. In this context, the stochastic functions \{ \zeta i(\bfitomega )\} Ni=1

can be seen as a set of optimal basis functions of random variables deduced from
the models. Compared with PGD, which requires many iterations with the arbitrary
initial guess to compute \zeta i(\bfitomega ) and hi(x) at each enrichment step i, no iteration is
performed at each enrichment step in the framework of the VS method. Moreover,
based on the explicit constructions of the stochastic functions, it is more convenient
to construct the separated representations (1.1) of the problems than with PGD. VS
shares the same merits as the RB method, and it has some differences such that (i)
the parameter sensitivities can be analytically computed by taking the partial deriv-
atives based on the explicit representation of the stochastic functions \zeta k(\bfitomega ); (ii) for
the online computation of the VS, we can calculate the approximation straightfor-
wardly by the separated representation. Therefore, the VS method can provide an
efficient and reliable approximation, which is crucial for the many-query context such
as optimization, control design, and inverse analysis.

The VS method was first proposed in [29] for the linear stochastic problems, and
the extension to stochastic saddle point problems has been developed in [28]. In this
contribution, we develop the strategy of VS for the nonlinear parameterized PDEs. In
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VARIABLE-SEPARATION METHOD FOR NONLINEAR SPDEs A725

the VS method, an offline-online computational decomposition is required to improve
efficiency. In the offline stage, to generate the RB functions \{ hi(x)\} Ni=1 and \{ \zeta i(\bfitomega )\} Ni=1,
we need to compute a set of snapshots, which are the solutions of the parameterized
PDEs corresponding to a set of optimal parameter samples. In the online stage, the
output is computed by the quasi-optimal separated representations (1.1) for many
instances of parameters, and the influence of the uncertainty is estimated. The VS
proposed in [29] for the generic multivariate function can provide a variable-separation
for a random field, and this can be used to get an affine representation for the model's
inputs. The affine representation is crucial to achieve the decomposition of offline-
online computation for many queries to model's outputs. In the framework of the VS
method, we are usually required to solve a couple of nonlinear deterministic problems
and nonlinear stochastic equations in the offline phase. This can affect the computa-
tion efficiency and bring challenges for numerical simulation, especially when identi-
fying the stochastic basis functions \zeta k(\bfitomega ) in stochastic dimension spaces. To this end,
we construct the optimal stochastic basis functions in a systematic enrichment man-
ner based on the classic linearization techniques such as the Newton method. At each
enrichment step, the stochastic basis function \zeta k(\bfitomega ) is determined by the linearized
stochastic equation, which is deduced from the original nonlinear problems. Conse-
quently, the computation complexity can be significantly reduced in both the offline
and the online stage. We first describe the VS method for nonlinear stochastic prob-
lems in a general framework in this paper. Subsequently, the methodology is detailed
and tested based on two nonlinear stochastic models that fit in the general framework,
i.e., (i) the nonlinear elliptic equation, (ii) the steady Navier--Stokes equation.

The outline of the paper is as follows. In section 2, we give some preliminaries
and notation for the paper and collect some necessary facts on nonlinear stochastic
problems. In section 3, we first introduce the Newton's method for nonlinear problems.
Then the VS method is presented for the nonlinear stochastic problems in an abstract
framework. Section 4 is devoted to describing the details of the VS method for the
nonlinear elliptic equation with random input. In section 5, we develop the VS method
for the steady Navier--Stokes equation with random input. Two numerical examples
are presented in section 6 to illustrate the performance of the proposed methods.
Finally, we make some conclusions and comments.

2. Preliminaries and notation. Let D denote a convex and bounded physical
domain with Lipschitz continuous boundary \partial D. \scrV is a Hilbert space defined on D
with inner products (\cdot , \cdot )\scrV . The associated norm is defined as \| \cdot \| 2\scrV = (\cdot , \cdot )\scrV . Let
(\Omega ,\scrB , P ) be a complete probability space, where \Omega is the space of elementary events,
\scrB is a \sigma -algebra on \Omega , and P is the probability measure on \scrB . We denote the Hilbert
space of the random variables with second order moments by L2

P (\Omega ), which is defined
by

L2
P (\Omega ) =

\biggl\{ 
w : y \in \Omega \rightarrow w(y) \in \BbbR ;

\int 
\Omega 

w(y)2P (dy) <\infty 
\biggr\} 
.

The inner product in L2
P (\Omega ) is given by (w, v)L2

P (\Omega ) :=
\int 
\Omega 
w(y)v(y)P (dy), which

induces the norm \| w\| 2L2 = \| w\| 2
L2

P (\Omega )
:= (w,w)L2

P (\Omega ).

Let G : \scrV \times \Omega \rightarrow \scrV \ast (the dual space of \scrV ) be a mapping representing a nonlinear
PDE with random inputs. We consider the nonlinear stochastic PDEs defined on a
bounded physical domain. The problem can be read in an abstract form as, Given
\bfitomega \in \Omega , find u(x,\bfitomega ) \in \scrV such that

G(u(x,\bfitomega );\bfitomega ) = 0 \forall x \in D, \bfitomega \in \Omega ,(2.1)
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A726 QIUQI LI AND PINGWEN ZHANG

where \bfitomega := (\omega 1, . . . , \omega d) is a sequence of d real-valued random variables, and u(x,\bfitomega )
is the solution of the nonlinear SPDE. Let S(u(\bfitomega );\bfitomega ) be the output of the model
(2.1), where S is a bounded functional over \scrV .

The solution u belongs to Hilbert space L2(\Omega ;\scrV ), which can be approximated by
the tensor product space \scrV \otimes L2

P (\Omega ). Here \otimes denotes a tensor product for the Hilbert
spaces. For simplicity of notation, we will denote L2

P (\Omega ) by \scrS in the rest of the paper.
Then the inner product in \scrV \otimes \scrS is defined by

(w, u)\scrV \otimes \scrS = E[(w, u)\scrV ] :=

\int 
\Omega 

(w, u)\scrV P (dy).

Thus we define the norm as \| u\| 2\scrV \otimes \scrS := (u, u)\scrV \otimes \scrS .
The weak formulation of problem (2.1) reads, Find u(x,\bfitomega ) \in \scrV such that

g(u(x,\bfitomega ), v;\bfitomega ) = 0 \forall v \in \scrV ,(2.2)

where g(\cdot , \cdot ;\bfitomega ) is defined as

g(w, v;\bfitomega ) = \langle G(w;\bfitomega ), v\rangle \forall w, v \in \scrV .

Here we denote \langle \cdot , \cdot \rangle as the duality pairing between \scrV \ast and \scrV . We assume that the
mapping G is continuously differentiable and denote its (partial) Fr\'echet derivatives
at (z,\bfitomega ) \in \scrV \times \Omega by DuG(z;\bfitomega ) and D\bfitomega G(z;\bfitomega ). Then, the partial Fr\'echet derivatives
of g(u, \cdot ;\bfitomega ) with respect to u at z \in \scrV are represented as

dg[z](w, v;\bfitomega ) = \langle DuG(z;\bfitomega )w, v\rangle \forall w, v \in \scrV .(2.3)

For the well-posedness of (2.2) (refer to [38]), dg[u(\bfitomega )](\cdot , \cdot ;\bfitomega ) is required to be inf-sup
stable, i.e., there exists a constant \beta 0 > 0 such that

\beta (\bfitomega ) := inf
w\in \scrV 

sup
v\in \scrV 

dg[u(\bfitomega )](w, v;\bfitomega )

\| w\| \scrV \| v\| \scrV 
> \beta 0 \forall \bfitomega \in \Omega ,(2.4)

and continuous, i.e., there exists a positive constant \gamma 0 <\infty such that

\gamma (\bfitomega ) := sup
w\in \scrV 

sup
v\in \scrV 

dg[u(\bfitomega )](w, v;\bfitomega )

\| w\| \scrV \| v\| \scrV 
\leq \gamma 0 \forall \bfitomega \in \Omega .(2.5)

To ensure the existence of a local branch of nonsingular solutions to problem
(2.1), we use the following proposition.

Proposition 2.1 (see [8, 38]). Let G : \scrV \times \Omega \rightarrow \scrV \ast be a C1 map. Assume that
the following assumptions hold:

1. For some \bfitomega 0 \in \Omega , u0 \in \scrV , G(u0;\bfitomega 0) = 0.
2. dg[u0](\cdot , \cdot ;\bfitomega 0) is continuous and satisfies the inf-sup condition, i.e., DuG(u0;

\bfitomega 0) is bijective.
Then, there exist r0, r > 0, and a unique u(\bfitomega ) \in Br(u0) \cap \scrV such that

G(u(\bfitomega );\bfitomega ) = 0 \forall \bfitomega \in Brw(\bfitomega 0) \cap \Omega ,

where Br(u0) \subset \scrV denotes the ball with center u0 and radius r > 0, and Brw(\bfitomega 0) \subset \Omega 
is the ball with radius rw > 0, and centered at \bfitomega 0.

The proof of Proposition 2.1 is based on a straightforward application of the
implicit function theorem [14, 43].

D
ow

nl
oa

de
d 

10
/1

7/
22

 to
 2

18
.7

0.
25

5.
16

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VARIABLE-SEPARATION METHOD FOR NONLINEAR SPDEs A727

3. A variable-separation method. Motivated by the VS approach proposed
in [29], we develop a VS method for the nonlinear PDEs with random inputs. The
VS method for nonlinear problems with random inputs is proposed based on the
Newton's method [16, 30, 38]. Here we first present the Newton's method for nonlinear
problems. Solving problem (2.2) by Newton's method requires nonlinear iterations
with a linearized problem being solved at each step. For given \bfitomega \in \Omega , we initialize
u0 \in \scrV as an approximation of u. At step k (k = 1, 2, \cdot \cdot \cdot ), we assume that the
solution uk+1 can be written as

uk+1(x) = uk(x) + \delta u(x),

where \delta u is a correction of uk(x). Then we seek \delta u \in \scrV such as

dg[uk(\bfitomega )](\delta u, v;\bfitomega ) =  - g(uk(\bfitomega ), v;\bfitomega ) \forall v \in \scrV .(3.1)

We will stop the iteration procedure when \| \delta u\| \scrV is small enough. Provided that
dg[uk(\bfitomega )](\cdot , \cdot ;\bfitomega ) is locally Lipschitz continuous and u0 is sufficiently close to u(\bfitomega ),
Newton's method is quadratically convergent.

In order to evaluate the output S(u(\bfitomega );\bfitomega ) of (2.2), we need to assemble and solve
N (iteration number) linear systems (3.1) on the fine grid for any \bfitomega \in \Omega . This leads
to a large number of calculations. Compared with the linear problems, it is more
necessary and meaningful to construct an efficient surrogate model for the nonlinear
stochastic problems. Therefore, we will introduce a VS method for the nonlinear
PDEs with random inputs.

Let \Xi be a training set, which is a collection of a finite number of samples in
\Omega . Typically the training set is chosen by Monte Carlo methods, which is a straight-
forward method, and does not consider the property of the quantity of interest. It
requires that the samples in \Xi are sufficiently scattered in the domain \Omega . The quasi-
random sampling using low-discrepancy sequences is a variant of random sampling
methods, such as a Halton or Sobol sequence, which tends to provide more equidis-
tributed samples in the parameter space. We note that | \Xi | denotes the cardinality of
the set \Xi .

3.1. The VS method for nonlinear stochastic problems in a general
framework. Let \scrV h \subset \scrV be a given finite dimensional approximation space. We find
the numerical solution to problem (2.1) under the form

u(x,\bfitomega ) \approx uN (x,\bfitomega ) :=

N\sum 
i=1

\zeta i(\bfitomega )hi(x),(3.2)

where \zeta i \in \scrS are stochastic functions and hi \in \scrV h are deterministic functions. In the
framework of the VS method, stochastic functions \zeta i(\bfitomega ) and deterministic functions
hi(x) are generated by an incremental constructive manner.

Now we present the algorithm to obtain \{ hi(x)\} Ni=1 and \{ \zeta i(\bfitomega )\} Ni=1 for the non-
linear problems (2.1). To this end, we initialize i = 1, and \bfitomega 1 is chosen randomly in
\Xi . Then h1(x) is taken as the solution of (2.2) with \bfitomega = \bfitomega 1 by Newton's method.
We take u(x,\bfitomega ) = \zeta 1(\bfitomega )h1(x) and v = h1(x) in (2.2), and we have

g(\zeta 1(\bfitomega )h1(x), h1(x);\bfitomega ) = 0.(3.3)

Then \zeta 1(\bfitomega ) is given by solving (3.3) with Newton's iteration method in practice.
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A728 QIUQI LI AND PINGWEN ZHANG

At step i \geq 2, we choose

\bfitomega i := argmax
\bfitomega \in \Xi 

\Delta i(\bfitomega ),

where \Delta i(\omega ) corresponds to the norm \| \cdot \| \scrV of the residual of the nonlinear equation at
parameter \bfitomega , and the details for the definition of \Delta i(\bfitomega ) are described in Appendix A.

Let e(\bfitomega ) = u(\bfitomega ) - ui - 1(\bfitomega ). By (2.2), we get

g
\bigl( 
u(\bfitomega ) - ui - 1(\bfitomega ) + ui - 1(\bfitomega ), v;\bfitomega 

\bigr) 
= 0 \forall v \in \scrV h,

that is,
g
\bigl( 
ui - 1(\bfitomega ) + e(\bfitomega ), v;\bfitomega 

\bigr) 
= 0 \forall v \in \scrV h,

where e(\bfitomega ) can be seen as a correction. By (3.1), we get

dg[ui - 1(\bfitomega )](e(\bfitomega ), v;\bfitomega ) =  - g(ui - 1(\bfitomega ), v;\bfitomega ) \forall v \in \scrV .(3.4)

We take hi(x) as the solution of (3.4) with \bfitomega = \bfitomega i. We rewrite e(\bfitomega ) := hi(x)\zeta i(\bfitomega )
and take v = hi(x) in (3.4). Then \zeta i(\bfitomega ) is further determined by the following linear
equation:

dg[ui - 1(\bfitomega )](hi(x)\zeta i(\bfitomega ), hi(x);\bfitomega ) =  - g(ui - 1(\bfitomega ), hi(x);\bfitomega ).(3.5)

Remark 3.1. In order to reduce the computational complexity, we can take \zeta 1(\bfitomega )
as the solution of a linearized system corresponding to (3.3) instead of solving (3.3)
directly. Some numerical examples will be provided in section 6 to show that the
proposed VS method can still give rise to a good approximation when determining
\zeta 1(\bfitomega ) by a linearized system with regard to (3.3).

To present the VS method for the nonlinear stochastic problems more clearly, we
will present two examples that fit in this abstract framework, i.e., (i) the nonlinear
elliptic equation and (ii) the steady Navier--Stokes equation, and introduce the details
of VS methods for all of them.

4. Nonlinear elliptic equation. We consider the nonlinear stochastic elliptic
equation

 - \nabla \cdot (\kappa (u;\bfitomega )\nabla u(x,\bfitomega )) = f(x,\bfitomega ) in D,(4.1)

subject to the homogeneous boundary condition, and f(x,\bfitomega ) \in L2(D) for any \bfitomega \in \Omega .
The diffusion coefficient \kappa (u;\bfitomega ) depends on the unknown solution u. For well-
posedness of (4.1), we assume that \kappa (u;\bfitomega ) is a well-behaved positive function. Typi-
cally, \kappa (u;\bfitomega ) is a polynomial in u or can be approximated by a polynomial in u.

Let \scrV = H1
0 (D). The weak formulation of (4.1) reads, \forall \bfitomega \in \Omega , we find u \in \scrV 

such that

a
\bigl( 
\kappa (u;\bfitomega ), u(\bfitomega ), v;\bfitomega 

\bigr) 
= f(v;\bfitomega ) \forall v \in \scrV ,(4.2)

where the bilinear forms a
\bigl( 
\cdot , \cdot , \cdot ;\bfitomega 

\bigr) 
and functional f(v;\bfitomega ) are defined by\left\{       

a
\bigl( 
\kappa (u;\bfitomega ), u(\bfitomega ), v;\bfitomega 

\bigr) 
:=

\int 
D

\kappa (u;\bfitomega )\nabla u(\bfitomega ) \cdot \nabla vdx,

f(v;\bfitomega ) :=

\int 
D

f(\bfitomega )vdx.
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VARIABLE-SEPARATION METHOD FOR NONLINEAR SPDEs A729

We assume that the linear functional f(\cdot ;\bfitomega ) is affine with respect to \bfitomega such that

f(v;\bfitomega ) =

mf\sum 
i=1

\alpha i(\bfitomega )f i(v) \forall v \in \scrV , \forall \bfitomega \in \Omega .(4.3)

Here, for i = 1, . . . ,mf , each \alpha 
i is a stochastic function, and each f i : \scrV  - \rightarrow R is a

continuous functional independent of \bfitomega .
To fit into the general framework, the mapping G : \scrV \times \Omega \rightarrow \scrV \ast can be defined

by

G(w;\bfitomega ) =  - \nabla \cdot (\kappa (w, x,\bfitomega )\nabla w) - f(x,\bfitomega ) \forall w \in \scrV .(4.4)

Then the weak formulation of problem (4.4) reads

\langle G(w;\bfitomega ), v\rangle = g(w, v;\bfitomega ) := a
\bigl( 
\kappa (w, x,\bfitomega ), w, v;\bfitomega 

\bigr) 
 - f(v;\bfitomega ) \forall w, v \in \scrV .(4.5)

Its Fr\'echet derivatives with respect to w at z \in \scrV can be defined as

dg[z](w, v;\bfitomega ) = a
\bigl( 
\kappa w(z, x,\bfitomega )w, z, v;\bfitomega 

\bigr) 
+ a
\bigl( 
\kappa (z, x,\bfitomega ), w, v;\bfitomega 

\bigr) 
\forall w, v \in \scrV ,(4.6)

where \kappa w(z, x,\bfitomega ) denotes the Fr\'echet derivatives of \kappa (w, x,\bfitomega ) with respect to w at
z \in \scrV . Let \scrV h \subseteq \scrV be a given finite dimensional space. By (3.1), (4.5), and (4.6), we
have the Newton method of (4.2) such that for a given initial guess u0, at step k, we
seek \delta u \in \scrV h satisfying

a
\bigl( 
\kappa u(u, x,\bfitomega )\delta u, u, v;\bfitomega 

\bigr) 
+ a
\bigl( 
\kappa (u;\bfitomega ), \delta u, v;\bfitomega 

\bigr) 
= f(v;\bfitomega ) - a

\bigl( 
\kappa (u;\bfitomega ), u(\bfitomega ), v;\bfitomega 

\bigr) 
\forall v \in \scrV h,

(4.7)

and then we have uk+1 = uk + \delta u.

4.1. The VS method for stochastic nonlinear elliptic PDEs. Now we
present the VS method for the nonlinear stochastic elliptic equation to construct an
approximation in the form (3.2).

Let e(\bfitomega ) = u(\bfitomega )  - uk - 1(\bfitomega ), and let r(v;\bfitomega ) \in \scrV \ast 
h (the dual space of \scrV h) be the

residual

r(v; \bfitxi ) : =

\Biggl\{ 
f(v;\bfitomega ), k = 1,

f(v;\bfitomega ) - a
\bigl( 
\kappa (uk - 1, x,\bfitomega ), uk - 1(\bfitomega ), v;\bfitomega 

\bigr) 
, k \geq 2.

By (4.7), we get

a
\bigl( 
\kappa u(uk - 1)e, uk - 1, v;\bfitomega 

\bigr) 
+ a
\bigl( 
\kappa (uk - 1), e, v;\bfitomega 

\bigr) 
= r(v;\bfitomega ) \forall v \in \scrV h.(4.8)

According to Riesz representation theory, there exists a function \^e(\bfitomega ) \in \scrV h such that\bigl( 
\^e(\bfitomega ), v

\bigr) 
\scrV = r(v;\bfitomega ) \forall v \in \scrV h.(4.9)

Consequently, the dual norm of the residual r(v;\bfitomega ) can be evaluated as follows:

\Delta k(\bfitomega ) := \| r(v;\bfitomega )\| \scrV \ast := sup
v\in \scrV h

r(v;\bfitomega )

\| v\| \scrV 
= \| \^e(\bfitomega )\| \scrV .(4.10)

For the computation of the error estimator \| \^e(\bfitomega )\| \scrV , we apply an offline-online pro-
cedure presented in [39, 29].
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A730 QIUQI LI AND PINGWEN ZHANG

At step k, we choose

\bfitomega k : =

\Biggl\{ 
chosen randomly in \Omega , k = 1,

argmax
\bfitomega \in \Xi 

\| \^e(\bfitomega )\| \scrV , k \geq 2.

Let eh(x) be the solution of (4.8) with \bfitomega = \bfitomega k, and we take hk(x) = eh(x) in
(3.2).

We note that when \kappa (u;\bfitomega ) is a polynomial in u, \kappa (uk - 1;\bfitomega ) and \kappa u(uk - 1;\bfitomega ) can
be rewritten as the following affine representations:\left\{             

\kappa (uk - 1;\bfitomega ) =

Mk\sum 
i=1

\kappa i1(\bfitomega )li1(x),

\kappa u(uk - 1;\bfitomega ) =

M \prime 
k\sum 

i=1

\kappa i2(\bfitomega )li2(x);

(4.11)

otherwise, we can use the VS approach for the multivariable function presented in
[29] to get affine expansion approximation for \kappa (uk - 1;\bfitomega ) and \kappa u(uk - 1;\bfitomega ).

Let e(\bfitomega ) := eh(x)e\xi (\bfitomega ) in (4.8). By (4.3), (4.8), and (4.11), we have

e\xi (\bfitomega )

\left(  k - 1\sum 
i=1

M \prime 
k\sum 

j=1

\zeta i(\bfitomega )\kappa j2(\bfitomega )a(lj2(x)eh(x), hi(x), v) +

Mk\sum 
j=1

\kappa j1(\bfitomega )a(lj1(x), eh(x), v)

\right)  
=

mf\sum 
i=1

\alpha i(\bfitomega )f i(v) - 
k - 1\sum 
i=1

Mk\sum 
j=1

\zeta i(\bfitomega )\kappa j1(\bfitomega )a(lj1(x), hi(x), v).

(4.12)

We take v = eh(x), i.e., v = hk(x) in (4.12); then it follows that

e\xi (\bfitomega ) =
r(hk(x),\bfitomega )

a1(\bfitomega ) + a2(\bfitomega )
,(4.13)

with\left\{                         

a1(\bfitomega ) =

Mk\sum 
j=1

\kappa j1(\bfitomega )a(lj1(x), hk(x), hk(x)),

a2(\bfitomega ) =

k - 1\sum 
i=1

M \prime 
k\sum 

j=1

\zeta i(\bfitomega )\kappa j2(\bfitomega )a(lj2(x)hk(x), hi(x), hk(x)),

r(hk(x),\bfitomega ) =

mf\sum 
i=1

\alpha i(\bfitomega )f i(hk(x)) - 
k - 1\sum 
i=1

Mk\sum 
j=1

\zeta i(\bfitomega )\kappa j1(\bfitomega )a(lj1(x), hi(x), hk(x)).

Then we take \zeta k(\bfitomega ) = e\xi (\bfitomega ) in (3.2).
Algorithm 1 describes the procedure for the VS method to solve the stochastic

nonlinear elliptic equation. For practical simulation, we can take a small sample set
\Xi in Algorithm 1.

Remark 4.1. For the first step, take h1(x) as the solution of (4.2) with \bfitomega = \bfitomega 1

by Newton's method. Letting u(x,\bfitomega ) \approx \zeta 1(\bfitomega )h1(x) and v = h1(x) in (4.2), we have

a
\bigl( 
\kappa (\zeta 1(\bfitomega )h1(x),\bfitomega )), \zeta 1(\bfitomega )h1(x), h1(x);\bfitomega 

\bigr) 
= f(h1(x);\bfitomega ).(4.14)
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VARIABLE-SEPARATION METHOD FOR NONLINEAR SPDEs A731

Algorithm 1. VS for nonlinear elliptic equations with stochastic influence.

Input: The stochastic nonlinear elliptic equation (4.1), a set of samples \Xi \in \Omega ,
and the error tolerance \varepsilon 0.
Output: The separated representation uN (x,\bfitomega ) :=

\sum N
i=1 hi(x)\zeta i(\bfitomega ).

1: Initialize the iteration counter k = 1, a random \bfitomega 1 \in \Xi ;
1.1: Calculate h1(x) by solving (4.2) with \bfitomega = \bfitomega 1 by Newton's method;
1.2: Determine \zeta 1(\bfitomega ) by (4.14);
1.3: Update \Xi with \Xi = \Xi \setminus \bfitomega 1, and take the approximation u1(x,\bfitomega ) as

u1(x,\bfitomega ) := h1(x)\zeta 1(\bfitomega );
2: Update k \rightarrow k + 1, take \bfitomega k = argmax\bfitomega \in \Xi \Delta k(\bfitomega ), and take the residual

rk(v;\bfitomega ) := f(v;\bfitomega ) - a
\bigl( 
\kappa (uk - 1, x,\bfitomega ), uk - 1(\bfitomega ), v;\bfitomega 

\bigr) 
;

3: Calculate hk(x) by solving (4.8) with \bfitomega = \bfitomega k, and \zeta k(\bfitomega ) by (4.13);

4: Update \Xi with \Xi = \Xi \setminus \bfitomega k, and take uk(x,\bfitomega ) :=
\sum k

j=1 hj(x)\zeta j(\bfitomega );
5: Take \varepsilon k := max\bfitomega \in \Xi \Delta k(\bfitomega );
6: Return to step 2 if \varepsilon k \geq \varepsilon 0, otherwise terminate.
7: N = k.

Then \zeta 1(\bfitomega ) can be determined by the nonlinear system (4.14), and we need to solve
the nonlinear system (4.14) in the space of the random variables \scrS to obtain \zeta 1(\bfitomega ),
which will bring some computational complexity. Here we can take \zeta 1(\bfitomega ) as the
solution of a linearized system corresponding to (4.14). For nonlinear elliptic equations
with stochastic influence, we take \kappa (u,\bfitomega )) = \kappa (h1(x)), u(x,\bfitomega ) \approx \zeta 1(\bfitomega )h1(x), and
v = h1(x) in (4.2). Then we have the following linearized problem with regard to
\zeta 1(\bfitomega ):

a
\bigl( 
\kappa (h1(x)), \zeta 1(\bfitomega )h1(x), h1(x);\bfitomega 

\bigr) 
= f(h1(x);\bfitomega ).(4.15)

By (4.3) and (4.15), \zeta 1(\bfitomega ) can be given by

\zeta 1(\bfitomega ) =

\sum mf

i=1 \alpha 
i(\bfitomega )f i(h1(x))

a
\bigl( 
\kappa (h1(x)), h1(x), h1(x))

.

Therefore, to reduce the computational complexity, we can choose \zeta 1(\bfitomega ) as the solu-
tion of (4.15) at step 1.2 of Algorithm 1.

Remark 4.2. We note that, for each step k, we can write \zeta k(\bfitomega ) in a matrix form
such that

\zeta k(\bfitomega ) =
Fk\bfitalpha (\bfitomega ) - \bfitzeta k(\bfitomega )Ak

1k
k
1(\bfitomega )

\bfitzeta k(\bfitomega )Ak
2k

k
2(\bfitomega ) + ak1k

k
1(\bfitomega )

,(4.16)

where \left\{                 

\bfitalpha (\bfitomega ) = [\alpha 1(\bfitomega ), . . . , \alpha mf (\bfitomega )]T ,

Fk = [f1(hk(x)), . . . , f
mf (hk(x))],

\bfitzeta k(\bfitomega ) = [\zeta 1(\bfitomega ), . . . , \zeta k - 1(\bfitomega )],

kk
1(\bfitomega ) = [\kappa 11(\bfitomega ), . . . , \kappa Mk

1 (\bfitomega )]T ,

kk
2(\bfitomega ) = [\kappa 12(\bfitomega ), . . . , \kappa 

M \prime 
k

2 (\bfitomega )]T ,

and,

(Ak
1)ji = a(li1(x), hj(x), hk(x)), (Ak

2)jr = a(lr2(x)hk(x), hj(x), hk(x)),

(ak1)i = a(li1(x), hk(x), hk(x)), for 1 \leq i \leq Mk, 1 \leq j \leq k  - 1, and 1 \leq r \leq M \prime 
k.
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A732 QIUQI LI AND PINGWEN ZHANG

For k = 1, . . . , N , the matrixes Ak
1 and Ak

1 , and the vectors Fk, ak1 are indepen-
dent of parameter \bfitomega , their computation is once and in the offline phase. The online
computation is to calculate (3.2) for any \bfitomega \in \Omega . This is efficient because the online
computation only involves the separated representation (3.2).

5. Steady Navier--Stokes equation. We consider the following steady Navier--
Stokes equations with uncertain parameters: \forall \bfitomega \in \Omega , we find the velocity u(x,\bfitomega ) :
D \rightarrow R2 and the pressure p(x,\bfitomega ) : D \rightarrow R such that\Biggl\{ 

 - \nabla .
\bigl( 
\nu (\bfitomega )\nabla u(x,\bfitomega )

\bigr) 
+ u \cdot \nabla u+\nabla p(x,\bfitomega ) = f(x,\bfitomega ) in D,

\nabla \cdot u(x,\bfitomega ) = 0 in D,
(5.1)

with the boundary conditions on \partial D given by u = \vec{}w. Here \nu (\bfitomega ) denotes the random
viscosity. For simplicity, we consider the case of the homogeneous Dirichlet velocity

boundary condition. Let X :=
\bigl( 
H1

0 (D)
\bigr) 2

and Q := L2(D); then the weak formulation
of (5.1) reads, \forall \bfitomega \in \Omega , we find \{ u(\bfitomega ), p(\bfitomega )\} \in X \times Q such that

(5.2)\Biggl\{ 
a
\bigl( 
u(\bfitomega ),v;\bfitomega 

\bigr) 
+ c
\bigl( 
u(\bfitomega ),u(\bfitomega ),v;\bfitomega 

\bigr) 
+ b
\bigl( 
v, p(\bfitomega );\bfitomega 

\bigr) 
= f(v;\bfitomega ) \forall v \in X,

b
\bigl( 
u(\bfitomega ), q;\bfitomega 

\bigr) 
= 0 \forall q \in Q,

where the bilinear forms a
\bigl( 
\cdot , \cdot ;\bfitomega 

\bigr) 
, b
\bigl( 
\cdot , \cdot ;\bfitomega 

\bigr) 
, the trilinear form c

\bigl( 
\cdot , \cdot , \cdot ;\bfitomega 

\bigr) 
, and the

functional f(v;\bfitomega ) are defined by\left\{                       

a
\bigl( 
u(\bfitomega ),v;\bfitomega 

\bigr) 
:=

\int 
D

\nu (\bfitomega )\nabla u(\bfitomega ) : \nabla vdx,

b
\bigl( 
v, p(\bfitomega );\bfitomega 

\bigr) 
:=  - 

\int 
D

p(\bfitomega )\nabla \cdot vdx,

c
\bigl( 
u(\bfitomega ),u(\bfitomega ),v;\bfitomega 

\bigr) 
:=

\int 
D

(u(\bfitomega ) \cdot \nabla u(\bfitomega )) \cdot vdx,

f(v;\bfitomega ) :=

\int 
D

f(\bfitomega ) \cdot vdx.

We note that the bilinear form a(\cdot , \cdot ;\bfitomega ) is affine with respect to \bfitomega such that

a(w,v;\bfitomega ) = \nu (\bfitomega )a0
\bigl( 
w,v

\bigr) 
\forall v,w \in X, \forall \bfitomega \in \Omega ,(5.3)

where \nu (\bfitomega ) is a stochastic function, and a0 : X \times X  - \rightarrow R is a bilinear form inde-
pendent of \bfitomega . We assume that the linear functional f(\cdot ;\bfitomega ) is affine with respect to
\bfitomega such that

f(v;\bfitomega ) =

mf\sum 
i=1

\alpha i(\bfitomega )f i(v) \forall v \in X, \forall \bfitomega \in \Omega ,(5.4)

where \{ \alpha i(\bfitomega )\} mf

i=1 are stochastic functions, and each f i : X  - \rightarrow R is a continuous
functional independent of \bfitomega .

Now we cast the steady Navier--Stokes equation into the general framework. In
this case, we let \scrV = X \times Q and define the mapping G : \scrV \times \Omega \rightarrow \scrV \ast as

\langle G(w;\bfitomega ), v\rangle = g(w, v;\bfitomega ) = a
\bigl( 
w,v;\bfitomega 

\bigr) 
+ c
\bigl( 
w,w,v;\bfitomega 

\bigr) 
+ b
\bigl( 
v, r;\bfitomega 

\bigr) 
+ b
\bigl( 
w, q;\bfitomega 

\bigr) 
 - f(v;\bfitomega ) \forall w, v \in \scrV ,
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VARIABLE-SEPARATION METHOD FOR NONLINEAR SPDEs A733

where w = (w, r) and v = (v, q). Then its Fr\'echet derivatives with respect to w at
z = (z, s) \in \scrV can be defined as

dg[z](w, v;\bfitomega ) = a
\bigl( 
w,v;\bfitomega 

\bigr) 
+ c
\bigl( 
w, z,v;\bfitomega 

\bigr) 
+ c
\bigl( 
z,w,v;\bfitomega 

\bigr) 
+ b
\bigl( 
v, r;\bfitomega 

\bigr) 
+ b
\bigl( 
w, q;\bfitomega 

\bigr) 
\forall w, v \in \scrV .

We note that dg[z](w, v;\bfitomega ) is independent on s due to the Navier--Stokes equations
being linear with respect to the pressure variable.

Let Xh \subset X and Qh \subset Q be the given finite dimensional approximation spa-
ces. We can refer to [19, 37] for the details about the finite element approximation
of the Navier--Stokes equation. As we know, the pair of finite dimensional spaces
\{ \scrV h, Qh\} are required to satisfy the inf-sup condition (2.4). This will increase the
computational complexity. However, the difficulty can be circumvented by modifying
the variational problem, i.e., regularization or the penalty method [7, 19]. Here we
attempt to regularize the variational problem for the Navier--Stokes equations.

Let d(\cdot , \cdot ;\bfitomega ) : Qh\times Qh \rightarrow R be a continuous and coercive bilinear form for \bfitomega \in \Omega .
We assume that d(\cdot , \cdot ;\bfitomega ) is affine with \bfitomega such that

d(q, p;\bfitomega ) =

mc\sum 
i=1

ki(\bfitomega )di(q, p) \forall p, q \in Qh, \forall \bfitomega \in \Omega .

For a small penalty parameter \varepsilon > 0, we rewrite the problem (5.2) as, \forall \bfitomega \in \Omega , we
find \{ u(\bfitomega ), p(\bfitomega )\} \in Xh \times Qh such that

(5.5)

\Biggl\{ 
a
\bigl( 
u(\bfitomega ),v;\bfitomega 

\bigr) 
+ c
\bigl( 
u(\bfitomega ),u(\bfitomega ),v;\bfitomega 

\bigr) 
+ b
\bigl( 
v, p(\bfitomega );\bfitomega 

\bigr) 
= f(v;\bfitomega ) \forall v \in Xh,

b
\bigl( 
u(\bfitomega ), q;\bfitomega 

\bigr) 
 - \varepsilon d(p(\bfitomega ), q;\bfitomega ) = 0 \forall q \in Qh,

The penalty solution of (5.5) converges to the solution of the nonpenalized problem
(5.2) as \varepsilon approaches zero [5, 6, 25, 41].

The Newton method of (5.2) reads, For an initial guess (u0, p0), at step k we seek
(\delta u, \delta p) \in \scrV h such that\left\{     

a
\bigl( 
\delta u,v;\bfitomega 

\bigr) 
+ c
\bigl( 
uk, \delta u,v;\bfitomega 

\bigr) 
+ c
\bigl( 
\delta u,uk,v;\bfitomega 

\bigr) 
+ b
\bigl( 
v, \delta p;\bfitomega 

\bigr) 
= f(v;\bfitomega ) - a

\bigl( 
uk,v;\bfitomega 

\bigr) 
 - c
\bigl( 
uk,uk,v;\bfitomega 

\bigr) 
 - b
\bigl( 
v, pk;\bfitomega 

\bigr) 
\forall v \in Xh,

b
\bigl( 
\delta u, q;\bfitomega 

\bigr) 
 - \varepsilon d(\delta p, q;\bfitomega ) = \varepsilon d(pk, q;\bfitomega ) - b

\bigl( 
uk, q;\bfitomega 

\bigr) 
\forall q \in Qh,

(5.6)

and then we have (uk+1, pk+1) = (uk + \delta u, pk + \delta p). We note that the solution of the
corresponding Stokes problem is a typical selection for the initial guess.

5.1. VS method for stochastic steady Navier--Stokes equation. Now we
present the VS method for the stochastic steady Navier--Stokes equation to find the
numerical solutions under the form\left\{           

u(x,\bfitomega ) \approx uN (x,\bfitomega ) :=

N\sum 
i=1

\zeta ui (\bfitomega )ui(x),

p(x,\bfitomega ) \approx pN (x,\bfitomega ) :=

N\sum 
i=1

\zeta pi (\bfitomega )pi(x),

(5.7)D
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where \zeta ui \in \scrS and \zeta pi \in \scrS are stochastic functions, and ui \in \scrV h and pi \in \scrV h are
deterministic functions. We note that the Stokes problem corresponding to (5.2)
reads, \forall \bfitomega \in \Omega , we find \{ u(\bfitomega ), p(\bfitomega )\} \in X \times Q such that\Biggl\{ 

a
\bigl( 
u(\bfitomega ),v;\bfitomega 

\bigr) 
+ b
\bigl( 
v, p(\bfitomega );\bfitomega 

\bigr) 
= f(v;\bfitomega ) \forall v \in X,

b
\bigl( 
u(\bfitomega ), q;\bfitomega 

\bigr) 
= 0, \forall q \in Q.

(5.8)

Here u1(x) and p1(x) are taken as the solutions of the corresponding Stokes problem
(5.9) such that\Biggl\{ 

a
\bigl( 
u1(x),v;\bfitomega 1

\bigr) 
+ b
\bigl( 
v, p1(x);\bfitomega 1

\bigr) 
= f(v;\bfitomega 1) \forall v \in Xh,

b
\bigl( 
u1(x), q;\bfitomega 1

\bigr) 
 - \varepsilon d(p1(x), q;\bfitomega 1) = 0 \forall q \in Qh,

(5.9)

with \bfitomega 1 being selected randomly. We take u(\bfitomega ) = u1(x)\zeta u1 (\bfitomega ), p(\bfitomega ) = p1(x)\zeta p1 (\bfitomega ),
v = u1(x), and q = p1(x) in (5.9). Then \zeta u1 (\bfitomega ) and \zeta p1 (\bfitomega ) are given by solving the
following linear system:\Biggl\{ 

a11(\bfitomega )\zeta u1 (\bfitomega ) + a12(\bfitomega )\zeta p1 (\bfitomega ) =
\sum mf

i=1 \alpha 
i(\bfitomega )f i(u1(x)),

a21(\bfitomega )\zeta u1 (\bfitomega ) + a22(\bfitomega )\zeta p1 (\bfitomega ) = 0,
(5.10)

where \left\{         
a11(\bfitomega ) = \nu (\bfitomega )a0

\bigl( 
u1(x),u1(x)

\bigr) 
,

a12(\bfitomega ) = b
\bigl( 
u1(x), p1(x)

\bigr) 
,

a22(\bfitomega ) =  - \varepsilon d
\bigl( 
p1(x), p1(x)

\bigr) 
,

a21(\bfitomega ) = a12(\bfitomega ).

At the step k \geq 2, we let

eu(\bfitomega ) := u(\bfitomega ) - uk - 1(\bfitomega ), ep(\bfitomega ) := p(\bfitomega ) - pk - 1(\bfitomega ).

Based on (5.6), we take r1(v;\bfitomega ) \in X\ast 
h and r2(q;\bfitomega ) \in Q\ast 

h as the residual such that

(5.11)\Biggl\{ 
r1(v;\bfitomega ) := f(v;\bfitomega ) - a

\bigl( 
uk - 1,v;\bfitomega 

\bigr) 
 - c
\bigl( 
uk - 1,uk - 1,v;\bfitomega 

\bigr) 
 - b
\bigl( 
v, pk - 1;\bfitomega 

\bigr) 
,

r2(q;\bfitomega ) :=  - b
\bigl( 
uk - 1, q;\bfitomega 

\bigr) 
+ \varepsilon d

\bigl( 
pk - 1, q;\bfitomega 

\bigr) 
,

and by (5.6), we get

(5.12)\Biggl\{ 
a
\bigl( 
eu,v;\bfitomega ) + c

\bigl( 
uk - 1, eu,v;\bfitomega 

\bigr) 
+ c
\bigl( 
eu,uk - 1,v;\bfitomega 

\bigr) 
+ b
\bigl( 
v, ep;\bfitomega 

\bigr) 
= r1(v;\bfitomega ),

b
\bigl( 
eu, q;\bfitomega 

\bigr) 
 - \varepsilon d

\bigl( 
ep, q;\bfitomega 

\bigr) 
= r2(q;\bfitomega ) \forall v \in Xh, \forall q \in Qh.

By the Riesz representation theory, there exist \^e\bfu (\bfitomega ) \in Xh and \^ep(\bfitomega ) \in Qh such that\Biggl\{ \bigl( 
\^eu(\bfitomega ),v

\bigr) 
X

= r1(v;\bfitomega ) \forall v \in Xh,\bigl( 
\^ep(\bfitomega ), q

\bigr) 
Q
= r2(q;\bfitomega ) \forall q \in Qh,

(5.13)
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and we can evaluate the dual norm of the residual r1(v;\bfitomega ) and r2(q;\bfitomega ) by\left\{       
\| r1(v;\bfitomega )\| X\ast := sup

\bfv \in Xh

r1(v;\bfitomega )

\| v\| X
= \| \^eu(\bfitomega )\| X ,

\| r2(q;\bfitomega )\| Q\ast := sup
q\in Qh

r2(q;\bfitomega )

\| q\| Q
= \| \^ep(\bfitomega )\| Q.

(5.14)

The error estimator for the solution of (5.6) is defined by

\Delta k(\bfitomega ) :=
\sqrt{} 
\| \^e\bfu (\bfitomega )\| 2X + \| \^ep(\bfitomega )\| 2Q.(5.15)

Then, we choose

\bfitomega k := argmax
\bfitomega \in \Xi 

\Delta k(\bfitomega ).

Let eu(x,\bfitomega k) and ep(x,\bfitomega k) be the solutions of (5.12) with \bfitomega = \bfitomega k. Then uk(x) and
pk(x) in (5.7) are obtained by taking uk(x) = eu(x,\bfitomega k) and p

k(x) = ep(x,\bfitomega k).
We take eu(\bfitomega ) := uk(x)\zeta uk (\bfitomega ) and ep(\bfitomega ) := pk(x)\zeta pk(\bfitomega ) in (5.12). For any

v \in Xh, and for any q \in Qh, we have\left\{     
a
\bigl( 
uk(x)\zeta uk (\bfitomega ),v;\bfitomega ) + c

\bigl( 
uk - 1(\bfitomega ),uk(x)\zeta uk (\bfitomega ),v;\bfitomega 

\bigr) 
+ c
\bigl( 
uk(x)\zeta uk (\bfitomega ),uk - 1(\bfitomega ),v;\bfitomega 

\bigr) 
+ b
\bigl( 
v, pk(x)\zeta pk(\bfitomega );\bfitomega 

\bigr) 
= r1(v;\bfitomega ),

b
\bigl( 
uk(x)\zeta uk (\bfitomega ), q;\bfitomega 

\bigr) 
 - \varepsilon d

\bigl( 
pk(x)\zeta pk(\bfitomega ), q;\bfitomega 

\bigr) 
= r2(q;\bfitomega ).

(5.16)

By taking v = uk(x) and q = pk(x) in (5.16), and combining (5.7), (5.3), and (5.4),
we get the linear system with regard to \zeta uk (\bfitomega ), and \zeta pk(\bfitomega ) as follows:\Biggl\{ 

a11(\bfitomega )\zeta uk (\bfitomega ) + a12(\bfitomega )\zeta pk(\bfitomega ) = r1
\bigl( 
uk(x);\bfitomega 

\bigr) 
,

a21(\bfitomega )\zeta uk (\bfitomega ) + a22(\bfitomega )\zeta pk(\bfitomega ) = r2
\bigl( 
pk(x);\bfitomega 

\bigr) 
,

(5.17)

where\left\{     
a11(\bfitomega ) = \nu (\bfitomega )a0(uk,uk) +

\sum k - 1
i=1 \zeta 

u
i (\bfitomega )

\bigl( 
c(ui,uk,uk) + c(uk,ui,uk)

\bigr) 
,

a12(\bfitomega ) = b
\bigl( 
uk(x), pk(x)

\bigr) 
, a21(\bfitomega ) = a12(\bfitomega ),

a22(\bfitomega ) =  - \varepsilon d
\bigl( 
pk(x), pk(x)

\bigr) 
,

and

r1
\bigl( 
uk(x);\bfitomega 

\bigr) 
=

mf\sum 
i=1

\alpha i(\bfitomega )f i
\bigl( 
uk(x)

\bigr) 
 - 

k - 1\sum 
i=1

\nu (\bfitomega )\zeta ui (\bfitomega )a
\bigl( 
ui(x),uk(x)

\bigr) 
 - 

k - 1\sum 
i=1

k - 1\sum 
j=1

\zeta ui (\bfitomega )\zeta uj (\bfitomega )c
\bigl( 
ui(x),uj(x),uk(x)

\bigr) 
 - 

k - 1\sum 
r=1

\zeta pr (\bfitomega )b
\bigl( 
uk(x), pr(x)

\bigr) 
,

r2
\bigl( 
pk(x);\bfitomega 

\bigr) 
= - 

k - 1\sum 
i=1

\zeta ui (\bfitomega )b
\bigl( 
ui(x), pk(x)

\bigr) 
+ \varepsilon 

k - 1\sum 
i=1

\zeta pi (\bfitomega )d
\bigl( 
pi(x), pk(x)

\bigr) 
.

Therefore, \zeta uk (\bfitomega ) and \zeta pk(\bfitomega ) can be solved by the system (5.17).
We describe the main procedure for the VS method to solve the stochastic steady

Navier--Stokes equation in Algorithm 2.
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A736 QIUQI LI AND PINGWEN ZHANG

Algorithm 2. The VS method for the stochastic steady Navier--Stokes equation.

Input: The stochastic steady Navier--Stokes equation (5.1), a set of samples \Xi \in \Omega ,
and the error tolerance \varepsilon 0.
Output: The separated representation uN (x,\bfitomega ) :=

\sum N
i=1 \zeta 

u
i (\bfitomega )ui(x),

and pN (x,\bfitomega ) :=
\sum N

i=1 \zeta 
p
i (\bfitomega )pi(x).

1: Initialize the iteration counter k = 1, a random \bfitomega 1 \in \Xi ;
1.1: Calculate u1(x) and p1(x) by solving (5.9) with \bfitomega = \bfitomega 1 by Newton's method;
1.2: Determine \zeta u1 (\bfitomega ) and \zeta p1 (\bfitomega ) by the linear equation (5.10);
1.3: Update \Xi with \Xi = \Xi \setminus \bfitomega 1, take the approximation of u1(x,\bfitomega ) as

u1(x,\bfitomega ) := u1(x)\zeta u1 (\bfitomega ), and p1(x,\bfitomega ) := \zeta p1 (\bfitomega )p1(x);
2: Update k \rightarrow k + 1, and take \bfitomega k = argmax\bfitomega \in \Xi \Delta k(\bfitomega ); Then take the residual

r1(v;\bfitomega ) := f(v;\bfitomega ) - a
\bigl( 
uk - 1,v;\bfitomega 

\bigr) 
 - c
\bigl( 
uk - 1,uk - 1,v;\bfitomega 

\bigr) 
 - b
\bigl( 
v, pk - 1;\bfitomega 

\bigr) 
and

r2(q;\bfitomega ) :=  - b
\bigl( 
uk - 1, q;\bfitomega 

\bigr) 
+ \varepsilon d

\bigl( 
pk - 1, q;\bfitomega 

\bigr) 
;

3: Calculate uk(x) and pk(x) by solving (5.12) with \bfitomega = \bfitomega k, then determine
\zeta uk (\bfitomega ) and \zeta pk(\bfitomega ) by the linear equation (5.17);

4: Update \Xi with \Xi = \Xi \setminus \bfitomega k, and take uk(x,\bfitomega ) :=
\sum k

i=1 \zeta 
u
i (\bfitomega )ui(x) and

pk(x,\bfitomega ) :=
\sum k

i=1 \zeta 
p
i (\bfitomega )pi(x);

5: Take \varepsilon k := max\bfitomega \in \Xi \Delta k(\bfitomega );
6: Return to step 2 if \varepsilon k \geq \varepsilon 0, otherwise terminate.
7: N = k.

6. Numerical results. In this section, we describe two specific examples to
illustrate the performance of the proposed VS methods. In section 6.1, we consider a
nonlinear elliptic equation with random variables to illustrate the performance of the
VS method. In section 6.2, a stochastic steady Navier--Stokes equation is considered
to present the performance of the proposed method.

6.1. A nonlinear elliptic PDE with random variables. In this subsection,
to illustrate the performance of the proposed numerical Algorithm 1, we consider the
following nonlinear model for numerical computation:\left\{     

 - div
\bigl( 
\kappa (u,\bfitomega )\nabla u(x,\bfitomega )

\bigr) 
= f(x,\bfitomega ) in D \times \Omega ,

u(x,\bfitomega ) = 0 on \Gamma 1,

\kappa (u,\bfitomega )\nabla u(x,\bfitomega ) \cdot n = 0 on other boundaries.

(6.1)

Let \kappa (u,\bfitomega ) : D \times \Omega  - \rightarrow \BbbR be a diffusion coefficient function, which is defined by

\kappa (u,\bfitomega ) = 1 + \omega 2
9u

2 + e\omega 10u3.

Then its Fr\'echet derivatives with respect to u can be defined as

\kappa u(u,\bfitomega ) = 2\omega 2
9u+ 3e\omega 10u2.

Here we choose the physical domainD = (0, 1)2 and Dirichlet boundary \Gamma 1 = (0, 1)\times 1,
and n denotes the outward unit normal vector on \partial D \setminus \Gamma 1. The source term f(x,\bfitomega ) is
taken as a random field, which is characterized by a two-point exponential covariance
function cov[f], i.e.,

cov[f](x1, y1;x2, y2) = \sigma 2 exp

\biggl( 
 - | x1  - x2| 2

2l2x
 - | y1  - y2| 2

2l2y

\biggr) 
,
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VARIABLE-SEPARATION METHOD FOR NONLINEAR SPDEs A737

where (xi, yi) (i = 1, 2) is the spatial coordinate in D. Here the variance \sigma 2 = 2 and
the correlation length lx = ly = 0.2. The random source term f(x,\bfitomega ) is obtained by
truncating a Karhunen--Lo\`eve expansion, i.e.,

f(x,\bfitomega ) := E[f] +

8\sum 
i=1

\surd 
\gamma ibi(x)\omega i.(6.2)

Here E[f] = 1 and the random vector \bfitomega := (\omega 1, \omega 2, . . . , \omega 8) \in \BbbR 8. We assume that
each \omega i (i = 1, . . . , 8) is uniformly distributed in the interval [ - 1, 1].

We use 200 \times 200 uniform grid for the partition of spatial domain to compute
the reference solution and solve (4.8) in the offline phase. The Newton iteration
method is used to compute the reference solution based on the bilinear Q1 element
(bilinear basis functions). We apply the VS method to get the variable separa-
tion representation of the solution for the nonlinear elliptic PDE. Given \varepsilon 0 = 10 - 5

and | \Xi | = 80 samples selected from random domain \Omega , the separated representation

uN (x,\bfitomega ) =
\sum N

i=1 \zeta i(\bfitomega )hi(x) with N = 20 is obtained by Algorithm 1.
For the case of nonlinear initialization, \zeta 1(\bfitomega ) is obtained by solving nonlinear

system (4.14) using Newton's iteration method. Now we take \zeta 1(\bfitomega ) as the solution of
a linear system (4.15) and provide some numerical results to show that the proposed
VS method can still render a good approximation. Given the same \varepsilon 0 = 10 - 5 and
| \Xi | = 80 samples, then we get the corresponding separated representation as

\^uN (x,\bfitomega ) =

20\sum 
i=1

\zeta i(\bfitomega )hi(x).

For this numerical example, we choose the error estimators as

\varepsilon k : =

\left\{   max
\bfitomega \in \Xi 

\| u(\bfitomega )\| \scrV , k = 1,

max
\bfitomega \in \Xi 

\| u(\bfitomega ) - uk - 1(\bfitomega )\| \scrV , k \geq 2.
(6.3)

Based on the two cases, we depict the error estimators versus the different numbers
of the separated terms in Figure 6.1. By the figure, we find that (1) the curves of
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Fig. 6.1. The error estimator corresponding to the numbers of the separated terms k in the VS
method for the nonlinear elliptic PDE.
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A738 QIUQI LI AND PINGWEN ZHANG

the error estimator are nearly identical for the two cases; (2) the error estimator
decays gradually in the first few steps and then speedily when the iteration number
k increases.

We choose 105 samples \{ \bfitomega i\} 10
5

i=1 randomly; the relative error is defined as follows:

\varepsilon u =
1

M

M\sum 
i=1

\| u(x,\bfitomega (i)) - \~u(x,\bfitomega (i))\| 2\scrV 
\| u(x,\bfitomega (i))\| 2\scrV 

,(6.4)

where M = 105 and \~u(x,\bfitomega (i)) is the solution by the VS method, and u(x,\bfitomega (i)) is
the reference solution solved by the Newton iteration method on the 200\times 200 grid.
Based on the two representations uN (x,\bfitomega ) and \^uN (x,\bfitomega ), we compute the relative
errors defined by (6.4). Then we depict the mean of the relative errors with error bars\bigl( 
[(mean  - standard deviation) (mean + standard deviation)]

\bigr) 
and the average relative

errors in log scale (Figure 6.2(b)) corresponding to the numbers of the separated terms
k in Figure 6.2. From the figures we can see that (1) as the number of separated
terms increases, the approximations become more accurate for the two cases; (2)
Figure 6.2(a) shows that the error bars of the relative errors become more compact
as the number of separated terms increases; (3) by Figure 6.2(b), we can see that the
VS method with \zeta 1(\bfitomega ) determined by nonlinear system (4.14) always achieves better
approximation than the VS method with \zeta 1(\bfitomega ) determined by a linear system (4.15);
(4) the VS method for the two cases can render the robust and accurate approximation
for the nonlinear elliptic PDE. Consquently, we have the following conclusion that the
proposed VS method can still achieve a good approximation when we choose \zeta 1(\bfitomega )
as the solution of a linearized system (4.15).

In Table 6.1, we list the average relative errors in Table 6.1 along with the average
online CPU time based on the 105 random samples. From the table, we can conclude
that (1) as the number of separated terms increases, the average online CPU time by
the VS method is added slowly first, and then increases distinctly; (2) the magnitude
of average online CPU time by the VS method is much smaller than that of the
reference method; (3) the approximation obtained by the VS method achieves a good
trade-off in both approximation accuracy and computation efficiency.
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(a) Relative errors with error bars.
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(b) Relative errors in log scale.

Fig. 6.2. The mean of the relative errors with error bars and the average relative errors (log
scale) corresponding to the numbers of the separated terms k for the nonlinear elliptic PDE.
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Table 6.1
Comparison of the CPU time and average relative errors for the reference and VS methods with

different numbers of separated terms.

Strategies Average error \varepsilon u Mean online CPU time

VS method

N = 2 4.49\times 10 - 2 1.62\times 10 - 4s

N = 4 1.41\times 10 - 2 1.88\times 10 - 4s

N = 7 1.72\times 10 - 3 1.95\times 10 - 4s

N = 10 4.79\times 10 - 6 2.29\times 10 - 4s

N = 15 9.06\times 10 - 7 7.46\times 10 - 4s

N = 20 8.74\times 10 - 7 2.81\times 10 - 3s

Reference method \setminus 7.86s

(a) h1(x) (b) h2(x) (c) h3(x)

(d) h6(x) (e) h10(x) (f) h13(x)

Fig. 6.3. Spatial structure of the modes \bfu i(x) for velocity \bfu (\bfitomega ) of the VS method in x-axis
direction.

In Figure 6.3 we depict the spatial structure of some modes hi(x) of u(x,\bfitomega ) ob-
tained by the VS method, which show that the first mode h1(x) represent the coarsest
information of u(x,\bfitomega ), and the last few modes capture the fine-scale information. Fig-
ure 6.4 demonstrates the mean and variance profiles of solution u(x,\bfitomega ) for reference,
and the VS method with the number of the separated terms N = 15. By the figure,
we can see the mean profiles for the two methods are all nearly identical. Based on the
reference and the VS method, Figure 6.5 depicts the probability density estimate of
u(x,\bfitomega ) at the single measurement location where the variance of u(\^x,\bfitomega ) is maximal
(left) or minimal (right) for all x \in D. The figure shows that the VS method renders
the same probability density as the reference solution.

6.2. Numerical results for a steady Navier--Stokes equation with ran-
dom viscosity and random forcing term. In this section, we consider a steady
Navier--Stokes equation with the homogeneous Dirichlet velocity boundary condition.
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A740 QIUQI LI AND PINGWEN ZHANG

(a) The mean of u(\bfitomega ). (b) The mean of u(\bfitomega ).

(c) The variance of u(\bfitomega ). (d) The variance of u(\bfitomega ).

Fig. 6.4. The mean and variance of the pressure and vorticity profiles. The first column are
the reference solutions, the second column are the solutions by the VS method with the number of
separated terms N being 15.
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Fig. 6.5. Probability density of u(x0,\bfitomega ) for reference, and the VS method with the number of
the separated terms N = 15, where the variance of u(x0,\bfitomega ) is maximal (left) or minimal (right)
\forall x \in D.

The model is defined in the spatial domain D = (0, 1)2. Here we take X :=
\bigl( 
H1

0 (D)
\bigr) 2
,

Q := L2(D), and \scrV := X \times Q. The random viscosity \nu is given by

\nu (\bfitomega ) = \nu \varepsilon + \nu \prime (\bfitomega ),

where \nu \prime (\bfitomega ) has a log-normal distribution, and coefficient of variation C\nu \prime = 1.5.
Then the random viscosity is taken as

\nu (\bfitomega ) = \nu \varepsilon + exp (\sigma \bfitomega T ), \sigma :=
logC\nu \prime 

2.85
,
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VARIABLE-SEPARATION METHOD FOR NONLINEAR SPDEs A741

where \nu \varepsilon =
1
50 , and

\bfitomega T =
1\surd 
N\nu 

N\nu \sum 
i=1

\omega i.(6.5)

Each \omega i (i = 1, . . . , N\nu ) has a normal distribution with zero mean and unit vari-
ance, i.e., \omega i \sim N(0, 1). \bfitomega T is in turn a normalized, centered, Gaussian random
variable. The forcing term in (5.1) is also random (see, e.g., [42]). We take the verti-
cal component of the rotational of the force field as a stochastic field \Phi (x,\bfitomega ), which
is characterized by a two-point exponential covariance function cov[\Phi ], i.e.,

cov[\Phi ](x1, y1;x2, y2) = \sigma 2 exp

\biggl( 
 - | x1  - x2| 2

2l2x
 - | y1  - y2| 2

2l2y

\biggr) 
,(6.6)

where (xi, yi) (i = 1, 2) is the spatial coordinate in D. Here the variance \sigma 2 = 2 and
correlation length lx = ly = 0.2. Without loss of generality, we may assume that the
random field \Phi (x,\bfitomega ) admits a Karhunen-Lo\`eve expansion, i.e.,

\Phi (x,\bfitomega ) = \Phi 0 +

Nf\sum 
i=1

\omega N\nu +i\Phi i,

where \Phi 0 = 1 and the random vector \bfitomega := (\omega 1, \omega 2, . . . , \omega N\nu +Nf
) \in \BbbR N\nu +Nf . Each \omega i

(i = N\nu +1, . . . , N\nu +Nf ) has a normal distribution with zero mean and unit variance,
i.e., \omega i \sim N(0, 1). Then f(x,\bfitomega ) is defined by

f(x,\bfitomega ) \approx fNf (x,\bfitomega ) := f0(x) +

Nf\sum 
i=1

\omega N\nu +ifi(x), fi(x) = \nabla \wedge 

\left[  0
0

\psi i(x)

\right]  ,
where \psi i is the solution of the following Poisson equation:\Biggl\{ 

 - \bigtriangleup \psi i(x) = \Phi i(x) in D,

\psi i(x) = 0 in \partial D.
(6.7)

Here we set N\nu = 9 and Nf = 9 for the numerical simulation. This implies that the
solution depends on N\nu +Nf = 18 random variables.

For partition of the spatial domain, we apply 100 \times 100 uniform grid and the
stabilized rectangular elements Q1  - Q1 (bilinear basis functions for both velocity
components and pressure) to compute the reference solution and solve (5.16) in the
offline phase. Here, we utilize the approach suggested by Dohrmann and Bochev [17]
to stabilize rectangular elements Q1  - Q1, where the penalty term in (5.5) is defined
as

d
\bigl( 
p, q;\bfitomega 

\bigr) 
= (p - \Pi p, q  - \Pi q;\bfitomega ),

where \Pi denotes the L2 projection from the actual discrete pressure space Q1 into the
piecewise constant function space P0. For this penalty method, we take \varepsilon = 1 in (5.5).
Note that this projection is defined locally, that is, \Pi q is taken as a constant functionD
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A742 QIUQI LI AND PINGWEN ZHANG

in each element. Let u(x,\bfitomega ) and p(x,\bfitomega ) be the reference solutions for velocity and
pressure, respectively, solved by the Newton iteration method based on the system by
penalty. Let uH(x,\bfitomega ) and pH(x,\bfitomega ) be solved by the VS method proposed in section
5.1. Then the relative mean errors for velocity and pressure are defined, respectively,
by

\varepsilon u =
1

M

M\sum 
i=1

\| u(x,\bfitomega (i)) - uH(x,\bfitomega (i))\| 2L2(D)

\| u(x,\bfitomega (i))\| 2L2(D)

,(6.8)

\varepsilon p =
1

M

M\sum 
i=1

\| p(x,\bfitomega (i)) - pH(x,\bfitomega (i))\| 2L2(D)

\| p(x,\bfitomega (i))\| 2L2(D)

.(6.9)

We utilize the VS method proposed in section 5.1 to get the separated represen-
tations of the solution for this numerical example. We take \varepsilon 0 = 10 - 4 in Algorithm 2
and select | \Xi | = 60 samples from the random domain \Omega . Then \{ \zeta ui (\bfitomega ),ui(x)\} Ni=1 and
\{ \zeta pi (\bfitomega ), pi(x)\} Ni=1 are obtained by Algorithm 2 with N = 30.

In Figure 6.6, we depict the error estimator \varepsilon k defined by equation \varepsilon k :=
max\bfitomega \in \Xi \Delta k(\bfitomega ) versus the number of the separated terms k for the VS method. From
the figure, we can see the error estimator decays fast as the iteration number k in-
creases.

Figure 6.7 shows the spatial structure of some modes ui(x) in the x-axis direction
obtained by the VS method, and Figure 6.8 shows the spatial structure of some modes
ui(x) in the y-axis direction. From the figures, we find that, for both the velocity u
and pressure p, the first mode u1(x) represent the coarsest information, and the last
few modes capture the fine-scale information.

Based on the representations (5.7), we select 105 samples \{ \bfitomega i\} 10
5

i=1 randomly and
compute the relative errors defined by (6.8) and (6.9). In Figure 6.9, we show the mean
of the relative errors with error bars

\bigl( 
[(mean  - standard deviation) (mean + standard

deviation)]
\bigr) 
for the VS method with different numbers of separated terms k. From

the figure, we have two observations: (1) as the number of separated terms increases,
the mean of the relative errors for both velocity u and pressure p decays distinctly;
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Fig. 6.6. The error estimator \varepsilon k corresponding to the numbers of the separated terms k in the
VS method for the steady Navier--Stokes equation.
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(a) \bfu 1 in x-axis direction. (b) \bfu 2 in x-axis direction. (c) \bfu 3 in x-axis direction.

(d) \bfu 6 in x-axis direction. (e) \bfu 10 in x-axis direction. (f) \bfu 25 in x-axis direction.

Fig. 6.7. Spatial structure of the modes \bfu i(x) for velocity \bfu (\bfitomega ) of the VS method in x-axis
direction.

(a) \bfu 1 in y-axis direction. (b) \bfu 2 in y-axis direction. (c) \bfu 3 in y-axis direction.

(d) \bfu 6 in y-axis direction. (e) \bfu 10 in y-axis direction. (f) \bfu 25 in y-axis direction.

Fig. 6.8. Spatial structure of the modes \bfu i(x) for velocity \bfu (\bfitomega ) of the VS method in y-axis
direction.
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Fig. 6.9. The mean of the relative errors with error bars corresponding to the numbers of the
separated terms k in the VS method for the steady Navier--Stokes equation.

(2) for velocity u, the error bars of the relative errors become more compact; for
pressure p, there are some special cases, but on the whole, the error bars become
more compact as the iteration number increases; (3) the VS method can provide a
robust and accurate approximation for the steady Navier--Stokes problem with random
influence. Let u = (ux1 , ux2). Here the two-dimensional vorticity (scalar) variable \xi is
defined by

\xi :=
\partial ux2

\partial x1
 - \partial ux1

\partial x2
,

which acts in a direction orthogonal to the xy plane. In Figure 6.10, we depict the
mean and variance of the pressure and vorticity profiles. From the figure, we can see
that the VS method with the number of the separated terms being 15 gives almost
the same mean profiles for velocity, vorticity, and pressure for the example.

To illustrate the efficiency of the proposed VS method, we compute the realiza-
tions corresponding to the 105 parameter samples. In Table 6.2, we list the mean
of the relative error, CPU time (online CPU time \scrT on, offline CPU time \scrT off, total
CPU time \scrT tot, and average online CPU time \=\scrT on) needed for the VS method with
the number of the separated terms being 8, 15, and 25, and average CPU time for the
reference and VS methods. From the table, we can conclude that (1) as the iteration
number k increases, the average relative errors become smaller, the CPU times (online
CPU time \scrT on, offline CPU time \scrT off, total CPU time \scrT tot, and average online CPU
time Ton) needed for the VS method increase steadily too; (2) the average online CPU
time by the VS method is much smaller than that of the reference method; (3) the VS
method achieves a good trade-off in both approximation accuracy and computation
efficiency for the stochastic steady Navier--Stokes equations.

Finally, we investigate the case that the viscosity parameter \nu (\bfitomega ) depends on
the different numbers of random variables. Given the same error tolerance \varepsilon 0 =
10 - 3 and the same set of samples \Xi with | \Xi | = 60, here we consider the steady
Navier--Stokes equations (5.1) with N\nu = 6, 9, and 15 in (6.5), and get the separated
representations with N = 25 by Algorithm 2. In Figure 6.11, we depict the average
relative errors for velocity u and pressure p versus the different iteration number for
the three different models with N\nu = 6, 9, and 15. The figure shows that the viscosity
parameter \nu (\bfitomega ) depending on the different numbers of random variables have little
impact on the performance of the VS method for the stochastic steady Navier--Stokes
equations.
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VARIABLE-SEPARATION METHOD FOR NONLINEAR SPDEs A745

(a) The mean of pressure. (b) The mean of pressure.

(c) The variance of pressure. (d) The variance of pressure.

(e) The mean of vorticity. (f) The mean of vorticity.

(g) The variance of vorticity. (h) The variance of vorticity.

Fig. 6.10. The mean and variance of the pressure and vorticity profiles. The first column is
the reference solutions, and the second column is the solutions by the VS method with the number
of the separated terms N being 15.
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A746 QIUQI LI AND PINGWEN ZHANG

Table 6.2
Comparison of average relative errors and the CPU time for the reference and VS methods with

the number of the separated terms being 8, 15, and 25, based on 106 parameter samples.

Strategies The VS method Reference method

N = 8 N = 15 N = 25

\varepsilon u 7.31\times 10 - 5 3.19\times 10 - 8 4.10\times 10 - 10 \setminus 
\varepsilon p 8.69\times 10 - 2 1.70\times 10 - 3 4.68\times 10 - 6 \setminus 
\scrT off 384.64s 572.94s 840.45s \setminus 
\scrT on 32.31s 54.14s 68.59s \setminus 
\scrT tot 416.95s 627.08s 909.04s 5.02\times 105s

Ton 3.23\times 10 - 4s 5.41\times 10 - 4s 6.86\times 10 - 4s 5.02s
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Fig. 6.11. The mean of the relative errors corresponding to the numbers of the separated terms
k in the VS method for the steady Navier--Stokes equation.

7. Conclusions. In the work, we proposed the VS method for the nonlinear
problems with random inputs to get the separated representations of the solutions.
The proposed VS approach is devoted to constructing a low rank approximation of
the Galerkin solution for nonlinear problems in a systematic enrichment manner.
Compared with proper generalized decomposition, no iteration is performed at each
enrichment step. To obtain the efficient and reliable approximation (1.1) for the non-
linear problems, we combined the VS method with the classic linearization techniques
such as the Newton method to avoid solving nonlinear problems directly in the offline
phase. At each enrichment step, the stochastic basis function \zeta k(\bfitomega ) was determined
by the linearized stochastic equation, which is deduced from the original nonlinear
problems; simultaneously, we also obtained the deterministic basis function by solving
a linear equation. We note that the computation efficiency was dramatically improved
by storing the stochastic basis functions in matrix form such as (4.16) and making
best use of the precalculated terms. Specifically, for given \bfitomega \in \Omega , we calculate \zeta k(\bfitomega )
by (4.16) with the concrete numbers \{ \zeta i(\bfitomega )\} k - 1

i=1 , which have been calculated previ-
ously. Therefore, in this work, no stochastic approximation methods, such as the
sparse low rank tensor approximation method used in [29], were performed to remove
the mutual dependance of the stochastic basis functions. For the nonlinear problems
with random inputs, the VS method was presented in an abstract framework. After
that, we described the details of the VS method by two nonlinear models that fit in
the abstract framework. Finally, we applied the proposed method to two numerical
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VARIABLE-SEPARATION METHOD FOR NONLINEAR SPDEs A747

examples with random inputs and performed some careful numerical analysis for these
numerical examples.

In the future, we will apply the proposed methods to the inverse problems with
nonlinearities. It is desirable to explore rigorous convergence analysis for the VS
method. Ongoing works are also focused on the extension to nonlinear unsteady
problems. In addition, we will pay more attention to the applications of the pro-
posed method to some models in dynamical systems, especially for some biological
systems.

Appendix A. The definition of \Delta \bfitk (\bfitomega ). An effective error estimator \Delta k(\bfitomega )
is crucial for both the efficiency and the reliability of the VS method. Here we will
describe two ways for the definition of \Delta k(\bfitomega ). First, people usually utilize the Riesz
representation to define the error estimator, e.g., (4.10) and (5.15), as presented in
sections 4.1 and 5.1. For the computation of the error estimator \Delta k(\bfitomega ), we can utilize
an offline-online procedure presented in [39, 28].

Now, we take the stochastic steady Navier--Stokes equation as an example to
present the details of the offline-online procedure. By (5.3), (5.4), (5.11), and (5.12),
we get

\left\{                       

\bigl( 
\^eu(\bfitomega ),v

\bigr) 
X

= - 
k - 1\sum 
i=1

k - 1\sum 
j=1

\zeta ui (\bfitomega )\zeta uj (\bfitomega )c
\bigl( 
ui(x),uj(x),v

\bigr) 
 - 

k - 1\sum 
i=1

\nu (\bfitomega )\zeta ui (\bfitomega )a
\bigl( 
ui(x),v

\bigr) 
+

mf\sum 
i=1

\alpha i(\bfitomega )f i
\bigl( 
v
\bigr) 
 - 

k - 1\sum 
r=1

\zeta pr (\bfitomega )b
\bigl( 
v, pr(x)

\bigr) 
\forall v \in Xh,

\bigl( 
\^ep(\bfitomega ), q

\bigr) 
Q
= - 

k - 1\sum 
i=1

\zeta ui (\bfitomega )b
\bigl( 
ui(x), q

\bigr) 
+ \varepsilon 

k - 1\sum 
i=1

\zeta pi (\bfitomega )d
\bigl( 
pi(x), q

\bigr) 
\forall q \in Qh.

This implies that

\left\{                       

\^eu(\bfitomega ) =

mf\sum 
i=1

\alpha i(\bfitomega )\scrF i +

k - 1\sum 
i=1

\nu (\bfitomega )\zeta ui (\bfitomega )\scrL i

+

k - 1\sum 
i=1

k - 1\sum 
j=1

\zeta ui (\bfitomega )\zeta uj (\bfitomega )\scrX i
j +

k - 1\sum 
r=1

\zeta pr (\bfitomega )\scrB r,

\^ep(\bfitomega ) =

k - 1\sum 
i=1

\zeta ui (\bfitomega )\scrP i + \varepsilon 

k - 1\sum 
i=1

\zeta pi (\bfitomega )\scrC i,

(A.1)

where \scrF i is the Riesz representation of f i(v), i.e., (\scrF i,v)X = f i(v) for any v \in 
Xh, \scrL i is the Riesz representation of  - a(ui,v), i.e., (\scrL i,v)X =  - a(ui,v) for any
v \in Xh, \scrX i

j is the Riesz representation of  - c
\bigl( 
ui(x),uj(x),v

\bigr) 
, i.e., (\scrX i

j ,v)X =

 - c
\bigl( 
ui(x),uj(x),v

\bigr) 
for any v \in Xh, \scrB r is the Riesz representation of  - b

\bigl( 
v, pr(x)

\bigr) 
,

i.e., (\scrB r,v)X =  - b
\bigl( 
v, pr(x)

\bigr) 
for any v \in Xh, \scrP i is the Riesz representation of

 - b(ui, q), i.e., (\scrP i, q)Q =  - b(ui, q) for any q \in Qh, and \scrC i is the Riesz represen-
tation of d

\bigl( 
pi(x), q

\bigr) 
, i.e., (\scrC i, q)X = d

\bigl( 
pi(x), q

\bigr) 
for any q \in Qh. Then (A.1) gives rise

to

D
ow

nl
oa

de
d 

10
/1

7/
22

 to
 2

18
.7

0.
25

5.
16

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A748 QIUQI LI AND PINGWEN ZHANG

\| \^eu(\bfitomega )\| 2X =

mf\sum 
n=1

\alpha n(\bfitomega )

mf\sum 
n\prime =1

\alpha n\prime 
(\bfitomega )(\scrF n,\scrF n\prime 

)X +

k - 1\sum 
i=1

\nu (\bfitomega )\zeta ui (\bfitomega )

\times 

\Biggl( 
2

mf\sum 
n=1

\alpha n(\bfitomega )(\scrF n,\scrL i)X +

k - 1\sum 
i\prime =1

\nu (\bfitomega )\zeta ui\prime (\bfitomega )(\scrL i\prime ,\scrL i)X

\Biggr) 

+

k - 1\sum 
i=1

k - 1\sum 
j=1

\zeta ui (\bfitomega )\zeta uj (\bfitomega )\times 

\Biggl( 
2

mf\sum 
n=1

\alpha n(\bfitomega )(\scrF n,\scrX i
j )X

+ 2

k - 1\sum 
i\prime =1

\nu (\bfitomega )\zeta ui\prime (\bfitomega )(\scrL i\prime ,\scrX i
j )X +

k - 1\sum 
i\prime =1

k - 1\sum 
j\prime =1

\zeta ui\prime (\bfitomega )\zeta uj\prime (\bfitomega )(\scrX i\prime 

j\prime ,\scrX i
j )X

\Biggr) 

+

k - 1\sum 
r=1

\zeta pr (\bfitomega )

\Biggl( 
2

mf\sum 
n=1

\alpha n(\bfitomega )(\scrF n,\scrB r)X + 2

k - 1\sum 
i=1

\nu (\bfitomega )\zeta ui (\bfitomega )(\scrL i,\scrB r)X

+ 2

k - 1\sum 
i\prime =1

k - 1\sum 
j\prime =1

\zeta ui\prime (\bfitomega )\zeta uj\prime (\bfitomega )(\scrX i\prime 

j\prime ,\scrB r)X +

k - 1\sum 
r\prime =1

\zeta pr\prime (\bfitomega )(\scrB r\prime ,\scrB r)X

\Biggr) 
,

(A.2)

\| \^ep(\bfitomega )\| 2Q =

k - 1\sum 
i=1

k - 1\sum 
i\prime =1

\zeta ui (\bfitomega )\zeta ui\prime (\bfitomega )(\scrP i,\scrP i\prime )Q +

k - 1\sum 
i=1

\zeta pi (\bfitomega )

\times 

\Biggl( 
2

k - 1\sum 
j=1

\zeta uj (\bfitomega )(\scrP j , \scrC i)Q +

k - 1\sum 
i\prime =1

\zeta pi\prime (\bfitomega )(\scrC i\prime , \scrC i)Q

\Biggr) 
.

(A.3)

In the offline stage, we compute \scrF n, \scrL i, \scrX i
j , \scrB i, \scrC i, and \scrP i, where 1 \leq i, j \leq k  - 1

and 1 \leq n \leq mf . We store all of the inner products used in (A.2) and (A.3) for the
online stage. In the online stage, we use (A.2) and (A.3) to compute \| \^eu(\bfitomega )\| X and
\| \^ep(\bfitomega )\| Q for any \bfitomega \in \Xi , and then obtain \Delta k(\bfitomega ) by (5.15).

By (A.1) we can find that, to evaluate the error estimator \Delta k(\bfitomega ) by (A.2) and
(A.3) rapidly, mf +4(N  - 1)+ (N  - 1)2 linear problems are required to be computed
on the fine grid. Therefore, the error estimator \Delta k(\bfitomega ) can be defined as the error in
\scrV -norm directly, that is,

\Delta k(\bfitomega ) =
\sqrt{} 

\| u(\bfitomega ) - uk - 1(\bfitomega )\| 2X + \| p(\bfitomega ) - pk - 1(\bfitomega )\| 2Q,

when mf + 4(N  - 1) + (N  - 1)2 \geq | \Xi | .
Similarly, we can define the error estimator \Delta k(\bfitomega ) for the nonlinear elliptic PDEs

with random influences as

\Delta k(\bfitomega ) = \| u(\bfitomega ) - uk - 1(\bfitomega )\| \scrV .

To identify the sample \bfitomega i = argmax\bfitomega \in \Xi \Delta i(\bfitomega ) quickly at each iteration step, the
solutions \{ u(\bfitomega );\bfitomega \in \Xi \} can be calculated and stored first.

Acknowledgment. The authors would like to thank Peng Chen for the inter-
esting discussions about the work.
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