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ANISOTROPIC NONLOCAL DIFFUSION OPERATORS FOR
NORMAL AND ANOMALOUS DYNAMICS\ast 

WEIHUA DENG\dagger , XUDONG WANG\dagger , AND PINGWEN ZHANG\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The Laplacian \Delta is the infinitesimal generator of isotropic Brownian motion, being
the limit process of normal diffusion, while the fractional Laplacian \Delta \beta /2 serves as the infinitesimal
generator of the limit process of isotropic L\'evy process. Taking limit, in some sense, means that the
operators can approximate the physical process well after sufficient long time. We introduce the non-
local operators (being effective from the starting time), which describe the general processes under-
going anisotropic normal diffusion. For anomalous diffusion, we extend to the anisotropic fractional

Laplacian \Delta 
\beta /2
m and the tempered one \Delta 

\beta /2,\lambda 
m in \BbbR n. Their definitions are proved to be equivalent to

an alternative one in Fourier space. Based on these new anisotropic diffusion operators, we further
derive the deterministic governing equations of some interesting statistical observables of the very
general jump processes with multiple internal states. Finally, we consider the associated initial and
boundary value problems and prove their well-posedness of the Galerkin weak formulation in \BbbR n. To
obtain the coercivity, we claim that the probability density function \bfY should be nondegenerate.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . jump processes, nonlocal normal diffusion, anisotropic anomalous diffusion, tem-
pered L\'evy flight, multiple internal states, well-posedness

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 00A71, 35R11, 82C31

\bfD \bfO \bfI . 10.1137/18M1184990

1. Introduction. Diffusion phenomena are ubiquitous in the natural world,
which describe the net movements of the microscopic molecules or atoms from a
region of high concentration to a region of low concentration. The speed of diffusion
can be characterized by the second moment of the particle trajectories \langle x2(t)\rangle \thicksim t\alpha .
It is called normal diffusion if \alpha = 1 and anomalous diffusion [13, 30, 37] if \alpha \not = 1.
The scaling limits of all the processes undergoing normal diffusion are Brownian mo-
tion. But without the scaling limits, most of the time, they are pure jump processes.
For anomalous diffusion, the processes are always characterized by long-range correla-
tion or broad distribution. The former includes fractional Brownian motion [28] and
tempered fractional Brownian motion [8, 27], while the latter contains the processes
with long-tailed waiting time or jump length. In the framework of continuous-time
random walks (CTRWs) [23, 31], any one of the first moments of waiting time and
the second moments of jump length diverging leads to the anomalous dynamics. If
we extend to the processes with multiple internal states [42], then the diffusion phe-
nomena will depend on the distribution of each internal state, transition matrix, and
initial distribution, involving more complex dynamics.

There are many microscopic/stochastic models to describe normal and anomalous
diffusions and many different ways of deriving the macroscopic/deterministic equa-
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416 W. DENG, X. WANG, AND P. ZHANG

tions governing the PDFs of some particular statistical observables of the stochastic
processes. The commonly used stochastic model is CTRW, which consists of two
important random variables, i.e., waiting time and jump length. Two of the impor-
tant CTRW models undergoing superdiffusion are L\'evy flight and L\'evy walk. For
L\'evy flight, the second moment of jump length diverges, which implies the processes
propagate with infinite speed. Therefore, the physical realizations of such processes
are quite hard and then rare. L\'evy walks [44] can remedy the infinite speed by cou-
pling the distribution of waiting time and jump length. This gives rise to a class of
space-time coupled processes. Different from L\'evy walks, another idea to bound the
second moment is to truncate the long-tailed probability distribution of jump length
[28, 29], i.e., modify | X|  - n - \beta as e - \lambda | \bfX | | X|  - n - \beta with \lambda being a small positive con-
stant, leading to the tempered L\'evy flights, which have the advantage of still being
an infinitely divisible L\'evy process. The Langevin-type equations are built based on
Newton's second law with noise as random forces, and the CTRW models also have
their corresponding Langevin pictures [19, 39]. Sometimes, it is convenient to use this
type of model if the external potentials are considered [7].

Another way to describe anomalous diffusion is L\'evy process, which is defined
by its characteristic function and more convenient to deal with the stochastic process
in high dimensions. According to the L\'evy--Khintchine formula [1], the characteristic
function of L\'evy process has a specific form

(1) E(ei\bfk \cdot \bfX ) =

\int 
\BbbR n

ei\bfk \cdot \bfX p(X, t)dX = et\Phi (\bfk ),

where

(2) \Phi (k) = ik \cdot b - 1

2
k \cdot ak+

\int 
\BbbR n\setminus \{ 0\} 

\Bigl[ 
ei\bfk \cdot \bfY  - 1 - ik \cdot Y\chi \{ | \bfY | <1\} 

\Bigr] 
\nu (dY)

with b \in \BbbR n and a is a positive definite symmetric n \times n matrix, \chi I is the indica-
tor function of the set I, and \nu is a finite L\'evy measure on \BbbR n\setminus \{ 0\} , implying that\int 
\BbbR n\setminus \{ 0\} min\{ 1, | Y| 2\} \nu (dY) < \infty . If we take a and b to be zero and \nu to be a rota-

tionally symmetric (tempered) \beta -stable L\'evy measure

(3) \nu (dY) = cn,\beta | Y|  - n - \beta dY or \nu (dY) = cn,\beta ,\lambda e
 - \lambda | \bfY | | Y|  - n - \beta dY,

then the corresponding PDF of the particles' positions solves

(4)
\partial p(X, t)

\partial t
= \Delta \beta /2 p(X, t) or

\partial p(X, t)

\partial t
= \Delta \beta /2,\lambda p(X, t),

where the operators \Delta \beta /2 and \Delta \beta /2,\lambda are defined in [10, eq. (34)] by the Fourier
transform \^g(k) := F [g(X)](k) =

\int 
\BbbR n ei\bfk \cdot \bfX g(X)dX with

(5)
F [\Delta \beta /2g(X)] =  - | k| \beta \^g(k) and

F [\Delta \beta /2,\lambda g(X)] = ( - 1)\lceil \beta \rceil 
\Bigl( 
(\lambda 2 + | k| 2)\beta /2  - \lambda \beta +\scrO (| k| 2)

\Bigr) 
\^g(k);

here \beta \in (0, 1) \cup (1, 2), and \lceil \beta \rceil denotes the smallest integer that is bigger than or
equal to \beta . A similar operator (\lambda 1/\beta + | k| 2)\beta  - \lambda appears in [35, eq. (3)], where the
only difference is the term \scrO (| k| 2). However, their physical background is completely
different. The term \scrO (| k| 2) in (5) is strictly derived in [10, eq. (34)], where we consider
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OPERATORS FOR NORMAL AND ANOMALOUS DYNAMICS 417

the compound Poisson processes with tempered power law jump lengths, i.e., take the
L\'evy measure \nu (dY) to be e - \lambda | \bfY | | Y|  - n - \beta . But the formula in [35, eq. (3)] is inspired
by the Schr\"odinger operator with the free Hamiltonian of the formH0 = (\lambda 2 - \Delta )1/2 - \lambda 
in [4] and naturally extended to the form (\lambda 1/\beta + | k| 2)\beta  - \lambda with fractional order \beta .

The two equations in (5) describe the isotropic movements of microscopic parti-
cles. However, the anisotropic motions are also very popular, especially in biological
systems. The cytoplasm of biological cells is always crowded with various obstacles.
These crowders are usually not uniformly distributed and provide the heterogeneous
media for tracer particles in them. So we need to develop models to characterize
the anisotropic feature. Compte [9] generalized the scheme of CTRWs and showed
the diffusion-advection equation and the mean square displacement (MSD) in three
kinds of shear flows. Meerschaert, Benson, and B\"aumer [26] made an extension to
high dimensions and provided an operator being a mixture of directional derivatives
taken in each radial direction, where the operator was directly given in Fourier space
and the associated fractional advection-dispersion equation was derived. Ervin and
Roop [17] discussed directional integral and directional differential operators in two
dimensions and defined the appropriate fractional directional derivative spaces. For
more details, we refer the interested reader to these literature and the references cited
therein.

In this paper, we start from the compound Poisson process to discuss more general
anisotropic nonlocal normal diffusion and anomalous diffusion. We present in detail
how to derive the macroscopic equations through the L\'evy--Khintchine formula for
a general anisotropic process. For normal diffusion, the exact macroscopic equations
are given without taking a scaling limit. In this way, we find that the anisotropic
dynamics significantly result in different PDFs even for normal diffusion. We also
discuss the anomalous diffusion undergoing anisotropic movements in \BbbR n and provide

the anisotropic tempered fractional Laplacian operator \Delta 
\beta /2,\lambda 
m (the subscriptmmeans

the dependence on directional measurem(\theta ) orm(Y), first appearing in (15)). Despite

the complexity of \Delta 
\beta /2,\lambda 
m , we derive its Fourier symbol, which looks more concise and

understandable. Finally, we discuss the space fractional differential equations with

the newly defined operator \Delta 
\beta /2,\lambda 
m in \BbbR n, endowed with generalized Dirichlet and

Neumann boundary conditions, and prove their well-posedness. We construct a new
Hilbert space to include the solutions not vanishing at infinity and propose that the
nondegenerate function m(Y) guarantees the coercivity of the variational formulation
of the corresponding equations.

All the models mentioned above are for diffusion with single internal state, imply-
ing that the processes have the same distributions of waiting time and jump length
at each step. Intrigued by applications, e.g., particles moving in multiphase viscous
liquid composed of materials with different chemical properties, we further gener-
alize the processes with multiple internal states. In fact, the case of two internal
states is considered in [20, 34] with applications, including trapping in amorphous
semiconductors, electronic burst noise, movement in systems with fractal boundaries,
the digital generation of 1/f noise, and ionic currents in cell membranes; Niemann,
Barkai, and Kantz [33] investigated in detail a stochastic signal with multiple states,
in which each state has an associated joint distribution for the signal's intensity and
its holding time. Xu and Deng [42] extended the Fokker--Planck and Feynman--Kac
equations [38, 40, 41] to cases with multiple temporal internal states. Here, we further
present the fractional Fokker--Planck and Feynman--Kac equations with multiple in-
ternal states, both temporally and spatially. ``Multiple internal state"" implies a kind
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418 W. DENG, X. WANG, AND P. ZHANG

of inhomogeneous motion. We show how to combine it with an anisotropic directional
measure m(Y).

The rest of this paper is organized as follows. In section 2, we show two kinds of
processes with Gaussian jumps, leading to different nonlocal macroscopic equations
describing normal diffusion. More general anisotropic processes undergoing anomalous
diffusions are discussed in section 3, and we also give two kinds of definitions of
anisotropic (tempered) fractional Laplacian for two different motivations and prove
their equivalences. In section 4, the fractional Fokker--Planck and Feynman--Kac
equations of anisotropic (tempered) fractional Laplacian with multiple internal states
are derived. The initial and boundary value problems with generalized Dirichlet and
Neumann boundary conditions are given in section 5, and their well-posedness is
proved in section 6. We conclude the paper with some discussion in the last section.

2. Nonlocal normal diffusion. As we all know, the paths of all L\'evy processes
are discontinuous except for Brownian motion with drift. From the viewpoint of
[15, 10], the macroscopic equations governing the PDFs of these processes should
be endowed with the generalized boundary conditions since the boundary \partial \Omega itself
cannot be hit by the majority of discontinuous sample trajectories. For nonlocal
normal diffusion, it is a pure jump process with Gaussian jumps. Therefore, the
boundary conditions should be specified on the domain \BbbR n\setminus \Omega . By the central limit
theorem, the scaling limits of all these processes are Brownian motion. But without
scaling limit, these processes are different and should be distinguished.

Now we consider the compound Poisson process with Gaussian jump length, in
which Poisson process is taken as the renewal process. Let Poisson processN(t) satisfy

P\{ N(t) = n\} = (\zeta t)n

n! e - \zeta t, where the rate \zeta > 0 denotes the mean number of jumps

per unit time. Then the compound Poisson process is defined as X(t) =
\sum N(t)

j=0 Xj ,
whereXj are i.i.d. random variables obeying Gaussian distribution. The characteristic
function of X(t) has a specific form as [10, eq. (9)]

(6) E(ei\bfk \cdot \bfX ) =

\int 
\BbbR n

ei\bfk \cdot \bfX p(X, t)dX = e\zeta t(\Phi 0(\bfk ) - 1),

where \Phi 0(k) = E(ei\bfk \cdot \bfX j ), j = 0, 1, . . . , N(t). Denoting the probability measure of the
jump length Xj by \nu (dY), we have

(7) \Phi 0(k) - 1 =

\int 
\BbbR n

(ei\bfk \cdot \bfY  - 1)\nu (dY),

which is the same as the L\'evy--Khintchine formula (2) by taking a = 0 and b\prime = 0
(b\prime contains b and the third term in the integral of (2)). Although the length of
Xj obeys Gaussian distribution, the distribution of the direction of the movement
has many different choices. Here, we consider two specific cases in two-dimensional
space and derive the corresponding deterministic equations. The first case is that the
particles spread uniformly in all directions, while the second one is that the particles
move only in horizontal and vertical directions. Considering the definition of the
Fourier transform and (6), we have

(8) \^p(k, t) = e\zeta t(\Phi 0(\bfk ) - 1),

which implies that the equation in k space is

(9)
\partial \^p(k, t)

\partial t
= \zeta (\Phi 0(k) - 1)\^p(k, t).

Next, we give the specific expressions of \Phi 0(k) (or \nu (dY)) for these two cases.
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Case 1. Since the particles spread uniformly in all directions, \nu (dY) is taken as

\nu (dY) =
1

2\pi \sigma 2
e - 

| \bfY | 2

2\sigma 2 dY,

where \sigma 2 is the variance. Then we obtain

(10) \Phi 0(k) - 1 = e - 
1
2\sigma 

2| \bfk | 2  - 1,

which implies

(11)
\partial p(X, t)

\partial t
=  - \zeta 

2\pi \sigma 2

\int 
\BbbR 2

e - 
| \bfX  - \bfY | 2

2\sigma 2 (p(X, t) - p(Y, t))dY

by taking the inverse Fourier transform

F - 1[(\Phi 0(k) - 1)\^p(k, t)] = F - 1[\Phi 0(k)\^p(k, t)] - F - 1[\^p(k, t)]

=
1

2\pi \sigma 2

\int 
\BbbR 2

e - 
| \bfX  - \bfY | 2

2\sigma 2 p(Y, t)dY  - p(X, t)

=  - 1

2\pi \sigma 2

\int 
\BbbR 2

e - 
| \bfX  - \bfY | 2

2\sigma 2 (p(X, t) - p(Y, t))dY.

Case 2. Since the particles spread in either horizontal or vertical direction, we
take \nu (dY) to be

\nu (dY) =
1

2(2\pi \sigma 2)
1
2

e - 
| y1| 2

2\sigma 2 \delta (y2)dY +
1

2(2\pi \sigma 2)
1
2

e - 
| y2| 2

2\sigma 2 \delta (y1)dY.

Similar to Case 1, we obtain

(12) \Phi 0(k) - 1 =
1

2
e - 

1
2\sigma 

2| k1| 2 +
1

2
e - 

1
2\sigma 

2| k2| 2  - 1

and the equation

\partial p(X, t)

\partial t
=  - \zeta 

2(2\pi \sigma 2)
1
2

\Bigl( \int 
\BbbR 
e - 

| x1 - y1| 2

2\sigma 2 (p(x1, x2, t) - p(y1, x2, t))dy1

+

\int 
\BbbR 
e - 

| x2 - y2| 2

2\sigma 2 (p(x1, x2, t) - p(x1, y2, t))dy2

\Bigr) 
.

(13)

From (11) and (13), it can be noted that different ways of movement of microscopic
particles lead to different macroscopic equations. These macroscopic equations are
both nonlocal and should be endowed with the generalized boundary conditions. But
if we take the scaling limits of the Gaussian jump processes, the two cases above
both converge to Brownian motion. In fact, let 1/\zeta , \sigma 2 \rightarrow 0, and keep the product
\zeta \sigma 2/2 \rightarrow K1 being a constant, where K1 is the diffusion coefficient with unit [cm2]/[s]
[3]. Then, both (10) and (12) become, up to a multiplier, \Phi 0(k)  - 1 =  - 1

2\sigma 
2| k| 2,

resulting in the classical heat equation

(14)
\partial p(X, t)

\partial t
= K1\Delta p(X, t),

where \Delta is the usual Laplacian in \BbbR 2. To illustrate the relationship between Case 1 and
Case 2, we simulate the trajectories of the particles undergoing Gaussian jumps in Fig-
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(a): Case 1 (400 steps)
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Fig. 1. Random trajectories of Gaussian jumps in Case 1 and Case 2 with 400 steps in the top
row and 40000 steps in the bottom row.

ure 1. Two pictures in the top row are for the 400 jumps performed uniformly (a) and
just in horizontal-vertical direction (b), while another two pictures in the bottom row
display 40000 jumps, respectively. The differences between Case 1 and Case 2 are ap-
parent for a relatively small number of jumps. But after many thousands of jumps, the
differences gradually disappear, as both processes converge to the Brownian motion.

Besides the two cases above, more generally, the particles can move in a vari-
ety of different ways, depending on the environment. There may be more particles
spreading in one direction or some particles spreading faster in another direction.
This phenomenon is called anisotropic diffusion and can be characterized clearly by
the L\'evy measure \nu (dY). More precisely, still in two-dimensional space, by polar
coordinate transformation, take \nu (dY) to be

(15) \nu (dY) = cm exp

\biggl[ 
 - r2

2\sigma 2
\theta 

\biggr] 
m(\theta )rdrd\theta ,

where cm > 0 is the normalized parameter, r \geq 0, \theta \in [0, 2\pi ) denotes the different di-
rections, m(\theta ) denotes the probability distribution of particles spreading in \theta -direction

satisfying m(\theta ) \geq 0,
\int 2\pi 

0
m(\theta )d\theta = 1, and \sigma \theta denotes the different variance or speed of

particles spreading in \theta -direction. Different from (3), this \nu (dY) contains a new PDF
m(\theta ), which only depends on direction. Turning back to the Cartesian coordinate
system and following (7), we have

\Phi 0(k) - 1 = cm

\int 
\BbbR 2

(ei\bfk \cdot \bfY  - 1) exp

\biggl[ 
 - | Y| 2

2\sigma 2
\bfY 

\biggr] 
m(Y)dY,

where the PDF m(\theta ) is abused by m(Y) and Y \in \BbbR n\setminus \{ 0\} is in the Cartesian coordi-
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nate system, while it really means m( \bfY 
| \bfY | ), only depending on the radial direction of

Y. The notation m(Y) will be used in the subsequent sections. Then similar to (11)
and (13), we can derive the equation

(16)
\partial p(X, t)

\partial t
=  - \zeta cm

\int 
\BbbR 2

(p(X, t) - p(Y, t)) exp

\biggl[ 
 - | X - Y| 2

2\sigma 2
\bfX  - \bfY 

\biggr] 
m(X - Y)dY.

If we take \sigma \theta = \sigma , m(\theta ) \equiv (2\pi ) - 1, or m(\theta ) = 1
4 (\delta (\theta )+ \delta (\theta  - \pi 

2 )+ \delta (\theta  - \pi )+ \delta (\theta  - 3\pi 
2 ))

in (15), then (16) reduces to (11) and (13), respectively.
The discussions above, including the case of (15), are aiming to describe aniso-

tropic jump processes. All the macroscopic equations are nonlocal and should be
endowed with generalized boundary conditions [12].

3. Anisotropic anomalous diffusion. Now we discuss the anomalous diffusion
with the property of anisotropy. Still based on the compound Poisson processes in
the previous section but with the diffusion processes being anisotropic (tempered)
\beta -stable, we try to derive their corresponding deterministic equations undergoing
anomalous diffusion. Taking \zeta = 1 in (9) leads to

(17)
\partial \^p(k, t)

\partial t
= (\Phi 0(k) - 1)\^p(k, t),

where

(18) \Phi 0(k) - 1 =

\int 
\BbbR n\setminus \{ 0\} 

\Bigl[ 
ei\bfk \cdot \bfY  - 1 - ik \cdot Y\chi \{ | \bfY | <1\} 

\Bigr] 
\nu (dY).

Here, different from (7), we add a term ik \cdot Y to overcome the possible divergence of
the integral of (18) because of the possible strong singularity of \nu (dY) at zero for the
case of anomalous diffusion. For an isotropic \beta -stable anomalous diffusion process in
n-dimensional space, its distribution of jump length is c\beta r

 - n - \beta , which means that

(19) \nu (dY) = c\beta | Y|  - n - \beta dY.

When 0 < \beta < 1, the term ik \cdot Y can be omitted due to weak singularity (the integral
in (18) is convergent at origin). If 1 \leq \beta < 2, though the singularity is strong, this
term can also be omitted due to the possible symmetry of the L\'evy measure \nu (dY),
i.e., \nu (dY) = \nu ( - dY) (the integral in (18) at origin can be understood in the sense
of Cauchy principal value). Therefore, if 1 \leq \beta < 2 meets with the asymmetry of
\nu (dY), this term is required. Based on the analyses above, we will keep the term
ik \cdot Y formally for 0 < \beta < 2 in the following, though it vanishes in some appropriate
situations.

Two special cases have been considered in [10], i.e., the isotropic one (19) and the
horizontal-vertical one,

\nu (dY) = c\beta 1
| y1|  - 1 - \beta 1\delta (y2)\delta (y3) \cdot \cdot \cdot \delta (yn)dY

+ c\beta 2 | y2|  - 1 - \beta 2\delta (y1)\delta (y3) \cdot \cdot \cdot \delta (yn)dY + \cdot \cdot \cdot 
+ c\beta n | yn|  - 1 - \beta n\delta (y1)\delta (y2) \cdot \cdot \cdot \delta (yn - 1)dY,

(20)

where \beta i \in (0, 2) and yi is the component of Y, i.e., Y = [y1, y2, . . . , yn]
T . Their

corresponding macroscopic equations are

\partial p(X, t)

\partial t
= \Delta \beta /2p(X, t)

=  - cn,\beta P.V.

\int 
\BbbR n

p(X, t) - p(Y, t)

| X - Y| n+\beta 
dY

(21)
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and

(22)
\partial p(X, t)

\partial t
= (\Delta \beta 1/2

x1
+\Delta \beta 2/2

x2
+ \cdot \cdot \cdot +\Delta \beta n/2

xn
)p(X, t),

respectively, where \Delta 
\beta i/2
xi is the fractional Laplacian in \BbbR 1 w.r.t. xi. Besides the two

cases, there are also a large number of irregular motions the microscopic particles
perform. In general, we call it anisotropy. With the aid of the L\'evy--Khintchine
formula (2), the concrete form of \nu (dY) can be given.

Following (17) and (18), with the inverse Fourier transform, we have

(23)
\partial p(X, t)

\partial t
=

\int 
\BbbR n\setminus \{ 0\} 

[p(X - Y) - p(X) + (Y \cdot \nabla \bfX p(X))\chi [| \bfY | <1]
]\nu (dY),

where \nabla \bfX = [\partial x1
, \partial x2

, . . . , \partial xn
]T . Taking

(24) \nu (dY) =
1

| \Gamma ( - \beta )| 
m(Y)

| Y| n+\beta 
dY

gives

\partial p(X, t)

\partial t
=

1

| \Gamma ( - \beta )| 

\int 
\BbbR n\setminus \{ 0\} 

\bigl[ 
p(X - Y) - p(X) + (Y \cdot \nabla \bfX p(X))\chi [| \bfY | <1]

\bigr] 
\times m(Y)

| Y| n+\beta 
dY.

(25)

We can make the meaning of m(Y) clear by transforming this equation into a polar
coordinate system. In the two- and three-dimensional cases, (25) becomes, respec-
tively,

\partial p(X, t)

\partial t
=

1

| \Gamma ( - \beta )| 

\int \infty 

0

\int 2\pi 

0

\Biggl[ 
p(x1  - r cos(\theta ), x2  - r sin(\theta )) - p(x1, x2)

+

\biggl( 
r cos(\theta )

\partial p

\partial x1
+ r sin(\theta )

\partial p

\partial x2

\biggr) 
\chi [r<1]

\Biggr] 
m(\theta )

r1+\beta 
d\theta dr

and

\partial p(X, t)

\partial t

=
1

| \Gamma ( - \beta )| 

\int \infty 

0

\int \pi 

0

\int 2\pi 

0

\Biggl[ 
p(x1  - r sin(\theta ) cos(\phi ), x2  - r sin(\theta ) sin(\phi ), x3  - r cos(\theta ))

 - p(x1, x2, x3) +
\Bigl( 
r sin(\theta ) cos(\phi )

\partial p

\partial x1
+ r sin(\theta ) sin(\phi )

\partial p

\partial x2
+ r cos(\theta )

\partial p

\partial x3

\Bigr) 
\chi [r<1]

\Biggr] 

\times m(\theta , \phi ) sin \theta 

r1+\beta 
d\phi d\theta dr,

where the directional measure m(\theta ) or m(\theta , \phi ) specifies the distribution of particles
spreading in the radial direction of Y; among them, m(\theta ) is defined on [0, 2\pi ], satis-

fying
\int 2\pi 

0
m(\theta )d\theta = 1, while m(\theta , \phi ) is defined on a [0, \pi ]\times [0, 2\pi ] rectangular domain,

satisfying
\int \pi 

0

\int 2\pi 

0
m(\theta , \phi )d\phi d\theta = 1. The situation becomes much more simple if the

particles move in one dimension. It is like the biased CTRW model with asymmetric
probability of jumping left or right [2, 23].
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For the tempered L\'evy flight, we can describe the movement of microscopic par-
ticles and derive the macroscopic equations by defining

(26) \nu (dY) =
1

| \Gamma ( - \beta )| 
m(Y)

e\lambda | \bfY | | Y| n+\beta 
dY,

and (23) becomes

\partial p(X, t)

\partial t
=

1

| \Gamma ( - \beta )| 

\int 
\BbbR n\setminus \{ 0\} 

\bigl[ 
p(X - Y) - p(X) + (Y \cdot \nabla \bfX p(X))\chi [| \bfY | <1]

\bigr] 
\times m(Y)

e\lambda | \bfY | | Y| n+\beta 
dY.

(27)

We write (25) and (27), respectively, as

(28)
\partial p(X, t)

\partial t
= \Delta \beta /2

m p(X, t) and
\partial p(X, t)

\partial t
= \Delta \beta /2,\lambda 

m p(X, t),

where the notation \Delta 
\beta /2
m (\Delta 

\beta /2,\lambda 
m ) denotes the anisotropic (tempered) fractional Lapla-

cian in \BbbR n and their definitions are the right-hand sides of (25) and (27).
Different from (25) and (27), an alternative definition of the anisotropic (tem-

pered) fractional Laplacians can be given in Fourier space:

(29) F [\Delta \beta /2
m p(X, t)] = ( - 1)\lceil \beta \rceil 

\Biggl[ \int 
| \phi \phi \phi | =1

( - ik \cdot \phi \phi \phi )\beta m(\phi \phi \phi )d\phi \phi \phi 

\Biggr] 
\^p(k, t)

and

(30) F [\Delta \beta /2,\lambda 
m p(X, t)] = ( - 1)\lceil \beta \rceil 

\Biggl[ \int 
| \phi \phi \phi | =1

\bigl( 
(\lambda  - ik \cdot \phi \phi \phi )\beta  - \lambda \beta 

\bigr) 
m(\phi \phi \phi )d\phi \phi \phi 

\Biggr] 
\^p(k, t).

The former one has been given in [26, eq. (2)]. It seems that these definitions are
natural for the study of the governing equations since the symbol ( - ik \cdot \phi \phi \phi )\beta for \beta \in 
(0, 1)\cup (1, 2) denotes a \beta -order fractional directional derivative. Now we consider the
question of when the two ways of defining the operators are equivalent. To establish
the relationship between them, we focus on two cases.

\bullet Case I. 0 < \beta < 1 or m is symmetric. Recall that here that the third term
in (25) and (27) can be deleted:

(31) \Delta \beta /2
m p(X, t) =

1

| \Gamma ( - \beta )| 

\int 
\BbbR n\setminus \{ 0\} 

[p(X - Y) - p(X)]
m(Y)

| Y| n+\beta 
dY,

(32) \Delta \beta /2,\lambda 
m p(X, t) =

1

| \Gamma ( - \beta )| 

\int 
\BbbR n\setminus \{ 0\} 

[p(X - Y) - p(X)]
m(Y)

e\lambda | \bfY | | Y| n+\beta 
dY.

\bullet Case II. 1 < \beta < 2 and m is asymmetric. Recall that the integrals in (25)
and (27) without the third terms can be understood in the Hadamard sense
[36, eq. (5.65)], i.e.,

\Delta \beta /2
m p(X, t) = p.f.

1

| \Gamma ( - \beta )| 

\int 
\BbbR n\setminus \{ 0\} 

[p(X - Y) - p(X)]
m(Y)

| Y| n+\beta 
dY

=
1

| \Gamma ( - \beta )| 

\int 
\BbbR n\setminus \{ 0\} 

[p(X - Y) - p(X) + (Y \cdot \nabla \bfX p(X))]

\times m(Y)

| Y| n+\beta 
dY,

(33)
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\Delta \beta /2,\lambda 
m p(X, t) = p.f.

1

| \Gamma ( - \beta )| 

\int 
\BbbR n\setminus \{ 0\} 

[p(X - Y) - p(X)]
m(Y)

e\lambda | \bfY | | Y| n+\beta 
dY

=
1

| \Gamma ( - \beta )| 

\int 
\BbbR n\setminus \{ 0\} 

[p(X - Y) - p(X) + (Y \cdot \nabla \bfX p(X))]

\times m(Y)

e\lambda | \bfY | | Y| n+\beta 
dY  - 1

| \Gamma ( - \beta )| 
\Gamma (1 - \beta )\lambda \beta  - 1(b \cdot \nabla \bfX p(X)),

(34)

where b =
\int 
| \phi \phi \phi | =1

\phi \phi \phi m(\phi \phi \phi )d\phi \phi \phi .

In Case II, since the high singularity makes the integral divergent, we use the notation
p.f. to denote its finite part in the Hadamard sense.

Then we have the following theorem; see Appendix A for the proof, which further
implies the equality (34).

Theorem 1. Let m(Y) be any directional measure on unit sphere and \lambda \geq 0. The

definitions of the anisotropic (tempered) fractional Laplacians \Delta 
\beta /2,\lambda 
m in both Case I

and Case II are, respectively, equivalent to \Delta 
\beta /2,\lambda 
m in (29) and (30) in \BbbR n.

We have just defined the anisotropic (tempered) fractional Laplacian by extending
the L\'evy measure \nu (dY) with different probability distribution in different directions.
More generally, another two variables, jump length exponent \beta and truncation ex-
ponent \lambda , can also be generalized to be anisotropic, i.e., \beta (\phi \phi \phi ) and \lambda (\phi \phi \phi ), sometimes
abused by \beta (Y) and \lambda (Y) similar to m(Y). Let \beta (\phi \phi \phi ) \in (0, 1) \cup (1, 2) and \lambda (\phi \phi \phi ) \geq 0.
Following (29), (30), (32), and (34), the definitions of new anisotropic (tempered)
fractional Laplacian are, respectively, the following:

\bullet Case I: 0 < \beta < 1 or m is symmetric,

\~\Delta \beta /2,\lambda 
m p(X, t) =

\int 
\BbbR n\setminus \{ 0\} 

[p(X - Y) - p(X)]

\times m(Y)

| \Gamma ( - \beta (Y))| e\lambda (\bfY )| \bfY | | Y| n+\beta (\bfY )
dY.

(35)

\bullet Case II: 1 < \beta < 2 and m is asymmetric,

\~\Delta \beta /2,\lambda 
m p(X, t) = p.f.

\int 
\BbbR n\setminus \{ 0\} 

[p(X - Y) - p(X)]

\times m(Y)

| \Gamma ( - \beta (Y))| e\lambda (\bfY )| \bfY | | Y| n+\beta (\bfY )
dY

=

\int 
\BbbR n\setminus \{ 0\} 

[p(X - Y) - p(X) + (Y \cdot \nabla \bfX p(X))]

\times m(Y)

| \Gamma ( - \beta (Y))| e\lambda (\bfY )| \bfY | | Y| n+\beta (\bfY )
dY  - (b \cdot \nabla \bfX p(X)),

(36)

where b =
\int 
| \phi \phi \phi | =1

\Gamma (1 - \beta (\phi \phi \phi ))\lambda (\phi \phi \phi )\beta (\phi \phi \phi ) - 1\phi \phi \phi m(\phi \phi \phi )/| \Gamma ( - \beta (\phi \phi \phi ))| d\phi \phi \phi .
In Fourier space, the new operator has the form

(37) F [ \~\Delta \beta /2,\lambda 
m p(X, t)] = ( - 1)\lceil \beta \rceil 

\int 
| \phi \phi \phi | =1

\Bigl( 
(\lambda (\phi \phi \phi ) - ik\cdot \phi \phi \phi )\beta (\phi \phi \phi ) - \lambda (\phi \phi \phi )\beta (\phi \phi \phi )

\Bigr) 
m(\phi \phi \phi )d\phi \phi \phi \^p(k, t).

We simulate the trajectories of the particles with the anisotropic movements.
Figure 2 shows the random trajectories of tempered L\'evy flights and the corresponding
MSDs. All particles start the movements from origin. Compared with the isotropic
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Fig. 2. Several random trajectories and MSDs of tempered L\'evy flights. The isotropic move-
ments with \beta = 1.3 and \lambda = 0.1 are shown in (a). To describe the movements with anisotropic m(\phi \phi \phi ),
we choose m(\phi \phi \phi ) = 3/(4\pi ) for arg(\phi \phi \phi ) \in (0, \pi ) and m(\phi \phi \phi ) = 1/(4\pi ) for arg(\phi \phi \phi ) \in (\pi , 2\pi ) in (b), while
for the case with anisotropic truncation parameter \lambda (\phi \phi \phi ), we choose \lambda (\phi \phi \phi ) = 0.1 for arg(\phi \phi \phi ) \in (0, \pi )
and \lambda (\phi \phi \phi ) = 0.01 for arg(\phi \phi \phi ) \in (\pi , 2\pi ) in (c). The MSDs of the three kinds of tempered L\'evy flights
are shown in (d).

movements in (a), the particles are more inclined to move upward in (b) due to
the anisotropic m(\phi \phi \phi ). Some large downward jump lengths are found in (c) since
the truncation parameter \lambda = 0.01 is smaller for arg(\phi \phi \phi ) \in (\pi , 2\pi ). The MSDs of
these three cases are presented in (d), both exhibiting normal diffusion. For the case
with anisotropic m(\phi \phi \phi ), the bias resulting from the asymmetric probability of jumps
suppresses the diffusion behavior, while for the anisotropic \lambda (\phi \phi \phi ), the weak tempering
\lambda = 0.01 enhances the fluctuation and thus results in a large diffusivity. Besides the
MSD, there are also many other interesting statistical quantities, such as first-passage
time and escape probability [5, 11, 24]. With the accurate characterization of the
anisotropic normal or anomalous diffusion processes in n dimensions, these quantities
can be further considered in the near future. Some interesting phenomena should be
observed due to the anisotropy.

Remark 3.1. In the practical problem, the directional measure may depend on
the concentration gradient. To emphasize the effects caused by the directional gradi-
ent, the definition of the anisotropic (tempered) fractional Laplacian in (35) can be
extended to

\~\Delta \beta /2,\lambda 
m p(X, t) = ( - 1)\lceil \beta \rceil 

\int 
\BbbR n\setminus \{ 0\} 

[p(X - Y) - p(X)]

\times 
m

\Bigl( 
Y, \partial p(\bfY )

\partial \bfY 

\Bigr) 
| \Gamma ( - \beta (Y))| e\lambda (\bfY )| \bfY | | Y| n+\beta (\bfY )

dY,

(38)

where m should be an increasing function of directional gradient \partial p(\bfY )
\partial \bfY .
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As a complement to the definition of the anisotropic (tempered) fractional Lapla-
cian (29) and (30), we also present the definition of the operator in the case that

\beta = 1; i.e., let \nu (dY) = m(\bfY )
| \bfY | n+1 dY, which still is a nonlocal operator. For the sake of

simplicity, we assume that m(Y) is symmetric; then the term (Y \cdot \nabla \bfX p(X))\chi [| \bfY | <1]
in

(23) can be omitted. For the one-dimensional asymmetric operators with \beta = 1, see
[22] for details.

Proposition 2. Let \beta = 1 and \lambda > 0. If the directional measure m(Y) is
symmetric, then the Fourier symbols of the anisotropic fractional Laplacian and the
corresponding tempered one are, respectively,

(39) F [\Delta 1/2
m p(X, t)] =

\pi 

2

\int 
| \phi \phi \phi | =1

| (k \cdot \phi \phi \phi )| m(\phi \phi \phi )d\phi \phi \phi \cdot \^p(k, t)

and

F [\Delta 1/2,\lambda 
m p(X, t)] =

\int 
| \phi \phi \phi | =1

\Bigl[ 
(k \cdot \phi \phi \phi ) arctan

\biggl( 
k \cdot \phi \phi \phi 
\lambda 

\biggr) 
 - \lambda 

2
ln(\lambda 2 + (k \cdot \phi \phi \phi )2)

+ \lambda ln\lambda 
\Bigr] 
m(\phi \phi \phi )d\phi \phi \phi \cdot \^p(k, t).

(40)

Proof. We first prove the tempered case. Taking the Fourier transform of the
right-hand side of (27), we have

F
\Bigl[ 
\Delta 1/2,\lambda 

m p(X, t)
\Bigr] 
(k) =

\int 
\BbbR n

ei\bfk \cdot \bfY  - 1

e\lambda | \bfY | | Y| n+1
m(Y)dY \cdot \^p(k, t)

=

\Biggl[ \int 
\BbbR n

cos(k \cdot Y) - 1

e\lambda | \bfY | | Y| n+1
m(Y)dY

\Biggr] 
\cdot \^p(k, t),

where the term i sin(k \cdot Y) vanishes due to the symmetry of m(Y). By the polar
coordinate transformation, we have\int 

\BbbR n

1 - cos(k \cdot Y)

e\lambda | \bfY | | Y| n+1
m(Y)dY =

\int \infty 

0

\int 
| \phi \phi \phi | =1

r - 2e - \lambda r(1 - cos(rk \cdot \phi \phi \phi ))m(\phi \phi \phi )d\phi \phi \phi dr.

Denote I(r) =
\int 
| \phi \phi \phi | =1

(1 - cos(rk \cdot \phi \phi \phi ))m(\phi \phi \phi )d\phi \phi \phi for simplicity. After performing integra-

tion by parts twice, the equation above becomes\int \infty 

0

r - 2e - \lambda rI(r)dr =

\int \infty 

0

r - 1e - \lambda r(I \prime (r) - \lambda I(r))dr

=  - 
\int \infty 

0

ln(r)e - \lambda r(I \prime \prime (r) - 2\lambda I \prime (r) + \lambda 2I(r))dr,

(41)

where the boundary terms vanish due to I(0) = I \prime (0) = 0. Then (40) can be directly
obtained by using the formulas [21]\int \infty 

0

e - qx sin(px) ln(x)dx =
1

p2 + q2

\biggl[ 
q arctan

p

q
 - p

2
ln(p2 + q2) - p\scrC 

\biggr] 
,\int \infty 

0

e - qx cos(px) ln(x)dx =  - 1

p2 + q2

\biggl[ 
p arctan

p

q
+

q

2
ln(p2 + q2) + q\scrC 

\biggr] 
,\int \infty 

0

e - qx ln(x)dx =  - 1

q
(\scrC + ln q),

(42)

where \scrC is the Euler constant.
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For the proof of (39), taking \lambda = 0 in (40) leads to

F [\Delta 1/2
m p(X, t)] =

\int 
| \phi \phi \phi | =1

(k \cdot \phi \phi \phi )\pi 
2
sgn(k \cdot \phi \phi \phi ) m(\phi \phi \phi )d\phi \phi \phi \cdot \^p(k, t)

=
\pi 

2

\int 
| \phi \phi \phi | =1

| (k \cdot \phi \phi \phi )| m(\phi \phi \phi )d\phi \phi \phi \cdot \^p(k, t).

Furthermore, if m(\phi \phi \phi ) is isotropic, then

F [\Delta 1/2
m p(X, t)] =

\pi 

2\omega n

\int 
| \phi \phi \phi | =1

| (k \cdot \phi \phi \phi )| d\phi \phi \phi \cdot \^p(k, t) = \pi 

2\omega n
| k| 

\int 
| \phi \phi \phi | =1

| cos(\theta 1)| d\phi \phi \phi \cdot \^p(k, t)

=
\pi 

2\omega n
Cn| k| 

\int \pi 

0

sinn - 2(\theta 1)| cos(\theta 1)| d\theta 1 \cdot \^p(k, t)

=
1

\omega n

\pi 

n - 1
Cn| k| \cdot \^p(k, t) =

1

\omega n

\pi 
n+1
2

\Gamma (n+1
2 )

| k| \cdot \^p(k, t),

where \omega n is the measure of the n-dimensional unit sphere, \omega n = 2\pi n/2/\Gamma (n/2) if n \geq 2
and \omega n = 2 when n = 1; the rotation invariance [32, Prop. 3.3] of the integrand is
used in the second equality, and cos(\theta 1) denotes one of the components of vector \phi \phi \phi :

Cn =
\Bigl( \int \pi 

0

sinn - 3(\theta 2)d\theta 2

\Bigr) 
\cdot \cdot \cdot 

\Bigl( \int \pi 

0

sin(\theta n - 2)d\theta n - 2

\Bigr) \Bigl( \int 2\pi 

0

d\theta n - 1

\Bigr) 
=

2\pi 
n - 1
2

\Gamma (n - 1
2 )

.

Following (40), the Fourier symbol of the new anisotropic tempered fractional Lapla-
cian when \beta = 1 is

F [ \~\Delta 1/2,\lambda 
m ] =

\int 
| \phi \phi \phi | =1

\Bigl[ 
(\bfk \cdot \phi \phi \phi ) arctan

\biggl( 
\bfk \cdot \phi \phi \phi 
\lambda (\phi \phi \phi )

\biggr) 
 - \lambda (\phi \phi \phi )

2
ln(\lambda (\phi \phi \phi )2+(\bfk \cdot \phi \phi \phi )2)+\lambda (\phi \phi \phi ) ln(\lambda (\phi \phi \phi ))

\Bigr] 
m(\phi \phi \phi )d\phi \phi \phi .

All the discussions above are based on compound Poisson processes with a differ-
ent probability distribution of jump length for (tempered) L\'evy flights, which render
the deterministic governing equations with classical first derivative temporally. In-
stead, the fractional Poisson processes are taken as the renewal process, in which the
time interval between each pair of events follows the power law distribution. Then the
deterministic governing equations with a Caputo fractional derivative temporally can
be derived. More precisely, let S(t) be a nondecreasing subordinator [6] with Laplace
exponent s\alpha , \alpha \in (0, 1). Then consider a new process Z(t) = X(E(t)), where X(t) is
the L\'evy process discussed in (17) with Fourier symbol \Phi 0(k) - 1 and the inverse subor-
dinator E(t) = inf\{ \tau > 0 : S(\tau ) > t\} . Then similar to [10, eqs. (16) and (17)], we have

pz(Z, t) =

\int \infty 

0

px(Z, \tau )pe(\tau , t)d\tau ,

where pe(\tau , t) denotes the PDF of E(t). Performing the Fourier--Laplace transform
leads to

\~\^pz(k, s) =
s\alpha  - 1

s\alpha + 1 - \Phi 0(k)
,

where the notation \~\cdot denotes the Laplace transform from t to s. Arranging the terms
and performing the inverse Laplace transform, one obtains

(43) C
0 D

\alpha 
t \^pz(k, t) = (\Phi 0(k) - 1)\^pz(k, t),

the only difference of which with (17) is the temporal derivative. Then, as a way
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428 W. DENG, X. WANG, AND P. ZHANG

Fig. 3. Three internal states in each step. Each internal state of S1, S2, and S3 contains
different distributions of waiting time \xi and/or jump length \eta .

of treating (17), taking the inverse Fourier transform results in the corresponding
deterministic equations whose expressions depend on the specific \nu (dY).

4. Multiple internal states with anisotropic diffusion. Now, we derive the
fractional Fokker--Planck and Feynman--Kac equations with multiple internal states
both temporally and spatially, with the spatial operators being the anisotropic (tem-

pered) fractional Laplacian \Delta 
\beta /2,\lambda 
m presented in the above section. We first try to

make it clear what multiple internal states mean. The motion of particles is char-
acterized by waiting time \xi and jump length \eta in the CTRW framework. Assume
the process only has three different possibilities of distributions of \xi and/or \eta at each
step. We call it three internal states S1, S2, and S3, as in Figure 3. The information
contained in each internal state Si (i = 1, 2, 3) is the distributions of \xi and \eta at the
current step. More general models may contain more information and more internal
states. In one step, each possibility of the three will yield the next step still with
three different possibilities. So step after step, a Markov chain is formed. As long as
the initial distribution | init\rangle and transition matrix M are given, the distribution of
internal states of nth step can be easily obtained, denoted by (MT )n - 1| init\rangle . Here,
the element mij of the matrix M denotes the transition probability from state i to
state j, and the notations bras \langle \cdot | and kets | \cdot \rangle denote the row and column vectors,
respectively.

The number of the internal states is taken as N for the fractional Fokker--Planck
and Feynman--Kac equations, the derivation processes of which are similar to the ones
given in [42]. Here we only provide the derivation of the Fokker--Planck equation. We
denote the column vector by capital letter and its components by lowercase letters,
e.g., | G(X, t)\rangle , with its components gi(X, t), i = 1, 2, . . . , N being the PDF of finding
the particle, at time t, position X in n-dimensional space, and internal state i. Then
define the waiting time distribution matrix \Phi (t) = diag(\phi 1(t), \phi 2(t), . . . , \phi N (t)) and
the jump length one \Lambda (X) = diag(\lambda 1(X), \lambda 2(X), . . . , \lambda N (X)), where \phi i(t) and \lambda i(X)
are, respectively, the PDFs of waiting time and jump length at the ith internal state.

Let | Qn(X, t)\rangle be composed by qin(X, t), i = 1, 2, . . . , N , representing the PDF of
the particle that just arrives at position X, time t, and ith internal state after n steps.
Thus, the matrix of survival probability is

W (t) = diag
\bigl( 
w1(t), . . . , wN (t)

\bigr) 
= diag

\biggl( \int \infty 

t

\phi 1(\tau )d\tau , . . . ,

\int \infty 

t

\phi N (\tau )d\tau 

\biggr) 
= I  - 

\int t

0

\Phi (\tau )d\tau ,
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OPERATORS FOR NORMAL AND ANOMALOUS DYNAMICS 429

where I denotes the identity matrix. This indicates that the Laplace transform of
W (t) is

\~W (s) =
I  - \~\Phi (s)

s
.

For G and Q, there exists

(44) | G(X, t)\rangle =
\int t

0

W (\tau )

\infty \sum 
n=0

| Qn(X, t - \tau )\rangle d\tau .

On the other hand, for each component qin of Qn, we have

qin(X, t) =

N\sum 
j=1

\int t

0

\int 
\BbbR n

mji\Lambda (X - Y)\Phi (t - \tau )qjn - 1(Y, \tau )dYd\tau .

Thus, Q satisfies

(45) | Qn(X, t)\rangle =
\int t

0

\int 
\BbbR n

MT\Lambda (X - Y)\Phi (t - \tau )| Qn - 1(Y, \tau )\rangle dYd\tau .

Taking the Fourier--Laplace transform to (44) and (45) leads to

(46) | \~\^G(k, s)\rangle = I  - \~\Phi (s)

s
[I  - MT \^\Lambda (k)\~\Phi (s)] - 1| init\rangle .

The Fokker--Planck equation can be obtained by applying the inverse Fourier--
Laplace transform on (46). Here, we take the waiting time distributions as asymptotic
power laws; i.e., in Laplace space \~\Phi (s) \sim I  - diag(s\alpha 1 , . . . , s\alpha N ), 0 < \alpha 1, . . . , \alpha N < 1.
As for jump lengths, they obey the L\'evy distributions; i.e., in Fourier space, each
component of \^\Lambda (k) is the form of (30) with particular \beta i and \lambda i. Then, the Fokker--
Planck equation with N internal states is

MT \partial 

\partial t
| G(X, t)\rangle = (MT  - I)diag(D1 - \alpha 1

t , . . . , D1 - \alpha N
t )| G(X, t)\rangle 

+MTdiag(D1 - \alpha 1
t \Delta \beta 1/2,\lambda 1

m , . . . , D1 - \alpha N
t \Delta \beta N/2,\lambda N

m )| G(X, t)\rangle ,
(47)

where D1 - \alpha i
t is the Riemann--Liouville derivative defined as [36]

(48) D1 - \alpha i
t gi(X, t) =

1

\Gamma (\alpha i)

\partial 

\partial t

\int t

0

gi(X, \tau )

(t - \tau )1 - \alpha i
d\tau 

and \Delta 
\beta i/2,\lambda i
m denotes the anisotropic (tempered) fractional Laplacian with its Fourier

transform \^\lambda i(k).

For the Feynman--Kac equations, we define the functional A =
\int t

0
U(X(\tau ))d\tau ,

where U is a prespecified function. Let G(X, A, t) be the PDF of the functional A
and position X and \=G(X, \rho , t) be the Fourier transform from A to \rho . Then the forward
Feynman--Kac equation is

MT \partial 

\partial t
| \=G(\bfX , \rho , t)\rangle = (MT  - I)diag(\scrD 1 - \alpha 1

t , . . . ,\scrD 1 - \alpha N
t )| \=G(\bfX , \rho , t)\rangle 

+MTdiag(\Delta \beta 1/2,\lambda 1
m \scrD 1 - \alpha 1

t , . . . ,\Delta \beta N/2,\lambda N
m \scrD 1 - \alpha N

t )| \=G(\bfX , \rho , t)\rangle + i\rho U(\bfX )MT | \=G(\bfX , \rho , t)\rangle ,
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where

\scrD 1 - \alpha i
t \=gi(X, \rho , t) =

1

\Gamma (\alpha i)

\biggl( 
\partial 

\partial t
 - i\rho U(X)

\biggr) \int t

0

ei(t - \tau )\rho U(\bfX )

(t - \tau )1 - \alpha i
\=gi(X, \rho , \tau )d\tau ,

and the backward version is

MT \partial 

\partial t
| \=G\bfX 0(\rho , t)\rangle = (MT  - I)diag(\scrD 1 - \alpha 1

t , . . . ,\scrD 1 - \alpha N
t )| \=G\bfX 0(\rho , t)\rangle 

+MTdiag(\scrD 1 - \alpha 1
t \Delta 

\beta 1/2,\lambda 1
m,\bfX 0

, . . . ,\scrD 1 - \alpha N
t \Delta 

\beta N/2,\lambda N
m,\bfX 0

)| \=G\bfX 0(\rho , t)\rangle + i\rho U(\bfX 0)M
T | \=G\bfX 0(\rho , t)\rangle .

5. Generalized boundary conditions. In this section, we mainly consider the
initial and boundary value problems with the anisotropic tempered fractional Lapla-
cian. The case for the anisotropic fractional Laplacian can be obtained by taking
\lambda = 0. Following the ideas of [10, 12, 15], the local boundary \partial \Omega itself cannot be hit
by the majority of discontinuous sample trajectories; based on this physical implica-
tion, these problems should be specified the generalized Dirichlet- and Neumann-type
boundary conditions. For the sake of simplicity, we only discuss the anisotropic tem-

pered fractional Laplacian \Delta 
\beta /2,\lambda 
m p(X, t) defined in (32); i.e., \lambda and \beta are constant:

(49) \Delta \beta /2,\lambda 
m p(X, t) =

1

| \Gamma ( - \beta )| 

\int 
\BbbR n\setminus \{ 0\} 

[p(X - Y) - p(X)]
m(Y)

e\lambda | \bfY | | Y| n+\beta 
dY.

Consider the time-dependent Dirichlet problem

(50)

\left\{         
\partial p(X, t)

\partial t
 - \Delta \beta /2,\lambda 

m p(X, t) = f(X, t) in \Omega ,

p(X, t) = g(X, t) in \BbbR n\setminus \Omega ,

p(X, 0) = p0(X) in \Omega 

and the Neumann problem

(51)

\left\{         
\partial p(X, t)

\partial t
 - \Delta \beta /2,\lambda 

m p(X, t) = f(X, t) in \Omega ,

\Delta \beta /2,\lambda 
m p(X, t) = g(X, t) in \BbbR n\setminus \Omega ,

p(X, 0) = p0(X) in \Omega .

Remark 5.1. If we consider the model with a Caputo fractional derivative in time,
like (43), its Dirichlet problem can be similarly formulated as above, while its Neu-
mann problem should be

(52)

\left\{       
C
0 D

\alpha 
t p(X, t) - \Delta \beta /2,\lambda 

m p(X, t) = f(X, t) in \Omega ,

D1 - \alpha 
t \Delta \beta /2,\lambda 

m p(X, t) = g(X, t) in \BbbR n\setminus \Omega ,

p(X, 0) = p0(X) in \Omega ,

where D1 - \alpha 
t is the Riemann-Liouville derivative defined in (48). It should be noted

that the Neumann boundary condition g(X, t) is time dependent in both (51) and
(52), meaning that the numerical flux of diffusing particles across the boundary \partial \Omega 
is time dependent.
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Remark 5.2. For the problem (51) with homogeneous Neumann boundary condi-
tions g = 0 and source term f = 0, if the directional measure m(Y) is symmetric, we
can prove the property of conservation of mass inside \Omega .

More specifically, from the symmetry of m(Y), we have\int \int 
\Omega \times \Omega 

p(X) - p(Y)

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
m(X - Y)dXdY

=

\int \int 
\Omega \times \Omega 

p(Y) - p(X)

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
m(X - Y)dXdY = 0.

Therefore, for (51) with f = g = 0,

\partial 

\partial t

\int 
\Omega 

p dX =

\int 
\Omega 

\Delta \beta /2,\lambda 
m p(X) dX

=  - 1

| \Gamma ( - \beta )| 

\int 
\Omega 

\int 
\BbbR n

p(X) - p(Y)

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
m(X - Y)dYdX

=  - 1

| \Gamma ( - \beta )| 

\int 
\Omega 

\int 
\BbbR n\setminus \Omega 

p(X) - p(Y)

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
m(X - Y)dYdX

=  - 1

| \Gamma ( - \beta )| 

\int 
\BbbR n\setminus \Omega 

\int 
\Omega 

p(X) - p(Y)

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
m(X - Y)dXdY

=  - 1

| \Gamma ( - \beta )| 

\int 
\BbbR n\setminus \Omega 

\int 
\BbbR n

p(X) - p(Y)

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
m(X - Y)dXdY

=  - 1

| \Gamma ( - \beta )| 

\int 
\BbbR n\setminus \Omega 

\Delta \beta /2,\lambda 
m p(Y) dY = 0.

Thus, the quantity
\int 
\Omega 
pdX does not depend on t, which means the conservation of

mass inside \Omega .

Based on the definition of \Delta 
\beta /2,\lambda 
m p(X, t) in (49), there is no need for the solution

p(X, t) to vanish at infinity. To guarantee the convergence of the integral in (49),
the solution p(X, t) should satisfy that there exist positive M and C such that when
| X| > M ,

| p(X, t)| < Ce(\lambda  - \epsilon )| \bfX | for positive small \epsilon .

This is an essential difference from Riesz fractional derivatives [43], which must vanish

at infinity. A special example is that p(X, t) \equiv 1 and \Delta 
\beta /2,\lambda 
m 1 \equiv 0. Indeed, that

p(X, t) does not vanish at infinity still has some clear physical meaning, e.g., escape
probability [11]. Considering the case of \beta = 2 in (30), we have

(53) F [\Delta 1,\lambda 
m p(X, t)] =

\int 
| \phi \phi \phi | =1

\Bigl[ 
 - (k \cdot \phi \phi \phi )2  - 2\lambda (ik \cdot \phi \phi \phi )

\Bigr] 
m(\phi \phi \phi )d\phi \phi \phi \cdot \^p(k, t).

In this case, m(\phi \phi \phi ) determines the covariance matrix a in (2) [26]. Ifm(\phi \phi \phi ) is symmetric,
the term containing ik, corresponding to the first-order derivative, vanishes. If not,
from (53),

F [\Delta 1,\lambda 
m p(X, t)] =

\bigl( 
(ik)TA(ik) - 2\lambda (ik)Tb

\bigr) 
\^p(k, t),(54)
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where the matrix A = (aij)n\times n with aij =
\int 
| \phi \phi \phi | =1

\phi \phi \phi i\phi \phi \phi j m(\phi \phi \phi )d\phi \phi \phi and the vector b =

(bj)n\times 1 with bj =
\int 
| \phi \phi \phi | =1

\phi \phi \phi j m(\phi \phi \phi )d\phi \phi \phi . This implies

(55) \Delta 1,\lambda 
m =

n\sum 
i,j=1

aij
\partial 2

\partial Xi\partial Xj
+ 2\lambda 

n\sum 
j=1

bj
\partial 

\partial Xj
.

Then the weak solution p \in H1(\BbbR n) of (51) satisfies, for all q \in H1(\BbbR n),\int 
\Omega 

\partial p

\partial t
qdX+

\int 
\BbbR n

n\sum 
i,j=1

aij
\partial p

\partial Xi

\partial q

\partial Xj
dX - 2\lambda 

\int 
\BbbR n

n\sum 
j=1

bj
\partial p

\partial Xj
qdX =

\int 
\Omega 

fqdX - 
\int 
\BbbR n\setminus \Omega 

gqdX.

For the Neumann boundary conditions in (51), we have\int 
\BbbR n\setminus \Omega 

gqdX =

\int 
\BbbR n\setminus \Omega 

n\sum 
i,j=1

aij
\partial 2p

\partial Xi\partial Xj
qdX+ 2\lambda 

\int 
\BbbR n\setminus \Omega 

n\sum 
j=1

bj
\partial p

\partial Xj
qdX

=  - 
\int 
\partial \Omega 

n\sum 
i,j=1

aij
\partial p

\partial ni
qds - 

\int 
\BbbR n\setminus \Omega 

n\sum 
i,j=1

aij
\partial p

\partial Xi

\partial q

\partial Xj
dX+ 2\lambda 

\int 
\BbbR n\setminus \Omega 

n\sum 
j=1

bj
\partial p

\partial Xj
qdX.

Then \int 
\Omega 

\partial p

\partial t
qdX+

\int 
\Omega 

n\sum 
i,j=1

aij
\partial p

\partial Xi

\partial q

\partial Xj
dX - 2\lambda 

\int 
\Omega 

n\sum 
j=1

bj
\partial p

\partial Xi
qdX

=

\int 
\Omega 

fqdX+

\int 
\partial \Omega 

n\sum 
i,j=1

aij
\partial p

\partial ni
qds,

which means that the usual Neumann boundary condition is recovered. Similarly, for
the Dirichlet boundary condition in (50), when \beta = 2, \Delta 1,\lambda 

m becomes a local operator.
Then only the information of g(X, t) on the boundary \partial \Omega is used to solve the problem,
implying that the usual Dirichlet boundary condition is recovered.

6. Well-posedness and regularity. Here we show the well-posedness of the
problems provided in the previous section. First, we define the fractional Sobolev
space for s \in (0, 1),

Hs(\Omega ) :=
\bigl\{ 
v \in L2(\Omega ) : | v| Hs(\Omega ) < \infty 

\bigr\} 
,

where

| v| Hs(\Omega ) =

\biggl( \int \int 
\Omega \times \Omega 

(v(x) - v(y))2

| x - y| n+2s
dxdy

\biggr) 1/2

is the Aronszajn--Slobodeckij seminorm. The spaceHs(\Omega ) is a Banach space, endowed
with the norm

\| v\| Hs(\Omega ) :=
\Bigl( 
\| v\| 2L2(\Omega ) + | v| 2Hs(\Omega )

\Bigr) 1/2

.

Equivalently, the space Hs(\Omega ) can be regarded as the restriction to \Omega of functions in
Hs(\BbbR n). We define Hs

0(\Omega ) as the closure of C\infty 
0 (\Omega ) in Hs(\Omega ). Consider the space

\~Hs
0(\Omega ) = \{ v \in Hs(\BbbR n) : v = 0 in \BbbR n\setminus \Omega \} 
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equipped with the Hs(\BbbR n) norm. The dual space of \~Hs
0(\Omega ) is denoted by H - s(\Omega ) or

\~Hs
0(\Omega )

\prime .
If g \in L2(0, T ;H\beta /2(\BbbR n)) \cap H1(0, T ;H - \beta /2(\BbbR n)) and f \in L2(0, T ;H - \beta /2(\Omega )),

then the weak formulation of (50) is to find p = \~p+g such that \~p \in L2(0, T ; \~H
\beta /2
0 (\Omega ))\cap 

H1(0, T ;H - \beta /2(\Omega )) \lhook \rightarrow C([0, T ];L2(\Omega )) and

(56)

\int T

0

\int 
\Omega 

\partial t\~p q dXdt+
1

2| \Gamma ( - \beta )| 

\int T

0

a(\~p, q)dt =

\int T

0

\int 
\Omega 

(f +\Delta \beta /2,\lambda 
m g  - \partial tg) q dXdt

for all q \in L2(0, T ; \~H
\beta /2
0 (\Omega )), where

a(\~p, q) = 2| \Gamma ( - \beta )| 
\Bigl( 
 - \Delta \beta /2,\lambda 

m \~p, q
\Bigr) 

= 2

\int \int 
\BbbR n\times \BbbR n

(\~p(X) - \~p(Y))

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
q(X)m(X - Y)dXdY

= 2

\int \int 
\BbbR n\times \BbbR n

(\~p(Y) - \~p(X))

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
q(Y)m(Y  - X)dXdY

=

\int \int 
\BbbR n\times \BbbR n

(\~p(X) - \~p(Y))(q(X)m(X - Y) - q(Y)m(Y  - X))

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
dXdY.

(57)

To show the well-posedness of the weak formulation (56), the main task is to prove
the continuity and coercivity of bilinear form a(\~p, q) [18, 45], while l(q) :=

\int 
\Omega 
(f +

\Delta 
\beta /2,\lambda 
m g  - \partial tg) q dX is a continuous linear functional on L2(0, T ; \~H

\beta /2
0 (\Omega )) evidently.

Here, the bilinear form a(\~p, q) is based on (32). For (34), the bilinear form becomes
a little bit complex. But the well-posedness is still valid since we mainly prove it in
Fourier space.

Lemma 3. The bilinear form a(p, q) is continuous on H\beta /2(\BbbR n)\times H\beta /2(\BbbR n).

Proof. We prove the continuity in the Fourier space. Using the Parseval equality
and Theorem 1, we have

a(p, q) = 2| \Gamma ( - \beta )| (F [ - \Delta \beta /2,\lambda 
m p],F [q])

= 2\Gamma ( - \beta )

\int 
\BbbR n

\int 
| \phi \phi \phi | =1

\Bigl( 
\lambda \beta  - (\lambda 2 + (k \cdot \phi \phi \phi )2)\beta /2e - i\beta \eta 

\Bigr) 
m(\phi \phi \phi )d\phi \phi \phi \^p(k)\^q(k)dk,

(58)

where \eta = arctan
\Bigl( 

\bfk \cdot \phi \phi \phi 
\lambda 

\Bigr) 
. Then because of (\lambda 2 + | k \cdot \phi \phi \phi | 2)\beta /2 \leq 2\beta /2(\lambda \beta + | k \cdot \phi \phi \phi | \beta ),

| a(p, q)| \leq C

\int 
\BbbR n

\int 
| \phi \phi \phi | =1

(1 + | k \cdot \phi \phi \phi | \beta )m(\phi \phi \phi )d\phi \phi \phi | \^p(k)| | \^q(k)| dk

\leq C

\int 
\BbbR n

\int 
| \phi \phi \phi | =1

(1 + | k| \beta )m(\phi \phi \phi )d\phi \phi \phi | \^p(k)| | \^q(k)| dk

= C

\int 
\BbbR n

(1 + | k| \beta ) | \^p(k)| | \^q(k)| dk

= C\| p\| H\beta /2(\BbbR n) \cdot \| q\| H\beta /2(\BbbR n),

(59)

which completes the proof.

Before proving the coercivity of the bilinear form a(q, q), we show a lemma first.
Because of the Parseval equality, there exists

a(q, q) = 2\Gamma ( - \beta )

\int 
\BbbR n

d(k) | \^q(k)| 2dk,(60)
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where \eta = arctan(\bfk \cdot \phi \phi \phi \lambda ) and d(k) =
\int 
| \phi \phi \phi | =1

(\lambda \beta  - (\lambda 2+(k \cdot \phi \phi \phi )2)\beta /2e - i\beta \eta ) m(\phi \phi \phi )d\phi \phi \phi . Thus,

the complex conjugate of d(k) satisfies d(k) = d( - k), which implies that \Im [d(k)] is
an odd function. On the other hand, since \^q(k) =

\int 
\BbbR n ei\bfk \cdot \bfX q(X)dX and q(X) is a

real function, we have that \^q(k) = \^q( - k) and | \^q(k)| 2 is an even function by

| \^q(k)| 2 = \^q(k)\^q(k) = \^q( - k)\^q( - k) = | \^q( - k)| 2.

Therefore, \Im [a(q, q)] = 0 and

(61) a(q, q) = 2\Gamma ( - \beta )

\int 
\BbbR n

\int 
| \phi \phi \phi | =1

\Bigl( 
\lambda \beta  - (\lambda 2 + (k \cdot \phi \phi \phi )2)\beta /2 cos(\beta \eta )

\Bigr) 
m(\phi \phi \phi )d\phi \phi \phi | \^q(k)| 2dk.

For the isotropic case, m(\phi \phi \phi ) is a constant, and

(62) F [ - \Delta \beta /2,\lambda q(X)] =
( - 1)\lceil \beta \rceil 

\omega n

\int 
| \phi \phi \phi | =1

\Bigl( 
\lambda \beta  - (\lambda 2 + (k \cdot \phi \phi \phi )2)

\beta 
2 cos(\beta \eta )

\Bigr) 
d\phi \phi \phi \cdot \^q(k).

In the following, we show that under some reasonable assumptions on m(\phi \phi \phi ), there
exists a constant C > 0 such that

(63) \Re [F [ - \Delta \beta /2,\lambda 
m q(X)] \cdot \^q(k)] \geq CF [ - \Delta \beta /2,\lambda q(X)] \cdot \^q(k) \forall k \in \BbbR n,

where

\Re [F [ - \Delta \beta /2,\lambda 
m q(X)]\cdot \^q(k)] = ( - 1)\lceil \beta \rceil 

\int 
| \phi \phi \phi | =1

\Bigl( 
\lambda \beta  - (\lambda 2+(k\cdot \phi \phi \phi )2)

\beta 
2 cos(\beta \eta )

\Bigr) 
m(\phi \phi \phi )d\phi \phi \phi \cdot | \^q(k)| 2.

Definition 4. The directional measure m(\phi \phi \phi ) on the unit sphere in \BbbR n is said to
be nondegenerate if the set Am(\phi \phi \phi ) := \{ \phi \phi \phi ;m(\phi \phi \phi ) \not = 0\} can span the whole space \BbbR n.

Lemma 5. Let \beta \in (0, 1)\cup (1, 2). For the operator  - \Delta 
\beta /2,\lambda 
m , the nondegeneration

of the directional measure m(\phi \phi \phi ) on the unit sphere is equivalent to (63).

Proof. Denote f(k \cdot \phi \phi \phi ) = ( - 1)\lceil \beta \rceil (\lambda \beta  - (\lambda 2 + (k \cdot \phi \phi \phi )2)
\beta 
2 cos(\beta \eta )). Then f \prime \geq 0

and fmin = f(0) = 0 [46, App.], which implies that F [ - \Delta \beta /2,\lambda q(X)] \cdot \^q(k) \geq 0 and

\Re [F [ - \Delta 
\beta /2,\lambda 
m q(X)] \cdot \^q(k)] \geq 0. If k = 0, then (63) holds. If k \not = 0, then (63) is

equivalent to

\Re [F [ - \Delta 
\beta /2,\lambda 
m q(X)] \cdot \^q(k)]

F [ - \Delta \beta /2,\lambda q(X)] \cdot \^q(k)
\geq C > 0 \forall k \in \BbbR n.

First, we prove the sufficiency. If the probability density function m(\phi \phi \phi ) is degenerate,
i.e., span\{ Am(\phi \phi \phi )\} is the strict subspace of \BbbR n, then there exists\BbbQ being the orthogonal
complement of span\{ Am(\phi \phi \phi )\} in \BbbR n, satisfying \forall k \in \BbbQ and \forall \phi \phi \phi \in Am(\phi \phi \phi ), (k \cdot \phi \phi \phi ) = 0. In
this case, there exist k,\phi \phi \phi \in \BbbQ \subset \BbbR n s.t. (k \cdot \phi \phi \phi ) > 0. It means that F [ - \Delta \beta /2,\lambda q(X)] \cdot 
\^q(k) > 0 but \Re [F [ - \Delta 

\beta /2,\lambda 
m q(X)] \cdot \^q(k)] = 0. Then (63) does not hold.

On the contrary, for necessity, we assume that m(\phi \phi \phi ) is nondegenerate. If q(X)

does not equal zero but \Re [F [ - \Delta 
\beta /2,\lambda 
m q(X)] \cdot \^q(k)] = 0, then for any \phi \phi \phi and k, f(k \cdot 

\phi \phi \phi )m(\phi \phi \phi ) = 0 almost everywhere. Since m(\phi \phi \phi ) is nondegenerate, k must be orthogonal
to the space span\{ Am(\phi \phi \phi )\} (= \BbbR n). So k must be a zero vector, which means that

\Re [F [ - \Delta 
\beta /2,\lambda 
m q(X)] \cdot \^q(k)] = 0 has the only zero point k = 0 if q(X) is not zero. By

a simple calculation, both \Re [F [ - \Delta 
\beta /2,\lambda 
m q(X)] \cdot \^q(k)] and F [ - \Delta \beta /2,\lambda q(X)] \cdot \^q(k) are

\scrO (| k| 2) when | k| \rightarrow 0 and \scrO (| k| \beta ) when | k| \rightarrow \infty . Then (63) holds.
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Lemma 6. Let q \in \~H
\beta /2
0 (\Omega ). If the directional measure m(\phi \phi \phi ) is nondegenerate,

then the bilinear form a(q, q) \geq C| q| 2
H\beta /2(\BbbR n)

; i.e., it is coercive in H\beta /2(\BbbR n).

Proof. The coercivity is proved in two steps. The first step is to show that a(q, q)
can bound the bilinear form \~a(q, q) with isotropic m(\phi \phi \phi ), i.e., a(q, q) \geq C\~a(q, q), where

(64) \~a(p, q) =

\int \int 
\BbbR n\times \BbbR n

(p(X) - p(Y))(q(X) - q(Y))

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
dXdY.

In the second step, we prove that \~a(q, q) can be bounded by the norm \| q\| 2
H\beta /2(\BbbR n)

.

In the first step, we prove it in the Fourier space like Lemma 3. It suffices to
prove that there exists a positive constant C such that

(65) \Re [F [ - \Delta \beta /2,\lambda 
m q(X)] \cdot \^q(k)] \geq CF [ - \Delta \beta /2,\lambda q(X)] \cdot \^q(k) \forall k \in \BbbR n,

which can be guaranteed if m(\phi \phi \phi ) is nondegenerate from Lemma 5. See [17, eq. (5.11)]
for some specific expressions of m(\phi \phi \phi ), where the two-dimensional case is discussed but
without tempering. In the second step, we adopt the common technique of splitting
the nonlocal seminorm into ``near"" and ``far"" pieces in the nonlocal literatures [16,
25, 46]. More precisely, take a sufficiently big ball B\rho centering at the origin with
radius \rho so that \Omega \subset B\rho . Denote \delta > 0 as the distance between \Omega and \partial B\rho , \delta =

inf\bfX \in \Omega ,\bfY \in \partial B\rho 
| X - Y| . Then for q \in \~H

\beta /2
0 (\Omega ),

| q| 2H\beta /2(B\rho )
\geq 

\int 
\Omega 

q2(X)

\int 
B\rho \setminus \Omega 

1

| X - Y| n+\beta 
dYdX

\geq (2\rho ) - n - \beta | B\rho \setminus \Omega | 
\int 
\Omega 

q2(X)dX

= C\| q\| 2L2(\Omega ) = C\| q\| 2L2(\BbbR n)

(66)

and

| q| 2H\beta /2(\BbbR n) = | q| 2H\beta /2(B\rho )
+ 2

\int 
\Omega 

\int 
\BbbR n\setminus B\rho 

q2(X)

| X - Y| n+\beta 
dYdX

\leq | q| 2H\beta /2(B\rho )
+ 2

\int 
\Omega 

q2(X)dX

\int 
\BbbR n\setminus B\delta 

| Y|  - n - \beta dY

= | q| 2H\beta /2(B\rho )
+

2\omega n\delta 
 - \beta 

\beta 
\| q\| 2L2(\Omega )

\leq C| q| 2H\beta /2(B\rho )
.

(67)

Therefore,

\~a(q, q) \geq 
\int \int 

B\rho \times B\rho 

(q(X) - q(Y))2

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
dXdY

\geq e - 2\lambda \rho | q| 2H\beta /2(B\rho )

\geq C\| q\| 2H\beta /2(\BbbR n).

(68)

The proof is completed.

Theorem 7 (existence and uniqueness of weak solutions). Let p0 \in L2(\Omega ), f \in 
L2(0, T ;H - \beta /2(\Omega )), and g \in L2(0, T ;H\beta /2(\BbbR n))\cap H1(0, T ;H - \beta /2(\BbbR n)). If the direc-
tional measure m(\phi \phi \phi ) is nondegenerate, there exists a unique weak solution of (50) in
the sense of (56).
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Proof. The continuity and coercivity of bilinear form a(\~p, q) have been obtained.
Furthermore, l(q) is a continuous linear functional. Then the original initial boundary
value problem (50) has a unique solution.

For the Neumann problem (51), first we define the tempered fractional space

H\beta /2,\lambda (\BbbR n) =
\bigl\{ 
v \in L2(\BbbR n) : | v| H\beta /2,\lambda (\BbbR n) < \infty 

\bigr\} 
,

where the seminorm

(69) | v| H\beta /2,\lambda (\BbbR n) =

\biggl( \int 
\BbbR n

\int 
\BbbR n

(v(X) - v(Y))2

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
dXdY

\biggr) 1/2

and the norm

(70) \| v\| H\beta /2,\lambda (\BbbR n) =
\Bigl( 
\| v\| 2L2(\BbbR n) + | v| 2H\beta /2,\lambda (\BbbR n)

\Bigr) 1/2

.

The main difference of the Neumann problem with the Dirichlet one is that es-
sentially it is an unbounded problem. There are also some interesting properties for

the operator \Delta 
\beta /2,\lambda 
m defined in unbounded domain, e.g., \Delta 

\beta /2,\lambda 
m 1 = 0 for constant

1, which may produce some dedicated/complicated issues for the choice of function
spaces, ways of proving the well-posedness, etc. For example, for the bilinear form
a(\cdot , \cdot ) in (57),

(71) | a(p, q)| \nleqslant C | p| H\beta /2,\lambda (\BbbR n) \cdot | q| H\beta /2,\lambda (\BbbR n).

In fact, take n = 1, q(x) \equiv 1 and

p(x) =

\biggl\{ 
 - 1 x < 0,
0, x \geq 0,

m(x) =

\biggl\{ 
0 x =  - 1,
1 x = 1.

Then the right-hand side of (71) equals 0, while the left-hand side

a(p, q) = 2

\int \infty 

 - \infty 

\int \infty 

 - \infty 

p(x) - p(y)

e\lambda | x - y| | x - y| 1+\beta 
m(sgn(x - y))dxdy

= 2

\int \infty 

 - \infty 

\int \infty 

y

p(x) - p(y)

e\lambda | x - y| | x - y| 1+\beta 
dxdy

= 2

\int 0

 - \infty 

\int \infty 

0

1

e\lambda | x - y| | x - y| 1+\beta 
dxdy > 0.

In the following, we just focus on the case that the probability density function
m(Y) is symmetric. We define the function space, containing the functions that may
not vanish at infinity,

(72) \BbbV = \{ p \in L2(\Omega ) : | p| 
H

\beta /2,\lambda 
m (\BbbR n)

< \infty \} ,

furnished with the norm

\| p\| \BbbV =
\Bigl( 
\| p\| 2L2(\Omega ) + | p| 2

H
\beta /2,\lambda 
m (\BbbR n)

\Bigr) 1/2

,

| p| 
H

\beta /2,\lambda 
m (\BbbR n)

=

\biggl( \int 
\BbbR n

\int 
\BbbR n

(p(X) - p(Y))2

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
m(X - Y)dXdY

\biggr) 1/2

.
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Proposition 8. \BbbV is a Hilbert space with the norm defined in (73).

Proof. We first verify that the norm in (73) is well defined. Let \| p\| \BbbV = 0. It can be
easily obtained that p = 0 a.e. in \Omega from \| p\| L2(\Omega ) = 0. Then from | p| 

H
\beta /2,\lambda 
m (\BbbR n)

= 0,

one gets that (p(X) - p(Y))2m(X - Y) = 0 a.e. in \BbbR n. Sincem is nondegenerate, there
exist n linearly independent nonzero vectors ri, i = 1, . . . , n, satisfying m(ri) \not = 0.
Therefore, the differences of p along the directions ri are zero, that is, \delta pi = p(X +
hri)  - p(X) = 0 for any constant h. Then we consider a normal unit vector \varepsilon i with
the ith component being unit. Since the sets ri can span the whole n-dimensional
space, the difference of p along the direction \varepsilon i is the linear combination of those in
direction ri, i.e.,

(74) p(X+ h\varepsilon i) - p(X) =

n\sum 
i=1

ai\delta pi = 0 for any h,

which implies that each component of \nabla p is zero. Therefore, \nabla p = 0. Combining
with p = 0 a.e. in \Omega , we obtain p = 0 a.e. in \BbbR n.

Then we prove that \BbbV is complete by imitating the proof of [14, Prop. 3.1]. Take
a Cauchy sequence pk with respect to the norm in (73). In particular, pk is a Cauchy
sequence in L2(\Omega ), and therefore, up to a subsequence, we suppose that pk converges
to some p in L2(\Omega ) and a.e. in \Omega . On the other hand, for any (X,Y) \in \BbbR 2n, define

(75) Epk
(X,Y) := (pk(X) - pk(Y))

m1/2(X - Y)

e\lambda | \bfX  - \bfY | /2| X - Y| (n+\beta )/2
.

Accordingly, since pk is a Cauchy sequence in \BbbV , for any \varepsilon > 0, there exists N\varepsilon \in \BbbN 
such that if k, k\prime \geq N\varepsilon , then

\varepsilon 2 \geq 
\int 
\BbbR 2n

| (pk  - pk\prime )(X) - (pk  - pk\prime )(Y)| 2 m(X - Y)

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
dXdY

= \| Epk
 - Ep\prime 

k
\| 2L2(\BbbR 2n),

which means that Epk
is a Cauchy sequence in L2(\BbbR 2n). Up to a subsequence, we

assume that Epk
converges to some E in L2(\BbbR 2n) and a.e. in \BbbR 2n.

Fixing X0 \in \Omega , there exists limk\rightarrow \infty pk(X0) = p(X0); then for any given Y \in 
\BbbR n\setminus \Omega , we have that

lim
k\rightarrow \infty 

Epk
(X0,Y) = E(X0,Y).

Noticing that

Epk
(X0,Y) := (pk(X0) - pk(Y))

m1/2(X0  - Y)

e\lambda | \bfX 0 - \bfY | /2| X0  - Y| (n+\beta )/2
,

there exists

lim
k\rightarrow \infty 

pk(Y) = lim
k\rightarrow \infty 

\biggl( 
pk(X0) - 

e\lambda | \bfX 0 - \bfY | /2| X0  - Y| (n+\beta )/2

m1/2(X0  - Y)
Epk

(X0,Y)

\biggr) 
= p(X0) - 

e\lambda | \bfX 0 - \bfY | /2| X0  - Y| (n+\beta )/2

m1/2(X0  - Y)
E(X0,Y)

for a.e. Y \in \BbbR n\setminus \Omega . This means that pk converges to some p a.e. in \BbbR n. So, using
that pk is a Cauchy sequence in \BbbV , any fixed \varepsilon > 0, there exists N\varepsilon \in \BbbN such that, for
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any k\prime \geq N\varepsilon ,

\varepsilon 2 \geq lim inf
k\rightarrow \infty 

\| pk  - pk\prime \| 2\BbbV 

= lim inf
k\rightarrow \infty 

\int 
\Omega 

(pk  - pk\prime )2dX

+ lim inf
k\rightarrow \infty 

\int 
\BbbR n

\int 
\BbbR n

| (pk  - pk\prime )(X) - (pk  - pk\prime )(Y)| 2 m(X - Y)

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
dXdY

\geq 
\int 
\Omega 

(p - p\prime k)
2dX+

\int 
\BbbR n

\int 
\BbbR n

((p - pk\prime )(X) - (p - pk\prime )(Y))2
m(X - Y)

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
dXdY

= \| p - pk\prime \| 2\BbbV ,

where Fatou's lemma is used. This says that p\prime k converges to p in \BbbV , showing that \BbbV 
is complete.

Then the weak formulation of (51) is to find p \in L2(0, T ;\BbbV ) \cap H1(0, T ;\BbbV \prime ) satis-
fying

(76)

\int T

0

\int 
\Omega 

\partial p

\partial t
qdXdt+

1

2| \Gamma ( - \beta )| 

\int T

0

a(p, q)dt =

\int T

0

\int 
\Omega 

f qdXdt - 
\int T

0

\int 
\BbbR n\setminus \Omega 

gq dXdt

for all q \in L2(0, T ;\BbbV ), where

(77) a(p, q) =

\int \int 
\BbbR n\times \BbbR n

(p(X) - p(Y))(q(X) - q(Y))

e\lambda | \bfX  - \bfY | | X - Y| n+\beta 
m(X - Y)dXdY.

Similar to [10, Thm. 4.2], we have the following.

Theorem 9 (existence and uniqueness of weak solutions). Let p0 \in L2(\Omega ), f \in 
L2(0, T ;L2(\Omega )), and g \in L2(0, T ;\BbbV \prime ). If m(Y) is nondegenerate, then there exists a
unique weak solution of (51) in the sense of (76).

Proof. Let tk = k\tau , k = 0, 1, . . . , N , be a partition of the time interval [0, T ] with
step size \tau = T/N , and define

fk(X) :=
1

\tau 

\int tk

tk - 1

f(X, t)dt, gk(X) :=
1

\tau 

\int tk

tk - 1

g(X, t)dt, k = 1, . . . , N.

Then consider the time discrete problem: For a given pk - 1 \in \BbbV , find pk \in \BbbV such that

1

\tau 

\int 
\Omega 

pk(X)q(X)dX+
1

2| \Gamma ( - \beta )| 
a(pk(X), q(X))

=
1

\tau 

\int 
\Omega 

pk - 1(X)q(X)dX+

\int 
\Omega 

fk(X)q(X)dX - 
\int 
\BbbR n\setminus \Omega 

gk(X)q(X)dX \forall q \in \BbbV .(78)

From the definition of \BbbV in (73), the continuity and coercivity of a(p, q) of the left-
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hand side of (78) on \BbbV is evident. For the last term on the right-hand side, we define
g(X) = 0,X \in \Omega for supplementary. Then gk(X) = 0,X \in \Omega , and\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 
\BbbR n\setminus \Omega 

gk(X)q(X)dX

\bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \int 

\BbbR n

gk(X)q(X)dX

\bigm| \bigm| \bigm| \bigm| \leq \| gk(X)\| \BbbV \prime \| q(X)\| \BbbV .

Thus, the right-hand side of (78) satisfies

RHS \leq C\| pk - 1\| L2(\Omega ) \cdot \| q\| L2(\Omega ) + \| fk\| L2(\Omega ) \cdot \| q\| L2(\Omega ) + \| gk\| \BbbV \prime \| q\| \BbbV 

\leq C
\Bigl( 
\| pk - 1\| L2(\Omega ) + \| fk\| L2(\Omega ) + \| gk\| \BbbV \prime 

\Bigr) 
\cdot \| q\| \BbbV ,

which implies that the right-hand side is a continuous linear functional on \BbbV . There-
fore, by the Lax--Milgram lemma, there exists a unique solution pk \in \BbbV for (78).
Then using the technique in [10, Thm. 4.2], there exists a unique solution p satisfying
(76).

7. Conclusion. This is a companion paper with the latest one [10]. The main
generalizations come from five aspects: 1. We show how to derive the macroscopic
equations through the L\'evy--Khintchine formula for a general anisotropic process in n
dimensions. 2. The anisotropic diffusion operators characterizing normal and anoma-
lous diffusion behavior in nonhomogeneous media are proposed. 3. The tempered
anisotropic diffusion operators are introduced by two different ways with different
motivations, and they are proved to be equivalent. 4. The well-posedness and reg-
ularity of the anisotropic diffusion equations are discussed. 5. The models for the
anisotropic anomalous diffusion with multiple internal states are built, including the
Fokker--Planck and Feynman--Kac equations, respectively, governing the PDF of po-
sitions of particles and the PDF of the functional of the particles' trajectories. Wider
applications and numerical methods for the newly built various models will be dis-
cussed in detail in the near future.

Appendix A. Proof of Theorem 1.

Proof. We mainly prove the equivalence of the anisotropic tempered fractional
Laplacian in (34) of Case II to the alternative definition (30). The equivalence of
the anisotropic fractional Laplacian of Case I and definition (29) can be obtained
similarly. Taking the Fourier transform of the right-hand side of (34) leads to

F
\Bigl[ 
\Delta \beta /2,\lambda 

m p(X, t)
\Bigr] 
(k)

=
1

| \Gamma ( - \beta )| 

\int 
\BbbR n

ei\bfk \cdot \bfY  - 1 - ik \cdot Y
e\lambda | \bfY | | Y| n+\beta 

m(Y)dY \cdot \^p(k, t)

 - 1

| \Gamma ( - \beta )| 
\Gamma (1 - \beta )\lambda \beta  - 1( - ik \cdot b)\^p(k, t)

=
1

| \Gamma ( - \beta )| 

\Biggl[ \int 
\BbbR n

cos(k \cdot Y) - 1

e\lambda | \bfY | | Y| n+\beta 
m(Y)dY + i

\int 
\BbbR n

sin(k \cdot Y) - k \cdot Y
e\lambda | \bfY | | Y| n+\beta 

m(Y)dY

\Biggr] 
\cdot \^p(k, t)

+
1

| \Gamma ( - \beta )| 
\Gamma (1 - \beta )\lambda \beta  - 1

\int 
| \phi \phi \phi | =1

(ik \cdot \phi \phi \phi )m(\phi \phi \phi )d\phi \phi \phi \cdot \^p(k, t).

Since \beta \in (1, 2) in this case, by polar coordinate transformation and integration by
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parts, we have\int 
\BbbR n

1 - cos(k \cdot Y)

e\lambda | \bfY | | Y| n+\beta 
m(Y)dY

=

\int \infty 

0

\int 
| \phi \phi \phi | =1

r - 1 - \beta e - \lambda r(1 - cos(rk \cdot \phi \phi \phi ))m(\phi \phi \phi )d\phi \phi \phi dr

=
\lambda 2

( - \beta )(1 - \beta )

\int \infty 

0

r1 - \beta e - \lambda r

\int 
| \phi \phi \phi | =1

(1 - cos(rk \cdot \phi \phi \phi ))m(\phi \phi \phi )d\phi \phi \phi dr

 - 2\lambda 

( - \beta )(1 - \beta )

\int \infty 

0

r1 - \beta e - \lambda r

\int 
| \phi \phi \phi | =1

(k \cdot \phi \phi \phi ) sin(rk \cdot \phi \phi \phi )m(\phi \phi \phi )d\phi \phi \phi dr

+
1

( - \beta )(1 - \beta )

\int \infty 

0

r1 - \beta e - \lambda r

\int 
| \phi \phi \phi | =1

(k \cdot \phi \phi \phi )2 cos(rk \cdot \phi \phi \phi )m(\phi \phi \phi )d\phi \phi \phi dr

=

\int 
| \phi \phi \phi | =1

(I1 + I2 + I3) m(\phi \phi \phi )d\phi \phi \phi .

Then using the formulas [21, eq. (3.944(5--6))] and taking \eta = arctan (\bfk \cdot \phi \phi \phi )
\lambda , we get

I1 = \Gamma ( - \beta )\lambda \beta  - \Gamma ( - \beta )(\lambda 2 + (k \cdot \phi \phi \phi )2)
\beta 
2  - 1 \cdot \lambda 2 cos((2 - \beta )\eta ),

I2 =  - 2\Gamma ( - \beta )(\lambda 2 + (k \cdot \phi \phi \phi )2)
\beta 
2  - 1 \cdot (k \cdot \phi \phi \phi )\lambda sin((2 - \beta )\eta ),

I3 = \Gamma ( - \beta )(\lambda 2 + (k \cdot \phi \phi \phi )2)
\beta 
2  - 1 \cdot (k \cdot \phi \phi \phi )2 cos((2 - \beta )\eta ),

which results in

I1 + I2 + I3 = \Gamma ( - \beta )
\Bigl( 
\lambda \beta  - (\lambda 2 + (k \cdot \phi \phi \phi )2)

\beta 
2 cos(\beta \eta )

\Bigr) 
.

Then
(79)\int 

\BbbR n

cos(k \cdot Y) - 1

e\lambda | \bfY | | Y| n+\beta 
m(Y)dY =  - \Gamma ( - \beta )

\int 
| \phi \phi \phi | =1

\Bigl( 
\lambda \beta  - (\lambda 2+(k \cdot \phi \phi \phi )2)

\beta 
2 cos(\beta \eta )

\Bigr) 
m(\phi \phi \phi )d\phi \phi \phi .

Similarly,\int 
\BbbR n

sin(k \cdot Y) - k \cdot Y
e\lambda | \bfY | | Y| n+\beta 

m(Y)dY

=

\int \infty 

0

\int 
| \phi \phi \phi | =1

r - 1 - \beta e - \lambda r(sin(rk \cdot \phi \phi \phi ) - rk \cdot \phi \phi \phi )m(\phi \phi \phi )d\phi \phi \phi dr

=
\lambda 2

( - \beta )(1 - \beta )

\int \infty 

0

r1 - \beta e - \lambda r

\int 
| \phi \phi \phi | =1

(sin(rk \cdot \phi \phi \phi ) - rk \cdot \phi \phi \phi )m(\phi \phi \phi )d\phi \phi \phi dr

 - 2\lambda 

( - \beta )(1 - \beta )

\int \infty 

0

r1 - \beta e - \lambda r

\int 
| \phi \phi \phi | =1

(k \cdot \phi \phi \phi )(cos(rk \cdot \phi \phi \phi ) - 1)m(\phi \phi \phi )d\phi \phi \phi dr

 - 1

( - \beta )(1 - \beta )

\int \infty 

0

r1 - \beta e - \lambda r

\int 
| \phi \phi \phi | =1

(k \cdot \phi \phi \phi )2 sin(rk \cdot \phi \phi \phi )m(\phi \phi \phi )d\phi \phi \phi dr

=  - \Gamma ( - \beta )

\int 
| \phi \phi \phi | =1

(\lambda 2 + (k \cdot \phi \phi \phi )2)
\beta 
2 sin(\beta \eta ) m(\phi \phi \phi )d\phi \phi \phi 

 - \Gamma (1 - \beta )\lambda \beta  - 1

\int 
| \phi \phi \phi | =1

(k \cdot \phi \phi \phi )m(\phi \phi \phi )d\phi \phi \phi .

(80)
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Combining (79) and (80) leads to the anisotropic tempered fractional Laplacian in
Fourier space

F [\Delta \beta /2,\lambda 
m p(X, t)] = ( - 1)\lceil \beta \rceil 

\int 
| \phi \phi \phi | =1

\Bigl( 
(\lambda 2 + (k \cdot \phi \phi \phi )2)

\beta 
2 e - i\beta \eta  - \lambda \beta 

\Bigr) 
m(\phi \phi \phi )d\phi \phi \phi \cdot \^p(k, t),

= ( - 1)\lceil \beta \rceil 
\int 
| \phi \phi \phi | =1

\Bigl( 
(\lambda  - ik \cdot \phi \phi \phi )\beta  - \lambda \beta 

\Bigr) 
m(\phi \phi \phi )d\phi \phi \phi \cdot \^p(k, t),

which equals to (30).

Acknowledgments. We thank Mark M. Meerschaert for fruitful discussions,
especially another motivation of defining tempered fractional operators (see (30)).
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