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Elastic properties of liquid-crystalline bilayers
self-assembled from semiflexible–flexible
diblock copolymers

Yongqiang Cai, a Pingwen Zhang*b and An-Chang Shi *c

The mechanical response and shape of self-assembled bilayer membranes depend crucially on their

elastic properties. Most of the studies focused on the elastic properties of fluid membranes, despite the

ubiquitous presence of membranes with liquid-crystalline order. Here the elastic properties of liquid-

crystalline bilayers self-assembled from diblock copolymers composed of a semiflexible block are

studied theoretically. Specifically, the self-consistent field theory (SCFT) is applied to a model system

composed of semiflexible–flexible diblock copolymers dissolved in flexible homopolymers that act as

solvents. The free energy of self-assembled tensionless bilayer membranes in three different geometries,

i.e. planar, cylindrical and spherical, is obtained by solving the SCFT equations using a hybrid method, in

which the orientation-dependent functions are treated using the spherical harmonics, whereas the

position-dependent operators are treated using the compact difference schemes. The bending modulus

kM and Gaussian modulus kG of the bilayer are extracted from the free energies. The effects of the

molecular parameters of the system, such as the chain rigidity and the orientational interaction, are

systematically examined.

1 Introduction

Understanding the self-assembly of amphiphilic molecules
such as lipids to form bilayer membranes is fundamental to
many areas including life itself. Macromolecular analogues
of lipids, such as amphiphilic block copolymers, could act as
mimetics of biological membranes. The study of bilayer mem-
branes self-assembled from amphiphilic block copolymers not
only sheds light on the understanding of the fundamentals of
self-assembly, but also provides macromolecular analogues
of bilayer membranes that have various applications. In parti-
cular, polymeric hybrid membranes show a great promise for
applications in biomedicine and biotechnology because there
are virtually no limits to the selection of monomers and chain
architecture.1

Phenomenologically, a membrane could be regarded as a
two-dimensional surface, whose mechanical properties are
characterized by their bending modulus. The deformation
mechanics of membranes could be used to understand the
formation and stability of membrane morphologies. Assuming

that the deformation is small, the energy of a deformed bilayer
could be described by Helfrich’s linear elasticity theory.2,3

Specifically, the Helfrich model states that the elastic energy
of a closed membrane is given by,

F ¼
ð
½gþ 2kMðM � c0Þ2 þ kGG�dA; (1)

where M = (c1 + c2)/2 and G = c1c2 are the local mean and
Gaussian curvatures of a deformed bilayer, respectively (c1, c2

are the two principal curvatures). The energetics of a bilayer is
therefore specified by the elastic constants, g, c0, kM and kG,
corresponding to the surface tension, spontaneous curvature,
the bending modulus and the Gaussian modulus, respectively.
For bilayer membranes made of two leaflets with identical
composition, the spontaneous curvature c0 is zero. Because
the membranes are formed by the self-assembly of amphiphilic
molecules, it is important to understand how the molecular
parameters determine the elastic constants of the membranes.

During the last decades, a number of experimental techniques,4,5

simulation protocols6–8 and theoretical methods9–11 have been
developed to obtain the elastic constants of bilayer membranes.
Theoretically, one method to obtain the elastic constants is by
studying bilayers in different geometries (e.g., planes, cylinders,
spheres), and comparing the free energy of membranes with
different shapes of definite curvatures.10 This approach can be
implemented quite naturally in numerical and theoretical
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studies. One requirement of this geometric method is an accurate
computation of the free energy of curved membranes, which in
turn requires a robust theoretical model of the amphiphilic
molecules. Among the different theoretical frameworks
developed for amphiphilic molecules, the self-consistent field
theory (SCFT) provides a versatile framework for the study of
self-assembled bilayer membranes. A number of previous
studies using SCFT have been carried out to investigate the
elastic properties of self-assembled bilayers.10,12–14 In almost
all of these studies, the polymeric components are assuming to
be flexible, and the Gaussian-chain model is used to describe
these flexible blocks. On the other hand, many amphiphilic
molecules contain a rigid or semiflexible component, thus it is
interesting and important to extend these previous studies to
non-Gaussian models. In this study, we extend the SCFT of
flexible polymers to the semiflexible polymers described by the
wormlike-chain model and study the elastic properties of
liquid-crystalline bilayers self-assembled from semiflexible–
flexible diblock copolymers.

The most significant difference between flexible and semi-
flexible polymers is that semiflexible polymers could possess
orientational or liquid-crystalline order. It is well known that
the liquid-crystalline behaviors of semiflexible blocks have
significant effects on the self-assembly of semiflexible poly-
mers, such as rod–coil diblock copolymers, in solutions, in
melts or confined in thin films.15–19 For the self-assembled
bilayers from rod–coil diblock copolymers, our earlier theore-
tical study has predicted that a variety of liquid-crystalline
bilayers, such as the A-phase and C-phase corresponding to
the smectic phases in bulk systems, could become equilibrium
phases of the rod–coil/coil system.20 It is natural to expect that
the liquid-crystalline order of the bilayers could have signifi-
cant effects on the elastic properties of the membranes.

In this paper, we report on a systematic study of the
elastic properties of bilayer membranes self-assembled from
semiflexible–flexible diblock copolymers using the SCFT. It has
been demonstrated that the SCFT provides a flexible and
accurate framework for the study of inhomogeneous polymeric
systems including different micelle structures.21,22 In the
current study, we obtained accurate numerical solutions of
the SCFT equations corresponding to various tensionless
liquid-crystalline bilayers constrained in three geometries
(plan, cylinder and sphere). The bending modulus and
Gaussian modulus are extracted by fitting the free energies of
curved bilayers to the Helfrich model. The dependence of the
elastic properties on the microscopic parameters of block
polymers are studied.

The remainder of this paper is organized as follows.
Section 2 describes the SCFT model of our system, the geometric
constraints used in this study, the modified diffusion equations in
planar, cylindrical and spherical coordinate systems and the
numerical methods to solve the proposed model. Our results
on the elastic properties of the membranes are presented in
Section 3, including the influence of microscopic parameters of
the semiflexible–flexible system on the elastic properties. Finally,
Section 4 concludes with a brief summary.

2 Model and methods
2.1 Basic model

The model system used in our study is a binary mixture of
A (coil, flexible)–B (semiflexible) diblock copolymers and
A (coil) homopolymers. In this model the diblock copolymers
act as the amphiphilic molecules and the homopolymers act as
the solvents. The phase behaviour of this system is controlled
by a large number of parameters related to the molecular
properties. In the current study, the copolymers and homo-
polymers are assumed, for simplicity, to have the same degree
of polymerization N. The volume fraction of the A- and B-blocks
of the copolymers are denoted by fA and fB = 1 � fA, respectively.
The interaction between the A and B monomers is described by
a Flory–Huggins parameter23 w, whereas the orientation inter-
action between the semiflexible segments is assumed to have
the Maier–Saupe form24 quantified by an interaction parameter
Z. The rigidity of the semiflexible chain is further measured
by a parameter l. Furthermore, the conformational asymmetry
between the A- and B-blocks is quantified by the geometrical
asymmetry parameter,25,26 b = L/Rg, where L = bN is the total

polymer-contour, Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Na2=6

p
is the gyration radius of the

A-chains, a and b are the statistical segment lengths of A and B
blocks, respectively. Finally the chemical potential of the
copolymers mc, or the corresponding activity zc = exp(mc) is used
to control the average concentration of the diblock copolymers
in the system.

Within the SCFT framework formulated in the grand canonical
ensemble,20 the free energy of the binary mixture is given by,

NF

kBTr0
¼
ð
dr½wNfAðrÞfBðrÞ � oAðrÞfAðrÞ � oBðrÞfBðrÞ

þ 1
2ZNMðrÞ:MðrÞ � xðrÞðfAðrÞ þ fBðrÞ � 1Þ

þ cGeðr� r1ÞðfAðrÞ � fBðrÞÞ� � zcQc �Qh;

(2)

where fa(r) and oa(r) are the local concentration and the mean
field of the a-type monomers (a = A, B). The tensor field M(r) is
the mean orientation field of the semiflexible blocks (B). The
local pressure field x(r) is a Lagrange multiplier introduced to
enforce incompressibility of the system. A second Lagrange
multiplier, c, is used to stabilize the bilayer of different
geometries. Here a sharp Gaussian with width e, Ge(r � r1), is
used to ensure that the c field only operates near the interface
at a prescribed position r1. The last two terms in eqn (2) are the
contributions from the single-chain partition functions of the
two polymers, Qc and Qh.

The fundamental quantity to be calculated in the SCFT is
the polymer segment probability distribution functions (or the
propagators), qh

A(r,s) for the A-homopolymers, and q�A (r,s),
q�B (r,u,s) for the AB-diblock copolymers, where u is an unit
orientational vector. These propagators satisfy the modified
diffusion equations (MDE)21 in the presence of the mean fields
(oA, oB and M),

@

@s
qhAðr; sÞ ¼ Rg

2rr
2 � oAðrÞ

� �
qhAðr; sÞ; s 2 ð0; 1Þ; (3)
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@

@s
q�Aðr; sÞ ¼ Rg

2rr
2 � oAðrÞ

� �
q�Aðr; sÞ; s 2 ð0; fAÞ; (4)

@

@s
q�B ðr; u; sÞ ¼ �bRgu � rrju � Gðr; uÞ þ L

2l
ru

2

� �
q�B ðr; u; sÞ;

s 2 ð0; fBÞ;
(5)

with the initial conditions,

qhAðr; 0Þ ¼ q�Aðr; 0Þ ¼ 1; q�B ðr; u; 0Þ ¼
1

4p
; (6)

qþAðr; 0Þ ¼
ð
duq�B ðr; u; fBÞ; qþB ðr; u; 0Þ ¼

1

4p
q�Aðr; fAÞ: (7)

The r,u-dependent field G(r,u) is defined by

Gðr; uÞ ¼ oBðrÞ �MðrÞ: uu� 1

3
I

� �
: (8)

In terms of the chain propagators, the single-chain partition
functions are given by,

Qc ¼
ð
drqþAðr; fAÞ; (9)

Qh ¼
ð
drqhAðr; 1Þ: (10)

Furthermore, the density distributions of the A- and B-
monomers are obtained from the propagators as,

fAðrÞ ¼ fh
A þ fc

A ¼
ð1
0

dsqhAðr; sÞqhAðr; 1� sÞ

þ zc

ðfA
0

dsq�Aðr; sÞqþAðr; fA � sÞ;

(11)

fBðrÞ ¼ 4pzc

ðfB
0

ds

ð
duq�B ðr; u; sÞqþB ðr; u; fB � sÞ: (12)

Finally the orientational order parameter of the B-blocks is
given by

SðrÞ ¼ 4pzc

ðfB
0

ds

ð
duq�B ðr; u; sÞ uu� I

3

� �
qþB ðr; u; fB � sÞ: (13)

The rest of the SCFT equations relating the mean fields to the
density distributions are,

oA(r) = wNfB(r) � x(r) + cGe(r � r1), (14)

oB(r) = wNfA(r) � x(r) � cGe(r � r1), (15)

M(r) = ZNS(r), (16)

fA(r) + fB(r) = 1, (17)ð
drGeðr� r1ÞðfAðrÞ � fBðrÞÞ ¼ 0: (18)

We are interested in the free energy of a system containing a
bilayer membrane compared to that of the homogeneous bulk
phase Fbulk, which can be computed analytically by solving SCF
equations with constant functions.14,27 The free energy difference

(F � Fbulk) is proportional to the area of the membrane A,
therefore we can define an excess free energy density as,

Fex ¼
NðF�FbulkÞ

kBTr0A
: (19)

The free energy for the bulk phase is given by,

NFbulk

kBTr0V
¼ wNfB

2fbulk
2 þ lnð1� fbulkÞ � 1; (20)

where the bulk copolymer concentration fbulk is determined by
the following equation,

mc = lnfbulk � ln(1 � fbulk) + wNfB(1 � 2fBfbulk). (21)

2.2 Geometrical constraints

In order to extract the elastic parameters of the bilayer, especially the
bending modulus and Gaussian modulus, we need to calculate the
excess free energy of deformed bilayer membranes. Specifically, we
compute the free energy of the bilayers in three geometries: an
infinite planar bilayer, a cylindrical bilayer with a radius r, which
is extended to infinity in the axial direction, and a spherical
bilayer with a radius r. In previous studies,14,28 a constraint term,
d(r � r1)(fA(r) � fB(r)), has been included in the free energy
functional to stabilize a bilayer in those geometries. In the cylindrical
and spherical geometries, the constraint is applied to the outer
monolayer only which allows the bilayer to optimise its thickness
and indirectly sets the curvature radius of the membrane. In this
paper we treat the delta function d(r) as the limit of the Gaussian
function, Ge(r), with e tending to zero, and use a more moderate
constraint term, Ge(r� r1)(fA(r)� fB(r)), in eqn (2). Mathematically,
replacing the delta function with a Gaussian function improves the
numerical stability. It should also be noted that there is a convection
term in the MDE of the wormlike chain and many numerical
methods for convection equation could involve a loss of precision
when the solution is not smooth. Hence using the Gaussian
function Ge could avoid potential numerical problems.

With these geometrical constraints, we obtained the excess
free energies for the three geometries, which are denoted by F0,
FC, FS for the planar, cylindrical and spherical membranes,
respectively. In this work, we focus on the tensionless bilayer
membranes, and the chemical potential of the copolymer, mc, is
adjusted such that the excess free energy of a planar bilayer is
zero, i.e. F0 = g + 2kMc0

2 = 0, which is equivalent to g = 0 for a
bilayer membrane consisting of two identical leaflets has its
spontaneous curvature c0 to be zero by symmetry.14 For a curved
bilayer of finite thickness, the definition of the interface position
involves a certain degree of arbitrariness. We define the bilayer
interface, r, to be at the mid-point of the two position where
A- and B-segment concentrations are equal. The Helfrich free
energy can be written in terms of the curvature c = 1/r in the
cylindrical and spherical geometries,

FCðcÞ ¼ F0 � 2kMc0cþ
kM
2
c2 ¼ kM

2
c2; (22)

FS(c) = F0 � 4kMc0c + (2kM + kG)c2 = (2kM + kG)c2. (23)
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The bending modulus kM and Gaussian modulus kG can be
obtained by quadratic polynomial fitting the effect of the
curvature c on the excess free energy FC and FS.

2.3 MDEs in cylindrical and spherical coordinate systems

When the internal structure of the bilayer is disordered or
ordered with rotational symmetry, the above three geometries
can be reduced to a one-dimensional problem by an appropriate
coordinate transformation. Specifically, the MDE for coils in
one-dimensional planar, cylindrical and spherical coordinate
systems can be written in a unified form,

@

@s
qðr; sÞ ¼ Rg

2 1

rn
@

@r
rn
@

@r
qðr; sÞ

� �
� oðrÞqðr; sÞ; (24)

where n = 0, 1, 2 for planar, cylindrical and spherical coordinate
systems respectively. The situation for semiflexible chain is
more complicated since the orientation of the semiflexible
segments is coupled with its spatial coordinates. The MDE
for propagator q(r,u,s) of semiflexible chain in curvilinear
coordinates is,29

@q

@s
¼ �bRg u � rr � ½ðu � rÞu� � ruð Þq� Gðr; uÞqþ L

2l
ru

2q:

(25)

Our previous study20 demonstrated that rod–coil diblock
planar bilayers could possess liquid-crystalline phase, such as
A-phase, OB-phase, C-phase, and P-phase. Of these four phases,
a bilayer membrane can be curved to a symmetrical cylinder,
but only the A-phases and OB-phase can be curved to a rotation
symmetrical sphere. In planar coordinate systems, the unit
orientation vector at r = (x, y, z) expressed as, u = sinY
cosFex + sinY sinFey + cosYez, and the one-dimensional
MDE for q(r,u,s) is,

@q

@s
¼ �bRg cosY

@q

@r
� Gðr; uÞqþ L

2l
ru

2q ¼ :LPq: (26)

Here the right hand is the operation of operator LP ¼

�bRg cosY@r � Gðr; uÞ þ L

2l
ru

2 on propagator q, and the vari-

able x is rewritten by r.
The coordinate in cylindrical coordinate systems is r =

(r, f, z), and the unit orientation vector u is defined by u =
sinY cosFef + sinY sinFez + cosYer. Rewrote q(r,u,s) by
q(f,z,r,Y,F,s), the symmetrical propagator q(r,Y,F,s) satisfy
the one-dimensional MDE,

@q

@s
¼ �bRg �

sinY cos2 F
r

@q

@Y
þ cosY sin 2F

2r

@q

@F

� �
þ LPq:

(27)

Similarly, the coordinate in spherical coordinate systems is r =
(r,y,f), unit orientation vector is defined by u = sinY cosFey +
sinY sinFef + cosYer, and the MDE for q(r,Y,F,s) is

@q

@s
¼ �bRg �

sinY
r

@q

@Y
� sinY sinF cos y

r sin y
@q

@F

� �
þ LPq: (28)

Note that the coefficient before
@q

@F
is depend on y, which

indicate that a orientational symmetrical solution q(r,Y,F,s)
must independent on F. Thus the one-dimensional MDE for
q(r,Y,s) is,

@q

@s
¼ �bRg �

sinY
r

@q

@F

� �
þ LPq: (29)

2.4 Numerical method

For a given set of control parameters, the above SCFT equations are
solved to obtain solutions corresponding to bilayers of different
geometries. Numerically, the SCFT equations are solved by
iteration, and accelerated convergence by Anderson mixing.30

The most time-consuming step is to compute the propagators
by solving the diffusion-like equations, especially for the semi-
flexible chain. Using operator splitting method, we divided the
solving MDE for semiflexible chain into two subproblems, one
for the spatial domain and another for the orientation,

@q1
@s
¼ �bRg cosY

@q1
@r
� Gðr; uÞq1; (30)

@q2
@s
¼ �bRg½ðu � rÞu� � ruq2 þ

L

2l
ru

2q2: (31)

In this study, the MDEs are supplemented with reflecting
boundary conditions, and the eqn (24) and (31) are solved using
the compact finite difference schemes.31 In particular, the
partial derivative operators about r are treated by a fourth-
order compact finite difference schemes, and the s dependence is
dealt by implicit Runge–Kutta method.32 The scheme is especially
suitable for the current problem where a well-designed
nonuniform grid is easily used to capture the sharp interface.
The MDE (31) is solved by spectral method employing the
spherical harmonics as basic functions. The spherical harmonics
are defined as,

Ym
l ðY;FÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

4p
ðl �mÞ!
ðl þmÞ!

s
Pm
l ðcosYÞeimF;

l � 0; jmj � l;

(32)

where Pm
l is the associated Legendre polynomials. The spherical

harmonics are eigenfunctions of the Laplacian operator, ru
2,

and have relation,ru
2Ym

l = �l(l + 1)Ym
l . To express the operation

of the first term in right hand of eqn (31), (27) and (29) on
spherical harmonics, we define two operators LC and LS,

LC ¼ � sinY cos2 F@Y þ cosY sinF cosF@F; (33)

LS = �sinYqY. (34)

Their operations on Ym
l can be expressed by several spherical

harmonics,

LCYm
l = a�l,mYm

l�1 + a+
lmYm

l+1 + b�lmYm�2
l�1

+ b+
lmYm�2

l+1 + c�lmYm+2
l�1 + c+

lmYm+2
l+1 , (35)

LSYm
l = 2a�lmYm

l�1 + 2a+
lmYm

l+1. (36)
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Here Ym
l = 0 for l o 0 or |m| 4 l, and the coefficients are,

a�lm ¼
l þ 1

2

ffiffiffiffiffiffiffiffiffiffi
l2�m2

4l2�1

q
;

aþlm ¼ �
l

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ1Þ2�m2

4ðlþ1Þ2�1

r
;

b�lm ¼ �
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mþ1Þðlþm�2Þðlþm�1ÞðlþmÞ

4l2�1

q
;

bþlm ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mþ1Þðl�mþ2Þðl�mþ3ÞðlþmÞ

4ðlþ1Þ2�1

q
;

c�lm ¼ �
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ1Þðl�m�2Þðl�m�1Þðl�mÞ

4l2�1

q
;

cþlm ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ1Þðlþmþ2Þðlþmþ3Þðl�mÞ

4ðlþ1Þ2�1

q
:

Expanding u-dependent functions in terms of spherical
harmonics,

qðY;F; sÞ ¼
X
l;m

q̂lmðsÞYm
l ðY;FÞÞ; (37)

the modified diffusion eqn (31), specified in cylindrical and
spherical coordinate systems, is converted to linear ordinary
differential equations (ODE) respect to spherical harmonic
coefficients q̂lm. This ODE has a constant and sparse coefficient
matrix, which can be solved efficiently.

In the current study, the gyration radius Rg is set as the unit
length, i.e. Rg = 1, the numerical domain is constraint to one
dimensional and the size is determined by the concentration
profile to ensure the order near boundary is close to the bulk
phase. The orientation vector u on unit sphere is discretized by
32 values of Y and 36 values of F, and the spherical harmonics
expansion (37) is truncated by |m| r l r 16. The number of
spatial grid point is changed over 200–400, and time grid point
over 300–800 under different model parameters to make sure
the free energy is converged in the order of 10�4 and the fields
are self-consistent with L2-norm error less than 10�6. The
Gaussian width e in eqn (2) is set as e = 0.2Rg. (However, the
elastic parameters are insensitive to the constraint Gaussian
width e.)

3 Results and discussion
3.1 Cylindrical and spherical bilayers

From the SCFT free energy of cylindrical and spherical mem-
branes with large radii or small curvatures, the bending mod-
ulus and the Gaussian modulus can be calculated by fitting the
free energy curve to the Helfrich model. The basic structural
properties of a self-assembled bilayer membrane are the spatial
distribution of the hydrophilic and hydrophobic monomers
across it, and the liquid-crystalline order of the semiflexible
monomers. A typical concentration profile for the A-phase liquid-
crystalline bilayer membrane in the spherical and cylindrical
geometry with the radius near r = 6Rg is shown in Fig. 1. Similar
to the flexible bilayer membrane,14 the hydrophilic monomers
(A-blocks) in the inner leaflet have to pack more closely and

have a higher local concentration and wider distribution in the
axial direction, in comparison to the outer leaflet. In the
spherical A-phase bilayer, the orientation of the semiflexible
blocks are uniaxial because the geometry is isotropic, therefore
the orientation order parameter S has repeated eigenvalues,

i.e. l2ðSÞ ¼ l3ðSÞ ¼ �
1

2
l1ðSÞ. However, the cylinder has different

principal curvatures, hence the orientation in the cylindrical
bilayer has a little divergence from uniaxial distribution,
i.e. l2(S) a l3(S) (see Fig. 1(b)).

3.2 Influence of chain rigidity

The semiflexible or wormlike chain model are specified by
two independent parameters, the total contour length L and
the chain rigidity parameter l. The mean-squared end-to-end
vector for the wormlike chain is given by,21

R2 ¼ L22l
L

1� l
L

1� e�L=l
� �	 


: (38)

This expression could be continuously interpolated between
the properties of a flexible, ideal chain and a rigid rod. In the

flexible limit, L/l c 1, R reduces to R 	
ffiffiffi
2
p

l
ffiffiffiffiffiffiffiffi
L=l

p
; which is

consistent with the ideal chain scaling formula R ¼ b
ffiffiffiffi
N
p

for
freely jointed chains if we choose to interpret N = L/l as the
number of statistically independent persistent segments and

select b ¼
ffiffiffi
2
p

l. In the opposite limit of L/l { 1, R reduces to
R E L which is evidently the exact result for a rigid rod. With l/L
changes from zero to infinity, the wormlike chain model can
describe both the coils and rigid rods. Here, we investigate the
effect of the rigidity of wormlike chain on the elastic properties
of semiflexible-coil bilayer membranes.

In order to cover the different scaling ratio, we fixed the
mean-squared end-to-end vector R2 of the wormlike chain,
which means that L and l/L are coupling parameters now. In
Fig. 2, we give the chemical potential, thickness and average

l1(S) of tensionless bilayer with wN ¼ 20; R ¼
ffiffiffi
6
p

Rg. Here the

Fig. 1 Concentration profiles of an A-phase (a) spherical and (b) cylindrical
bilayer membrane (wN = ZN = 15, b = 4, l/L = 1.5, fA = 0.5). li(S) are the
eigenvalues of S.
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bilayer thickness is defined as the copolymer excess per unit
area,14

O ¼ 1

A

ð
dr fc

AðrÞ þ fBðrÞ � fbulk

� �
: (39)

The Maier–Saupe interaction between wormlike chains is turn off,
i.e. ZN = 0, to compare with the coil–coil/coil system. The results
for l/L { 1 agrees with the coil–coil/coil system,14 and the case of
l/L c 1 is converging to the rod–coil/coil system. As the rigidity of
wormlike chains increases, the thickness of tensionless bilayer
decreases, due to the increasing liquid-crystalline order interface.
It is worth to mention that the chemical potential mc for tensionless
bilayer has a minimum near l/L E 0.3, i.e. L/b = L/2l E 1.7. This
value is near the crossover point between the rod-like behavior and
the coil-like behavior.33 Fig. 3 gives the bending modulus, kM, and
Gaussian modulus, kG, of tensionless bilayer membranes as func-
tions of the chain rigidity, l/L. Increased the chain rigidity, the
bending modulus kM decreased, and the absolute value of Gaus-
sian modulus |kG| almost decreased as well. The limiting values of
kM and kG with l/L tending to zero, in agreement with the values of
coil–coil bilayers. For the coil–coil bilayers, Li etc.14 found that kM,
as a function of fA, exhibits a weak symmetry with respect to fA = 0.5,
and kG is a monotonically decreasing function of the fA when

fA o 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
2=wN

p
(=0.68 for wN = 20), and its value changes from

positive to negative, crossing zero at around fA = 0.41. This
phenomenon is also observed for the semiflexible bilayers, however
the threshold value for changing sign of kG is not exactly 0.41. As
shown in Fig. 3(b), kG is close to zero when fA is close to 0.4.

3.3 Influence of Maier–Saupe interaction

When the polymers contain rigid segments, the interaction
between different segments increases the tendency of

parallel arrangement. This orientational interaction is described
by the Maier–Saupe interaction. Fig. 4 gives the chemical
potential and order parameters of tensionless bilayer as a
function of ZN, where some typical chain rigidity, l/L = 0.5, 1,
2, 4 and N, are considered. Since the formation of liquid-
crystalline phase decreases the free energy of the bilayers, the
chemical potential activity zc is decreasing when ZN increases,
meanwhile the increasing l1(S) indicates more and more strong
liquid-crystalline order.

As could be seen in Fig. 4(b), the thickness of the bilayers
exhibit different behaviour for l/L r 1 and l/L Z 2. This is
due to the fact that the semiflexible chain of copolymer in
the bilayer has different configurations which could be
regarded as different liquid-crystalline phases. Furthermore,
the chain rigidity affected the phase transitions. When semi-
flexible blocks have large chain rigidity, such as l/L Z 2, the
bilayers transit from Ac-phase (interdigitated spatial arrange-
ment) to As-phase (end-to-end arrangement) as ZN increases.
However, when the chain rigidity is weak, large orientation
interactions lead the semiflexible blocks to be folded25,34 (denoted
by Af-phase), which is reflected in the non-monotonicity of bilayer
thickness O.

To illustrate the influence of liquid-crystalline phases on the
elastic properties of tensionless bilayers, we present the results
of kM and kG as a function of ZN in Fig. 5. When l/L Z 2, the
bending modulus kM is a increasing function of ZN and
becomes very large when the bilayers possess As-phase. The
opposite number of the Gaussian modulus kG, which are negative,
have the same tendencies. However, for the bilayers possess
Af-phase when l/L r 1 and ZN is big, the elastic properties have
different tendencies, where the value of kM and �kG are
decreasing functions of ZN.

Fig. 2 The (a) chemical potential, (b) bilayer thickness and (c) average l1(S)
of tensionless bilayers wN ¼ 20; ZN ¼ 0; R ¼

ffiffiffi
6
p

Rg

� �
.

Fig. 3 The (a) bending modulus kM and (b) Gaussian modulus kG of
tensionless bilayers wN ¼ 20; ZN ¼ 0; R ¼

ffiffiffi
6
p

Rg

� �
.

Fig. 4 The (a) chemical potential activity, (b) bilayer thickness and (c)
average l1(S) of tensionless bilayers R ¼

ffiffiffi
6
p

Rg; wN ¼ 20; fA ¼ 0:5
� �

.

Fig. 5 The (a) bending modulus kM and (b) Gaussian modulus kG of
tensionless bilayers R ¼

ffiffiffi
6
p

Rg; wN ¼ 20; fA ¼ 0:5
� �

.
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3.4 Influence of temperature

It is well known that many molecular species can influence the
phase state of the membrane bilayer. Temperature is however
the most direct means to modulate the phase behaviour and
then affect the elastic properties of the membrane bilayers. For a
given copolymer, the molecular properties usually depend on the
temperature. The influence of temperature in our SCF model are
reflected in the parameters such as l/L, wN and ZN. In this
section we consider two cases of this influence. It is noted that,
in principle, the effect of the various interaction parameters
could be studied by changing these parameters individually.
In the current study, we choose to make the variation of the
interaction parameters by changing the temperature alone.

In the first case, we study the influence of temperature T on
the elastic properties of tensionless bilayers by assuming that
wN, ZN and l/L are all proportional to the inverse of temperature
1/T, i.e. the ratios among wN, ZN and l/L are fixed. Fig. 6 gives
an example of wN : ZN : l/L = 1 : 1 : 0.1, where the polymer contour-
length L is fixed as 4Rg and the chain rigidity l/L Z 1. The curves
of kM are almost linear with positive slops which indicate that
the bending modulus of the bilayers are increasing functions of
1/T. The dependence of kG on the temperature is much more
complex, where kG changes from decreasing to increasing, cross-
ing the minimum at a threshold value of 1/T.

In the second case, we mainly study the bending modulus by
assuming that the temperature only affects the chain rigidity
l/L, while zc is fixed hence the bilayers are not necessarily
tensionless. Fig. 7 gives an example of wN = 20, ZN = 16, fA = 0.5,
zc = 45. One interesting thing is that the nonmonotonic effect of

temperature on kM. As mentioned before, l/L E 0.3, corres-
ponding to T E Tm, is a critical rigidity to bridge flexible
and semiflexible, and the phase states on each side may be
different. The bending modulus has a local minimum near Tm.
This phenomenon is well known in lipid membranes5 where
the bending modulus decreases considerably near Tm on both
sides of the transition.

3.5 Bilayer thickness and bending modulus

A number of studies claimed that bending modulus is propor-
tional to the square of thickness of the membrane,6,35,36

kM p d2, where d is the effective membrane thickness, which
could be related to the excess concentration O defined in
eqn (39). In Fig. 8, we give the relationship between the square
root of bending modulus,

ffiffiffiffiffiffiffi
kM
p

, and the excess concentration,
O, for the bilayers calculated in Section 3.2. The curves with
different fA are almost straight lines with almost the same slop
about 0.56. Furthermore, interception of O at zero kM, O0,
depends on the polymer parameters. This result confirms the
scaling of kM with thickness to be nearly quadratic, kM p d2 =
(O � O0)2, in good agreement with existing theories6,35,36 for
bilayer membranes. Here we call d the effective bilayer thick-
ness which is defined as a shift of the thickness or excess
concentration O, i.e. d = O� O0. Moreover, the ratio C = kM/d2 is
not sensitive to the polymer rigidity l/L and the monomer
volume fraction fA. It is interesting to note that in the typical case
with the A-monomer and B-monomer having the same volume
fraction in the A–B copolymer, i.e. fA = fB = 0.5, the curve is
extraordinarily straight and the O-intercepts O0 is very close to the
gyration radius Rg of A-monomer, which means kM p (O � Rg)2.

4 Conclusions

In summary, we have systematically investigated the elastic
properties of liquid-crystalline bilayer membranes self-assembled
from semiflexible–flexible diblock copolymers. The study was
carried by applying the self-consistent field theory to a molecular
model composed of semiflexible–flexible diblock copolymers
dissolved in corresponding flexible homopolymer solvents.

Fig. 6 The (a) bending modulus kM and (b) Gaussian modulus kG of
tensionless bilayers (L = 4Rg, wN : ZN : l/L = 1 : 1 : 0.1).

Fig. 7 The bending modulus kM of liquid-crystalline bilayers (R ¼
ffiffiffi
6
p

Rg,
wN = 20, ZN = 16, fA = 0.5, zc = 45).

Fig. 8 Square root of the bending modulus,
ffiffiffiffiffiffiffi
kM
p

, as a function of the
bilayer thickness defined by the excess concentration, O/Rg. (Polymer
parameters are same with Fig. 3.).
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The semiflexible and flexible blocks are described by wormlike-
chain and Gaussian-chain respectively. The free energy of planar,
cylindrical and spherical bilayer membranes are calculated by a
hybrid method, in which the orientation-dependent functions
are treated using the spherical harmonics, while the special
operators are discretized by the compact difference schemes.
Particularly, we focused on the A-phase bilayers assuming the
orientation of the semiflexible chains are perpendicular to the
bilayer interface, which allows us using the symmetry of cylinder
and sphere to reduce the spacial dimension to one.

The free energy of the bilayers with different geometries
allowed us to obtain the elastic constants of the self-assembled
bilayers. Specifically, comparing the free energy of cylindrical
and spherical bilayer membranes with different curvature to
the Helfrich’s linear elasticity theory, we extracted the bending
modulus kM and Gaussian modulus kG. These results are then
used to investigate the dependence of the elastic constants of
the tensionless bilayer membrane on the microscopic para-
meters of the system, such as the chain rigidity l/L of semi-
flexible blocks, and the Maier–Saupe parameter ZN. It is found that
the bending modulus kM is a decreasing function of the chain
rigidity l/L, while the absolute value of Gaussian modulus |kG| is
almost decreasing as well. The values for the flexible limit case
l/L { 1 agree with the results of coil–coil/coil system. When the
Maier–Saupe interaction is considered, the bilayers tend to possess
liquid-crystalline order, which in turn increases the bending
modulus and decreases the Gaussian modulus. However, the
modulus is also affected by the configuration of semiflexible
chains in bilayers, such as the case of large ZN and small l/L,
where the semiflexible chains are easily folded. In addition, the
influence of temperature characterized by particular parameter
combinations, and the relation between the effective bilayer
thickness d = O � O0 and bending modulus kM are examined.
The results confirm the scaling of kM with the bilayer thickness
to be nearly quadratic, kM E Cd2, in good agreement with
existing theories for bilayer membranes.6,35,36 Particularly, we
found that the coefficient C is not sensitive to the chain rigidity
and the monomer volume fraction.

It is worth to mention that previous experiments and theory
have demonstrated that semiflexible diblock copolymers could
self-assembled to form a large number of liquid-crystalline bilayer
phases20 beyond the A-phases considered in this paper. It is
natural to expect that tilt angle of semiflexible chains in bilayers
could affect the elastic properties. In particular, exploring the
elastic properties of C-phase bilayer membranes is a very inter-
esting topic. Another extension of the current study is to go
beyond cylindrical and spherical geometries. For instance, studies
of a disk-like membrane and a pore in a planar membrane can be
used to extract the line tension of the membrane edge.14 However,
a detailed study of these topics is beyond the scope of the current
paper and we will leave this topic to future study.
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36 H. Bermúdez, D. A. Hammer and D. E. Discher, Langmuir,

2004, 20, 540–543.

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
7 

O
ct

ob
er

 2
01

9.
 D

ow
nl

oa
de

d 
by

 P
ek

in
g 

U
ni

ve
rs

ity
 o

n 
2/

24
/2

02
1 

2:
26

:5
7 

A
M

. 
View Article Online

https://doi.org/10.1039/c9sm01844a



