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A B S T R A C T

We construct the molecular model and the tensor model for the dynamics of the nematic phases of bent-core
molecules and star molecules in incompressible fluid. We start from the molecular interaction and the mole-
cule–fluid friction, and write down a general formulation based on the molecular shape and the free energy.
Then we incorporate an Onsager-theory-based static tensor model to obtain the dynamic molecular model fully
determined by the molecular architecture. The tensor model is obtained by adopting the quasi-equilibrium
approximation that maintains energy dissipation. For bent-core molecules and star molecules that have the same
molecular symmetry, the form of the model is identical. The molecular architecture is differentiated by the
coefficients that are derived as functions of molecular parameters. Numerical simulation is carried out for the
shear flow problem using both the molecular and the tensor models, focusing on the effect of altering molecular
architecture. When the equilibrium phase is biaxial, novel flow modes are found, and the flow mode sequences
show delicate dependence on the molecular architecture. The tensor model proves to exhibit all the flow modes
found in the molecular model.

1. Introduction

The liquid crystalline flows are studied extensively in the last few
decades. The majority of works focus on rod-like molecules that can
exhibit uniaxial nematic phase in equilibrium. The earliest and simplest
approach is the macroscopic Ericksen–Leslie theory [23], in which the
orientation is described by a unit vector. However, this approach is
insufficient to investigate singular phenomena, such as defects. For the
microscopic approach, Doi [10] established the kinetic equation of the
density function (the Smoluchowski equation), which we call the mo-
lecular model. Doi theory has been applied to study the spatially
homogeneous shear flow problem for rod-like molecules [12,13,21,22].
It has also been extended to inhomogeneous flows [14,27,40,46,47].
Despite its great success, the simulation is time-consuming, making its
application to inhomogeneous flows rather restricted. To reduce the
dimension of variables, many works aim to construct models in which
the orientation is described by tensors. Apart from some phenomen-
ological tensor models [4,29], most tensor models are obtained by
closure approximation of Doi theory [2,3,8,11,16,18–20,39,45]. With
various closure approximations for different types of flows, the tensor
models have proved to be able to capture the phenomena in the mo-
lecular model, although no one closure approximation can recover all

the phenomena.
When the molecule is not axisymmetric, the phase behavior can

become very complicated. As a representative, bent-core molecules
have attracted much attention. Even when restrained to nematics
phases, they have proved to show the biaxial nematic phase [1,26] and
the modulated twist-bend phase [6,9,28]. The nematic phase behavior
of bent-core molecules has also been discussed theoretically
[5,15,31,32,37]. The most eminent difference between bent-core mo-
lecules and rod-like molecules is that numerous experiments have
shown that the phase behavior is sensitively dependent on specific
molecular architecture [36], which is far from well-understood. The
dynamics of bent-core molecules is thus expected to be fascinating. In
particular, it is extremely desirable to understand the connection be-
tween the molecular architecture and the macroscopic flow pattern.

In [17], a three-level schema is proposed for the modeling of rod-
like liquid crystals, applicable for both static and dynamic theory.
Starting from the molecular model, one can derive the tensor model,
then the vector model (Oseen–Frank and Ericksen–Leslie theory), with
all the coefficients determined by molecular parameters and the energy
dissipation retained. We have applied the approach to the static theory
of rigid molecules with achiral twofold symmetry, two of which are
bent-core molecules and star molecules (see Fig. 1). For molecular
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interaction, we consider the Onsager theory, i.e. adopt the hardcore
interaction that is determined by the molecular architecture. We have
studied the order parameters and homogeneous phases [43], where we
have shown that three tensors, one first-order (vector) and two second-
order symmetric, shall be chosen. The elastic energy is derived in [42]
to investigate modulated nematic phases. It also enables us to examine
how the elastic constants are affected by molecular architecture [44].
The key point is that the order parameters and the form of the free
energy are determined by molecular symmetry. In other words, for
bent-core and star molecules, or other molecules with the same sym-
metry such as T-shaped, W-shaped, equilateral-triangular-shaped, and
circular-arc-shaped, the order parameters and the form of free energy
are identical. The molecular architecture, which is a crucial factor as
the experiments indicate, is distinguished by the coefficients that are
derived as functions of molecular parameters.

Now we turn to the dynamics of non-axisymmetric liquid crystals.
Macroscopic dynamic models have been proposed for the biaxial ne-
matic phase [7,24,30] as an extension of the Ericksen–Leslie theory.
Their applications are even more limited than the Ericksen–Leslie
theory, because multiple nematic phases may coexist. Meanwhile, to
our knowledge, no tensor model has been proposed. As for the micro-
scopic approaches, the Smoluchowski equation is adopted to investigate
the dynamics of ellipsoids [34,35] and bent-core molecules [33]. These
works present some inspiring results on the homogeneous shear flow
problem, obtaining several flow modes different from rod-like mole-
cules. Despite this, they are far from sufficient for the aim to build
connection between molecular architecture and flow pattern. One ap-
parent limitation is that the model in these works includes only the
local biaxial interaction. A less noticeable but much more serious
drawback is the inconsistency of the coefficients with the molecular
architecture. Some coefficients are phenomenological, and some are
derived from different molecular architecture. It makes the model un-
able to definitely claim that certain flow patterns are resulted from a
certain molecule, because it is solely the coefficients that differentiate
molecular architecture. The results also show inconsistency in sym-
metry. The appearance of nonzero mixed second moments does not
comply the twofold molecular symmetry, which we will discuss in our
numerical results. These shortcomings shall be overcome in this paper.

The main goal of this paper is to establish a dynamic model that
clearly reflects the effect of molecular architecture on flow patterns. We
consider the hardcore molecular interaction and the friction between
molecules and the fluid. For the molecule–fluid friction, we write down
the general formulation. Then we carefully adopt the same molecular
architecture as in the static model, so that we can build the free energy
into the dynamic model consistently. In this way, we are able to write
down the molecular model, with the energy dissipation law, fully based
on molecular architecture and physical parameters. Since it makes no
difference in derivation, we write down a generic model that is avail-
able for future applications to inhomogeneous flows. Similar to the
static model, for bent-core molecules and star molecules, the dynamic
model shares the same form because they have the same molecular
symmetry. This is also the case if we consider other types of microscopic
interactions. The molecular architecture is differentiated by the coef-
ficients that are deduced from molecular parameters.

We then derive the dynamic tensor model that describes the or-
ientation more concisely, which has not been considered in literature
and is our second goal. We deduce the equation of the three tensors
appearing in the free energy from the Smoluchowski equation. The
high-order tensors appearing in the tensor model are expressed by the
three tensors using quasi-equilibrium approximation, a generalization
of the Bingham closure, which keeps the energy dissipation law. Also,
the tensor model inherits the property that the form and coefficients are
determined by the molecular symmetry and the molecular parameters,
respectively.

For the numerical simulation, we restrain our attention to the shear
flow problem. We examine the flow modes for both bent-core molecules
and star molecules, illustrating the ability of the model to system-
atically study the variation of flow modes resulting from adjusting
molecular architecture. The results we obtain are consistent with the
molecular symmetry. In particular, we choose the parameters in the
vicinity of the uniaxial–biaxial phase boundary in quiescent fluid,
which is not studied previously. We find that the flow mode sequences
do not vary much in uniaxial regions, but exhibit big change in the
biaxial region. Moreover, in the biaxial region, we find flow modes that
do not resemble any one reported previously. Also, we compare the
results obtained from the molecular model and the tensor model. The
tensor model is able to exhibit all the flow modes found in the mole-
cular model, although under different parameters. The sequence is
mostly identical at low shear rates.

The paper is organized as follows. In Section 2 we derive the mo-
lecular model. In Section 3 we derive the tensor model and prove the
energy dissipation along with the quasi-equilibrium closure approx-
imation. In Section 4 we use both the molecular model and the tensor
model to examine the shear flow problem. Concluding remarks are
given in Section 5.

2. Molecular model

2.1. Notations

We view the molecules that form liquid crystalline states as fully
rigid. Thus, we may choose a body-fixed orthogonal frame

m m mO( ; , , )1 2 3 to describe the position and the orientation of a mole-
cule. In a space-fixed orthogonal coordinate system (O; e1, e2, e3), they

can be expressed in terms of =
⎯ →⎯⎯⎯

x OO and a three-dimensional proper
rotation P∈ SO(3). In the language of matrix, P is a 3×3 orthogonal
with det =P 1 such that

=m m m e e e P( , , ) ( , , ) .1 2 3 1 2 3 (2.1)

The elements of =P m( )T
ij are the components of mi, denoted by

= m em · .ij i j

In some cases, we need to specify a point on the molecule, and we use
its coordinates ̂r in the body-fixed frame m m mO( ; , , )1 2 3 . Every P∈ SO
(3) can be expressed by Euler angles α, β, γ:
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The uniform probability measure on SO3 is given by
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sin d d d .2

Fig. 1. Bent-core molecule and star molecule.
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For the notations of tensors, we use the summation over repeated
indices. The product of several tensors without operators is recognized
as tensor product: m1m2m3 represents a third order tensor with the (i, j,
k) component m1im2jm3k. If a tensor contraction involves first or second
order tensor, we also use the single and double dots: suppose we have a
first order tensor p, a second order tensor Q, and a fourth order tensor
R, then

= = =p pQ Q p R p R Q R Q R( · ) , ( · ) , ( : ) .i ij j jkl i ijkl kl ij ijkl (2.3)

To describe the number of molecules with certain position x and
orientation P, we introduce the density function f(x, P). Moreover, we
split f(x, P) into the local concentration c(x) and the orientational
distribution ρ(x, P),

∫ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
= ⎛
⎝

⎞
⎠

x x x x xc νf P ρ P f P c( ) d , , , , / ( ).
(2.4)

The notation <·> represents the average about ρ(x, P),

∫= xν ρ P(·) d (·) ( , ).

The differential operators on SO(3) are involved when discussing
the motion of the rigid molecules. In specific, we use Li to denote the
derivatives along the infinitesimal rotation about mi. The operators Li
can be expressed by derivatives of Euler angles,

= ∂
∂

L
γ

,1
(2.5)
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(2.7)

Denote =L L L L( , , )T
1 2 3 . If a vector-valued function a(P) is expressed as

= + +a m m mP a P a P a P( ) ( ) ( ) ( ) ,1 1 2 2 3 3 then the divergence is defined
by

= + +aL L a L a L a· .1 1 2 2 3 3

We may verify the following properties using the above definition.
Acting the operators on mij, we have

=m mL ϵ .i j ijk k (2.8)

Here we use the Levi–Civita symbol,

=
⎧

⎨
⎩

=
− =

k k k
k k kϵ

1, ( ) (123), (231), (312);
1, ( ) (132), (213), (321);

0, otherwise.
k k k

1 2 3

1 2 31 2 3

The operators also satisfy the integration by parts on SO(3),

∫ ∫⎜ ⎟ ⎜ ⎟
⎛
⎝
⎞
⎠
= − ⎛

⎝
⎞
⎠

νf L g ν L f gd d .i i
(2.9)

2.2. General formulation

The motion of rigid molecules includes translation and rotation,
driven by molecular interaction and molecule–fluid interaction. In
general, the translation and rotation can be coupled. But in what fol-
lows, we will deduce them separately under various approximations. To
let our discussion be specific, we assume that a rigid molecule consists
of spheres of the diameter D and the mass m0. In this case, the archi-
tecture of a molecule is given by the number density of the sphere
centers ̂̂ rρ ( ) in the body fixed frame m m mO( ; , , ),1 2 3 and we assume
that the center of mass is located atO. The rigid molecules are dissolved
in incompressible viscous fluid, and the molecule-fluid interaction
stems from the friction between them. The frictional force between a

sphere and the fluid is proportional to the relative velocity, given by
= −F Vζ , where =ζ πDη3 0 is the friction constant.
The molecular interaction induces a potential field μ(x, P) given by

the functional derivative

=μ
δF f

δf
[ ]

,
(2.10)

where F[f] represents the free energy of a system with the number
density f(x, P) of rigid molecules. The free energy includes the con-
tribution of the entropy and pairwise interaction,

= +F f F f F f[ ] [ ] [ ],entropy r (2.11)

where

∫= xF k T ν f fd d log .entropy B (2.12)

For bent-core molecules and star molecules, we will give the expression
of Fr later.

2.2.1. Smochulowski equation
In general, the Smochulowski equation for the rigid molecules can

be written as

∂
∂
= −∇ −w ω

f
t

f L f·( ) ·( ).
(2.13)

Here, for the molecule at the position x and the orientation P, we use w
(x, P) to denote the velocity of the center of mass, and ω(x, P) to denote
the angular velocity. For both of them, we split the contribution of
molecular interaction, wm, ωm, and fluid–molecule interaction, wf, g, by
writing

= + = +w w w ω ω g, .m f m

We start from the rotation resulted from the molecular interaction.
To derive this term, we assume that a molecule is rotating in the
quiescent fluid, with the angular velocity ωm round the center of mass.
The torque generated by the friction between a molecule and the
quiescent fluid is the sum of frictional torque on each sphere,

̂ ̂ ̂ ̂̂∫− = × × =N r r r ω r Iωζ ρ
ζ

m
d ( ) ( ) ,m m

0 (2.14)

where I is the moment of inertia of a molecule, calculated as

̂ ̂ ̂ ̂ ̂̂∫= −I r r r rrm ρd ( )( ).0
2

(2.15)

On the other hand, suppose the molecule is doing an infinitesimal ro-
tation = ×ϕδP δt P. Then the work done by the frictional torque is
− N ϕδt· , and shall equal to the variation of potential. Therefore,

= + − =N ϕ ϕδt μ P δP μ f δt Lμ· ( ) ( ) · ,

yielding =N Lμ. Comparing it with (2.14), we have

= − −ω Im
ζ

Lμ.m
0 1

If we carefully choose mi such that I is diagonal in the body-fixed frame,
then we can write

∑ ∑= = −
= =

ω m mω D L μ( ) ,m
i

i i
i

i i i
1

3

1

3

where the diffusion coefficients are given by

=D m
ζI

.i
ii

0

(2.16)

Note that ωm actually gives a diffusion term − −IL m ζ fLμ·( )0
1 1 in the

Smoluchowski equation. Define

=V δF
δf

,r

(2.17)
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then we can split μ as

= + +μ k T f V(log 1) .B (2.18)

and the diffusion term can also be written as

∑ +
=

D k TL f L fL V[ ( )].
i

i B i i i
1

3
2

(2.19)

Similarly, we derive wm by considering the translation of a molecule
in the quiescent fluid. Generally, wm can be written as

= − ∇ + ∇w J k T f f V( ),m B (2.20)

where the diffusion coefficient J is a 3× 3 positive matrix. To derive J,
we need to consider the hydrodynamic interaction, namely the inter-
action of different spheres through the fluid, which can be done using
the Kirkwood theory (see [10]). In Appendix, we will outline how to use
the Kirkwood theory to calculate J and present the result for bent-core
molecules. As a simple approximation, if we ignore the hydrodynamic
interaction, then J will be a multiple of the identity matrix.

Next we derive the translation and rotation generated by molecu-
le–fluid interaction. Now we need to consider the motion of a molecule
driven by the fluid with inhomogeneous velocity. We require that the
velocity of the center of mass, wf, and the angular velocity, g, minimize
the frictional work. Denote by ̂u r( ) and ̂u r( )p the velocity of the fluid
and the sphere at the point ̂r , respectively. Then the frictional work of
the fluid and the molecule can be written as

̂ ̂̂∫= −r r u uW ζ ρd ( ) .p
2

(2.21)

Note that ̂= − ×u w g rp f . Since the scale of rigid molecule is much
smaller than the fluid field, we may suppose that the flow is linear. In
other words, if we denote = ∂κ u ,ij j i then we may assume

̂ ̂= +u r r uκ( ) · .0

Here, u0 is the velocity at x, where O is located. By minimizing (2.21),
we deduce that

̂ ̂ ̂ ̂̂∫= = ×−w u g I r r r rm ρ κ, d ( )( · ).f 0 0
1

(2.22)

If we denote the fluid velocity by v(x), then we may write

= =w u v.f 0 (2.23)

Summarizing the derivation above, the Smoluchowski equation can
be rewritten as follows,

∂
∂
+ ∇ = ∇ ∇ + ∇ + + −−v J I g

f
t

f k T f f V L D k TLf fLV L f·( ) ·( ( )) ·[( )( )] ·( ).B B0
1

(2.24)

2.2.2. Momentum equation
The incompressibility gives

∇ =v· 0. (2.25)

The momentum equation is written as

⎛
⎝
∂
∂
+ ∇ ⎞

⎠
= −∇ + ∇ +v v v Fρ

t
p τ· · ,s e (2.26)

where ρs is the density of the fluid, Fe is the external force, and
= +τ τ τe v is the stress, divided into the elastic and the viscous part. The

elastic stress τe and the external force Fe can be derived from the
principle of virtual work. Because the derivation is standard and can be
found in literature [10], we only list the results here. The external force
Fe is given by

∫= − ∇ = − ∇F ν μ f f c μd ( ) ,e (2.27)

where we recall that c is the concentration. For τe, if we express g as

=g mκ α: ( ) ,jk i jk i (2.28)

then

=τ c α L μ( ) ( ) .e jk i jk i (2.29)

When I is diagonal, by (2.22), we deduce

̂ ̂ ̂ ̂̂∫= ×− r r r m rα m I ρd ( ) ( ).i ii i0
1

(2.30)

The viscous stress can be expressed as

= + +τ η κ κ τ2 ( ) .v
T

vf (2.31)

The first term is the contribution of the friction in the fluid itself, and τvf
is the contribution of the friction between the fluid and the molecules,
determined by the following equation

=c W κ τ: ,vf (2.32)

where W is given by (2.21) with g taking (2.22).
The whole system is described by (2.24)–(2.26), with the terms

given by (2.16), (2.22), (2.27), (2.29), (2.32). It is worth noting that all
the terms are derived from the distribution of sphere centers ̂̂ rρ ( ) and
the free energy F[f].

2.2.3. Energy dissipation law
The energy of the system includes the free energy (2.11) and the

kinetic energy of the fluid,

∫ +x v
ρ

F fd
2

[ ].s 2

Now let us prove the energy dissipation law. For simplicity, we omit kBT
in the following. We have
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∫ ∫
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0 1
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2

0 1

0 1

(2.33)

In the above, we ignore the boundary terms. Note that the first three
terms are not positive. By (2.32) and (2.21) we know that the last term
is not positive either.

2.3. Bent-core molecules and star molecules

For bent-core molecules and star molecules, the sphere centers are
distributed in the plane m mO 1 2 . In this case, we can simplify the ex-
pressions derived above. First, we have = +I I I33 11 22. Thus, in (2.22),

= − +
+

−g m m m m m m m m

m m m

κ κ
I I

I κ I κ( : ) ( : ) 1 ( :

: ) .

2 3 1 1 3 2
11 22

22 1 2 11

2 1 3 (2.34)

Then in (2.29), we have

= = − =
+

−m m m m m m m mα α α
I I

I I, , 1 ( ).1 2 3 2 1 3 3
11 22

22 1 2 11 2 1

(2.35)

By (2.21) and (2.32), we deduce that
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= ⎡
⎣⎢

+

+
+

+ + ⎤
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m m m m m m m m
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τ
cζκ
m

I I

I I
I I

:

( )( ) .
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22 1 1 1 1 11 2 2 2 2

11 22

11 22
1 2 2 1 1 2 2 1

(2.36)

We can see that the only difference in the above terms lies in the
coefficients as functions of the moment of inertia, from which we can
distinguish the bent-core molecules and star molecules. For a bent-core
molecule (drawn in Fig. 1 left), the sphere centers are distributed uni-
formly and continuously on a two-segment broken line, where the
length of each segment is l/2. Thus, ̂ρ is given by

̂ ̂̂ ∫ ⎜ ⎟= ⎛
⎝
− ⎛
⎝
− ⎞
⎠

− ⎞
⎠−

r r m mρ
l

s δ l s θ s θ( ) 1 d
4
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2

sin
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.l
2

1 2

l
2

(2.37)

Substituting it into (2.15) and recalling (2.16), we obtain

= =I l m θ I l m θ
48

·4 sin
2

,
48

·cos
2

.11
2

0 2
22

2
0 2

(2.38)

For a star molecule (drawn in Fig. 1 right), the sphere centers also lie in
a third line segment of the length l2. Thus, ̂ρ is given by
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where

=
−

+
x

l l

l l

cos
C

θ1
2 2

2 1
4

2
2

2

is the m1-coordinate of the center of mass.
For bent-core molecules and star molecules, the spatial diffusion

matrix J derived from the Kirkwood theory (see Appendix) is diagonal
in the frame (mi),

∑=
=

J m m
πDη

γ1
8

.
j

j j j
0 1

3

(2.41)

For bent-core molecules with =D l/ 1/40, we plot γ in Fig. 2 right.
For the free energy, we adopt the tensor model derived in [42] from

the second virial expansion with the hardcore molecular interaction.
The hardcore interaction is determined only by the molecular shape,
given by ̂ρ in the current context. Assume that the concentration c is
constant. Define =p m ,1 = m mQ ,1 1 1 = m mQ2 2 2 . For both mo-
lecules, Fr shares the form below,

∫ ⎜= ⎛
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+ + +
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23 2

2
24 1 2

27 28 1 1 29 2 2 2,10 1 2

(2.42)

which is determined by the molecular symmetry [42,43]. The differ-
ence also lies in the coefficients ckj. They are derived as functions of the
molecular parameters l, D, θ for bent-core molecules, and also l2 for star
molecules. They possess the scaling property

= +c l c D l θ l l( / , , / ).͠kj
k

kj
3

2 (2.43)

The calculation of ckj is discussed in [42,43]. In Fig. 2 left we plot c02,

c03, c04 that are necessary for the shear flow problem. With Fr given, Fe
and τe are determined by (2.27) and (2.29).

To summarize, we establish the dynamic model from the molecular
shape described by ̂ρ , and the free energy F[f]. In the case of hardcore
interaction, F[f] is also determined by the molecular shape. Therefore,
the model is able to characterize the dynamics of molecules with dif-
ferent shapes. In particular, for bent-core molecules and star molecules,
the model has the same form, no matter for the free energy F and other
terms. The two types of molecules are distinguished by numerous
coefficients in the model, which are expressed as functions of molecular
parameters.

3. Tensor model

We derive the tensor model from the molecular model. When we use
the free energy (2.42), the elastic stress τe and the external force Fe can
also be expressed by tensors. Let V be computed from the free energy
(2.42). Denote

= = =
p

V
k T

δF
δ

V
k T

δF
δQ

V
k T

δF
δQ

1 · , 1 · , 1 · .p
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r
Q

B

r
Q

B
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1 2
1 2

Direct computation gives

= + ∇ + ∇ − − ∇ ∇p p pV c c Q c Q c c· · Δ ( · ),p 01 11 1 12 2 21 27 (3.1)

= + − ∇ − − − ∇ ∇

− ∇ ∇
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(3.2)
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c Q
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(3.3)

And we can verify that =V δF δf/r satisfies

= + +m m m m mV V V V· : : .p Q Q1 1 1 2 21 2 (3.4)

Thus

= + +m m m m mL V V L V L V L·( ) : ( ) : ( ).pi i Q i Q i1 1 1 2 21 2 (3.5)

From this equation, the elastic stress can be written as
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(3.6)

And the external force is written as

= − ∇ + +F pck T V V Q V Q( · : : ).pe B Q Q1 21 2 (3.7)

Now the Eq. (2.26) is only relevant to the tensors. For the Eq. (2.24), we
multiply it by the tensors and integrate in SO3. Generally, we can write

∂
∂
+ ∇ = + +vA

t
A· ,A A AN M V

(3.8)

where A is arbitrary tensor, and , ,A A AN M V are the terms computed
from spatial diffusion terms, rotational diffusion terms, and rotational
convection terms. We need the integration by parts (2.9) and (2.8)
when computing these terms. Take Q1 as an example. After multiplying
m1m1 and doing the integration, the following term appears,

∫ ∫
∫

=

= − = −

m m m m

m m m m m m m m

ν D L f D νL f

D ν f D

d d ( )

d 2( ) 2 .
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1 1

2 3 3 1 1 2 3 3 1 1

(3.9)

Similarly, we can derive that
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To make the equations form a closed system, we need to express
high-order tensors as functions of (p, Q1, Q2). Here we use
the quasi-equilibrium approximation, namely to choose f that
minimizes the entropy term ∫ dνflog f with (p, Q1, Q2) equal to the
given value. Remember that =f cρ where c is constant. Thus ρ is given
by [42]

= + +b m m m m mρ P
Z

B B( ) 1 exp( · : : ),1 1 1 1 2 2 2 (3.19)

where b is a vector, B1 and B2 are symmetric matrices, and

∫ ⎜ ⎟= ⎛
⎝

+ + ⎞
⎠

b m m m m mZ ν B Bd exp · : : .1 1 1 1 2 2 2
(3.20)

Now the system is described by (p, Q1, Q2). The evolution of
three tensors is governed by (3.8) in which the terms are given
by (3.10)–(3.18), together with (2.25) and (2.26) in which the terms
are given by (2.36), (3.6), (3.7). The high-order tensors are
computed from (3.19), which keeps f positive and the energy
dissipation law. It is obvious that f is positive, and we can
deduce that

Fig. 2. Some coefficients in the model for bent-core molecules with =D l/ 1/40. Left: coefficients of the bulk energy. Right: translational diffusion coefficients.
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In the above, we denote = pμ δF δ/ ,p etc. The details are given in
Appendix. Note that each of the right-hand terms is not positive. We
point out that the form of the tensor model is also determined by mo-
lecular symmetry, and the coefficients are functions of molecular
parameters.

4. Numerical results

In this section, we focus on the shear flow problem. We assume that
the velocity is along the x-direction, and the gradient is along the y-
direction, and

= ∂ =κ v k12 2 1

is a constant. We also assume that the tensors are spatially homo-
geneous. Thus, we only need the bulk energy in (2.42) and will discard
the gradient terms. In this case, the equation of momentum holds
naturally, and we need to solve the Smoluchowski equation only.

We rescale the time unit by = −t ζl k T t( /48 )͠ B
2 1 . It cancels the kBT in

the free energy and the units in the rotational diffusion coefficients Di.
For bent-core molecules, the rescaling let

= ⎛
⎝

+ ⎞
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− − −D D D θ θ θ( , , ) 4 sin
2

, cos
2

, 1 3 sin
2

.1
1

2
1

3
1 2 2 2

After the rescaling, the shear rate k becomes dimensionless. In the free
energy, by (2.43) we rescale =∼x x l/ and reduce the shape parameters
to three dimensionless ones: =η D l/ , l2/l, and θ. We fix =η 1/40, and
express the concentration by = +α cD l l( )2

2 that is proportional to the
volume fraction +π cD l l( /4) ( )2

2 .
In what follows, we examine both the molecular model and the

tensor model, and compare the flowing modes shown by both models.

4.1. Numerical method

For the tensor model, we use (3.19) to convert the equations of
tensors into equations of (b, B1, B2),

⎜ ⎟= ⎛
⎝

∂
∂

⎞
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−b p
b

pB B
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Q Q
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Q Q
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.1 2 1 2

1 2

1
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(4.1)

The derivatives ∂
∂

p
b

Q Q
B B

( , , )
( , , )

1 2
1 2

are computed by (A.4). They are expressed by
high-order tensors. The tensors are computed by numerical integration
about the Euler angles. Each of the Euler angles is discretized by 32
points. The time discretization is implemented by the classical fourth-
order Runge–Kutta method with the time step = −δt 10 2. The initial
value is chosen as = =B B 0,1 2 while =b (1.4, 2.8, 1.4)T pointing to a
tilted direction.

For the molecular model, we adopt a spectral-Galerkin method,
where we use Wigner D-matrix ′Dmm

j (see, for example, [41]), truncated
at j≤ 10, to discretize the density function f. For the time integration,
we also use the classical fourth-order Runge–Kutta method, with the

time step = × −δt 5 10 3. For the initial value, we start from the Boltz-
mann distribution with = =B B 01 2 and =b (1.4, 2.8, 1.4)T . We let it
evolve 2000 time steps under the parameter =α 0.5, =θ π23 /32,
=k 6.4, and take the result as the initial value.

4.2. Flow modes

Before looking at the flow modes, we review the homogeneous
nematic phases shown by bent-core molecules and star molecules in
quiescent fluid, namely =k 0, which are discussed in [42]. In these
phases we have =p 0. Denote = = − −m mQ I Q Q3 3 3 1 2. Bent-core
molecules and star molecules can exhibit the uniaxial nematic phase,
where we can find a unit vector n such that

= ⎛
⎝

− ⎞
⎠
+ =nnQ s I I i

3 3
, 1, 2, 3.i i

According to the signs of si, the uniaxial nematic phase is further clas-
sified. It is the N2 phase where s1, s3< 0, s2> 0, indicating that m2

accumulates near n and m1, m3 accumulate near the plane vertical to n;
and the N3 phase where s1, s2< 0, s3> 0, indicating that m3 accumu-
lates near n and m2, m3 accumulate near the plane vertical to n. We can
also observe the biaxial nematic phase (B), where we can find an or-
thonormal frame (n1, n2, n3) such that

= + +n n n n n nQ s s s .i i i i1 1 1 2 2 2 3 3 3

The eigenvalues satisfy sii> sij (j≠ i), indicating that mi is preferably
along ni.

Both bent-core molecules and star molecules exhibit the isotropic
phase with small α, and the modulated twist-bend phase with large α.
Thus, in this work we will choose intermediate α to let the system have
homogeneous nematic phases in equilibrium. For bent-core molecules,
we choose =α 0.42, 0.5, and examine the bending angles =θ jπ/32
where 16≤ j≤ 23. For both α, it shows the N2 phase for 20≤ j≤ 23,
the N3 phase for 16≤ j≤ 18, and the B phase for =j 19. For star
molecules, we fix =α 0.42, =θ π2 /3 and examine =l l j/ /402 where
5≤ j≤ 11. It shows the N2 phase when =j 5, the N3 phase when
=j 11, and the B phase when 6≤ j≤ 10.
We choose the shear rates as = = …k n n0.2 , 1, ,100. Since p is zero

in quiescent fluid, we are interested in whether p appears. Actually,
under our choice of parameters, |p| always decays rapidly. In equili-
brium, it results from c01> 0 for the hardcore molecular interaction
(see [43]). The results in dynamics suggest that in homogeneous flow p
will not be induced. In the following, we no longer look at p and focus
on Q1 and Q2. Denote the unit eigenvector of the largest eigenvalue of
Qi as qi for =i 1, 2. Note that in quiescent fluid q1 and q2 are vertical.
Although it does not hold in shear flow, we find that q1 and q2 are
always approximately vertical. Actually, in most cases, we have cos ⟨q1,
q2⟩≤ 0.1. This value may become a little larger when the shear rate k is
near the transition value between two flow modes. At that time, the
largest and second eigenvalues of Q1 or Q2 might be very close so that
q1 and q2 are sensitive to the value of Q1 and Q2. Thus, we may view the
molecule as having a preferred orientation such that mi is near qi, and
classify the flow modes according to the motion of qi.

4.2.1. Molecular model
For the molecular model, the flow modes are described below.

1. Log-rolling (LR): steady state, where q2 is along the z- (vortex) di-
rection, and q1 lies in the −x y (shear) plane.

2. Kayaking(K): one of q1 and q2 rotates round the z-axis, while the
other shows a splayed pattern (see Fig. 4 left). If qi rotates round the
z-axis, we denote the flow mode as K-Qi.
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3. Double splayed (DS): q2 shows splayed pattern near the x-axis, q1
shows splayed near the y-axis (see Fig. 4 right).

4. Tumbling (T): q2 rotates in the −x y plane; q1 also rotates in the
plane, but jumps to z when it approaches the y axis (see Fig. 3 left).

5. Wagging: q2 shows wagging near the x-axis. According to the mo-
tion of q1, it is further classified into two cases.

• Wagging-alternating (W-A): q1 is wagging near the y-axis, with a
jump to the z-axis (see Fig. 3 right).

• Wagging-wagging (W-W): q1 is wagging near the y-axis.
6. Flow-aligning (FA): steady state, where q2 lies in the −x y plane,

while q1 may be in the −x y plane (FA-y) or along the z axis (FA-z).

First we examine the flow modes for bent-core molecules. The range
of shear rates for each flow mode in molecular model is listed in
Table 1a and b. For =θ π19 /32 and =α 0.5, the flow modes are

Q Q zK- : [0, 2.8], K- : [3.0, 6.8], FA- : [7.0, 20.0].2 1

We have mentioned that in quiescent fluid, the bending angle =θ jπ/32
determines which of the three nematic phase is observed. In shear flow,
different nematic phases result in distinct flow mode sequences with the
shear rate k increasing. When 16≤ j≤ 18, namely the equilibrium
phase is N3, the only flow mode is FA-z. When =j 19, namely the
equilibrium phase is B, we obtain only FA-z for =α 0.42, and the K-Q2

— K-Q1 — FA-z sequence for =α 0.5. When 20≤ j≤ 23, namely the
equilibrium phase is N2, the sequence follows LR— K-Q2 — T—W-A—
W-W — FA-y — FA-z, with one or two modes missing. For =α 0.42, T is

missing for all the four angles, and LR is not shown for =j 20. For
=α 0.5, LR is not found for =j 23, K-Q2 is not shown for =j 21, T and

W-A are missing for =j 20, and FA-z is not exhibited for =j 22, 23.
For star molecules, we can have a closer look at the effect of mo-

lecular shape in the biaxial region (Table 2). Recall that as l2/l in-
creases, the equilibrium phase sequence is N2 — B— N3. At =l l/ 0.125,2
the flow mode sequence is LR — K-Q2 — W-W — FA-y— FA-z, which is
part of the sequence found for bent-core molecules in the N2 region.
When l2/l increases and enters the B region, the K-Q1 mode emerges
between FA-y and FA-z. Then we observe some subtle phenomena when
l2/l further increases. At =l l/ 0.2,2 the K-Q2 mode moves to the middle
of FA-y and K-Q1. At =l l/ 0.225,2 the mode at low shear rates changes
from LR to K-Q2 and LR emerges at high shear rates, resulting in the
sequence K-Q2 — W-W — FA-y — K-Q2 — LR — FA-z. Then at
=l l/ 0.25,2 K-Q2 at high shear rates vanishes. Finally at =l l/ 0.275,2 the

two periodic modes K-Q2 and W-W are substituted by DS.
Because rod-like molecules also show the N2 phase in equilibrium,

we would like to compare the flow modes of bent-core molecules with
= ≤ ≤θ jπ j/32, 20 23 with those of rod-like molecules that have been

studied extensively in literature. If we only look at the motion of q2, the
five modes are also found for rod-like molecules. The out-of-plane
steady and out-of-plane oscillating states are also exhibited by rod-like
molecules but are not shown in our results. The works on rod-like
molecules imply that the occurrence of two out-of-plane modes might
require a careful choice of α near the isotropic-nematic transition (see
the solution diagrams in [12]). Our choice of α, however, is

Fig. 3. Left: Tumbling motion of q1. Right: Wagging-
alternating motion of q1.

Fig. 4. Left: Kayaking. The red and blue lines are motions of ± q1 and ± q2: when q1 corresponds to blue line, it shows K-Q1 mode; otherwise it shows K-Q2 mode. Right: Double
splayed, where red line gives the motion of ± q2, and blue line gives the motions of ± q1. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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significantly larger than the transition value.
In contrast, when the molecular shape parameters are in or very

close to the B region, the flow mode sequences are sensitively depen-
dent on the these parameters. Two flow modes, K-Q1 and DS, are only
observed in this case. Moreover, flow modes that appear at low shear
rates may now appear at high shear rates. Compared with the flow
mode sequences in the N2 region, where the shear is the only driving
force of biaxiality, in the B region, both the molecular interaction and
the shear generate biaxiality. Thus, the balance between them can be
delicate, leading to diverse flow mode sequences.

4.2.2. Tensor model
We only examine the bent-core molecules using the tensor model.

The range of shear rates for each flow mode in tensor models is listed in
Table 3a and b. For =θ π19 /32 and =α 0.5, the flow modes are

Q zDS: [0, 8.4], K- : [8.6, 16.8], FA- : [17.0, 20.0].1

We compare the results of tensor model with molecular model. Al-
though under different shape parameters, we can observe all the flow
modes found in the molecular model. For 16≤ j≤ 18, the only mode
FA-z is the same as molecular model. This is also the case for =j 19 and
=α 0.42. For =j 19 and =α 0.5, the DS takes the place of K-Q2, while

the K-Q1 and FA-z coincide with the molecular model. For =j 20, the
sequence in the tensor model covers that in the molecular model, with
the extra LR for =α 0.42 and W-A for =α 0.5. For 21≤ j≤ 23, the
tensor model captures only the modes occurring at lower shear rate in
the molecular model. Specifically, we do not observe W-W, FA-y and
FA-z for the three j, and W-A for =j 23 and =α 0.5. Some missing
modes in molecular model are exhibited, including T for =α 0.42 and
=j 22, 23, K-Q2 for =α 0.5 and =j 21, and LR for =α 0.5 and =j 23.
For the rod-like molecules, the tensor model with Bingham closure

has been examined and compared with the molecular model. The re-
sults (see [20,45]) suggest that the tensor model works better when α is
near the isotropic-nematic transition value, and at low shear rate. This
is also observed in our results for bent-core molecules for 20≤ j≤ 23.
Because the isotropic–nematic transition value increases as θ decreases,
the α we choose is nearer to the isotropic-nematic transition value for
=j 20 than 21≤ j≤ 23. Indeed, for =j 20, the flow mode sequence in

tensor model better reflects that in molecular model.

4.3. Discussion

We compare our model and the results with those in [33], where
simulation is done for a molecular model.

From the modeling viewpoint, the limitation of [33] is that the
coefficients are derived using distinct molecular architecture, mean-
while containing phenomenological coefficients, as stated in that work.
Such a model is good enough if we only aim to describe some flow
patterns of biaxial molecules. However, it does not suffice if we aim to
build connections between molecular architecture and flow pattern,
because the molecular architecture is differentiated solely by the
coefficients. This aim is attained in the current work by deducing all the
coefficients from the same molecular architecture. This feature proves
to be crucial, as both experiments and our numerical results evidence
that the macroscopic behavior may vary significantly with a small
change of molecular architecture.

We now discuss the value of other tensors. We first look at p de-
scribing the polar order, which is not considered in [33]. It is in-
corporated in our model, and the numerical results show that =p 0.
This is actually a stronger claim than merely ignoring it that the polar
order is vanishing in homogeneous flow with hardcore molecular in-
teraction. With other interactions, however, the polar order may

Table 1
Range of the shear rate k for flow modes in the molecular model for bent-core molecules.

θ LR K-Q2 T W-A W-W FA-y FA-z

23π/32 – [0, 10.0] [10.2, 12.0] [12.2, 14.8] [15.0, 17.0] [17.2, 20.0] –
22π/32 [0.2, 7.0] [7.2, 8.6] [8.8, 9.4] [9.6, 12.0] [12.2, 13.6] [13.8, 20.0] –
21π/32 [0.2, 5.6] – [5.8, 6.0] [6.2, 8.0] [8.2, 9.6] [9.8, 16.2] [16.4, 20.0]
20π/32 [0.2, 2.8] [3.0, 3.4] – – [3.6, 5.2] [5.4, 11.0] [11.2, 20.0]
18π/32 – – – – – – [0.2, 20.0]
17π/32 – – – – – – [0.2, 20.0]
16π/32 – – – – – – [0.2, 20.0]

(a) =α 0.5.
θ LR K-Q2 T W-A W-W FA-y FA-z

23π/32 [0.2, 9.0] [9.2, 9.4] – [9.6, 11.0] [11.2, 12.0] [12.2, 18.6] [18.8, 20.0]
22π/32 [0.2, 6.2] 6.4 – [6.6, 8.4] [8.6, 9.2] [9.4, 14.6] [14.8, 20.0]
21π/32 [0.2, 3.4] 3.6 – [3.8, 4.8] [5.0, 5.8] [6.0, 10.2] [10.4, 20.0]
20π/32 – [0.2, 1.4] – [1.6, 2.0] [2.2, 2.6] [2.8, 6.0] [6.2, 20.0]
19π/32 – – – – – – [0.2, 20.0]
18π/32 – – – – – – [0.2, 20.0]
17π/32 – – – – – – [0.2, 20.0]
16π/32 – – – – – – [0.2, 20.0]

(b) =α 0.42.

Table 2
Range of the shear rate k for flow modes in the molecular model for star molecules, =α 0.42.

l2/l LR K-Q2 W-W DS FA-y K-Q1 FA-z

0.125 [0.2, 4.4] [4.6, 5.2] [5.4, 6.8] – [7.0, 11.8] – [12.0, 20.0]
0.15 [0.2, 4.2] [4.4, 5.0] [5.2, 6.2] – [6.4, 11.0] [11.2, 12.8] [13.0, 20.0]
0.175 [0.2, 3.8] [4.0, 4.4] [4.6, 4.8] – [5.0, 10.4] [10.6, 12.4] [12.6, 20.0]
0.2 [0.2, 3.0] [10.0, 10.6] [3.2, 4.4] – [4.6, 9.8] [10.8, 11.2] [11.4, 20.0]
0.225 [9.8, 11.6] [0.2, 1.8], [9.2, 9.6] [2.0, 3.0] – [3.2, 9.0] – [11.8, 20.0]
0.25 [8.8, 12.6] [0.2, 1.0] [1.2, 1.8] – [2.0, 8.6] – [12.8, 20.0]
0.275 [8.4, 13.4] – – [0.2, 2.4] [2.6, 8.2] – [13.6, 20.0]
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appear. Even when considering the hardcore interaction, although not
appearing in homogeneous flows, p shall be significant when studying
inhomogenous flows. From the free energy, p emerges through the
couplings with the modulation of Qi (see [42]). In the presence of flow,
the modulation of Qi can be generated by the fluid, which might lower
the volume fraction for p to exhibit.

Next, we discuss the mixed moments <mimj> , (i≠ j). Generally,
we shall have = =m m m m 0,1 2 1 3 because the two orientations (m1,
m2, m3) and − −m m m( , , )1 2 3 are not distinguishable for bent-core mo-
lecules. When the polar order is not exhibited, we shall also have

=m m 02 3 . We note that the mixed moments are nonzero in [33],
which is inconsistent with the molecular symmetry. In our model, nu-
merical results show they are zero in both molecular and tensor model.
This can also be proved directly from the model. Actually, in the tensor
model, it is guaranteed by (3.19). In the molecular model, if the
equality

= + = − + −

= − −

f P α β γ t f P α β γ π t f P π α β π π γ t

f P π α β γ t

( ( , , ), ) ( ( , , ), ) ( ( , , ), )

( ( , , ), )

holds for =t 0, we can prove that it holds for arbitrary t>0 (see
Appendix). We then derive from the above symmetric property that

=m m 0i j for i≠ j.

5. Concluding remarks

In this work, we establish the molecular model and the tensor model
for the dynamics of bent-core molecules and star molecules in in-
compressible fluid. We assume that the molecule is rigid consisting of
spheres. Based on this architecture, we build hardcore molecular in-
teraction and sphere–fluid friction into the model. In this way, we ob-
tain the molecular model fully determined by physical parameters,
which clearly reflects the molecular architecture. The tensor model is
then derived from the molecular model, with the form and coefficients
also determined by molecular symmetry and molecular parameters,
respectively. Along with the quasi-equilibrium closure approximation,

the tensor model inherits the energy dissipation of the molecular model.
We use both molecular model and tensor model to examine the flow

modes in the shear flow problem. In particular, we focus on the effect of
bending angle of bent-core molecules, and the length of the extra arm of
star molecules. The parameters are chosen to cover the transition be-
tween three nematic phases N2, B and N3, and not to invade the region
of modulated nematic phases. We examine the change of flow modes
when the parameters go across the N2 – B and B – N3 phase boundaries.
When the equilibrium phase is N2, we find the flow modes analogous to
the rod-like molecules. When the equilibrium phase is B, we find novel
flow modes, and the flow mode sequences are delicately dependent on
molecular architecture. The tensor model is able to capture all the flow
modes shown by the molecular model. Under our choice of parameters,
the flow mode sequence is mostly identical to that in the molecular
model for smaller bending angles, and recovers the part of sequence in
the molecular model at low shear rate for larger bending angles.

Although we only examined the shear flow problem, both the mo-
lecular model and the tensor model are ready for the study of in-
homogeneous flows. Also, for the shear flow problem, the model can be
applied to other molecules with the same symmetry to carry out ex-
tensive investigations of the effect of molecular shape. For the sake of
computational efficiency, fast algorithms of closure approximation are
worth discussion. Currently we compute the quasi-equilibrium ap-
proximation by numerical integration, which is time-consuming. It is
possible to seek for fast computational methods, as is done for rod-like
molecules [16,25,38]. Besides, the formulation of the tensor model
allows us to adopt simpler closure approximations that might be sui-
table for specific types of flows, which is expected to be done in the
future.
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Appendix A. Some equalities about the closure

Suppose f is given by (3.19), and Z is defined in (3.20). Direct computation gives

∫= = + + −x x b p
F
k T

νρ P ρ P B Q B Q Zd ( , )log ( , ) · : : log ,entropy

B
1 1 2 2 (A.1)

Table 3
Range of the shear rate k for flow modes in the tensor model for bent-core molecules.

θ LR K-Q2 T W-A W-W FA-y FA-z

23π/32 [0.2, 12.2] [12.4, 19.2] [19.4, 20.0] – – –- –
22π/32 [0.2, 8.6] [8.8, 13.0] [13.2, 14.4] [14.6, 20.0] – – –
21π/32 [0.2, 4.8] [5.0, 7.4] [7.6, 8.6] [8.8, 20.0] – – –
20π/32 [0.2, 1.4] [1.6, 3.0] – [3.2, 5.8] [6.0, 14.6] [14.8, 19.6] [19.8, 20.0]
18π/32 – – – – – – [0.2, 20.0]
17π/32 – – – – – – [0.2, 20.0]
16π/32 – – – – – – [0.2, 20.0]

(a) =α 0.5.
θ LR K-Q2 T W-A W-W FA-y FA-z

23π/32 [0.2, 7.4] [7.6, 10.4] [10.6, 12.0] [12.2, 20.0] – – –
22π/32 [0.2, 4.4] [4.6, 6.6] [6.8, 7.4] [7.6, 20.0] – – –
21π/32 [0.2, 1.8] [2.0, 3.4] – [3.6, 20.0] – – –
20π/32 [0.2, 0.6] [0.8, 1.0] – [1.2, 1.8] [2.0, 7.4] [7.6, 10.4] [10.6, 20.0]
19π/32 – – – – – – [0.2, 20.0]
18π/32 – – – – – – [0.2, 20.0]
17π/32 – – – – – – [0.2, 20.0]
16π/32 – – – – – – [0.2, 20.0]

(b) =α 0.42.
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and

∂
∂

= ∂
∂

=
b b

p
Z

B B Z
Z

B B
Q Q

log
( , , )

1
( , , )

( , , ).
1 2 1 2

1 2
(A.2)

Thus we can deduce that (see [42])

∂
∂

=
p

b
k T

F
Q Q

B B1
( , , )

( , , ).
B

entropy

1 2
1 2

(A.3)

Moreover, The Jacobian ∂
∂

p
b

Q Q
B B

( , , )
( , , )

1 2
1 2

can be expressed by high-order tensors,

∂
∂

=
∂

∂
= −
=

p
b b

m m m m m m m m m m p p
m m m m m

Q Q
B B

Z
B B

Q Q Q Q

( , , )
( , , )

log
( , , )
( , , )( , , ) ( , , )( , , )

cov( , , ).

1 2

1 2

2

1 2
2

1 1 1 2 2 1 1 1 2 2 1 2 1 2

1 1 1 2 2 (A.4)

Appendix B. The proof of the energy dissipation law of the tensor model

Now we prove the energy dissipation law, for which we need to rewrite the diffusion terms. From (A.3), we can write

= + + +m m m m mμ k T μ μ μ· : : .pB Q Q1 1 1 2 21 2 (B.1)

Here we denote = pμ δF δ/p etc., and F is the free energy. Thus the terms like (3.9) are rewritten as

∫ ∫
∫

− =

= − − − − +

= + + + +

m m m m

m m m m b m m m m m

b m m m m m m m m m m m m m

ν D L f D νfL L f

D νf B

D B

d d ( ) (log )

d ( )( · : ( ))

[ · ( ) : ( )( ) ].

1 1 2 2
2

2 2 1 1 2

2 1 3 3 1 3 1 1 3 3 1

2 3 3 1 1 3 1 1 3 3 1 1 3 3 1 (B.2)

Now we can rewrite

∑

∑

∑

∑

∑

∑

∑

∑

∑

− = + +

+ + − +

− = +

+ + +
+ +

+ − + +
− = + +

+ − +

− − + +

= ⎡
⎣⎢

+
+

−
+

⎤
⎦⎥
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⎝
⎜∂

+ ∂

+ ∂ ⎞

⎠
⎟
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⎝
⎜∂

+ ∂
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⎠
⎟
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⎝
⎜∂

+ ∂
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⎠
⎟
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=

=

=

=

=

=

=

=
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D μ μ
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μ
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μ μ

D μ
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κ I
I I

I
I I
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Meanwhile, we rewrite the elastic stress as

= + +

+ +

+
+

⎡
⎣⎢

−

+ − + −

m m m m m m m m m
m m m m m m

m m m m m

m m m m m m m m

τ ck T μ μ
μ

I I
μ I I

μ μ I I

{ : ( ) ·
: ( )

1 · ( )

( ): ( )( ) ]}.

p

p

e B Q

Q

Q Q

2 3 3 2 2 3 3 1 3

1 3 3 1 1 3

11 22
2 22 1 2 11 2 1

1 2 2 1 22 1 2 11 2 1

2

1

1 2 (B.3)

From the above equations, we deduce (3.21).

Appendix C. Kirkwood theory

We describe how to calculate the spatial diffusion coefficient matrix J using the Kirkwood theory. Assume that the molecule consists of N spheres.
Denote by Fi the force exerted on the sphere i due to hydrodynamic interaction. The Kirkwood theory gives

∑=V FH ,i
j

ij j
(C.1)

where

̂
̂ ̂
̂ ̂ ̂ ̂⎜ ⎟= ⎛

⎝
+ ⎞

⎠
= − ≠

r
r r
r

r r rH
πη

I j i1
8

, , .ij
ij

ij ij

ij
ij j i

0
2 (C.2)

For =j i, we adopt the approximation =H I τ/ii [10], where I is the identity matrix. We choose =τ πη D32 0 . Suppose that a molecule is undergoing a
translation in the quiescent fluid with the velocity V. Then =V Vi . On the other hand, the total hydrodynamic force shall be identical to the force
that stems from the thermodynamic potential. Thus we have

∑ = −∇F μ.
i

i
(C.3)

From (C.1) and (C.3), we can deduce the relation of V and ∇μ. Define �∈ ×H ,N N3 3 �∈ ×L N3 3 and �∈F N3 by

=
⎛

⎝
⎜⎜

⋯
⋮ ⋮
⋯

⎞

⎠
⎟⎟

=
⎛

⎝
⎜ …

⎞

⎠
⎟ =
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⎝
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⋮
⎞

⎠
⎟⎟

F
F

F
H

H H

H H
L I I I, , , , , .

N

N NN N N

11 1

1

1

 

Then we can rewrite (C.1) and (C.3) as

= = −∇F V FH L L μ, .T

Therefore, we can solve that

= − ∇− −V LH L μ( ) .T1 1

Thus, = − −J LH L( )T1 1.
For bent-core molecules, we use a discrete version of (2.37), namely to view the molecule as consisting of + = +N η1 1 1/ spheres located at

=̂ − +r m ml s θ ls θ( 1
4

)cos
2

sin
2

,j j j1 2 (C.4)

where = − ≤ ≤s j N N j N/ , /2 /2j . Using this molecular architecture we arrive at (2.41).

Appendix D. Symmetry of the molecular model in homogeneous case

We investigate the Smochulowski equation in the shear flow,

∂
∂

= + −−I g
f P t

t
L D k TLf fLV L f

( , )
·[( )( )] ·( ),B0

1
(D.1)

where g is given by (2.34), V is given by (3.4) and (3.1)–(3.3) without gradient terms. We will prove that if the equality

= + = − + −

= − −

f P α β γ t f P α β γ π t f P π α β π π γ t

f P π α β γ t

( ( , , ), ) ( ( , , ), ) ( ( , , ), )

( ( , , ), )

holds for =t 0, then it holds for t>0.
We only prove the first equality, because the other two follow exactly the same way. By (2.7), for arbitrary u, we have

= +
= − +
= − +

L u P α β γ t L u P α β γ π t
L u P α β γ t L u P α β γ π t
L u P α β γ t L u P α β γ π t

( )( ( , , ), ) ( ( ( , , ), )),
( )( ( , , ), ) ( ( ( , , ), )),
( )( ( , , ), ) ( ( ( , , ), )).

1 1

2 2

3 3

We then examine the symmetry of right-hand terms at =t 0. By the symmetry of f, we also have = +V P α β γ V P α β γ π( ( , , ), 0) ( ( , , ), 0). Thus, we
can verify that for the diffusion term,
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+
= + +

−

−
I

I
L D k TLf fLV P α β γ

L D k TLf fLV P α β γ π
[ ·(( )( )))]( ( , , ), 0)

[ ·(( )( ))]( ( , , ), 0).
B

B

0
1

0
1

For the convection term, write = ∑=g mκ α( : )i i i1
3 . It is straightforward to verify that

= +
= − +
= − +

α P α β γ α P α β γ π
α P α β γ α P α β γ π
α P α β γ α P α β γ π

( ( , , ), 0) ( ( , , ), 0),
( ( , , ), 0) ( ( , , ), 0),
( ( , , ), 0) ( ( , , ), 0).

1 1

2 2

3 3

Hence,

= +g gL f P α β γ L f P α β γ π[ ·( )]( ( , , ), 0) [ ·( )]( ( , , ), 0).

Therefore, f(P(α, β, γ), t) and +f P α β γ π t( ( , , ), ) are governed by the same equation. Since they are equal at =t 0, it is also the case for any t>0.
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