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Formation of three-dimensional colloidal crystals
in a nematic liquid crystal

Yiwei Wang, a Pingwen Zhang*a and Jeff Z. Y. Chen *bc

We investigate the possible structures of three-dimensional colloidal crystals formed when these

spherical particles are dispersed in a liquid crystal. The case of a strong homeotropic boundary

condition is considered here. Their corresponding defect structures in the space-filler nematic liquid

crystal are induced by the presence of the spherical surface of the colloids and produce an attraction

between colloidal particles. Here, a standard Landau–de Gennes free energy model for a spatially

inhomogeneous liquid crystal is numerically minimized to yield an optimal configuration of both

spherical colloids and the orientational field. The stable and metastable structures obtained in this work

are described and analyzed according to the type of periodic liquid-crystal defect lines that couple the

colloidal spheres together. A large range of the spherical size is covered in this study, corresponding to

a 5CB-liquid-crystal comparison for assembling micron- to nano-sized colloidal spheres. Multiple

configurations are found for each given particle size and the most stable state is determined by a

comparison of the free energies. From large to small colloidal particles, a sequence of structures,

which range from quasi-one-dimensional (columnar), to quasi-two-dimensional (planar), and to truly

three-dimensional, are found to exist.

1 Introduction

A colloidal crystal is a spatially ordered array of colloidal particles.
Building novel colloidal structures, including colloidal crystals,
is one of the most active areas in modern colloidal science.
Liquid-crystal colloids, which are dispersions of discrete colloidal
particles in a liquid crystal containing anisotropic orientational
ordering itself, have been proven to be a new and efficient tool to
achieve this goal. The presence of colloidal particles disrupts the
orientational ordering of liquid crystals locally and generates
topological defects near the particle surface; in turn these defects
couple colloidal particles together to form colloidal crystals.1

During the last decades, a large amount of work has been
devoted to studying colloidal structures formed in liquid crystals.2–11

It has been shown that multiple colloidal particles in a nematic
liquid crystal can self-assemble to form one-dimensional (1D) linear
chains2,7 or two-dimensional (2D) colloidal crystals.3–6,9–11 The
experimental realization of three-dimensional (3D) colloidal
crystals in a nematic is relatively rare; Nych et al., for example,
recently produced a 3D nematic colloidal crystal, known as the
dipolar crystal, experimentally.12 Normally, at nano to micron

length scales, isotropically shaped colloidal particles are modeled
by solid spheres. They are attracted to each other due to indirect
interactions, induced by the much smaller liquid-crystal molecules
that act as a space filler between colloidal spheres. The orientational
properties of these liquid-crystal molecules are usually modeled by
an orientational field which is treated as a continuous function of
spatial coordinates.

One common way to understand the physical mechanisms
for building higher-level structures is to extend the ideas we
have already learnt from lower-level structures, such as the
compound structures of liquid crystals with one or two colloidal
particle(s) in the bulk.2,4,5,7,13 The anchoring of liquid crystal
molecules on the surface of colloidal spheres highly influences
the continuous nematic orientational field and due to geometry
frustration, produces orientational field defects, anisotropically
placed around the colloidal sphere(s). For example, under the
right conditions, a single sphere can produce a small defect ring
in the nematic liquid above the north pole. Effectively, this can
be viewed as a single dipole configuration in comparison with
electrostatics.14 Just as multiple dipole molecules can form
a head-to-tail 1D configuration, the physical mechanism of
forming a 1D colloidal chain can be understood as assembly
of effective colloidal dipoles, heads to tails.2,4

The uniqueness of liquid-crystal-colloid compounds is the
mutual influence of the colloidal configuration and surrounding
nematic field which cannot be separated. Take the example of the
1D dipolar linear configuration. As multiple 1D dipolar chains
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are placed near each other, the space-filling nematic field seeks
further reduction of the overall free energy by adjusting its
orientational field; this could simply yield a weak binding
attraction between chains, hence the resulting 3D configuration
is identifiable as a quasi-1D structure, or this could generate a
complete rewiring of the defect lines to enable a more closely
coupled structure. The defect pattern is dependent on the
relative position of the adjacent colloidal spheres. Hence, to
theoretically determine the structure of a liquid-crystal colloidal
crystal, a model free energy (such as Landau–de Gennes used
here) for the spacing–filling liquid crystal must be minimized
simultaneously with respect to both the orientational field and
relative colloidal positioning.

Recently, Čopar et al. took an interesting approach in which
a 3D opal-like, closely packed face-centered-cubic (fcc) crystal
structure is assumed. They then ask the question of how many
topologically different ways can defect lines be wired in the
building voids where the liquid crystal fills. Once this answer
emerges, one can then use them as the elementary building
blocks to classify the defect network.15 Experimentally, such an
opal-like system was also studied by Kang et al., in which a
different way to decompose the defect networks was proposed.16

We understand from ref. 15 that in the systems they studied, the
solid spheres are in contact with each other to form a rigid
structure; this could be regarded as a porous medium filled with
a nematic liquid crystal.17–19

We take a different approach here by deforming the elementary
computation cells from the ideal conditions. In this work, we start
by taking a primitive, body-centered, base-centered, or face-
centered unit cell and assume the space-filling liquid crystal
can be described by the LdG free energy as a function of a
tensor orientational order parameter Q(r) [see Section 2 and
Appendix A]. Both Q(r) and the unit cell parameters (including
the cell lengths and cell angles) are allowed to vary in a
minimization procedure [see Appendices]. The LdG theory
contains two system parameters, t and 1/xR, for which t can
be identified with a customarily used value in liquid crystal
5CB.1,4–8,20,21 The other parameter, 1/xR, can be related to the
reduced colloidal particle radius and is used as an adjustable
system parameter here [see Appendix B]. In order to employ the
spectral representation of the order parameter tensor in a
deformable unit cell [see Appendix C], we use a numerical trick
to properly set up the homeotropic boundary conditions at the
surfaces of the spherical colloidal particles [see Appendix D].
The free energy is then minimized with respect to both Q(r) and
unit-cell parameters such as cell lengths and cell angles. The
procedure gives rise to a liquid-crystal-colloid configuration,
corresponding to a free-energy minimum, locally or globally,
with a deformable crystal structure.

The obtained structures are analyzed in Section 3, where we
pay attention to how defect lines couple the colloidal particles
together. The structures are classified as quasi-1D, quasi-2D,
and true 3D in subsections, according the coupling of colloidal
spheres to their neighbors. As a unit cell is not uniquely defined
for a given periodic structure, the same defect-colloid structure
can be calculated and viewed in different types of unit cells.

Whenever possible, we also present a face-centered perspective
based on the positions of the almost closely packed colloidal
spheres. Beyond a few highly symmetric structures, most
structures found here have a face-centered unit cell where the
lengths and angles are not idealized.

The free-energy branches of these structures as functions of
1/xR allow us to determine the most stable structures that have
the lowest free energies, as described in Section 4. While most
of the determined structures fit into the topological categories
defined in ref. 15, we discover new types of liquid crystal defects
in the colloid-crystal voids, complementary to those already
discussed. The result, of course, is prediction of new crystalline
structures beyond those in ref. 15.

2 Model

To study the current system we adopt a conventional approach
and assume that the free energy contains two parts. The first is
the LdG free energy F, which is a functional of the order-parameter
tensor Q(r) used to describe the local orientational ordering of the
background liquid crystal. In its reduced version,

F ¼
ð

t
2
trðQ2Þ �

ffiffiffi
6
p

4
trðQ3Þ þ 1

4
½trðQ2Þ�2 þ xR2

2
jrQj2

( )
dr; (1)

where r describes the spatial coordinates written in units of R,
t is a dimensionless temperature-like parameter, and xR is a
dimensionless ratio between the bending rigidity of the nematic
texture and the radius of the spherical colloidal particles.
The one-elastic-constant approximation is made here.1,4–8,20,21

The second is the surface anchoring energy to model the
interaction between the immersed spherical colloidal particles
and the liquid crystal. We impose a surface energy that enforces
strong homeotropic anchoring at the spherical surfaces,

Fs ¼
w

2

ð
QðrÞ �QsðrÞj j2dA; (2)

where the integration is carried out over all surfaces A of
colloidal particles and Qs is fixed at S0(3ns#ns � I)/2 with

S0 ¼
ffiffiffi
2
p

3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 64t
p� �

= 8
ffiffiffi
3
p� �

. The anchoring strength w is
chosen to be significantly large to model the strong homeotropic
anchoring condition.22–30

In order to numerically find the structures of three-dimensional
colloidal crystals, we focus on a single unit cell lattice and assume
periodic solutions at all lattice boundaries. The order parameter
Q(r) is expanded in terms of a standard Fourier series in which the
main-k vectors are considered up to the truncated term. The
coefficients of the Fourier bases are determined by a standard
optimization method such as the Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) algorithm,31 which adjusts
all coefficients during optimization. The strong homeotropic
anchoring at the surface of colloidal particles is dealt with by the
fictitious domain method.32 A unit lattice used in the computation
can contain n (n = 1, 2, 3, 4) colloidal spheres by considering a
primitive, body-centered, base-centered, or face-centered unit cell.
Subsequently, the periodicity of the unit lattice and the cell angles
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are adjusted during optimization by a derivative-free optimization
method such as the Mesh Adaptive Direct Search (MADS).33 The
details of the numerical method can be found in the Appendices.

We draw isosurfaces of the orientational order parameter
S(r), which is the largest eigenvalue of Q,1 or isosurfaces of the
Westin metric cl, which is the difference between the two
largest eigenvalues of Q,34 to visualize the topological defects.
The resulting effect is a thick, connected curve.

3 Results: stable and metastable
structures

The numerical results presented below are for a fixed
t = �0.22341,4–8,20,21 and an adjustable particle size through
varying 1/xR. The minimization of the free energy with respect
to Q(r) in a 3D space produces a stable solution [i.e., corres-
ponding to a (hopefully) global minimum] or a metastable
solution (i.e., a local minimum) for a given set [t,xR]. The
stability of each structure is assessed by examination of the
reduced free-energy per particle

fn ¼
Fn � Fb

nxR2
; (3)

where Fn is the lattice free-energy minimum and Fb is the free
energy of the undistorted liquid crystal in the unit cell.

Among the fifteen 3D structures found in this work, the six
illustrated in Fig. 1 have dominating low free-energies in the
corresponding parameter regions shown in Fig. 1(g). Many
of these defect structures are manifested from the defect

structures known as the dipolar and quadrupolar states, when a
single spherical particle is placed in a bulk liquid crystal.2,4,14,23

Some of the structures can be traced back to formation of colloidal
dimers found recently2,7,20 and some are unique in their 3D
arrangement. We dissect these structures, together with other
metastable structures, below.

3.1 Quasi-1D structure: BCD

The simplest 3D structure is the body-centered dipolar crystal
(BCD), which is found here to be stable when 1/xR \ 160
(corresponding to R \ 1.2 mm in 5CB). The quasi-1D structure
can be clearly traced back to the dipole configuration found
from the system of a single colloidal sphere placed in a large
liquid crystal cell, which is energetically preferred when 1/xR \ 220
in its own environment.13 The 3D structure turns out to have a
larger stability domain.

In comparison with electrostatics, the compound of the
single colloidal sphere and associated defect ring in the liquid
crystal could be regarded as an electric dipole moment, point-
ing vertically in Fig. 2(a). It is now well known that two of these
structures can form a stable dipolar pair, pointing head to
tail.35 A 1D dipolar colloidal chain, all in the head-to-tail
formation, can be experimentally made in a real liquid crystal
containing multiple dipolar compounds.2,4

The 3D structure in Fig. 2 could be viewed as further stacking
of these chains to form a right-angle columnar structure with
a square base; the closest neighboring chains are shifted in
the z-direction by half of the center-to-center distance within a
column. Theoretically, Chernyshuk et al. demonstrated that the
octopole moment plays an important role in the formation of
such a 3D nematic colloidal crystal in the framework of Oseen–
Frank theory.36 The blue unit cell of BCD shown in Fig. 2 is a
body-centered rectangular prism with equal unit-cell lengths on
the base and a shorter unit-cell length vertically. The values of
these cell dimensions were adjusted in our computation to
achieve the free-energy minimum. In the final equilibrium
structure, we obtained a = b E 3.08R and c E 2.09R for
xR = 0.007071 (R E 1 mm in 5CB), which is in agreement with
the values measured experimentally in ref. 12 [a = b = (3.2 � 0.1)R,
c = (2.3 � 0.2)R]; furthermore, they also agree with the values
predicted theoretically in ref. 36 (a = b = 3.07R, c = 2.44R36).
Experimentally, in a recent publication, Nych et al. reported that

Fig. 1 Three-dimensional stable structures of colloidal crystals formed in
a nematic liquid crystal, found in this work by numerically minimizing the
LdG free energy at room temperature according to the 5CB parameter-
izations. The optimized unit cells of P1, C1 and C2 are not right rectangular
prisms. The structures are plotted at xR = 0.1768 [(a) for FCC], 0.08839
[(b) for P1], 0.03536 [(c) for C1], 0.03536 [(d) for C2], 0.03536 [(e) for RL1],
and 0.007071 [(f) for BCD]. The domain of the particle size, 1/xR, is divided
into a 1D phase diagram for the free-energy-preferred colloid-defect
structures in (g).

Fig. 2 Different perspectives of BCD at xR = 0.007071. Plot (a) shows the
colloid-defect structure in two body-centered unit cells. Plot (b) illustrates
how stacking of 1D dipolar colloidal chains forms a 3D structure. The
cross-section structure in the (110) plane is shown in (c) together with the
main nematic director. The black rings, representing the liquid crystal
defects, are drawn by iso-surfaces of S = 0.5.
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BCD can be stabilized when 4 mm colloidal particles self-assemble
themselves in a bulk liquid crystal (ZLI-2806).12

3.2 Quasi-1D structure: columnar

Previously, a number of groups reported that the defect patterns
around a pair of intruding spherical colloids can re-arrange
significantly to display entangled or unentangled defect lines. In
the case of multiple colloidal spheres, the rearrangement of
defects can be viewed as rewiring the defect lines to cover
multiple spheres. Among them, a class of quasi-1D, columnar
(C) structures appear metastable and stable, as shown in Fig. 3.
These 3D structures can be viewed as stacking of two basic types
of 1D colloidal chains, represented by columns (unfilled and grey),
alternately arranged in the x–y plane. The colloidal particles in
unfilled columns are shifted along the vertical direction from
those in grey columns by about half of the sphere–sphere
distance along a chain.

The compositions of the two columns in the first two states,
C1 and C2, are identical. In comparison with the defect patterns
of colloidal-dimer formation, C1 and C2 can be related to the
so-called entangled-hyperbolic-defect (H) and unentangled-
defect (U) dimer pairs, respectively.7,20,24 Instead of the one-
to-one coupling of a dimer pair, the same defect pattern links

all spheres along the 1D direction. This was observed in previous
experimental and numerical studies.7,20 The 3D stacking pattern
follows the illustration in Fig. 3(a).

The two columns in C3, C4, C5, and C6 are made of different
types of defect structures. C3 contains ‘‘H coupling’’ and
‘‘U coupling’’, as a natural mixing of typical columns in C1

and C2. C4 contains H coupling along the grey columns and the
so-called figure-of-Omega defect (O) which entangles two (and
only two) nearest spheres along the unfilled columns. C5

contains O coupling along the grey columns and the so-called
figure-of-eight defect (E) which entangles two (and only two)
nearest spheres along the unfilled columns. C6 is similar to C4,
where the grey columns are made of H-coupled spheres. The
O-coupled spheres in the unfilled columns now involve all spheres.
The 3D stacking pattern follows the illustration in Fig. 3(b).

Going back to the basic symmetries of these states, we note
that these are all right-angled columnar, i.e., the column-axis is
at a right angle with respect to the column base. A two-fold
rotational symmetry about the column-axis exists in C1, C2 and
C3. The same rotation brings C4 (also C5 and C6) to a different
state C4

0 (also C5
0 and C6

0) that has a degenerate free-energy to
the original. The symmetry of all states can be viewed in an
alternative perspective. Cutting through all nearest-neighboring
spheres in all grey columns and using this plane as the new x–y
plane, we can show that the structure can be represented in a
face-centered parallelepiped unit cell, with the old z axis sitting
along the direction that connects two adjacent, face-centered
spheres. The illustration in Fig. 3(c) is for C4, which has three
types of colloidal spheres in different symmetry environments.
All edge lengths of this new perspective are different.

This section describes the types of 3D defect states, which
are relatively stable and relatively easy to find, appearing in our
calculations. One could imagine, for example, a state that
contains O in one column and U in another, or H in one
column and E in another. Many combinations could exist along
this direction of thought. Note that one column in C4 or C5 is
made of a sequence of entangled sphere-doublets. Structurally,
to make it more complicated, one could also imagine that a
single column contains a sequence of sphere-triplets or other
types of multiplets, or even a sequence that contains a mixing
of different types of multiplets. To build beyond the scenario of
two column types, the 3D system could even include three (or
more) types of columns—the combination is almost endless.
This would require that the computation box is extended to a
much larger cell. So far, we have restricted ourselves to a basic
face-centered calculation box and found that these columnar
structures can be stabilized when 1/xR \ 20 (corresponding to
R \ 150 nm in 5CB).

3.3 Quasi-2D structures: planar structures

A number of quasi-2D structures can be stabilized in the
system. Typically, three identical layers of planar crystals stack
on top of each other, shifted along the 2D plane from each
other, as shown in Fig. 4(a). Each layer contains 2D defect
structures in the liquid crystal that couple the colloidal particles
closely in a plane.

Fig. 3 Columnar structures for xR = 0.03536. Plots (a and b) illustrate two
types of column arrangement for columns with grey and unfilled shades.
Taking a different perspective, these columnar structures could be viewed
to have a face-centered parallelepiped unit cell as in plot (c). The two types
of columns are shown in (d–i) for C1, C2, . . . and C6, respectively. Spheres
that have the same symmetry environment carry the same color.
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Among these, the hexagonal planar P1 is energetically preferred
in the small 1/xR range. The colloidal spheres self-organize in a
perfect 2D hexagonal lattice, caged by connected defect lines
around every particle, which themselves form a 2D hexagonal
defect lattice as well. As can be seen in Fig. 4(c) the structure
maintains a six-fold rotation about the z-axis. There is no direct
defect line coupling between layers and as such the spacing
between the two nearest layers is larger than the sphere–sphere
distance of the 2D hexagonal packing. Within the range
11 t 1/xR t 20 (corresponding to 80 nm t R t 150 nm in
5CB), P1 has the lowest free energy among those studied in this
paper, and hence is considered stable, shown by the phase
diagram in Fig. 1.

Two other planar, metastable structures can be stabilized
relatively easily, to yield local free energy minima in a larger
1/xR domain, as illustrated in Fig. 4(d) and (e). P2 contains
two types of identifiable defect-line patterns in a layered plane.
From the top-view of the 2D plane, a large, S-shaped loop couples
multiple spheres together. Smaller ring-shaped defect loops can
also be found in the liquid crystal between adjacent spheres.
In each layer, P3 is built from a repeated, 2D pattern that involves

four colloidal spheres as a braid. They form a parallelogram shown
by four colors in Fig. 4(e). Both large defect loops in P2 and P3 are
different from those seen in systems consisting of a bulk liquid
crystal and isolated single or double colloidal particles. Although
the 2D lattice structures of P2 and P3 resemble an almost
hexagonal lattice, a careful examination reveals that the 6-fold
rotational symmetry about the vertical axis is replaced by a
2-fold rotational symmetry.

An fcc-like view is shown in Fig. 4(b), where the coupled
layers are also explicitly labeled as cross-sections. The face-
centered unit cell of P1 is a rhombohedron with non-right angles
and equal cell lengths (a = b = c E 2.99R, a = b = g E 88.41). In
contrast, the face-centered unit cells of P2 and P3 are both
parallelepipeds with non-right angles and unequal cell lengths.

The formation of 2D crystals by packing colloidal particles
either in a thin nematic film9 or at a nematic–air interface37

was reported previously. For example, Ravnik and Žumer et al.
constrained their study of the same LdG model on a rectangular,
body centered 2D unit cell with a periodic boundary condition.
Along the perpendicular direction from the 2D plane, the liquid
crystal was assumed to extend in a 3D box of a size 4-times the
colloidal radius; the boundary conditions of the background
liquid crystal at the top and bottom of the box are assumed to
be in the same ‘‘rubbing’’ direction. We take a different approach
here. We obtained all structures directly from a 3D parallelepiped
unit cell with periodic boundary conditions in all three directions.
The final analysis of the resulting 3D defect structures then
leads to our conclusion that these three structures can be
considered stacking of layers.

3.4 Quasi-2D structure: RL

There exists another type of quasi-2D structures. Within a 2D
layer the defect lines glue colloidal particles into a 2D crystal
where a rectangular unit cell can be identified. The 3D rectangularly
layered (RL) structures are periodic stacking of these 2D rectangles
vertically, as schematically shown in Fig. 5(a).

The first is RL1, for which the 2D layers can be viewed in
Fig. 5(d). A basic, single-sphere defect pattern is accompanied
by a strongly bent defect ring that stretches across a large
region. The ring configuration itself more resembles a dipolar
configuration in a single-sphere case, but two ends of the defect
ring are stretched to near-equator positions. Two typical layers
can be viewed in the figure, with the colloid-defect-ring direction
reversed in alternative layers. Due to the built-in symmetry of the
layered structure, the final 3D unit cell is a face-centered right
rectangular prism with unequal sides, as schematically shown in
Fig. 5(b).

For comparison, layers in RL2 contain more closely coupled
2D structures, as shown in Fig. 5(e). Both layers have exactly the
same pattern but one shifts in the figure’s diagonal direction by
half the diagonal sphere–sphere distance. A typical, stretched
defect ring now intercalates among four colloidal spheres
together. Due to the interwound pattern, each layer has a square
symmetry. As a consequence, the unit cell in the final stacked 3D
structure is a body-centered right square prism, or equivalently, a
larger face-centered right square prism, as shown in Fig. 5(c).

Fig. 4 Planar structures which contain three different layers of closely
coupled colloids. The three layers are represented by grey-filled, unfilled,
and line-shaded patterns, as indicated in (a). Three planar structures are
found here, at xR = (c) 0.08839, (d) 0.03536, and (e) 0.03536. The layer
types are labeled in (c), (d) and (e). Colloidal spheres having the same symmetry
environments are represented by the same color. Plot (b) takes an imperfect
face-centered view of P3 across two unit cells. For illustration purposes, the radii
of spheres shown in plot (b) are reduced to half of their actual sizes.
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RL3 is also a layered structure with an identical pattern
shown in each layered x–y plane [see Fig. 5(f)]. Two typical
defect rings can be identified. The first is an extensively
deformed defect ring that glues four spheres together in a
triangle formation. A single defect ring, resembling the defect
ring in a dipolar ring of a single particle configuration, appears
between two spheres and further connects the lattice together
in a network. Layer by layer, the 3D structure is built, in a
similar way as in RL2. The structure, however, has a two-fold
rotational symmetry about z, not four-fold. Because of its
particular symmetry, the final body-centered unit cell of RL3

is a right rectangular prism with unequal sides, and the final
face-centered unit cell in RL3 is a right prism with a diamond-
shaped base.

Among these three structures, RL1 has the lowest free energy
for large-1/xR, as discussed in Section 4.1. The formation of
these rectangular layered structures is a consequence of bend-
ing and stretching of defect rings, which can be viewed as new
ways of arranging unentangled rings—these arrangements
become possible with multiple spheres.

3.5 3D defect structures

From our computations, true 3D structures that contain 3D
defect structures, which couple the colloidal particles in a 3D
crystal formation, can be stabilized in a small particle range,
1/xR t 11. Taking the 5CB liquid crystal as an example, we
estimate that these structures exist when the sizes of the
colloidal particles are in the nanometer range (R t 80 nm).

The most stable (i.e., low free-energy) 3D structure, FCC, has
colloidal particles placed in a perfect face-centered cubic unit
cell. An fcc unit cell is illustrated in Fig. 1(a), where each
colloidal sphere is caged inside a regular, connected network
of defect lines. The structures can be viewed in a smaller, body-
centered tetragonal unit cell, as illustrated in Fig. 6(a), where
the rhombic-dodecahedron-like cage can be seen clearly. The
defect structure in FCC is closely related to the entangled-
hyperbolic-defect (H) structure in the dimer problem.7,24 Instead
of forming a defect ring between two closest particles like H,
a parallelogram-shaped loop, which is a facet of the rhombic-
dodecahedron, appears here.

Approximately within the same 1/xR range, another highly
symmetric 3D structure, BCC, can be stabilized, but has a higher
minimized free energy than that of FCC. As illustrated in Fig. 6(b),
the colloidal spheres are placed in a perfect body-centered cubic
lattice. Around each colloidal sphere, the defect lines form a
truncated-octahedron-like cage. Although BCC is metastable (i.e.
has a higher free-energy minimum than that of FCC as shown in
the inset of Fig. 7(a)), it is quite stable against small perturbations
in the optimal Q profile and the optimal unit cell obtained by our
numerical solution. That is, BCC is trapped in a free-energy
minimum which means that it could be observed experimentally
to coexist with FCC.

4 Discussion
4.1 Comparison between free energies

All the structures illustrated in the last section are obtained from
minimizing the LdG model, each within its own range of 1/xR.
Globally, for a given 1/xR these free energy minima are compared
and the lowest is deemed stable. Fig. 1(g) shows the one-
dimensional phase diagram, as the result of this comparison.

Fig. 7 displays all free-energy branches (per colloidal particle)
where the symbols represent the results from the actual numerical

Fig. 5 Rectangularly layered structures found in this work. Plot (a) shows
that there are basically two identical types of layers in each structure,
grey-filled and unfilled. The calculations were actually performed in a
face-centered unit cell, shown in (b and c), where the unit-cell angles and
side lengths are unconstrained. Plots (d–f) display the two types of layered
structure (left and middle panels) and the 3D stacked structure (right
panel). These particular examples were all produced at xR = 0.03536
for RL1, RL2, and RL3. For illustration, the radii of spheres shown in plots
(b and c) are reduced to half of their actual sizes.

Fig. 6 3D structures found in this work: (a) FCC (face-centered cubic) and
(b) BCC (body-centered cubic). In plot (a), FCC is shown in a body-
centered unit cell, in which a = 3.06R, and b = c = 2.16R (1/xR = 0.1768).
Plot (b) is produced for xR = 0.1768, which has the reduced unit cell length
a = b = c = 2.46R.
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solutions to the LdG model. The curves behind the symbols are the
interpolations from these data points for different structures. The
phase boundary in Fig. 1(g) is determined from the crossing points
of these curves in Fig. 7(a) and (b). To clearly display features of the
free energy, in plots (b) and (c) relative free-energy differences are
shown with the free energy of C1 as the reference.

All transitions between the defect states listed in Fig. 1 are
considered first-order phase transitions, as all the free energy
branches in Fig. 7 cross each other. Because of the different
ways of wiring the defect lines in these structures, physically,
going through a phase transition from one state to another
requires rewiring of the defect lines; hence the phase transition
is of a discontinuous nature.

A few general trends can be deduced from the sequence of
stable defect states determined in this work. The first feature is
that from high 1/xR to low 1/xR, the stable states settle from less
ordered structures (mostly quasi-1D and quasi-2D) to more
ordered structures (FCC). This is accompanied by the transition
from loose packing to close packing of the colloidal particles.
We can compare the phase diagram in Fig. 1(g) for the periodic

colloidal crystals with the phase diagrams obtained for the
single- and dimer-colloid problems.13 In the high 1/xR region,
the stability region of BCD in Fig. 1(g) is similar in size to that
of the dipole preferred region in the single particle problem.

4.2 Symmetries of the 3D crystals

The 3D colloidal crystals presented above, together with the
defect structures in the liquid crystals, are dissected according
to specific symmetries. Whenever possible, we also present these
structures in face-centered parallelepiped unit cells. Table 1
shows the optimal parameters of face-centered parallelepiped
unit cells of these structures obtained from our computation.
Among these, only RL1 and RL2 are right rectangular prisms
and FCC is a perfectly face-centered cube, due to the built-in
symmetries.

The analysis by Čopar et al. for defect networks was performed in
a closely packed face-centered cubic cell.15 They predicted a variety
of possible structures, followed by a general argument of wiring
defect lines in the liquid-crystal spacing between the periodic
colloidal particles. Regardless of the fact that some of our

Fig. 7 Free-energy minima calculated for all structures studied in this work, as functions of the particle size 1/xR. Plot (a) shows the reduced free
energies over the entire 1/xR range for FCC [diamonds], P1 [up-triangles], C1 [down-triangles], RL1 [circles], and BCD [squares]. The inset shows the free
energy difference of BCC with the free energy of FCC as the reference, as a function of 1/xR. In an expanded view, plot (b) shows the reduced free-energy
differences of P1 [diamonds], C2 [right-triangles], RL1 [squares], RL2 [circles], and RL3 [down-triangles], with the free energy of C1 [dash-line] as the
reference. Similarly, plot (c) shows the reduced free energy difference of C3 [diamonds], C4 [squares], C5 [left-triangles], C6 [up-triangles], P2

[right-triangles], and P3 [down-triangles], with the free energy of C1 [dash-line] as the reference.

Table 1 Optimal parameters of the structures discussed in this paper. All colloidal particles are placed in a view with a face-centered parallelepiped unit
cell that has three unit-cell vectors: a, b and c. The angles a, b, and g are those between (a,b), (a,c), and (b,c), respectively

Structure xR

Optimal parameters

a/R b/R c/R a b g

C1 0.03536 2.95 � 0.05 2.95 � 0.05 3.18 � 0.05 (87.8 � 0.5)1 (89.4 � 0.5)1 (88.6 � 0.5)1
C2 0.03536 2.92 � 0.05 3.08 � 0.05 3.13 � 0.05 (88.6 � 0.5)1 (87.7 � 0.5)1 (88.7 � 0.5)1
C3 0.03536 2.90 � 0.05 3.06 � 0.05 3.11 � 0.05 (87.9 � 0.5)1 (87.8 � 0.5)1 (88.5 � 0.4)1
C4 0.03536 2.96 � 0.05 2.95 � 0.05 3.10 � 0.05 (87.8 � 0.5)1 (89.4 � 0.5)1 (88.6 � 0.5)1
C5 0.03536 2.95 � 0.05 2.95 � 0.05 3.07 � 0.05 (87.8 � 0.5)1 (89.4 � 0.5)1 (88.6 � 0.5)1
C6 0.03536 2.95 � 0.05 2.95 � 0.05 3.13 � 0.05 (87.8 � 0.5)1 (89.4 � 0.5)1 (88.7 � 0.5)1
P1 0.08839 2.99 � 0.05 a a (88.4 � 0.5)1 a a
P2 0.03536 3.08 � 0.05 3.08 � 0.05 2.90 � 0.05 (88.7 � 0.5)1 (88.5 � 0.5)1 (88.4 � 0.5)1
P3 0.03536 2.93 � 0.05 3.04 � 0.05 3.09 � 0.05 (87.8 � 0.5)1 (88.2 � 0.5)1 (88.3 � 0.5)1
RL1 0.03536 2.52 � 0.05 3.23 � 0.05 3.40 � 0.05 901 901 901
RL2 0.03536 2.95 � 0.05 a 3.15 � 0.05 901 901 901
RL3 0.03536 2.95 � 0.05 a 3.13 � 0.05 (89.5 � 0.5)1 901 901
FCC 0.1768 3.06 � 0.05 a a 901 901 901
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findings destroy the perfect conditions (angles and side lengths)
of an fcc lattice, in an fcc-like view, most of defect-colloid
structures found here can be categorized by the type of defect
spacings described by these authors [see their Fig. 1]. Of course,
the arrangements of colloidal particles are highly influenced by
the symmetries of the spacing defect lines. We demonstrated in
the above that there is no intrinsic reason for most of these
structures to form a perfect fcc unit cell.

Using Čopar et al.’s description in an fcc-like unit cell, we
find that the defect lines in the liquid-crystal spacings of our
FCC, P1 and C1 (small-1/xR) are of new types. For example, the
cubic void that borders the six spherical particles in FCC has
the defect structure shown in Fig. 8(a), where the central region
is a connected defect. In a more revealing illustration, the
liquid crystal defect can be seen at the center of Fig. 8(d), which
illustrates the cross-section view of the nematic directors by
cutting the fcc cell in the middle through the face-centered
colloidal spheres. The tetrahedron void defined in ref. 15 now
has a four branched defect structure connected at the center
[Fig. 8(c)].

Another new defect pattern is the cube-like voids in P1, as
illustrated in Fig. 8(b), where two defect centers connect the
four-branched defect lines. Again, cutting through the unit cell
in the middle we illustrate a typical nematic director pattern in
Fig. 8(e). The defect structure in tetrahedron voids in P1 is the
same as the one illustrated in Fig. 8(c).

To summarize, our calculations have demonstrated that new
building blocks (i.e., the defect structures in the liquid crystal
voids that border the colloidal particles) exist, beyond those
described in ref. 15. They have the characteristics of connecting
multiple branches of defect lines together by a central defect
region. Some of the most stable states found here are built from
these basic units in the small-1/xR range.

5 Summary

In this work, we numerically solved the LdG model to find the
free-energy minima and their corresponding optimal structures
of liquid-crystal-colloidal-particle crystals, in a three-dimensional
space. The stable and metastable structures are described and
analyzed according to the type of liquid crystal defect lines that
couple the colloidal spheres together. A large range of the particle

size is covered in this study, corresponding to a 5CB comparison
for assembling micron- to nano-sized colloidal spheres. From
large to small colloidal particles, we observe a sequence of
structures that are quasi-one-dimensional (columnar), quasi-
two-dimensional (planar), or true three-dimensional. The most
stable state for a given particle size is determined by a comparison
of the free energies and illustrated in a phase diagram. Some of the
free-energy branches, though, have small differences, which indicate
that the metastable defect states can be well-populated in real
systems. The study is carried out by using the one-distortion-
coefficient approximation. An alternative approximation may
change the theoretical stabilities of these states.

Most of the computations in the current work are carried out
in a unit cell that has a parallelepiped shape. The procedure
allows us to determine the optimal structures generally without
a priori assumption of the resulting symmetry. The unit cell’s
edge lengths and the deformation angles are all subject to free-
energy minimization. Though most of the structures found
here have the face-centered cubic symmetry approximately, we
clearly specified the symmetries of each structure in a simple
language of how defect lines in the liquid crystal are used to
glue the colloidal spheres together.

The current study, as well as the study in ref. 15 (which was
performed in a closely packed fcc unit cell), assumes a single
face-centered unit cell with period boundary conditions as the
starting point. This assumption, however, can only handle
structures with a ‘‘short’’ defect-line periodicity. We observe,
for example, the formations of two-particle braids in C4 and C5,
and a four-particle braid in P3, as the basic building blocks. We
have not extended our basic unit cell to contain two (or more)
face-centered cells. These extended cells would allow us to
discover states where the defect lines (hence the colloids) have
an extended length of a basic unit. The question of whether
these possible new structures exist remains a question for
future study.

Beyond the periodic crystal structures, experimentally, many
other 2D colloidal clusters formed by micron-sized dipolar and
quadrupolar colloidal particles have been observed.6,8,38,39 For
example, by using laser tweezers, Ognysta et al. assembled a
large variety of 2D clusters. More recently, complex 2D colloidal
assemblies with low packing densities, including polygon-rings,
squares, and tetrahedra were built by placing micron-sized
dipolar particles together.40,41 Although these complex structures

Fig. 8 New elementary building blocks of the liquid crystal fillers induced by colloidal spheres in an fcc unit cell, beyond those described in ref. 15.
Structures (a–c) contains defect lines that show up in FCC, P1 and C1 (small-1/xR). The cross-section views of the nematic directors are displayed for
further comparison: in (d) the middle cross section of FCC for xR = 0.1768 and in (e) the middle cross section of P1 for xR = 0.08839. The colors in (d and e)
are arranged according to the largest eigenvalue of Q such that high to low values correspond to color variation from red to blue.
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are difficult to form through self-assembly, they can be energe-
tically more stable than the simple formation of a finite-sized
linear chain. A theoretical understanding based on free energy
analysis, along this direction of structural formation, is still
missing, either for 2D6,8,38,39 or 3D12 clusters.

The formation of colloidal crystals due to their associated
liquid crystal defects can often be compared with the formation
of atomic crystals with valence bonds.42 Indeed, using this
comparison properly, we can build a higher order structure by
binding these ‘‘atoms’’ to form a colloidal crystal. This comparison,
however, is incomplete. Defects in the immersed liquid crystals are
produced by the presence of spheres themselves and multiple
colloidal spheres can produce different environments. The mutual
influences make the ‘‘atoms’’ multi-colored: they can change the
types of entangle defect structures around themselves and introduce
new ways of gluing the colloidal particles together. The large variety
of defect patterns in the liquid crystal voids seen here, as well as
those discussed in ref. 15, demonstrates this point.

The model used here is based on the so-called one-elastic
constant approximation, suitable for describing a nematic back-
ground liquid crystal. Recent studies showed that 3D colloidal
crystals can be stabilized in a cholesteric liquid crystal30 and a
blue-phase liquid crystal;43 these systems are beyond the scope
of the current study.
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Appendix

A The reduced version of LdG theory

The full expression for the LdG model contains an expansion of
the free energy in Q up to O(Q4) and in the spatial derivatives of
Q up to the quadratic terms,44,45

F ½Q� ¼
ð

A

2
trðQ2Þ � B

3
trðQ3Þ þ C

4
½trðQ2Þ�2 þ L1

2
Qij;kQij;k

�

þL2

2
Qij;jQik;k þ

L3

2
Qik;jQij;k þ

L4

2
QklQij;kQij;l

�
dr;

(4)

where A, B, C, and Li are system dependent parameters of
a liquid crystal. The one-constant approximation, L1 = L and
L2 = L3 = L4 = 0, is used here.

The one-constant approximation version of LdG theory can
be written in reduced units. The radius of the colloidal particle
R is used for reduction of all length related quantities, so that
r0 = r/R, r0 = Rr, etc. Furthermore, we define

t ¼ 27AC=8B2; xR
2 ¼ 27CL=8B2R2; Q0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27C2=8B2

q
Q;

F 0 ¼ ð272C3=2B4R3ÞF ;

then the reduced free energy can be written,

F 0½Q0ðr0Þ�¼
ð

t
2
trðQ 02Þ�

ffiffiffi
6
p

4
trðQ 03Þþ1

4
½trðQ 02Þ�2þxR2

2
jr0Q0j2

( )
dr0:

After dropping all primes, with the implicit understanding
that the reduced quantities are used, the free energy has the
form in (1).

This convention, including the one-constant approximation
and the use of R in the reduction of units, is often used in
theoretical studies of related systems. One can see, for example,
ref. 13, 25 and 27–29.

B Parameters for the 5CB liquid crystal

5CB is a commonly used example of a real liquid-crystal system.
At room temperature, the constants in the LdG model for
5CB were previously determined, A = �0.172 � 106 J m�3,
B = �2.12 � 106 J m�3, C = 1.73 � 106 J m�3, and L = 4 �
10�11 J m�1.1,4–8,20,21 This translates into

t = �0.2234 (5)

and

xR = 0.007209 mm/R (6)

in 5CB.

C Spectral approximation

The numerical calculation is carried out for the liquid-crystal
structure inside a unit cell, which is defined by

Rl = l1a1 + l2a2 + l3a3, (7)

where a component of l, li (i = 1, 2, 3), is an integer. The
primitive vectors can be represented by Cartesian coordinates,
a1 = (a11,a12,a13), a2 = (a21,a22,a23), and a3 = (a31,a32,a33). The
corresponding reciprocal-lattice primitive vectors are b1 =
(b11,b12,b13), b2 = (b21,b22,b23), and b3 = (b31,b32,b33), satisfying
ai�bj = 2pdij. A reciprocal-lattice site is represented by the vector

Gn = n1b1 + n2b2 + n3b3, (8)

where a component of n, ni (i = 1, 2, 3), is an integer.
The reduced Q tensor is then represented by the Fourier

series,

QðrÞ ¼
XN1�1

n1¼0

XN2�1

n2¼0

XN3�1

n3¼0
qn1n2n3 expðiGn � rÞ; (9)

where Ni (i = 1, 2, 3) is the truncation limit of the expanded
series. The free energies of all structures present in Fig. 7 are
computed by taking Ni = 64. Note that the periodic condition
Q(r) = Q(r + Rl) is naturally satisfied in this form. The coefficient
of the expansion, qn, is a 3 � 3 tensor. Because of the original
symmetry of the Q tensor, only 5 elements of qn are independent.
Inserting the expansion into the free energy expression, we obtain
the free energy as a function of all these unknown elements.
The free energy can then be minimized by using a standard
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optimization method, such as L-BFGS,31 which treats these unknown
elements as minimizing variables. The optimal reciprocal-lattice
primitive vectors bi are adjusted by a derivative-free optimization
method such as the Mesh Adaptive Direct Search (MADS).33 Their
sizes and the relative angles between them are simultaneously
adjusted. Some final values can be viewed in Table 1.

D Boundary conditions

The direct incorporation of spherical surfaces of colloidal particles
in the above three-dimensional expansion based on Cartesian
coordinates is impossible. During the last decades, various
numerical methods were proposed to deal with complex geometric
domains. Examples are the fictitious domain method (also known
as a domain embedding method)32 and the diffuse domain
method.46,47 The basic idea here is to consider the entire domain
inside a calculated cell, including the interior of the ‘‘hard’’
colloidal spheres.

Assume that the center coordinates of the kth particle are
specified by rk. Associated with this particle, the coordinates of
the spherical surface are represented by a variable r satisfying
|r � rk| = 1 in reduced units. In our application of the fictitious
domain method, a few spherical surfaces in the calculated cell
need to be considered. The numerical trick is to replace the
surface energy (penalty term), eqn (2), which is designed for the
spherical surface, by a new form that contains integration over
the entire calculated cell,

Fs ¼
w

2

ð
fðrÞjQðrÞ �Q0ðrÞj2dr� F0: (10)

The function

fðrÞ ¼
0; when jr� rkj4 1

1; when jr� rkjo 1;

(
(11)

truncates this term outside of all colloidal surfaces. The function
Q0(r), which only needs to be specified inside the surfaces, is
designed to follow an exact minimizer of F with the desired homeo-
tropic anchoring boundary condition, which yields a constant F0.

Consider the interior of a sphere of unit radius centered at
the origin. For a radial hedgehog (RH) distribution,48,49 the Q
tensor is assumed to have the form

QRHðrÞ ¼ sðjrjÞ r

jrj �
r

jrj �
1

3
I

� �
; 0o jrj � 1; (12)

with s(r) to be determined. In spherical coordinates, the
minimization of F reduces to solving the Euler–Lagrange equation,

s00ðrÞ þ 2

r
s0ðrÞ ¼ 6sðrÞ=r2 þ ts�

ffiffiffi
6
p

4
s2 þ 2

3
s3 (13)

with the boundary conditions s(0) = 0, and s(1) = 3S0/2. The
numerical solution of this well-specified differential equation
can be obtained accurately before the full calculation of the
current problem is conducted.

Having obtained QRH(r), we simply let

Q0(r) = QRH(r � rk) (14)

when r is within the unit radius of rk. When the sum of the
free energy, F + Fs, is minimized over the entire cell by an
implementation of the spectral method, all the interfaces between
the colloids and the liquid crystal are enforced to follow the
homeotropic boundary conditions when w is assumed large here.

To test this method, we benchmark the solutions of the free
energy in an artificial case where a single spherical particle is
placed at the center of a cubic unit cell, with periodic boundary
conditions at the unit-cell surfaces, for xR = 0.07071. Fig. 9
demonstrates two features. As a -N, the free energy converges
to the known Saturn-ring solution, given in the plot by the
dashed line, as expected. A minimum around a = 2.2 can be
seen, which indicates that the new method can be used to
locate a free energy minimum as a function of a, within the
cubic constraint.
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1 M. Ravnik and S. Žumer, Liq. Cryst., 2009, 36, 1201–1214.
2 P. Poulin, H. Stark, T. C. Lubensky and D. A. Weitz, Science,

1997, 275, 1770–1773.
3 V. G. Nazarenko, A. B. Nych and B. I. Lev, Phys. Rev. Lett.,

2001, 87, 075504.
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2008, 100, 217803.
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20 M. Ravnik and S. Žumer, Soft Matter, 2009, 5, 269–274.
21 F. R. Hung, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,

2009, 79, 021705.
22 J. Fukuda, M. Yoneya and H. Yokoyama, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2002, 65, 041709.
23 J. Fukuda, M. Yoneya and H. Yokoyama, Eur. Phys. J. E: Soft

Matter Biol. Phys., 2004, 13, 87–98.
24 O. Guzmán, E. B. Kim, S. Grollau, N. L. Abbott and

J. J. de Pablo, Phys. Rev. Lett., 2003, 91, 235507.
25 J. Fukuda, H. Stark, M. Yoneya and H. Yokoyama, Phys. Rev.

E: Stat., Nonlinear, Soft Matter Phys., 2004, 69, 041706.

26 J. Fukuda, H. Yokoyama, M. Yoneya and H. Stark, Mol. Cryst.
Liq. Cryst., 2005, 435, 63–723.

27 J. Fukuda and H. Yokoyama, Phys. Rev. Lett., 2005, 94, 148301.
28 T. Kishita, K. Takahashi, M. Ichikawa, J. Fukuda and Y. Kimura,

Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2010, 81, 010701.
29 T. Kishita, N. Kondo, K. Takahashi, M. Ichikawa, J. Fukuda and

Y. Kimura, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2011,
84, 19–22.

30 F. E. Mackay and C. Denniston, Soft Matter, 2014, 10, 4430–4435.
31 S. Wright and J. Nocedal, Numerical optimization, Springer,

1999, vol. 35.
32 R. Glowinski, T.-W. Pan and J. Periaux, Comput. Methods

Appl. Mech. Eng., 1994, 111, 283–303.
33 C. Audet and J. J. E. Dennis, SIAM J. Optim., 2006, 17, 188–217.
34 A. C. Callan-Jones, R. A. Pelcovits, V. A. Slavin, S. Zhang,

D. H. Laidlaw and G. B. Loriot, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2006, 74, 061701.

35 P. Poulin, V. Cabuil and D. A. Weitz, Phys. Rev. Lett., 1997,
79, 4862–4865.

36 S. B. Chernyshuk, O. M. Tovkach and B. I. Lev, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2014, 89, 032505.

37 A. B. Nych, U. M. Ognysta, V. M. Pergamenshchik, B. I. Lev, V. G.
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