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Abstract We propose a fast algorithm for evaluating the moments of Bingham distribution.
The calculation is done by piecewise rational approximation, where interpolation and Gaus-
sian integrals are utilized. Numerical tests show that the algorithm reaches the maximum
absolute error less than 5× 10−8 remarkably faster than adaptive numerical quadrature. We
apply the algorithm to a model for liquid crystals with the Bingham distribution to examine
the defect patterns of rod-like molecules confined in a sphere, and find a different pattern
from the Landau-de Gennes theory.
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1 Introduction

The Bingham distribution is an important antipodally symmetric distribution on the unit
sphere S2. Although introduced from a statistical perspective [4], it has found applications in
liquid crystals [3,7–9], palaeomagnetism [11,13,19], and various other fields involving data
on the sphere [1,6,16,18,22].

The density function of the Bingham distribution is given by

f (x|B) = exp

⎛
⎝

3∑
i, j=1

Bi j xi x j

⎞
⎠

/∫
S2
exp

⎛
⎝

3∑
i, j=1

Bi j xi x j

⎞
⎠ dx , x ∈ S

2, (1)

where B is a 3× 3 symmetric matrix. A fundamental problem in computation involving the
Bingham distribution is evaluating the moments

〈
xn11 xn22 xn33

〉 =
∫
S2

f (x|B)xn11 xn22 xn33 dx. (2)

Denote

Zn1n2n3(B) =
∫
S2

xn11 xn22 xn33 exp

⎛
⎝

3∑
i, j=1

Bi j xi x j

⎞
⎠ dx. (3)

Then the moments can be expressed as
〈
xn11 xn22 xn33

〉 = Zn1n2n3(B)/Z000(B). We also use the
notation Z(B) = Z000(B).

Even when solving a single problem, the evaluation of moments (2) may need to be done
repeatedly. This is a typical case in the simulations of liquid crystals. In each iteration or time
step, (2) is computed at eachgrid point.Generally speaking, the number of spacediscretization
is O(N 3). If we calculate (2) by direct numerical quadrature, it costs O(N 2) operations for
every single calculation, leading to a total cost of O(N 5). On the other hand, it should be
noted that the density function (1) is determined only by B, not relevant to parameters (and
domains, etc.) specified by the problem to be solved. Therefore, it is desirable to have a fast
algorithm for the evaluation of (2).

The existing approximations of (2) are designed only for special cases and are not accurate
enough to meet the demand of simulations in many problems. Kent [12] proposed expan-
sions to approximate the zeroth and second moments. The relative error is about 0.1%.
Kume and Wood [14,15] developed a method to compute the Z000(B) by using saddle-
point approximation. It is accurate for the final estimation result when applying this method
in doing maximum likelihood estimation, but not accurate enough for evaluating Z000(B),
which has 1% relative error. Moreover, the approximation cannot be easily extended to gen-
eral Zn1n2n3(B). Wang et al. [21] used piecewise linear interpolation to compute B from
Zn1n2n3/Z where n1 + n2 + n3 = 2. This approach works well for B not far from zero
matrix, but is inaccurate when it is not the case. We also mention that in [8] the fourth-
order moments Zn1n2n3/Z , (n1 + n2 + n3 = 4), are approximated by polynomials of the
second-order moments Zn1n2n3/Z , (n1+n2+n3 = 2), with a relative error of 5×10−4. This
approach does notwork if themodel requires us to compute B from second-ordermoments or,
inversely, compute second-ordermoments from B. Aswe can see in a liquid-crystallinemodel
that will be presented later, what is needed in simulations is efficiently computing second-
order moments and fourth-order moments with high accuracy, which remains unsolved in
the above approaches.

In this paper, we introduce a fast and accurate algorithm for evaluating Zn1n2n3(B). We
divide B into three cases and use different approximation method for each case. The main
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techniques we utilize are interpolation and Gaussian integrals. We have implemented the
method for n1 + n2 + n3 ≤ 4 in a routine named BinghamMoments. It is freely available
online,1 in which pre-calculations are done and saved as constants in the routine to improve
the real-time efficiency. The cost of evaluating Zn1n2n3 is reduced to O(1) compared with
O(N 2) in numerical integration. Numerical experiments show that the absolute error is less
than 5× 10−8 in the routine, while 104 times faster than adaptive numerical quadrature with
the same accuracy. We apply the method to a liquid crystal model proposed in [3,9]. The
model substitutes the polynomial bulk energy in the widely-used Landau-de Gennes theory
with the entropy term expressed by the Bingham distribution. By this substitution, the order
parameters are confined in the physical range, and it is shown in [9] that this model can
be derived from molecular theory. We examine the defect patterns for rod-like molecules
confined in a sphere, and find a different structure from the Landau-de Gennes theory. The
rest of paper is organized as follows. In Sect. 2, we present the approximation method. The
numerical accuracy and efficiency is examined in Sect. 3. An application to liquid crystals is
given in Sect. 4. Concluding remarks are stated in Sect. 5.

2 The Approximation Method

We diagonalize B using an orthogonal matrix T with detT = 1,

B = T diag(b1, b2, b3)T
T .

Then the density function becomes

f (x|B) = exp

(
3∑

i=1

bi
(
T T x

)2
i

)/∫
S2
exp

(
3∑

i=1

bi
(
T T x

)2
i

)
dx . (4)

Thus, by the transformation x −→ T T x,

Zn1n2n3(B) =
∫
S2

xn11 xn22 xn33 exp

(
3∑

i=1

bi
(
T T x

)2
i

)
dx

=
∫
S2

(T x)
n1
1 (T x)

n2
2 (T x)

n3
3 exp

(
3∑

i=1

bi x
2
i

)
dx (5)

becomes a linear combination of Zm1m2m3(diag(b1, b2, b3)). Furthermore, the distribution
f (x|diag(b1, b2, b3)) is invariant under changes (b1, b2, b3) → (b1 + h, b2 + h, b3 + h) for
any real number h. Without loss of generality, we assume that b1 ≤ b2 ≤ b3 = 0. Denote
Zn1n2n3(b1, b2) = Zn1n2n3(diag(b1, b2, 0)). It is easy to note that Zn1n2n3(b1, b2) is nonzero
only if ni are even numbers. Then by x23 = 1 − x21 − x22 , we can express Zn1n2n3(b1, b2)
linearly by Znm0(b1, b2). Hence it suffices to compute Znm0(b1, b2), denoted in abbreviation
by Znm(b1, b2).

Choosing a parameter d > 0, we divide (b1, b2) ∈ (−∞, 0]2 into three regions,

(−∞,− d]2, (−∞,−d] × (− d, 0] ∪ (− d, 0] × (−∞,− d], (− d, 0]2,

1 https://github.com/yixiangLuo/Bingham-moment-function/.
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and use different approximation method for each region. The following Gaussian integral is
used in the approximation,

∫
R

x2n exp(−αx2)dx =
√

π

α

(2n − 1)!!
(2α)n

, α > 0. (6)

2.1 b1, b2 ≤ −d

We transform the integral domain into the unit circle,

Znm(b1, b2) = 2
∫∫

x21+x22<1
xn1 x

m
2 · exp (

b1x
2
1 + b2x

2
2

) · 1√
1 − x21 − x22

dx1dx2,

= 2
∑
j,k≥0

(
j + k

j

)
(2 j + 2k − 1)!!

(2 j + 2k)!!
∫∫

x21+x22<1
x2 j+n
1 x2k+m

2 exp
(
b1x

2
1 + b2x

2
2

)
dx1dx2. (7)

The series converges because b1, b2 < 0. We truncate the series at j + k ≤ N1. Moreover,
if d is large, then x2 j+n

1 x2k+m
2 increases with polynomial rate, while exp

(
b1x21 + b2x22

)
decreases with exponential rate. Thus we expand the integral domain to R

2 in the truncated
series, which yields the following approximation formula,

Ẑnm(b1, b2) = 2
∑

j+k≤N1

(
j + k

j

)
(2 j + 2k − 1)!!

(2 j + 2k)!!
∫∫

R2
x2 j+n
1 x2k+m

2 exp
(
b1x

2
1 + b2x

2
2

)
dx1dx2.

=
∑

j+k≤N1

(
j + k

j

)
(2 j + 2k − 1)!!

(2 j + 2k)!!

√
π2

b1b2

(2 j + n − 1)!!(2k + m − 1)!!
(2b1) j+n/2(2b2)k+m/2 .

(8)

2.2 b1 > −d, b2 ≤ −d or b1 ≤ −d, b2 > −d

We explain our approximation method by the case b1 ≤ −d , b2 > −d . Rewrite Znm(b1, b2)
as

Znm(b1, b2) = 4
∫ 1

−1
xn1 · exp (

b1x
2
1

) · gm(b2, x1) dx1, (9)

where

gm(b2, x1) =
∫ √

1−x21

0
xm2 · exp (

b2x
2
2

) · 1√
1 − x21 − x22

dx2. (10)
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Denote a = 1 − x21 and r = x2/a, then we have

gm =
∫ √

a

0
xm2 · exp (

b2x
2
2

) · 1√
a − x22

dx2

= am/2
∫ 1

0
rm · exp (

b2ar
2) · 1√

1 − r2
dr

= am/2 · 1
2

√
π · Γ [(m + 1)/2]

Γ [(m + 2)/2] · 1F1
(
m + 1

2
; m + 2

2
; b2a

)
,

where

Γ (t) =
∫ ∞

0
xt−1 exp(−x)dx

is the gamma function, and 1F1 denotes the confluent hypergeometric function.
Note that 1F1

(m+1
2 ; m+2

2 ; b2a
)
is an entire function about a ∈ C. Therefore gm(b2, x1)

equals to its Taylor’s series at x1 = 0 for x1 ∈ (−1, 1),

gm(b2, x1) =
∑
j≥0

1

(2 j)!

(
∂2 j

∂x2 j1
gm(b2, 0)

)
x2 j1 .

Similar to the case b1, b2 ≤ −d , we truncate the series at j ≤ N2. Again noticing b1 ≤ −d ,
we expand the integral interval in (9) to R, leading to the approximation formula

Ẑnm(b1, b2) = 4
∑
j≤N2

1

(2 j)!

(
∂2 j

∂x2 j1
gm(b2, 0)

) ∫
R

exp
(
b1x

2
1

)
x2 j+n
1 dx1

= 4
∑
j≤N2

1

(2 j)!

(
∂2 j

∂x2 j1
gm(b2, 0)

)
·
√

π

− b1

(2 j + n − 1)!!
(− 2b1) j+n/2 . (11)

Next, we explain how to calculate the derivatives ∂2 j gm(b2, 0)/∂x
2 j
1 . Denote

h1(a) = am/2, h2(a) = 1F1

(
m + 1

2
; m + 2

2
; b2a

)
.

Then we have

∂ j g

∂a j
= 1

2

√
π · Γ [(m + 1)/2]

Γ [(m + 2)/2] ·
j∑

k=0

(
j

k

)
∂ka h1 · ∂

j−k
a h2, (12)

with

∂ka h1 = (m/2)!
(m/2 − k)!a

m
2 −k, k ≤ m

2
, ∂ka h1 = 0, k >

m

2
(13)

and

∂ka h2 = bk2

(
m + 1

2

)(k) / (
m + 2

2

)(k)

· 1F1
(
m + 1

2
+ k; m + 2

2
+ k; b2a

)
, (14)

where

x (0) = 1, x (k) = x(x + 1)(x + 2) · · · (x + k − 1)
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is the rising factorial. Along with

∂2a

∂x21

∣∣∣∣
x1=0

= − 2,
∂ i a

∂xi1

∣∣∣∣
x1=0

= 0, i 	= 2,

and the chain rule, we arrive at

∂2 j

∂x2 j1
g

(
xm2 |b2, x1

) ∣∣∣∣
x1=0

= (−1) j · (2 j)!
j ! · ∂ j g

∂a j

∣∣∣∣
a=1

. (15)

Thederivatives ∂2 j gm(b2, 0)/∂x
2 j
1 are functions ofb2. In the routineBinghamMoments,

we precompute the values on grid points b2 = 0.001k ∈ [− d, 0] where k are integers, and
compute the values between the grid points by linear interpolation.

2.3 b1 > −d, b2 > −d

In this bounded region of (b1, b2), we use interpolation for Z00 and Zmn/Z00. We compute
them and their derivatives about b1, b2,

∂Z00

∂b1
= Z20,

∂(Znm/Z00)

∂b1
= Zn+2,m Z00 − Znm Z20

Z2
00

,

on the grid (b1,2) j = − j�b, 0 ≤ j ≤ −d/�b. These values are computed in advance and
saved as constants in the routine BinghamMoments. For Znm not on the grid points, we
calculate with the interpolation described below. Suppose we already know

f (xi , y j ), fx (xi , y j ), fy(xi , y j ), j = 1, 2.

To obtain the approxiamte value f (x, y) on (x, y) ∈ [x1, x2] × [y1, y2], we first calculate

f (x, y1), f (x, y2), f (x1, y), f (x2, y)

with third-order Hermite interpolation,

f (x, y1) = f (x1, y1) ·
(
1 + 2

x1 − x

x1 − x2

) (
x − x2
x1 − x2

)2

+ f (x2, y1) ·
(
1 + 2

x2 − x

x2 − x1

) (
x − x1
x2 − x1

)2

+ fx (x1, y1) · (x − x1)

(
x − x2
x1 − x2

)2

+ fx (x2, y1) · (x − x2)

(
x − x1
x2 − x1

)2

.

Next we calculate

fy(x, y1), fy(x, y2), fx (x1, y), fx (x2, y)

with linear interpolation,

fy(x, y1) = fy(x1, y1)
x2 − x

x2 − x1
+ fy(x2, y1)

x − x1
x2 − x1

.
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Then we can calculate f (x, y) with third order Hermite interpolation by

f (x, y) = f (x1, y) ·
(
1 + 2

x1 − x

x1 − x2

) (
x − x2
x1 − x2

)2

+ f (x2, y) ·
(
1 + 2

x2 − x

x2 − x1

) (
x − x1
x2 − x1

)2

+ fx (x1, y) · (x − x1)

(
x − x2
x1 − x2

)2

+ fx (x2, y) · (x − x2)

(
x − x1
x2 − x1

)2

, (16)

or

f (x, y) = f (x, y1) ·
(
1 + 2

y1 − y

y1 − y2

) (
y − y2
y1 − y2

)2

+ f (x, y2) ·
(
1 + 2

y2 − y

y2 − y1

) (
y − y1
y2 − y1

)2

+ fy(x, y1) · (y − y1)

(
y − y2
y1 − y2

)2

+ fy(x, y2) · (y − y2)

(
y − y1
y2 − y1

)2

. (17)

We compute f (x, y) as the average of (16) and (17).

2.4 The Value of the Parameters

Wehave introduced four parameters in the above: the size d for dividing the domain, the order
of truncation N1 and N2, and the grid size for the interpolation �b. We choose parameters
as d = 30, N1 = 5, N2 = 5, �b = 0.025 for Z00, and �b = 0.1 for Znm/Z00 in the routine
BinghamMoments, achieving maximum absolute error less than 5 × 10−8 for Z00 and
〈xn1 xm2 〉, n + m ≤ 4. We will verify this in Sect. 3.2. With these parameters, the memory

needed for loading precomputed values (including ∂2 jgm(b2, 0)/∂x
2 j
1 in the case 2.2, and

the values on the grid points in the case 2.3) is about 75MB, which is available for common
computers.

3 Numerical Accuracy

3.1 Error Estimate

We give an error estimate for the case 2.1 with some special functions. Denote

F(x) = e−x2
∫ x

0
et

2
dt

as the Dawson function,

γ (n, x) =
∫ x

0
tn−1e−t dt
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as the lower incomplete gamma function, and

αn(z) = E−n(z) = n!z−n−1e−z
(
1 + z + z2

2! + · · · + zn

n!
)

as the exponential integral function.

Theorem 1 Let Ẑnm be defined in (8) and denote N = N1. For b1, b2 ≤ −d, it holds

|Znm − Ẑnm | ≤ 4π
F(

√
d )√
d

− 2π
N∑
j=0

(2 j − 1)!!
(2 j)!! · d− j−1γ ( j + 1, d)

+ 2π
N+max(n,m)∑

j=0

(2 j − 1)!!
(2 j)!! α j (d). (18)

Proof We can divide the error into two parts:

e1 = Znm(b1, b2) − 2
∫∫

B(0,1)
xn1 x

m
2 exp

(
b1x

2
1 + b2x

2
2

) N∑
j=0

(2 j − 1)!!
(2 j)!! · (

x21 + x22
) j

dx

= 2
∫∫

B(0,1)
xn1 x

m
2 exp

(
b1x

2
1 + b2x

2
2

) ∑
j>N

(2 j − 1)!!
(2 j)!!

(
x21 + x22

) j
dx, (19)

e2 = 2
∫∫

R2\B(0,1)
xn1 x

m
2 exp

(
b1x

2
1 + b2x

2
2

) N∑
j=0

(2 j − 1)!!
(2 j)!!

(
x21 + x22

) j
dx. (20)

For e1, we have

e1 ≤ 2
∫∫

B(0,1)
exp

(−d
(
x21 + x22

)) ∑
j>N

(2 j − 1)!!
(2 j)!!

(
x21 + x22

) j
dx

= 2
∫∫

B(0,1)
exp

(−d(x21 + x22 )
)
⎡
⎣ 1√

1 − x21 − x22

−
∑
j≤N

(2 j − 1)!!
(2 j)!! (x21 + x22 )

j

⎤
⎦ dx

≤ 4π
∫ 1

0
e−dr2 r

1 − r2
dr − 4π

N∑
j=0

(2 j − 1)!!
(2 j)!!

∫ 1

0
r2 j+1e−dr2 dr

= 4π
F(

√
d )√
d

− 2π
N∑
j=0

(2 j − 1)!!
(2 j)!! d− j−1γ ( j + 1, d). (21)

In the above, we use the polar coordinate transformation x1 = r cos θ, x2 = r sin θ . For e2,
denote M = max{n,m}, then we have

e2 ≤ 4π
N+M∑
j=0

(2 j − 1)!!
(2 j)!!

∫ ∞

1
r2 j+1e−dr2 dr = 2π

N+M∑
j=0

(2 j − 1)!!
(2 j)!! αn(d). (22)

Combining (21) and (22), we get (18). �

For our chosen parameters d = 30 and N1 = 5, the upper bound given by (18) is

6.038× 10−8 for n +m ≤ 4. We also give the upper bound calculated from (18) for a few d
and N1 in Table 1. The estimate (18) is also helpful for choosing parameters under different
demands of accuracy, which will be shown in Table 3.
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Table 1 Absolute error bound
by (18) under different values of
d and N1 for n + m ≤ 4

d 13 16 20 26

N1 5 6 6 6

Bound 4.4 × 10−5 3.6 × 10−6 4.5 × 10−7 4.5 × 10−8

Z

-100

-30

0

b 2

Z20/Z Z02/Z

Z40/Z

-100 -30 0   
b1

-100

-30

0

b 2

Z04/Z

-100 -30 0   
b1

Z22/Z

-100 -30 0   
b1

0

1

2

3

4

5

×10-8

Fig. 1 Absolute error for the grid points (b1, b2) on [−100, 0]2

3.2 Numerical Test

We compare the results calculated by our method and the results calculated by numerical
integration to testify the accuracy of our method numerically. The parameters in our method
are chosen as N1 = 5, N2 = 5 and d = 30. For numerical integration, we use adaptive
Simpson’s method to control the absolute error less than 10−11. We calculate Z and the
moments Znm/Z , where n + m = 2, 4, on the grid points (b1, b2) = (0.2k1, 0.2k2) ∈
[− 100, 0]2, where k1, k2 are integers. Figure 1 shows the absolute error for each of Z and
Znm/Z on [−100, 0]2, which is under the magnitude of 10−8. For most bi the absolute error
is less than 10−10, and the larger error occurs in the vicinity of the sub-domain boundaries.
In addition, we examine the error for 30,000 random pairs of bi not on grid points chosen
above. The maximual absolute error is listed in Table 2, which is also under the magnitude
of 10−8. Moreover, the numerical test also shows our method is very fast. Calculating all the
250,000 samples on the grid points, the adaptive Simpson’s method with the target accuracy
5 × 10−8 spend 9761.7s while our method only 0.431s. Both routines are written in C and
run on the same computer with a CPU clock speed 2.6 GHz.

We also give some other suggested values of d , N1 and N2 in Table 3 for different
demanded accuracy for Znm/Z , which are testified numericallywith 30,000 random samples.
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Table 2 Maximal absolute error for the 30,000 pairs of (b1, b2)

Moment Z Z20/Z Z02/Z

Maximum error 6.038 × 10−8 2.030 × 10−8 1.543 × 10−8

Moment Z40/Z Z04/Z Z22/Z

Maximum error 4.031 × 10−9 2.049 × 10−8 2.098 × 10−8

Table 3 Suggested values of parameters d, N1 and N2 under different demanded absolute error

Maximum absolute error 5 × 10−5 5 × 10−6 5 × 10−7 5 × 10−8

d 13 16 20 26

N1 5 6 6 6

N2 4 5 6 6

By comparing with the errors in Tables 1 and 3 and, we find that the upper bound given by
(18) are indicative for the choice of parameters.

4 Application to Liquid Crystals

In this section, we apply our algorithm to a Q-tensor model for rod-like liquid crystals.
Comparedwith the original Landau-deGennes Q-tensor theory, themodel is more physically
consistent, because it is able to constrain the tensor within the physical range [3], and can be
derived as an approximation of molecular theory [9]. However, the Bingham distribution in
the model brings difficulty in numerical simulations. We will explain how our fast algorithm
accelerates the computation.

Suppose that the rod-likemolecules are confined inside the unit sphere. Then the anchoring
effect on the spherical surface will induce defects for the alignment of the molecules. We
consider the following free energy,

F =
∫

Ω

dxdydz

[(
B :

(
Q + I

3

)
− log Z

)
− 1

2
α1 |Q|2 + 1

2
α2 |∇Q|2

]
+ Fp, (23)

where the region Ω is chosen as the unit sphere, I is the identity matrix, and Q is defined as
the second moments,

Qi j (x) =
∫
S2

(
xi x j − 1

3
δi j ) f (x|B)

)
dS, (24)

which is a symmetric traceless matrix describing the orientational distribution of rod-like
molecules at each spatial point, with f (x|B) and Z = Z000(B) defined in (1) and (2). Here
δi j is the Kronecker notation. A surface integral Fp is added to characterize the anchoring
effect.

We explain the terms appearing in the free energy.

– The first two terms in the integral are the bulk energy describing the nematic phase in
equilibrium, which is equivalent to the Maier–Saupe theory [5,9]. Fourth and higher
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order moments may also be included (see [9]) but is neglected currently. The bulk energy
in the phenomenological Landau-de Gennes theory is given as a polynomial

a2tr(Q
2) − a3tr(Q

3) + a4(tr(Q
2))2, (25)

which can be viewed as an expansion near Q = 0. When Q is defined by (24), it can be
easily deduced that the eigenvalues of Q are restrained between− 1/3 and 2/3. However,
the polynomial (25) cannot.

– The gradient term describes the energy contribution of the spatial inhomogeneity. A
general model shall contain more derivative terms, or even derivatives about fourth and
higher order moments (see, for example, the work of Marruci and Greco [17], and also
[9]). We only include one term here, which is the so-called one-constant approximation
[5].

– The coefficients in the model can be derived from physical parameters [9]. Since we
focus on the numerical performance, we treat them as phenomenological parameters.

– The boundary penalty term is given by

Fp =
∫

∂Ω

dS

[
Q11xy − Q12

(
x2 − 1

3

)]2
+ [Q12z − Q13y]2

+
[
Q22xy − Q12

(
y2 − 1

3

)]2
+ [Q12z − Q23x]2.

It enforces the value of Q on the spherical surface to be approximately

Q = λ

⎛
⎝
x2 − 1

3 xy xz
xy y2 − 1

3 yz
xz yz z2 − 1

3

⎞
⎠ .

In fact, if Q is given as above, then Fp = 0. In this case, Q takes the uniaxial form Q =
λ(r rT − I/3) with the axis r = (x, y, z)T being the radial direction (see [10]).

Our aim is to find local minimizers of the energy functional (23) that describe metastable
states. Express B as B = T diag(b1, b2, 0)T T , where T is orthogonal with det T = 1 and
can be expressed by Euler angles,

T =
⎛
⎝
cosα cos γ − cosβ sin α sin γ cos γ sin α + cosα cosβ sin γ sin β sin γ

− cosβ cos γ sin α − cosα sin γ cosα cosβ cos γ − sin α sin γ cos γ sin β

sin α sin β − cosα sin β cosβ

⎞
⎠ .

In this case, Q = T diag(q1, q2, q3)T T , where the eigenvalues are given by q1 =
Z20(b1, b2)/Z00(b1, b2), q2 = Z02(b1, b2)/Z00(b1, b2), and q3 = 1 − q1 − q2.

We use the spherical coordinates (r, θ, φ) to represent the position, i.e.,

x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ. (26)

The integral becomes
∫
(·)dxdydz = ∫

(·)r2 sin θdrdθdφ, and the gradient term becomes

|∇Q|2 = |∂r Q|2 + 1

r2
|∂θ Q|2 + 1

r2 sin2 θ
|∂φQ|2. (27)

The free energy is discretized at N × N × N = 323 Gaussian quadrature nodes (r j , θk, φl)

in [0, 1] × [0, π] × [0, 2π ]. At each node (b1, b2, α, β, γ ) jkl act as the basic variables,
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from which Q jkl is computed. The gradient term is computed using the spectral-collocation
method. From the value of Q at the discretized nodes, a polynomial

Q(r, θ, φ) =
N−1∑
j=0

M−1∑
k=0

L−1∑
l=0

c jklQ r jθkφl

is constructed through interpolation. The derivatives about (r, θ, φ), as well as the values
on the boundary, are then computed from the above polynomial. We refer to [20] where the
details about the spectral-collocation method are illustrated. The free energy is minimized
using the BFGS method (see, for instance, [2]). In the iteration we need to compute the
derivatives of F about (bi ) jkl , where fourth moments are involved. For instance,

∂

∂b1
Q = T diag

(
∂q1
∂b1

,
∂q2
∂b1

,
∂(−q1 − q2)

∂b1

)
T T ,

where

∂q1
∂b1

= Z40Z00 − Z2
20

Z2
00

.

It is worth pointing out that at each point, the value of Q and Z are computed from B.
Therefore, our algorithm is executed O(N 3) times in each BFGS iteration step, which greatly
accelerates the simulation. Another thing is that the Bingham distribution remains the same
when we alter the parameters α1,2, the domain (from sphere to cylinder or ellipsoid, etc.),
and add some terms like in [9]. Thus our algorithm is suitable for all these cases. Moreover,
our algorithm is also applicable if fourth moments are included in the free energy. In this
case, we need to compute sixth moments in the iteration.

Before looking at the results, we first define the biaxiality. When Q 	= 0, we say Q is
uniaxial if it has two identical eigenvalues, and is biaxial if it has distinct eigenvalues. Note
that trQ = 0. The biaxiality is measured by

μ = 1 − 6
(trQ3)2

(trQ2)3
.

For uniaxial Q, we have μ = 0; for biaxial Q, we have 0 < μ ≤ 1. We examine the
defect pattern under different α1 and α2. At each point, the favored direction of the rod-
like molecules is the principal unit eigenvector n of Q. While Q is continuous in the unit
sphere, n might be discontinuous at the points where Q = 0 or Q has two identical positive
eigenvalues. Defect patterns are classified by the configuration of these points.

We fix α2 = 0.04 and let α1 vary. Three defect patterns are observed and drawn in Fig. 2:
radial hedgehog (Fig. 2a), when α1 = 11; ring disclination (Fig. 2b), when α1 = 16; sphere
ring band (Fig. 2c), when α1 = 22. In the radial hedgehog pattern, Q is uniaxial everywhere
with the principal eigenvector along the radial direction. The sphere center, where Q = 0, is
the only point defect. In the ring disclination pattern, the points where Q has two identical
positive eigenvalues form a circle in the x-y plane, round which is a torus of biaxial region.
In the sphere ring band pattern, the points where Q = 0 form two rings on the spherical
surface. In the band between these two rings on the spherical surface, Q has two identical
positive eigenvalues. A strong biaxial region is observed inside the sphere near the band.
The last pattern is not found in the Landau-de Gennes theory [10]. We believe that this novel
pattern comes from the term B : (Q + I/3) − log Z , since it is the only term different from
the Landau-de Gennes model. Actually, the Landau-de Gennes model is proposed with the
assumption that Q is near zero. The two models shall present similar results when this is the
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Fig. 2 Three axisymmetric defect patterns, shown by the slice of x2 − x3 plane, where x3 is the axis of
symmetry. White rods represent principal eigenvectors. The background color describes the biaxiality μ, with
red indicates biaxial and blue indicates uniaxial. In all three cases α2 = 0.04, and α1 are chosen as: a α1 = 11;
b α1 = 16; c α1 = 22. a Radial hedgehog. b Ring disclination. c Sphere ring band (Color figure online)

case, or when α1 is not large. On the other hand, when Q is far from zero or α1 is large,
the energy profile of two models may become highly distinct, because the Q is bounded by
Bingham distribution, but not bounded in the Landau-de Gennes model. In any case, it is
necessary for the model with Bingham distribution to be further examined.

5 Conclusion

We develop a fast and accurate algorithm to evaluate the moments of Bingham distribution.
Numerical tests show that it is remarkably faster than direct numerical quadrature, while
maintaining high accuracy. We apply the algorithm to the liquid crystal model that contains
the Bingham distribution, which is able to constrain the order parameters within the physical
range. We examine the defect patterns of liquid crystals confined inside a sphere and find a
novel pattern, suggesting that the model shall be examined thoroughly and compared with
the Landau-de Gennes theory in future studies. Armed with our algorithm, these studies will
become much less expensive computationally.
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