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Calculating elastic constants of bent–core molecules from
Onsager-theory-based tensor model
Jie Xu* and Pingwen Zhang

LMAM and School of Mathematical Sciences, Peking University, Beijing, China

ABSTRACT
The orientational elasticity of the uniaxial and the biaxial nematic phases is deduced earlier. For
bent–core molecules with hardcore interaction, we examine how the molecular shape affects the
elastic constants of these phases. The calculation is built on a tensor model based on the Onsager
theory. The elastic constants are expressed by the coefficients in the tensor model, and these
coefficients are derived from molecular parameters. We calculate the elastic constants of bent–
core molecules as functions of the bending angle, concentration and thickness. We also examine
the elastic constants of star molecules, where we focus on the effect of the extra arm.
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1. Introduction

Elasticity is a significant property of homogeneous
nematic phases. In equilibrium, these phases show
anistropy only orientationally. Their elasticity is exhib-
ited by deformation in answer to boundary effects and
external forces. For the commonly observed uniaxial
nematic phase, the orientational distribution is axisym-
metric about a vector n. When the deformation is
slight, the local orientational distribution can be

regarded as identical to equilibrium, with the axis n
varying in space. In this view, the elastic energy is a
functional of nðxÞ. Up to second-order derivatives, it is
known as the Oseen–Frank energy [1],

FOF ¼ �dx
1
2

K1 � � nð Þ2 þ K2 n � �� nð Þ2�
þK3 n� �� nð Þj j2�; (1)
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where three terms represent the energy of splay, bend and
twist, respectively. The above elastic energy is also incor-
porated in the Ericksen–Leslie hydrodynamic model [2].

The Oseen–Frank energy is significant for the mea-
surability of the elastic constants Ki. By exerting an
external force, it is able to induce particular deforma-
tions. Then, by comparing the work done by the exter-
nal force and the elastic energy (1), we are able to
calculate Ki. Measurements have been done for rod-
like molecules at an early stage [3–6]. In recent works,
the elastic constants have been measured for the uni-
axial phase formed by bent–core molecules [7–14], and
their analogues, including L-shaped molecules [15,16]
and T-shaped molecules [17].

Molecules of complex architectures may show other
nematic phases. The prediction of these phases is initiated
quite early [18], of which the biaxial nematic phase has
been verified for bent–core molecules [19,20]. The phase
transitions involving the biaxial nematic phase have been
studied extensively (see Ref. [21] and the references
therein). Since the orientational distribution is not axi-
symmetric, a local orthonormal frame is needed when
considering the deformation. The form of elastic energy
depends on the phase symmetry. For the biaxial nematic
phase, the form of second-order orientational elasticity
has been discussed in previous works and also built into
dynamic models [22–26].

Since the elasticity originates from molecular
interaction, it is significant to find out how the
elastic constants are affected by the molecular archi-
tecture. A clear understanding of this would be help-
ful to design materials of desired elastic properties.
For rod-like molecules, Ki are calculated from the
concentration and the thickness in a recent work
[27]. The calculation is built on a tensor model
based on the Onsager theory. By assuming that the
eigenvalues of the tensor are identical to the equili-
brium values, the elastic energy can be reduced to
the Oseen–Frank energy, with the elastic constants
expressed by coefficients in the tensor model. Since
these coefficients are derived from molecular para-
meters, it finally establishes the relationship of mole-
cular parameters and the elastic constants.

In contrast to the uniaxial phase, no measurement of
the elastic constants for the biaxial nematic phase is
reported to our knowledge. Thus, it is more desirable to
build the relationship between the molecular parameters
and the elastic constants. A few theoretical calculations
have been done from a molecular perspective [28–30],
which focus on some general formulations. Only in Ref.
[29] is an ellipsoidal molecule examined, where the elastic
constants are calculated as functions of the temperature
while the effect of molecular shape is not studied.

Analogous to the tensor model for rod-like molecules, we
have derived a tensor model for bent–core molecules from
molecular theory [31]. In particular, by assuming that a
molecule has two joint cylindrical arms, the coefficients in
the tensor model are computed from the Onsager theory.
We have obtained a phase diagram about molecular para-
meters in [31], which includes different types of uniaxial
nematic phases, as well as the biaxial nematic phase.
Hence, similar to rod-like molecules, we can obtain the
elastic constants of the uniaxial and biaxial nematic phases.
We examine how the elastic constants depend on the
bending angle, concentration and thickness. Moreover,
the tensor model is appropriate for rigid molecules with
the same molecular symmetry. Thus, we are able to apply
the same procedure to star molecules that possess an extra
arm compared with bent–core molecules. For the elastic
constants of star molecules, we will focus on how they are
affected by the length of the third arm.

The rest of the paper is organised as follows. In Section
2, we briefly describe the tensor model and the homo-
geneous phases. In Section 3, we describe the derivation
of the orientational elasticity and the calculation of the
elastic constants. The results are shown in Section 4. A
concluding remark is given in Section 5.

2. The tensor model

Here, we summarise the main points about the tensor
model and the nematic phase diagram and refer to Ref.
[31] for details.

In the tensor model, we adopt the molecular geometry
shown in Figure 1. A bent–core molecule has two iden-
tical arms, of the length l=2 and thicknessD, joint with an
angle θ. A star molecule has a third arm of the length l2
towards the arrowhead. The two molecules are fully rigid.

Thus, we can put an orthonormal frame Ô;m1;m2;m3
� �

on the molecule to represent its position and orientation.
The frame mi can be represented by Euler angles
ψ;ϕ;ψ0ð Þ, and the differential of the orthonormal frame
is denoted by dν ¼ sinϕ dϕ dψ dψ0=8π2.

Figure 1. A bent–core molecule and a star molecule with their
body-fixed orthogonal frames.
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We use two symmetric second-order tensors and a
vector,

Q1 ¼ hm1m1i; Q2 ¼ hm2m2i; p ¼ hm1i;
to express the orientation. The components of p and

Qν are denoted as pi and Qνij. Here, h�i ¼ � dνð�Þf
denotes the average about the Boltzmann distribution

f ¼ 1
Z
exp b �m1 þ B1 : m1m1 þ B2 : m2m2ð Þ; (2)

over all the orientations, where Z is the normalisation
factor,

Z ¼ � dν exp b �m1 þ B1 : m1m1 þ B2 : m2m2ð Þ:
The vector b and the matrices B1 and B2 are

uniquely determined by p, Q1 and Q2 (see Ref. [31]).
The free energy is written as follows:

where c is the concentration, kB is the Boltzmann constant
and T is the absolute temperature. The sum over repeated

indices is assumed, and Q1j j2 ¼ Q1 : Q1 ¼ Q1ijQ1ij. The
first index k of a coefficient ckj represents the total order of
derivatives in that term.

The coefficients are derived as functions of molecu-
lar parameters. They satisfy the scaling property ckj /
lkþ3 and depend on dimensionless parameters: the
bending angle θ, the ratio η ¼ D=l, and for star mole-
cules also l2=l. For bent–core molecules, we use the
dimensionless parameter α ¼ cl2D to express the con-
centration, representing the number of molecules in a
cuboid with edges of the lengths l, l and D. For star
molecules, we use α ¼ cl l þ l2ð ÞD. The calculation of ckj
is based on the hardcore molecular interaction.

Each homogeneous phase corresponds to a minimi-
zer of the bulk energy,

Fbulk Q1;Q2; p½ �
cVkBT

¼ b � pþ B1 : Q1 þ B2 : Q2 � log Z

þ c
2

c01jpj2 þ c02 Q1j j2 þ c03 Q2j j2 þ 2c04Q1 : Q2

� �
:

(4)

Bent–core molecules and star molecules can exhibit
the uniaxial and biaxial nematic phases, where p ¼ 0.
They are characterised by the eigenvalues of Qi. For
convenience, we also consider the tensor
Q3 ¼ hm3m3i ¼ I�Q1 �Q2. In the uniaxial nematic
phase (Ni), each Qi is uniaxial with the same axis,
that is,

Qi ¼ si nn� I
3

� �
þ I
3
; i ¼ 1; 2; 3; (5)

where s1 þ s2 þ s3 ¼ 0. It always holds that only one
of si is positive. If si is positive, the phase is denoted
as Ni, in which mi gathers near the axis n, while the
other two mj accumulate near the plane perpendicu-
lar to n. In the biaxial nematic phase (B), the tensors
can be written as

Qi ¼ qi1n1n1 þ qi2n2n2 þ qi3n3n3: (6)

Here, n1; n2; n3ð Þ is the shared eigenframe of three
Qi. The principal eigenvector of each Qi is different.
Thus, we can permute ni to let qii>qij j�ið Þ, that is, let
ni be the principal eigenvector of Qi. Note that the Qi

in the uniaxial phase can also be expressed by (6). For
the Ni phase, we let n ¼ ni, then

qki ¼ 2sk þ 1ð Þ
3

; qkj ¼ 1� skð Þ
3

;

k ¼ 1; 2; 3; j�i:
(7)

In homogeneous systems, the frame n1; n2; n3ð Þ
represents the macroscopic axes and does not affect
the free energy. When deformation exists, it can be
described by the spatial variation of nið Þ.

The phase diagrams of bent–core molecules and star
molecules about the molecular parameters are given in
Ref. [31]. With an intermediate α, bent–core molecules
show N2, B, N3 successively as θ decreases from π. It is
also the case for star molecules as l2=l increases from
zero. The twist-bend phase also occurs in the phase
diagrams, but we are not going to discuss it in this
work.

F Q1;Q2; p½ �
kBT

¼
ð
dx

cf log f þ c2
2 c01jpj2 þ c02 Q1j j2 þ c03 Q2j j2 þ 2c04Q1 : Q2

� �
þc2 c11pj@iQ1ij þ c12pj@iQ2ij

� �
þ c2

4

c22 �Q1j j2 þ c23 �Q2j j2 þ 2c24@iQ1jk@iQ2jk

þ2c27@ipi@jpj þ 2c28@iQ1ik@jQ1jk

þ2c29@iQ2ik@jQ2jk þ 4c2;10@iQ1ik@jQ2jk

2
4

3
5

8>>>><
>>>>:

9>>>>=
>>>>;
; (3)
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3. The elastic constants

3.1. The form of orientational elasticity

For the uniaxial phase, the Oseen–Frank elastic energy is
appropriate. But for the biaxial phase, an alternative elas-
tic energy is needed. In the following few paragraphs, we
briefly review the derivation of the orientational elasticity
in Ref. [22]. The derivation is based on the symmetry of
the orientational distribution, and the elasticity includes
both bulk and surface terms. In what follows, we only
retain the bulk terms and will discard surface terms.

First, we discuss the derivatives of the frame
n1; n2; n3ð Þ. Consider the directional derivatives of nμ.
The derivative of nμ along the direction nλ is written as
nλ � �ð Þnμ. We write down its components in the frame
n1; n2; n3ð Þ. Its ν component is expressed as nνjnλi@inμj.
Using the equality nνjnμj ¼ δμν, we have

nνjnλi@inμj ¼ �nμjnλi@inνj:

From this equation, we know that �nμ has nine
degrees of freedom, denoted as

D11 ¼ n1in2j@in3j; D12 ¼ n1in3j@in1j; D13 ¼ n1in1j@in2j;

D21 ¼ n2in2j@in3j; D22 ¼ n2in3j@in1j; D23 ¼ n2in1j@in2j;

D31 ¼ n3in2j@in3j; D32 ¼ n3in3j@in1j; D33 ¼ n3in1j@in2j:

(8)

The orientational elasticity is given by polynomials
of Dij. The biaxial nematic phase requires the ni ! �ni
symmetry. Therefore, each ni must appear even times,
making the first-order terms vanish. Generally, a quad-
ratic form of Dij has 45 terms. The symmetry reduces it
to 15 terms, including D2

ij and six coupling terms

D11D22, D12D21, D22D33, D23D32, D33D11, D31D13. The
linear combinations of the coupling terms include
three surface terms, such as

@in2i@jn2j � @in2j@jn2i ¼ 2 D33D11 � D31D13ð Þ: (9)

Thus, the elastic energy is reduced to 12 bulk terms,

There are 12 elastic constants in total.
The Oseen–Frank energy can also be expressed by

(10). Let us choose n ¼ n2 as an example. For the
derivative of n2, we have

� � n2 ¼ �D31 þ D13; n2 � �� n2 ¼ D33 þ D11;

n3 � �� n2 ¼ �D23; n1 � �� n2 ¼ �D21:

Note that n2 � �� n2j j2 ¼ n1 � �� n2ð Þ2
þ n3 � �� n2ð Þ2. Along with (9), it is easy to see
that (10) is reduced to the Oseen–Frank energy if
the following equalities hold,

K3131 ¼ K1313 ¼ K1; K1111 ¼ K3333 ¼ K2; K2121 ¼ K2323 ¼ K3;
K1331 ¼ 2 K2 � K1ð Þ; K2222 ¼ K3232 ¼ K1212 ¼ K2332 ¼ K1221 ¼ 0:

(11)

These equalities have been derived in Ref. [22] and
will also be illustrated in our derivation of elastic
constants.

We can give deformation patterns of ni that leave
only one of Dij nonzero, drawn in Figure 2. They are
classified into two cases: Dii�0 and Dij�0. For each
case, we give one example, and the other patterns can
be obtained by permuting the axes ni. Below, ni are
functions of the location x; y; zð Þ, and eið Þ is the space-
fixed orthonormal basis.

• D11�0. Let

n1 ¼ e3; n2 ¼ e1 cos z þ e2 sin z; n3 ¼ e1 sin z � e2 cos z:

Here, n2 and n3 show twist while n1 is constant. For
the case Dii�0, ni is constant. Thus, we name it as the
twist pattern, denoted by Ti.

• D13�0. We use cylindrical coordinates. Denote
x; y; zð Þ ¼ r cos θ; r sin θ; zð Þ, and let

n3 ¼ e3; n2 ¼ er ¼ e1 cos θþ e2 sin θ; n1
¼ eθ ¼ e1 sin θ� e2 cos θ:

We name it as the splay bend pattern and use the
notation SiBj to denote the one in which ni shows
splay and nj shows bend, while nk is constant. Here,
ijkð Þ is a permutation of ð123Þ. The pattern SiBj cor-
responds to Djk�0.

The constants Kiiii and Kijij could be measured by
generating the above patterns.

For the coupling terms, D23D32�0 means that
both D23 and D32 are nonzero. We suggest a pattern
in which the frame ni coincides with the local

FBi ¼
ð
dx

1
2

K1111D2
11 þ K2222D2

22 þ K3333D2
33

þK1212D2
12 þ K2121D2

21 þ K2323D2
23 þ K3232D2

32 þ K3131D2
31 þ K1313D2

13
þK1221D12D21 þ K2332D23D32 þ K1331D13D31

2
4

3
5: (10)
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orthonormal frame on the sphere: write
x; y; zð Þ ¼ r sin θ cosφ; r sin θ sinφ; r cos θð Þ, then

n1 ¼ er ¼ e1 sin θ cosφþ e2 sin θ sinφþ e3 cos θ;
n2 ¼ ela ¼ e1 sinφ� e2 cosφ;
n3 ¼ elo ¼ e1 cos θ cosφþ e2 cos θ sinφ� e3 sin θ;

where n1, n2, n3 point towards radial, latitudinal and
longitudinal direction, respectively. In this case, we
have D21;D23;D32�0, leading to four nonvanishing
terms in the elastic energy:

K2121D
2
21 þ K2323D

2
23 þ K3232D

2
32 þ K2332D23D32:

If all the patterns in Figure 2 can be generated, we
could measure Kijji as we already know Kijij.

3.2. The derivation of elastic constants

When discussing the elastic constants, we assume
that the eigenvalues are equal to those in the homo-
geneous case and only the eigenframe varies. In this
case, we assume that p ¼ 0, which can be expected
to be a good approximation if the deformation is
not drastic. Then, the elastic energy can be writ-
ten as

We point out that the coefficients in the tensor
model satisfy

c22; c23; c28; c29>0; c22c23>c
2
24; c28c29>c

2
2;10: (13)

The inequalities about c28, c29 and c2;10 are actually
stronger than those given in Ref. [31] that guarantee
the positive definiteness of the elastic energy (12),

2 c28 þ c22; 2c29
þ c23>0; 2c28 þ c22ð Þ 2c29 þ c23ð Þ> 2c28 þ c22ð Þ2;

(14)

because (14) do not require c28; c29 to be positive. As
we will show later, (13) imply some relations between
elastic constants.

Next, we express the elastic constants as functions of
c2j and the eigenvalues qik. Since the eigenvalues are
determined by minimising the bulk energy (4), they are
functions of the bulk coefficients c0j, which are also
derived from molecular parameters. Thus, the elastic
constants are eventually expressed as functions of
molecular parameters c, l, η and θ,

Kiji0j0 ¼ c2kBTKiji0j0 c2j l; η; θð Þ; qik c0j l; η; θð Þ� �� �
:

Write the tensors in the form of (6). Note that the
following equalities hold,

@i n1jn1k
� �

@i n2jn2k
� � ¼ �2 D2

13 þ D2
23 þ D2

33

� � ¼Δ �2A3;

@i n2jn2k
� �

@i n3jn3k
� � ¼ �2 D2

11 þ D2
21 þ D2

31

� � ¼Δ �2A1;

@i n3jn3k
� �

@i n1jn1k
� � ¼ �2 D2

12 þ D2
22 þ D2

32

� � ¼Δ �2A2;

@i n1in1kð Þ@j n2jn2k
� � ¼ �D2

13 � D2
23 � D12D21 þ D23D32

þD31D13 ¼Δ �B3;
@i n2in2kð Þ@j n3jn3k

� � ¼ �D2
21 � D2

31 þ D12D21 � D23D32

þD31D13 ¼Δ �B1;

@i n3in3kð Þ@j n1jn1k
� � ¼ �D2

12 � D2
32 þ D12D21 þ D23D32

�D31D13 ¼Δ �B2;

together with I ¼ n1n1 þ n2n2 þ n3n3, we have

(a) Twist. (b) Splay & bend. (c) Spherical

Figure 2. (Colour online) Deformation patterns.

Fe
kBT

¼ F � Fbulk
kBT

¼
ð
dx

c2

4

c22 �Q1j j2 þ c23 �Q2j j2 þ 2c24@iQ1jk@iQ2jk

þ2c28@iQ1ik@jQ1jk þ 2c29@iQ2ik@jQ2jk þ 4c2;10@iQ1ik@jQ2jk

" #
:

(12)
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Denote

Then, the elastic energy becomes

Thus, we obtain

Kjjjj ¼ c2kBTdj; Kijij ¼ c2kBT dj þ ej
� �

; Kijji

¼ c2kBT e1 þ e2 þ e3 � 2ei � 2ej
� �

; i�jð Þ:
(16)

For the uniaxial phase, the eigenvalues are given by
(7). Thus, for the N2 phase, we have d1 ¼ d3, e1 ¼ e3
and d2 ¼ e2 ¼ 0. Therefore, by (11), we deduce that

K1 ¼ K3 ¼ K2121 ¼ K3131 ¼ K1313

¼ K2323;K2 ¼ K1111 ¼ K3333: (17)

Similarly, for the N3 phase, we obtain

K1 ¼ K3 ¼ K3232 ¼ K1212 ¼ K2121

¼ K3131;K2 ¼ K1111 ¼ K2222: (18)

Note that some elastic constants we deduce above are
equal. In particular, for the uniaxial phase,K1 ¼ K3 always
holds. This is because our tensor model includes tensors

up to the second order only. In the calculation of the
elastic constants of rod-like molecules in Ref. [27], the
fourth-order tensor M ¼ mmmmh i is included in the
tensor model so that K1 and K3 can be separated. For
bent–core molecules, however, to include fourth-order
tensors will make the free energy have over 50 terms.
For this reason, we choose not to include them to keep
the free energy concise.

4. Results and discussion

As we mentioned in Section 2, we pose the frame
n1; n2; n3ð Þ such that qii � qij, that is, � ni is the pre-
ferred direction of mi. Thus, we are able to discuss the
elastic constants for both uniaxial and biaxial phases in
terms of Kiji0j0 and then recognise them as K1;K2;K3 by
(17) for N2, and by (18) for N3. By c2j / l5, we have

Kiji0j0 / kBTc
2l5 ¼ kBT

D
� α

2

η
:

Fe ¼
ð
dx

c2kBT
2

d1A1 þ d2A2 þ d3A3 þ e1B1 þ e2B2 þ e3B3ð Þ

¼
ð
dx

c2kBT
2

d1D2
11 þ d2D2

22 þ d3D2
33

þ d1 þ e1ð Þ D2
21 þ D2

31

� �þ d2 þ e2ð Þ D2
12 þ D2

32

� �þ d3 þ e3ð Þ D2
13 þ D2

23

� �
� e1 þ e2 � e3ð ÞD12D21 � e2 þ e3 � e1ð ÞD23D32 � e3 þ e1 � e2ð ÞD31D13

2
64

3
75:

d1 ¼ c22 q12 � q13ð Þ2 þ c23 q22 � q23ð Þ2 þ 2c24 q12 � q13ð Þ q22 � q23ð Þ;
d2 ¼ c22 q13 � q11ð Þ2 þ c23 q23 � q21ð Þ2 þ 2c24 q13 � q11ð Þ q23 � q21ð Þ;
d3 ¼ c22 q11 � q12ð Þ2 þ c23 q21 � q22ð Þ2 þ 2c24 q11 � q12ð Þ q21 � q22ð Þ;
e1 ¼ c28 q12 � q13ð Þ2 þ c29 q22 � q23ð Þ2 þ 2c2;10 q12 � q13ð Þ q22 � q23ð Þ;
e2 ¼ c28 q13 � q11ð Þ2 þ c29 q23 � q21ð Þ2 þ 2c2;10 q13 � q11ð Þ q23 � q21ð Þ;
e3 ¼ c28 q11 � q12ð Þ2 þ c29 q21 � q22ð Þ2 þ 2c2;10 q11 � q12ð Þ q21 � q22ð Þ:

(15)

@i n1jn1k
� �

@i n1jn1k
� � ¼ 2 A2 þ A3ð Þ; @i n1in1kð Þ@j n1jn1k

� � ¼ B2 þ B3;

@i n2jn2k
� �

@i n2jn2k
� � ¼ 2 A3 þ A1ð Þ; @i n2in2kð Þ@j n2jn2k

� � ¼ B3 þ B1;

@i n3jn3k
� �

@i n3jn3k
� � ¼ 2 A1 þ A2ð Þ; @i n3in3kð Þ@j n3jn3k

� � ¼ B1 þ B2:

LIQUID CRYSTALS 27



We are not expecting to compare our results directly
with the values obtained from experiments, since we have
adopted a simple molecular architecture, and have only
included the hardcore interaction. Moreover, because we
have not included the higher order tensors, it always holds
Kijij ¼ Kkjkj for i; k�j, K1 ¼ K3 for the uniaxial phaseð Þ.
Thus, we will not distinguish them in the following.
However, we can figure out some connections between
themolecular shape and the elastic constants. In particular,
the elastic constants of square terms D2

jj and D2
ij describe

the resistance of the corresponding deformation patterns
in Figure 2. By comparing the elastic constants, we can
compare the resistance of these patterns.

Without calculating the values of the elastic con-
stants, we can capture some features from (16). The
elastic energy is always positive definite. This actually
comes from the positive definiteness of the tensor
model. We can also verify from (16), (15) and (13)
that K2

ijji<4KijijKjiji by noting that qi1 þ qi2 þ qi3 ¼ 1.
Moreover, for the N3 and the N2 phases, it always
holds K3>K2, which has been observed for the N2

phase in the experiments we mentioned in Section 1.
It originates from K3 � K2 ¼ c2kBTe1>0, guaranteed by
(13). In general cases, it is possible that ei<0 when only
(14) holds and c28; c29<0. That ei>0 also implies
Kijij>Kjjjj for the biaxial phase.

We choose T ¼ 400K and D ¼ 5� 10�10 m, the
same as in Ref. [27]. First, we examine the Ki of the
uniaxial phase as functions of α when θ ¼ 3π=4 and
D=l ¼ 1=20 near the I � N2 transition value, plotted in
Figure 3. We can see that the order of magnitude of Ki

lies within 10�12 N and 10�11 N, which is consistent
with the experimental results mentioned in Section 1.
When α is small, Ki do not differ too much, and they

increase as α grows. These features are similar to rod-
like molecules [27].

Next, we examine the effect of the bending angle θ.
We fix α ¼ 20 for η ¼ 1=20; 1=40. The elastic con-
stants are plotted in Figure 4, and their values are
close for the two η. In the N2 region, Ki decrease as
the angle decreases, suggesting that the N2 phase
formed by longer molecules is more resistant. In the
N3 region, Ki decrease as the angle increases, suggest-
ing that the N3 phase formed by molecules more like a
disc is more resistant.

Then, we focus on the biaxial region. In this region,
K2222 and K3333 vary monotonely from zero to K1111,
while K1111 itself shows a bulge, making it the largest
among Kiiii. The same feature is observed for K2121,
K3232 and K1313. The elastic constants for coupling
terms satisfy K2332>0 while K1331;K1221<0. The relation
between K2222 and K3333, as well as K1313 and K3232,
depends on θ. To see it more clearly, we plot the elastic
constants at θ ¼ 19π=32 and 37π=64, showing N2 ! B
and N3 ! B transitions, respectively (Figure 5). When
θ ¼ 19π=32, we have K2121>K1313>K3232,
K1111>K3333>K2222 and K2332>0>K1221>K1331; when
θ ¼ 37π=64, we have K2121>K3232>K1313,
K1111>K2222>K3333 and K2332>0>K1331>K1221.

Finally, we study how the elastic constants of star
molecules depend on the length of the third arm l2
(Figure 6). Fix θ ¼ 2π=3, η ¼ 1=40,
α ¼ cl l þ l2ð ÞD ¼ 20. The elastic constants show simi-
lar features as Figure 4. To be specific, in the two
uniaxial regions, Ki decrease when l2=l approaches the
biaxial region. In the biaxial region, K1111 and K2121 are
the largest among Kjjjj and Kijij, respectively, and
K2332>0>K1331;K1221. The relation between K2222 and
K3333 is relevant to l2=l so do K1313, K3232 and
K1221, K1331.

We compare our approach (for which some relevant
details are presented in Ref. [31]) with that given in Ref.
[29]. Both approaches start from molecular theory and
derive macroscopic expressions by expansion of the
kernel function that describes the microscopic interac-
tion. However, the expansion formulas are different,
especially when dealing with orientational variables.
This is where the two approaches diverge at an early
stage of calculation. We point out that neither of the two
approaches relies on the specific form of microscopic
interaction, although the choices are distinct when
examining specific molecules. For the ellipsoidal mole-
cule studied in Ref. [29], the microscopic interaction
adopted is the modified Lennard–Jones potential with
orientational dependent coefficients, which is different
from the hardcore potential we choose.
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Figure 3. (Colour online) Elastic constants of bent–core mole-
cules about α, with θ ¼ 3π=4, η ¼ 1=20.
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Figure 4. Elastic constants of bent–core molecules about θ.
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Figure 5. Elastic constants of bent–core molecules about α.
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5. Conclusion

Armed with an Onsager-theory-based tensor model,
we calculate the elastic constants of the uniaxial and
the biaxial nematic phases of bent–core molecules
and star molecules with hardcore interaction. The
elastic constants are expressed by the coefficients in
the tensor model, and these coefficients are derived
from molecular parameters. We study how the elastic
constants are affected by the molecular shape. In
particular, they are examined as functions of the
concentration, the bending angle, the thickness for
both molecules and also the length of the third arm
for star molecules.

The current approach does not distinguish some of
the elastic constants. To accomplish this, terms invol-
ving higher order tensors need to be included in the
tensor model. Meanwhile, if we are able to incorporate
other interactions into the tensor model, we can exam-
ine the elastic constants of molecules with these
interactions.
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