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BOUNDARY PROBLEMS FOR THE FRACTIONAL AND
TEMPERED FRACTIONAL OPERATORS∗

WEIHUA DENG† , BUYANG LI‡ , WENYI TIAN§ , AND PINGWEN ZHANG¶

Abstract. To characterize the Brownian motion in a bounded domain Ω, it is well known that
the boundary conditions of the classical diffusion equation just rely on the given information of the
solution along the boundary of a domain; in contrast, for the Lévy flights or tempered Lévy flights in a
bounded domain, the boundary conditions involve the information of a solution in the complementary
set of Ω, i.e., Rn\Ω, with the potential reason that paths of the corresponding stochastic process
are discontinuous. Guided by probability intuitions and the stochastic perspectives of anomalous
diffusion, we show the reasonable ways, ensuring the clear physical meaning and well-posedness of
the partial differential equations (PDEs), of specifying “boundary” conditions for space fractional
PDEs modeling the anomalous diffusion. Some properties of the operators are discussed, and the
well-posednesses of the PDEs with generalized boundary conditions are proved.
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1. Introduction. The phrase “anomalous is normal” says that anomalous dif-
fusion phenomena are ubiquitous in the natural world. It was first used in the title
of [27], which reveals that the diffusion of classical particles on a solid surface has
rich anomalous behavior controlled by the friction coefficient. In fact, anomalous
diffusion is no longer a young topic. In the review paper [5], the evolution of par-
ticles in disordered environments was investigated, the specific effects of a bias on
anomalous diffusion were considered, and the generalizations of Einstein’s relation in
the presence of disorder were discussed. With the rapid development of the study
of anomalous dynamics in diverse fields, some deterministic equations were derived,
governing the macroscopic behavior of anomalous diffusion. In 2000, Metzler and
Klafter published the survey paper [25] for the equations governing transport dy-
namics in complex system with anomalous diffusion and nonexponential relaxation
patterns, i.e., fractional kinetic equations of the diffusion, advection-diffusion, and
Fokker–Planck types, derived asymptotically from basic random walk models and a
generalized master equation. Many mathematicians have been involved in the re-
search of fractional partial differential equations (PDEs). For fractional PDEs in a
bounded domain Ω, an important question is how to introduce physically meaningful
and mathematically well posed boundary conditions on ∂Ω or Rn\Ω.
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126 WEIHUA DENG, BUYANG LI, WENYI TIAN, AND PINGWEN ZHANG

Microscopically, diffusion is the net movement of particles from a region of higher
concentration to a region of lower concentration. For normal diffusion (Brownian
motion), the second moment of the particle trajectories is a linear function of the
time t. Naturally, if it is a nonlinear function of t, we call the corresponding dif-
fusion process anomalous diffusion or non-Brownian diffusion [25]. The microscopic
(stochastic) models describing anomalous diffusion include continuous time random
walks (CTRWs), Langevin type equations, Lévy processes, subordinated Lévy pro-
cesses, fractional Brownian motion, etc.. The CTRWs contain two important random
variables describing the motion of particles [26], i.e., the waiting time ξ and jump
length η. If both the first moment of ξ and the second moment of η are finite in the
scaling limit, then the CTRWs approximate Brownian motion. In contrast, if one of
them is divergent, then the CTRWs characterize anomalous diffusion. Two of the
most important CTRW models are Lévy flights and Lévy walks. For Lévy flights, the
ξ with finite first moment and η with infinite second moment are independent, leading
to infinite propagation speed and the divergent second moments of the distribution of
the particles. This causes much difficulty in relating the models to experimental data,
especially when analyzing the scaling of the measured moments in time [33]. With
coupled distribution of ξ and η (the infinite speed is penalized by the corresponding
waiting times), we get the so-called Lévy walks [33]. Another idea to ensure that
the processes have bounded moments is to truncate the long tailed probability dis-
tribution of Lévy flights [22]; they still look like a Lévy flight in not too long a time.
Currently, the most popular way to do the truncation is to use exponential tempering,
offering the technical advantage of still having an infinitely divisible Lévy process after
the operation [24]. The Lévy process to describe anomalous diffusion is the scaling
limit of CTRWs with independent ξ and η. It is characterized by its characteristic
function. Except for Brownian motion with drift, the paths of all other proper Lévy
processes are discontinuous. Sometimes, the Lévy flights are conveniently described
by the Brownian motion subordinated to a Lévy process [7]. Fractional Brownian
motions are often taken as the models to characterize subdiffusion [21].

Macroscopically, fractional (nonlocal) PDEs derived from the microscopic models
are the most popular and effective models for anomalous diffusion. The solution of
fractional PDEs is generally the probability density function (PDF) of the position
of the particles undergoing anomalous dynamics; with the deepening of research, the
fractional PDEs governing the functional distribution of particles’ trajectories are also
being developed [31, 32]. Two ways are usually used to derive the fractional PDEs.
One is based on the Montroll–Weiss equation [26], i.e., in Fourier–Laplace space the
PDF p(X, t) obeys

p̂(k, u) =
1− φ(u)

u
· p̂0(k)

1−Ψ(u,k)
,(1)

where p̂0(k) is the Fourier transform of the initial data, φ(u) is the Laplace transform
of the PDF of waiting times ξ, and Ψ(u,k) are the Laplace and the Fourier transforms
of the joint PDF of waiting times ξ and jump length η. If ξ and η are independent, then
Ψ(u,k) = φ(u)ψ(k), where ψ(k) is the Fourier transform of the PDF of η. Another
way is based on the characteristic function of the α-stable Lévy motion, which is the
scaling limit of the CTRW model with a power law distribution of jump length η.
In the high dimensional case, it is more convenient to make the derivation by using
the characteristic function of the stochastic process. According to the Lévy–Khinchin
formula [2], the characteristic function of Lévy process has a specific form,
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BOUNDARY PROBLEMS FOR THE FRACTIONAL OPERATORS 127

Fig. 1. Example of a physical environment suitable for (7).∫
Rn
eik·Xp(X, t)dX = E(eik·X) = etΦ(k),(2)

where

Φ(k) = ia · k− 1
2

(k · bk) +
∫

Rn\{0}

[
eik·X − 1− i(k ·X)χ{|X|<1}

]
ν(dX);

here χI is the indicator function of the set I, a ∈ Rn, b is a positive definite symmetric
n × n matrix, and ν is a sigma-finite Lévy measure on Rn\{0}. When a and b are
zero and

(3) ν(dX) =
βΓ(n+β

2 )
21−βπn/2Γ(1− β/2)

|X|−β−ndX,

the process is a rotationally symmetric β-stable Lévy motion and its PDF solves

(4)
∂p(X, t)
∂t

= ∆β/2p(X, t),

where F(∆β/2p(X, t)) = −|k|βF(p(X, t)) [29]. If we replace (3) by the measure of
an isotropic tempered power law with the tempering exponent λ, then we get the
corresponding PDF evolution equation

(5)
∂p(X, t)
∂t

= (∆ + λ)β/2p(X, t),

where (∆ + λ)β/2 is defined by (32) in physical space and by (34) in Fourier space.
In practice, the choice of ν(dX) depends strongly on the concrete physical envi-

ronment. For example, Figure 1 clearly shows horizontal and vertical structures. So,
we need to take the measure (if it is superdiffusion) as

(6)
ν(dX) = ν(dx1dx2) =

β1Γ( 1+β1
2 )

21−β1π1/2Γ(1− β1/2)
|x1|−β1−1δ(x2)dx1dx2

+
β2Γ( 1+β2

2 )
21−β2π1/2Γ(1− β2/2)

δ(x1)|x2|−β2−1dx1dx2,

where β1 and β2 belong to (0, 2). If a and b are equal to zero, then it leads to the
diffusion equation

(7)
∂p(x1,x2, t)

∂t
=
∂β1p(x1,x2, t)

∂|x1|β1
+
∂β2p(x1,x2, t)

∂|x2|β2
.

Under the guidelines of probability intuitions and stochastic perspectives [17]
of Lévy flights or tempered Lévy flights, we discuss the reasonable ways of defin-
ingfractional partial differential operators and specifying the “boundary” conditions
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128 WEIHUA DENG, BUYANG LI, WENYI TIAN, AND PINGWEN ZHANG

for their macroscopic descriptions, i.e., the PDEs of types (4), (5), (7), and their ex-
tensions, e.g., the fractional Feynman–Kac equations [31, 32]. For related discussions
on the nonlocal diffusion problems from a mathematical point of view, see the review
paper [11]. The divergence of the second moment and the discontinuity of the paths of
Lévy flights predicate that the corresponding diffusion operators should be defined on
Rn, which further signifies that if we are solving the equations in a bounded domain
Ω, the information in Rn\Ω should also be involved. We will show that the general-
ized Dirichlet type boundary conditions should be specified as p(X, t)|Rn\Ω = g(X, t).
If the particles are ignored after leaving the domain Ω, then g(X, t) ≡ 0, i.e., the
so-called absorbing boundary conditions. Because of the discontinuity of the jumps
of Lévy flights, a particular concept “escape probability” can be introduced, which
means the probability that the particle jumps from the domain Ω into a domain
H ⊂ Rn\Ω; to solve the escape probability, one just needs to specify g(X) = 1 for
X ∈ H and 0 for X ∈ (Rn\Ω)\H for the corresponding time-independent PDEs. As
for the generalized Neumann type boundary conditions, our ideas come from the fact
that the continuity equation (conservation law) holds for any kind of diffusion, since
the particles cannot be created or destroyed. Based on the continuity equation and
the governing equation of the PDF of Lévy or tempered Lévy flights, the correspond-
ing flux j can be obtained. So the generalized reflecting boundary conditions should
be j|Rn\Ω ≡ 0, which implies (∇ · j)|Rn\Ω ≡ 0. Then, the generalized Neumann type
boundary conditions are given as (∇ · j)|Rn\Ω = g(X, t); e.g., for (4), they should be
taken as

(
∆β/2p(X, t)

)
|Rn\Ω = g(X, t). The well-posednesses of the equations under

our specified generalized Dirichlet or Neumann type boundary conditions are well
established.

Overall, this paper focuses on introducing physically reasonable boundary con-
straints for a large class of fractional PDEs, building a bridge between the physical and
mathematical communities for studying anomalous diffusion and fractional PDEs. In
the next section, we recall the derivation of fractional PDEs. Some new concepts are
introduced, such as the tempered fractional Laplacian, and some properties of anoma-
lous diffusion are found. In section 3, we discuss the reasonable ways of specifying
the generalized boundary conditions for the fractional PDEs governing the position
or functional distributions of Lévy flights and tempered Lévy flights. In section 4,
we prove well-posedness of the fractional PDEs under the generalized Dirichlet and
Neumann boundary conditions defined on the complement of the bounded domain.
Conclusions and remarks are given in the last section.

2. Preliminaries. To clarify the ways of specifying the “boundary constrains”
of PDEs governing the PDFs of Lévy flights or tempered Lévy flights, we will show
the ideas behind deriving the microscopic and macroscopic models.

2.1. Microscopic models for anomalous diffusion. For the microscopic de-
scription of the anomalous diffusion, we consider the trajectory of a particle or a
stochastic process, i.e., X(t). If

〈
|X(t)|2

〉
∼ t, the process is normal, otherwise it is

abnormal. The anomalous diffusions most often happening in the natural world are
the cases that

〈
|X(t)|2

〉
∼ tγ with γ ∈ [0, 1) ∪ (1, 2]. A Lévy flight is a random walk

in which the jump length has a heavy tailed (power law) probability distribution,
i.e., the PDF of jump length r is like r−β−n with β ∈ (0, 2), and the distribution
in direction is uniform. With the wide applications of Lévy flights in characterizing
long-range interactions [3] or a nontrivial “crumpled” topology of a phase (or con-
figuration) space of polymer systems [30], etc., their second and higher moments are
divergent, leading to difficulty in relating models to experimental data. In fact, for
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Fig. 2. Random trajectories (1000 steps) of Lévy flight (β = 0.8), tempered Lévy flight (β =
0.8, λ = 0.2), and Brownian motion.

Lévy flights
〈
|X(t)|δ

〉
∼ tδ/β with 0 < δ < β ≤ 2. Under the framework of CTRW,

the model Lévy walk [28] can circumvent this obstacle by putting a larger time cost
on a longer displacement, i.e., using the space-time coupled jump length and waiting
time distribution Ψ(r, t) = 1

2δ(r − vt)φ(t). Another popular model is the so-called
tempered Lévy flights [18], in which extremely long jumps are exponentially cut by
using the distribution of jump length e−rλr−β−n, with λ being a small modulation
parameter (a smooth exponential regression towards zero). In not too long a time,
the tempered Lévy flights display the dynamical behaviors of Lévy flights, ultraslowly
converging to normal diffusion. Figure 2 shows the trajectories of 1000 steps of Lévy
flights, tempered Lévy flights, and Brownian motion in two dimensions; note the pres-
ence of rare but large jumps compared to the Brownian motion, playing the dominant
role in the dynamics.

Using the Berry–Esséen theorem [13], first established in 1941, which applies to
the convergence to a Gaussian for a symmetric random walk whose jump probabilities
have a finite third moment, we have that for one-dimensional tempered Lévy flights
with distribution of jump length Ce−rλr−β−1, the convergence speed is

5
2
√

2C
Γ(3− β)

Γ(2− β)3/2λ
− 1

2β
1√
m
,

which means that the scaling law for the number of steps needed for Gaussian behavior
to emerge is

(8) m ∼ λ−β .

More concretely, letting X1,X2, . . . ,Xm be i.i.d. random variables with PDF Ce−rλ

r−β−1 and E(|X1|2) = σ2 > 0, the cumulative distribution function (CDF) Qm of
Ym = (X1 + X2 + · · · + Xm)/(σ

√
m) converges to the CDF Q(X) of the standard

normal distribution as

|Qm(X)−Q(X)| < 5
2
〈|X|3〉
〈|X|2〉3/2

1√
m

=
5

2
√

2C
Γ(3− β)

Γ(2− β)3/2λ
− 1

2β
1√
m
,

since

〈|X|3〉 = C

∫ ∞
−∞
|X|3e−λ|X||X|−β−1d|X|

= 2C
∫ ∞

0
e−λ|X||X|3−β−1d|X| = 2Cλβ−3Γ(3− β)
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130 WEIHUA DENG, BUYANG LI, WENYI TIAN, AND PINGWEN ZHANG

and

〈|X|2〉 = C

∫ ∞
−∞
|X|2e−λ|X||X|−β−1d|X|

= 2C
∫ ∞

0
e−λ|X||X|2−β−1d|X| = 2Cλβ−2Γ(2− β).

From (8), it can be seen that with the decrease of λ the required m for the crossover
between Lévy flight behavior and Gaussian behavior increase rapidly. A slightly
counterintuitive observation is that the number of variables required to the crossover
increases with the increase of β.

We have described the distributions of jump length for Lévy flights and tempered
Lévy flights, in which a Poisson process is taken as the renewal process. We denote
the Poisson process with rate ζ > 0 as N(t) and its waiting time distribution between
two events is ζe−ζt. Then the Lévy flights or tempered Lévy flights are the compound
Poisson process defined as X(t) =

∑N(t)
j=0 Xj , where Xj are i.i.d. random variables

with the distribution of a power law or tempered power law. The characteristic
function of X(t) can be calculated as follows. For real k, we have

(9)

p̂(k, t) = E(eik·X(t))

=
∞∑
j=0

E(eik·X(t) |N(t) = j)P (N(t) = j)

=
∞∑
j=0

E(eik·(X0+X1+···+Xj) |N(t) = j)P (N(t) = j)

=
∞∑
j=0

Φ0(k)j
(ζt)j

j!
e−ζt

= eζt(Φ0(k)−1),

where Φ0(k) = E(eik·X0), which is also the characteristic function of X1,X2, . . . ,Xj

since they are i.i.d.
In the CTRW model describing one-dimensional Lévy flights or tempered Lévy

flights, the PDF of waiting times is taken as ζe−ζt with its Laplace transform ζ/(u+ζ),
and the PDF of jumping length is c−βr−β−1 or e−λrr−β−1 with its Fourier transform
1 − cβ |k|β or 1 − cβ,λ[(λ + ik)β − λβ ] − cβ,λ[(λ − ik)β − λβ ]. Substituting them into
the Montroll–Weiss equation (1) with p̂0(k) = 1 (the initial position of particles is at
zero), we get that p̂(k, u) of Lévy flights solves

(10) p̂(k, u) =
1

u+ ζcβ |k|β
,

and the p̂(k, u) of tempered Lévy flights obeys

(11) p̂(k, u) =
1

u+ ζCβ,λ[(λ+ ik)β − λβ ] + ζCβ,λ[(λ− ik)β − λβ ]
.

If the subdiffusion is involved, we need to choose the PDF of waiting times as
c̃1+αt−α−1 with α ∈ (0, 1) and its Laplace transform 1 − c̃αuα. Then from (1),
we get that

(12) p̂(k, u) =
c̃α

u1−α(1− (1− c̃αuα)ψ(k))
.
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For high dimensional case, the Lévy flights can also be characterized by Brownian
motion subordinated to a Lévy process. Let Y(t) be a Brownian motion with Fourier
exponent −|k|2 and S(t) a subordinator with Laplace exponent uβ/2 that is indepen-
dent of Y(t). The process X(t) = Y(S(t)) is describing Lévy flights with Fourier
exponent −|k|β , which is the subordinate process of Y(t). We denote the character-
istic function of Y(t) as Φy(k) and the one of S(t) as Φs(u). Then the characteristic
function of X(t) is

(13)

p̂x(k, t) =
∫

Rn
eik·Xpx(X, t)dX

=
∫ ∞

0

∫
Rn
eik·Ypy(Y, τ)dY ps(τ, t)dτ

=
∫ ∞

0
e−τ(−Φy(k))ps(τ, t)dτ

= e−tΦs(−Φy(k)),

where px, py, and ps, are, respectively, the PDFs of the stochastic processes X, Y,
and S. Similarly, in the following, we denote p with subscript (lowercase letter) as
the PDF of the corresponding stochastic process (uppercase letter).

This paper mainly focuses on Lévy flights and tempered Lévy flights. If one is
interested in subdiffusion, instead of a Poisson process, the fractional Poisson process
should be taken as the renewal process, in which the time interval between each pair
of events follows the power law distribution. Let Y(t) be a general Lévy process
with Fourier exponent Φy(k) and S(t) a strictly increasing subordinator with Laplace
exponent uα (α ∈ (0, 1)). Define the inverse subordinator E(t) = inf{τ > 0 : S(τ) >
t}. Since t = S(τ) and τ = E(t) are inverse processes, we have P (E(t) ≤ τ) =
P (S(τ) ≥ t). Hence

(14) pe(τ, t) =
∂P (E(t) ≤ τ)

∂τ
=

∂

∂τ
[1− P (S(τ) < t)] = − ∂

∂τ

∫ t

0
ps(y, τ)dy.

In the above equation, taking the Laplace transform w.r.t t leads to

(15) pe(τ, u) = − ∂

∂τ
u−1e−τu

α

= uα−1e−τu
α

.

For the PDF px(X, t) of X(t) = Y(E(t)), there holds

(16) px(X, t) =
∫ ∞

0
py(X, τ)pe(τ, t)dτ.

Performing the Fourier transform w.r.t. X and the Laplace transform w.r.t. t for the
above equation results in

(17)

p̂x(k, u) =
∫ ∞

0
p̂y(k, τ)pe(τ, u)dτ

=
∫ ∞

0
e−τΦy(k)uα−1e−τu

α

dτ

=
uα−1

uα + Φy(k)
.
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Remark 2.1. According to Fogedby [15], the stochastic trajectories of (scale lim-
ited) CTRW X(Et) can also be expressed in terms of the coupled Langevin equation

(18)

{
Ẋ(τ) = F (X(τ)) + η(τ),

Ṡ(τ) = ξ(τ),

where F (X) is a vector field; Et is the inverse process of S(t); the noises η(τ) and
ξ(τ) are statistically independent, corresponding to the distributions of jump length
and waiting times.

2.2. Derivation of the macroscopic description from the microscopic
models. This section focuses on the derivation of the deterministic equations gov-
erning the PDF of the position of the particles undergoing anomalous diffusion. It
shows that the operators related to (tempered) power law jump lengths should be
defined on the whole unbounded domain Rn, which can also be inspired by the rare
but extremely long jump lengths displayed in Figure 2; the fact that among all proper
Lévy processes Brownian motion is the unique one with continuous paths further con-
solidates the reasonable way of defining the operators. We derive the PDEs based on
(9), (13), and (16), since they apply for both one- and higher-dimensional cases. For
the one-dimensional case, sometimes it is convenient to use (10), (11), and (12).

When the diffusion process is rotationally symmetric β-stable, it is isotropic with
PDF of jump length cβ,nr

−β−n and its Fourier transform 1 − |k|β , where n is the
space dimension. In (9), taking ζ equal to 1, we get the Cauchy equation

(19)
dp̂(k, t)
dt

= −|k|β p̂(k, t).

Performing the inverse Fourier transform to the above equation leads to

(20)
∂p(X, t)
∂t

= ∆β/2p(X, t),

where

(21)

∆β/2p(X, t) = −cn,β lim
ε→0+

∫
CBε(X)

p(X, t)− p(Y, t)
|X−Y|n+β dY

=
1
2
cn,β

∫
Rn

p(X + Y, t) + p(X−Y, t)− 2 · p(X, t)
|Y|n+β dY

with [9]

(22) cn,β =
βΓ(n+β

2 )
21−βπn/2Γ(1− β/2)

.

For the more general cases of (9), there is the Cauchy equation

(23)
dp̂(k, t)
dt

= (Φ0(k)− 1)p̂(k, t),

so the PDF of the stochastic process X solves (taking ζ = 1)

(24)

∂p(X, t)
∂t

= F−1{(Φ0(k)− 1)p̂(k, t)}

=
∫

Rn\{0}
[p(X + Y, t)− p(X, t)]ν(dY),
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where ν(dY) is the probability measure of the jump length. Sometimes, to overcome
the possible divergence of the terms on the right-hand side of (24) because of the
possible strong singularity of ν(dY) at zero, the term

Φ0(k)− 1 =
∫

Rn\{0}

[
eik·Y − 1

]
ν(dY)

is approximately replaced by

(25)
∫

Rn\{0}

[
eik·Y − 1− i(k ·Y)χ{|Y|<1}

]
ν(dY);

then the corresponding modification to (24) is

(26)
∂p(X, t)
∂t

=
∫

Rn\{0}

[
p(X + Y, t)− p(X, t)−

n∑
i=1

yi(∂ip(X, t))χ{|Y|<1}

]
ν(dY),

where yi is the component of Y, i.e., Y = {y1,y2, . . . ,yn}T . If ν(−dY) = ν(dY),
the integration of the summation term of the above equation equals zero.

If the diffusion is in an environment having a structure like that in Figure 1, the
probability measure should be taken as
(27)
ν(dX) = ν(dx1dx2dx3 · · · dxn)

=
β1Γ( 1+β1

2 )
21−β1π1/2Γ(1− β1/2)

|x1|−β1−1δ(x2)δ(x3) · · · δ(xn)dx1dx2dx3 · · · dxn

+
β2Γ( 1+β2

2 )
21−β2π1/2Γ(1−β2/2)

|x2|−β2−1δ(x1)δ(x3) · · · δ(xn)dx1dx2dx3 · · · dxn+ · · ·

+
βnΓ( 1+βn

2 )
21−βnπ1/2Γ(1− βn/2)

|xn|−βn−1δ(x1)δ(x2) · · · δ(xn−1)dx1dx2dx3 · · · dxn,

where β1, β2, . . . , βn belong to (0, 2). Plugging (27) into (24) leads to
(28)
∂p(x1, . . . ,xn, t)

∂t
=
∂β1p(x1, . . . ,xn, t)

∂|x1|β1
+
∂β2p(x1, . . . ,xn, t)

∂|x2|β2
+· · ·+∂βnp(x1, . . . ,xn, t)

∂|xn|βn
,

where

Fj
(
∂βjp(x1, . . . ,xn, t)

∂|xj |βj

)
= −|kj |βjp(x1, . . . ,xj−1,kj ,xj+1, . . . ,xn, t)

and ∂βj p(x1,...,xn,t)
∂|xj |βj

in physical space is defined by (21) with n = 1; in particular, when

βj ∈ (1, 2), it can also be written as

(29)
∂βjp(x1, . . . ,xn, t)

∂|xj |βj
= − 1

2 cos(βjπ/2)Γ(2− βj)
∂2

∂x2
j

∫ ∞
−∞
|xj−y|1−βjp(x1, . . . ,y, . . . ,xn, t)dy.

It should be emphasized here that when characterizing diffusion processes related to
Lévy flights, the operators should be defined in the whole space. Another issue that
also should be stressed is that, when β1 = β2 = · · · = βn = 1, (28) is still describing

D
ow

nl
oa

de
d 

02
/2

4/
21

 to
 1

15
.2

7.
20

1.
24

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

134 WEIHUA DENG, BUYANG LI, WENYI TIAN, AND PINGWEN ZHANG

the phenomena of anomalous diffusion, including the cases in which they belong to
(0, 1); the corresponding “first” order operator is nonlocal, being different from the
classical first-order operator, but they have the same energy in the sense that

F
(
∂p(x1, . . . ,xn, t)

∂|xj |

)
F
(
∂p(x1, . . . ,xn, t)

∂|xj |

)
= (kj)2p̂2(x1, . . . ,xj−1,kj ,xj+1, . . . ,xn, t)

= F
(
∂p(x1, . . . ,xn, t)

∂xj

)
F
(
∂p(x1, . . . ,xn, t)

∂xj

)
,

F
(

∆1/2p(X, t)
)
F
(
∆1/2p(X, t)

)
= |k|2p̂2(k, t) = F (∇p(X, t)) · F (∇p(X, t)),

even though ∆1/2 and ∇ are completely different operators, where the notation v
stands for the complex conjugate of v.

If the subdiffusion is involved, the derivation of the macroscopic equation should
be based on (17). To relate the term to the time derivative, the inverse Laplace
transform should be performed on uαp̂(k, u) − uα−1. Since p̂(k, t = 0) is taken as 1,
there exists

(30) L−1(uαp̂(k, u)− uα−1) =
1

Γ(1− α)

∫ t

0
(t− τ)−α

∂p̂(k, τ)
∂τ

dτ,

which is usually denoted as C
0 D

α
t p̂(k, t), the so-called Caputo fractional derivative.

So, if the PDFs of both the waiting time and jump lengths of the stochastic process
X follow a power law, the corresponding models can be obtained by replacing ∂

∂t
with C

0 D
α
t in (20), (24), (26), and (28). Furthermore, if there is an external force

F (X) in the considered stochastic process X, we need to add an additional term
∇ · (F (X)p(X, t)) on the right-hand side of (20), (24), (26), and (28).

Here we turn to another important and interesting topic: tempered Lévy flights.
Practically it is not easy to collect the value of a function in the unbounded area
Rn\Ω. This is one of the achievements of using the tempered fractional Laplacian. It
is still isotropic but with PDF of jump length cβ,n,λe−λrr−β−n. The PDF of tempered
Lévy flights solves

(31)
∂p(X, t)
∂t

= (∆ + λ)β/2p(X, t),

where

(32)

(∆ + λ)β/2p(X, t) = −cn,β,λ lim
ε→0+

∫
CBε(X)

p(X, t)− p(Y, t)
eλ|X−Y||X−Y|n+β dY

=
1
2
cn,β,λ

∫
Rn

p(X + Y, t) + p(X−Y, t)− 2 · p(X, t)
eλ|Y||Y|n+β dY

with

(33) cn,β,λ =
Γ(n2 )

2π
n
2 |Γ(−β)|

.
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The choice of the constant as the one given in (33) leads to

(34) F
(

(∆ + λ)β/2p(X, t)
)

= (−1)bβc
(
λβ − (λ2 + |k|2)

β
2 +O(|k|2)

)
p̂(k, t),

where β ∈ (0, 1) ∪ (1, 2), and bβc means the biggest integer that is smaller than or
equal to β.

However, if λ = 0, one needs to choose the constant as the one given in (22) to
make sure F

(
∆β/2p(X, t)

)
= −|k|β p̂(k, t). The reason is as follows:

F
(

(∆ + λ)β/2p(X, t)
)

=
1
2
cn,β,λ

∫
Rn

eik·Y + e−ik·Y − 2
|Y|n+β e−λ|Y|dY · F(p(X, t))

= −cn,β,λ
∫

Rn

1− cos(k ·Y)
|Y|n+β e−λ|Y|dY · F(p(X, t)).

For β ∈ (0, 1) ∪ (1, 2), then we have∫
Rn

1− cos(k ·Y)
eλ|Y||Y|n+β dY =

∫
Rn

1− cos(|k|y1)
eλ|Y||Y|n+β dY = |k|β

∫
Rn

1− cos(x1)
|X|n+β e

− λ
|k| |X|dX

= C|k|β
∫ ∞

0

1
rn+β e

− λ
|k| rrn−1

(∫ π

0

(
1− cos(r cos θ1)

)
sinn−2(θ1)dθ1

)
dr

=
1

(−β)(−β + 1)
C|k|β−2λ2

∫ ∞
0

e
− λ
|k| rr−β+1

(∫ π

0

(
1− cos(r cos θ1)

)
sinn−2(θ1)dθ1

)
dr

− 1
(−β)(−β + 1)

C|k|β−1λ

∫ ∞
0

e
− λ
|k| rr−β+1

(∫ π

0
sin(r cos θ1)

)
sinn−2(θ1) cos(θ1)dθ1

)
dr

− 1
−βC|k|

β

∫ ∞
0

e
− λ
|k| rr−β

(∫ π

0
sin(r cos θ1)

)
sinn−2(θ1) cos(θ1)dθ1

)
dr

= C|Γ(−β)|
√
πΓ(n−1

2 )
Γ(n2 )

λβ
[
1− 2F1

(2− β
2

,
3− β

2
;
n

2
;−|k|

2

λ2

)
− 2− β

n

|k|2

λ2 2F1

(3− β
2

, 2− β

2
;
n

2
+ 1;−|k|

2

λ2

)
− 1− β

n

|k|2

λ2 2F1

(2− β
2

,
3− β

2
;
n

2
+ 1;−|k|

2

λ2

)]
= C|Γ(−β)|

√
πΓ(n−1

2 )
Γ(n2 )

[
λβ − λβ2F1

(
− β

2
,

1− β
2

;
n

2
;−|k|

2

λ2

)]
= C|Γ(−β)|

√
πΓ(n−1

2 )
Γ(n2 )

[
λβ − λβ

(
1 +
|k|2

λ2

) β
2

2F1

(
− β

2
,
n+ β − 1

2
;
n

2
;
|k|2

λ2 + |k|2
)]

= C|Γ(−β)|
√
πΓ(n−1

2 )
Γ(n2 )

[
λβ − (λ2 + |k|2)

β
2 2F1

(
− β

2
,
n+ β − 1

2
;
n

2
;
|k|2

λ2 + |k|2
)]
,

where 2F1 is the Gaussian hypergeometric function and

C =
(∫ π

0
sinn−3(θ2)dθ2

)
· · ·
(∫ π

0
sin(θn−2)dθn−2

)(∫ 2π

0
dθn−1

)
=

2π
n−1

2

Γ(n−1
2 )

.

So

cn,β,λ =
Γ(n2 )

2π
n
2 |Γ(−β)|

.

The PDEs for tempered Lévy flights or tempered Lévy flights combined with subdif-
fusion can be derived similarly to those in this section for Lévy flights or Lévy flights
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combined with subdiffusion. Here, we present the counterpart of (28),
(35)
∂p(x1, . . . ,xn, t)

∂t
=
∂β1,λp(x1, . . . ,xn, t)

∂|x1|β1,λ
+
∂β2,λp(x1, . . . ,xn, t)

∂|x2|β2,λ
+· · ·+ ∂βn,λp(x1, . . . ,xn, t)

∂|xn|βn,λ
,

where the operator ∂βj,λp(x1,...,xj ,t)
∂|xj |βj,λ

is defined by taking β = βj and n = 1 in (32).
Again, even for the tempered Lévy flights, all the related operators should be defined
on the whole space, because of the very rare but still possible unbounded jump lengths.

All the above derived PDEs are governing the PDF of the position of particles.
If one wants to obtain deeper information on the corresponding stochastic processes,
analyzing the distribution of the functional defined by A =

∫ t
0 U(X(τ))dτ is one of

the choices, where U is a prespecified function. Denote the PDF of the functional A
and position X as G(X, A, t) and the counterpart of A in Fourier space as q. Then
Ĝ(X, q, t) solves [31]

(36)
∂Ĝ(X, q, t)

∂t
= Kα,β∆β/2D1−α

t Ĝ(X, q, t) + iqU(X)Ĝ(X, q, t)

for Lévy flights combined with subdiffusion, and [32]

(37)
∂Ĝ(X, q, t)

∂t
= Kα,β(∆ + λ)β/2D1−α

t Ĝ(X, q, t) + iqU(X)Ĝ(X, q, t)

for tempered Lévy flights combined with subdiffusion, where

D1−α
t Ĝ(X, q, t) =

1
Γ(α)

[
∂

∂t
− iqU(X)

] ∫ t

0

ei(t−τ)qU(X)

(t− τ)1−α Ĝ(X, q, τ)dτ.

If one is only interested in the functional A (not caring about position X), then
ĜX0(q, t) is, respectively, governed by [31]

(38)
∂ĜX0(q, t)

∂t
= Kα,βD

1−α
t ∆β/2ĜX0(q, t) + iqU(X)ĜX0(q, t)

and [32]

(39)
∂ĜX0(q, t)

∂t
= Kα,βD

1−α
t (∆ + λ)β/2ĜX0(q, t) + iqU(X)ĜX0(q, t)

for Lévy flights and tempered Lévy flights, combined with subdiffusion; the X0 in
ĜX0(q, t) means the initial position of particles, which is a parameter.

3. Specifying the generalized boundary conditions for the fractional
PDEs. After introducing the microscopic models and deriving the macroscopic ones,
we have insight into anomalous diffusions, especially Lévy flights and tempered Lévy
flights. In section 2, all the derived equations are time dependent. From the process of
derivation, one can see that the issue of initial condition can be easily and reasonably
fixed, as in the classical case, just specifying the value of p(X, 0) in the domain Ω.
Lévy processes, except Brownian motion, all have discontinuous paths. As a result,
the boundary ∂Ω itself (see Figure 3) cannot be hit by the majority of discontinuous
sample trajectories. This implies that, when solving the PDEs derived in section
2, the generalized boundary conditions must be introduced, i.e., the information of
p(X, t) on the domain Rn\Ω must be properly accounted for. In the following, we
focus on (20), (28), (31), (35) to discuss the boundary issues.
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Ω

∂Ω

Rn \ Ω

Fig. 3. Domain of solving equations given in section 2.

3.1. Generalized Dirichlet type boundary conditions. The appropriate
initial and boundary value problems for (20) should be
(40)

∂p(X, t)
∂t

= ∆β/2p(X, t)=
−βΓ(n+β

2 )
21−βπn/2Γ(1−β/2)

lim
ε→0+

∫
CBε(X)

p(X, t)− p(Y, t)
|X−Y|n+β dY in Ω,

p(X, 0)|Ω = p0(X),

p(X, t)|Rn\Ω = g(X, t).

In (40), the term

(41)

lim
ε→0+

∫
CBε(X)

p(X, t)− p(Y, t)
|X−Y|n+β dY

= lim
ε→0+

∫
(CBε(X)∩Ω)

p(X, t)− p(Y, t)
|X−Y|n+β dY +

∫
Rn\Ω

p(X, t)− g(Y, t)
|X−Y|n+β dY

= lim
ε→0+

∫
(CBε(X)∩Ω)

p(X, t)− p(Y, t)
|X−Y|n+β dY + p(X, t)

∫
Rn\Ω

|X−Y|−n−βdY

+
∫

Rn\Ω

−g(Y, t)
|X−Y|n+β dY.

According to (41), g(X, t) should satisfy that there exist positive M and C such that,
when |X| > M ,

(42)
|g(X, t)|
|X|β−ε

< C for positive small ε.

In particular, when (42) holds, the function
∫

Rn\Ω
−g(Y,t)
|X−Y|n+β dY of X has any order of

derivative if g(X, t) is integrable in any bounded domain. One of the most popular
cases is g(X, t) ≡ 0, which is the so-called absorbing boundary condition, implying
that the particle is ignored whenever it leaves the domain Ω. For example, consider
the steady state fractional diffusion equation

(43)

{
∆β/2p(X) = −1 in Ω,
p(X)|Rn\Ω = 0.

The meaning of the solution p(X) of (43) is the mean first exit time [6, 19] of particles
performing Lévy flights [8]; if taking Ω = {X : |X| < r}, then [16]

(44) p(X) =
Γ(n/2)(r2 − |x|2)β/2

2βΓ(1 + β/2)Γ(n/2 + β/2)
.
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Fig. 4. Behaviors of p(x) generated by at least 1.5 × 106 trajectories with β = 0.5, n = 1,
r = 100. The (red) solid line is the theoretical result (equation (44)). The symbols are for the
simulation result.
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Fig. 5. Behaviors of p(x) generated by at least 1.5 × 106 trajectories with β = 0.5, n = 2,
r = 100. The (red) solid line is the theoretical result (equation (44)). The symbols are for the
simulation result.

We generate the sample trajectories of Lévy flights to plot one- and two-dimensional
mean first exit times, respectively, in Figures 4 and 5, which confirm the effectiveness
of the model (43).

Another interesting case is for the steady state fractional diffusion equation

(45)

{
∆β/2p(X) = 0 in Ω,
p(X)|Rn\Ω = g(X).

Given a domain H ⊂ Rn\Ω, if taking g(X) = 1 for X ∈ H and 0 for X ∈ (Rn\Ω)\H,
then the solution of (45) means the probability that the particles undergoing Lévy
flights land in H after first escaping the domain Ω [8]. If g(X) ≡ 1 in Rn\Ω, then p(X)
equals 1 in Ω because of the probability interpretation. This can also be analytically
checked.

The initial and boundary value problem (28) should be written as

(46)



∂p(x1, . . . ,xn, t)
∂t

=
∂β1p(x1, . . . ,xn, t)

∂|x1|β1
+
∂β2p(x1, . . . ,xn, t)

∂|x2|β2

+ · · ·+ ∂βnp(x1, . . . ,xn, t)
∂|xn|βn

in Ω,

p(x1, . . . ,xn, 0)|Ω = p0(x1, . . . ,xn),
p(x1, . . . ,xn, t)|Rn\Ω = g(x1, . . . ,xn, t).
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Similar to (41), in (46) the term

(47)

lim
ε→0+

∫
CBε(xj)

p(x1, . . . ,xj , . . . ,xn, t)− p(x1, . . . ,yj , . . . ,xn, t)
|xj − yj |1+βj

dyj

= lim
ε→0+

∫
(CBε(xj)∩Ω)

p(x1, . . . ,xj , . . . ,xn, t)− p(x1, . . . ,yj , . . . ,xn, t)
|xj − yj |1+βj

dyj

+ p(x1, . . . ,xj , . . . ,xn, t)
∫

R\(Ω∩Rj)
|xj − yj |−1−βjdyj

+
∫

R\(Ω∩Rj)

−g(x1, . . . ,yj , . . . ,xn, t)
|xj − yj |1+βj

dyj .

From (47), for j = 1, . . . , n, g(x1, . . . ,xj , . . . ,xn, t) should satisfy that there exist
positive M and C such that, when |xj | > M ,

(48)
|g(x1, . . . ,xj , . . . ,xn, t)|

|xj |βj−ε
< C for positive small ε.

The discussions below (45) still makes sense for (46). If g(x1, . . . ,xj , . . . ,xn, t)
satisfies (48), and it is integrable w.r.t. xj in any bounded interval, then∫

R\(Ω∩Rj)
−g(x1,··· ,yj ,··· ,xn,t)
|xj−yj |1+βj

dyj has any order of partial derivative w.r.t. xj .

The initial and boundary value problem for (31) is

(49)


∂p(X, t)
∂t

= (∆ + λ)β/2p(X, t) in Ω,

p(X, 0)|Ω = p0(X),
p(X, t)|Rn\Ω = g(X, t).

As in the discussions of (40), g(X, t) should satisfy that there exist positive M and C
such that, when |X| > M ,

(50)
|g(X, t)|
e(λ−ε)|X| < C for positive small ε.

If (50) holds and g(X, t) is integrable in any bounded domain, the function∫
Rn\Ω

−g(Y,t)
eλ|X−Y||X−Y|n+β dY of X has any order of derivative.

Again, the corresponding tempered steady state fraction diffusion equation is

(51)

{
(∆ + λ)β/2p(X) = 0 in Ω,
p(X)|Rn\Ω = g(X).

For H ⊂ Rn\Ω, if taking g(X) = 1 for X ∈ H and 0 for X ∈ (Rn\Ω)\H, then the
solution of (51) means the probability that the particles undergoing tempered Lévy
flights land in H after first escaping the domain Ω. If g(X) ≡ 1 in Rn\Ω, then p(X)
equals 1 in Ω.

The initial and boundary value problem (35) should be written as

(52)



∂p(x1, . . . ,xn, t)
∂t

=
∂β1,λp(x1, . . . ,xn, t)

∂|x1|β1,λ
+
∂β2,λp(x1, . . . ,xn, t)

∂|x2|β2,λ

+ · · ·+ ∂βn,λp(x1, . . . ,xn, t)
∂|xn|βn,λ

in Ω,

p(x1, . . . ,xn, 0)|Ω = p0(x1, . . . ,xn),
p(x1, . . . ,xn, t)|Rn\Ω = g(x1, . . . ,xn, t).

D
ow

nl
oa

de
d 

02
/2

4/
21

 to
 1

15
.2

7.
20

1.
24

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

140 WEIHUA DENG, BUYANG LI, WENYI TIAN, AND PINGWEN ZHANG

For j = 1, . . . , n, g(x1, . . . ,xj , . . . ,xn, t) should satisfy that there exist positive
M and C such that when |xj | > M ,

(53)
|g(x1, . . . ,xj , . . . ,xn, t)|

e(λ−ε)|xj |
< C for positive small ε.

If g(x1, . . . ,xj , . . . ,xn, t) is integrable w.r.t. xj in any bounded interval and satisfies
(53), then

∫
R\(Ω∩Rj)

−g(x1,...,yj ,...,xn,t)
eλ|xj−yj |xj−yj |1+βj

dyj has any order of partial derivative w.r.t. xj .

The ways of specifying the initial and boundary conditions for (36) and (38) are
the same as for (40). But for (36), the corresponding (42) should be changed to

(54)
|U(X)g(X, t)|
|X|β−ε

< C for positive small ε.

Similarly, the initial and boundary conditions of (37) and (39) should be specified as
the ones of (49). But for (37), the corresponding (50) needs to be changed to

(55)
|U(X)g(X, t)|
e(λ−ε)|X| < C for positive small ε.

For the existence and uniqueness of the corresponding time-independent equations,
we refer to [14].

3.2. Generalized Neumann type boundary conditions. Because of the in-
herent discontinuity of the trajectories of Lévy flights or tempered Lévy flights, the
traditional Neumann type boundary conditions cannot be simply extended to the
fractional PDEs. For related discussions, see, e.g., [4, 10]. Based on the models
built in section 2 and the law of mass conservation, we derive the reasonable ways of
specifying the Neumann type boundary conditions, especially the reflecting ones. Let
us first recall the derivation of the classical diffusion equation. For normal diffusion
(Brownian motion), microscopically the first moment of the distribution of waiting
times and the second moment of the distribution of jump length are bounded; i.e., in
Laplace and Fourier spaces, they are, respectively, like 1− c1u and 1− c2|k|2. Plug-
ging them into (1) or (9) and performing integral transformations lead to the classical
diffusion equation

(56)
∂p(X, t)
∂t

= (c2/c1)∆p(X, t).

On the other hand, because of mass conservation, the continuity equation states that
a change in density in any part of a system is due to inflow and outflow of particles
into and out of that part of system, i.e., no particles are created or destroyed:

(57)
∂p(X, t)
∂t

= −∇ · j,

where j is the flux of diffusing particles. Combining (56) with (57), one may take

(58) j = −(c2/c1)∇p(X, t),

which is exactly Fick’s law, a phenomenological postulation, saying that the flux goes
from regions of high concentration to regions of low concentration with a magnitude
proportional to the concentration gradient. In fact, for a long time, even up to now,
most people are more familiar with the process of using the continuity equation (57)
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and Fick’s law (58) to derive the diffusion equation (56). The so-called reflecting
boundary condition for (56) is to let the flux j be zero along the boundary of the
considered domain.

Here we want to stress that (57) holds for any kind of diffusion including the
normal and anomalous ones. For (40), (46), (49), (52) governing the PDF of Lévy
flights or tempered Lévy flights, using the continuity equation (57), one can get the
corresponding fluxes and the counterparts of Fick’s law; we call it the fractional Fick’s
law. Combining (40) with (57),

j∆ =
{
− 1

2n
cn,β

∫ xi

−∞

∫
Rn

p(X + Y, t) + p(X−Y, t)− 2 · p(X, t)
|Y|n+β dYdxi

}
n×1

(59)

which is the flux for the diffusion operator ∆β/2 with β ∈ (0, 2), or the fractional
Fick’s law corresponding to ∆β/2. From (46) and (57),

jhv =

{
−1

2
c1,βi

∫ xi

−∞

∫ +∞

−∞

p(X + Ỹi, t) + p(X− Ỹi, t)− 2 · p(X, t)
|yi|1+βi

dyidxi

}
n×1

,

(60)

where Ỹi = {x1, . . . ,yi, . . . ,xn}T , which is the flux (fractional Fick’s law) corre-
sponding to the horizontal and vertical type fractional operators. Similarly, we can
also get the fluxes (fractional Fick’s law) corresponding to the tempered fractional
Laplacian and tempered horizontal and vertical type fractional operators, which are,
respectively,

j∆,λ =
{
− 1

2n
cn,β,λ

∫ xi

−∞

∫
Rn

p(X + Y, t) + p(X−Y, t)− 2 · p(X, t)
eλ|Y||Y|n+β dYdxi

}
n×1

(61)

and

jhv,λ =

{
−1

2
c1,βi,λ

∫ xi

−∞

∫ +∞

−∞

p(X + Ỹi, t) + p(X− Ỹi, t)− 2 · p(X, t)
eλ|yi||yi|1+βi

dyidxi

}
n×1

(62)

with Ỹi = {x1, . . . ,yi, . . . ,xn}T .
Naturally, the Neumann type boundary conditions of (40), (46), (49), (52) should

be closely related to the values of the fluxes in the domain Rn\Ω; if the fluxes are
zero in it, then one gets the so-called reflecting boundary conditions of the equations.
Microscopically the motion of particles undergoing Lévy flights or tempered Lévy
flights is much different from Brownian motion; very rare but extremely long jumps
dominate the dynamics, making the trajectories of the particles discontinuous. As
shown in Figure 6, the particles may jump into, or jump out of, or even pass through
the domain Ω. But the number of particles inside Ω is conservative, which can be
easily verified by making the integration of (57) in the domain Ω, i.e.,

(63)
∂

∂t

∫
Ω
p(X, t)dX = −

∫
Ω
∇ · jdX = −

∫
∂Ω

j · nds = 0,

where n is the outward-pointing unit normal vector on the boundary. If j |Rn\Ω=0,
then for (40) ∆

β
2 p(X, t) = ∇ · j = 0 in Rn\Ω. So, the Neumann type boundary

conditions for (40), (46), (49), and (52) can be defined heuristically as
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Ω

Fig. 6. Sketch of particles jumping into, or jumping out of, or passing through the domain Ω.

∆
β
2 p(X, t) = g(X) in Rn\Ω,(64)

(65)
∂β1p(x1, . . . ,xn, t)

∂|x1|β1
+
∂β2p(x1, . . . ,xn, t)

∂|x2|β2
+ · · ·+ ∂βnp(x1, . . . ,xn, t)

∂|xn|βn
= g(X) in Rn\Ω,

(∆ + λ)β/2p(X, t) = g(X) in Rn\Ω,(66)

and

(67)
∂β1,λp(x1, . . . ,xn, t)

∂|x1|β1,λ
+
∂β2,λp(x1, . . . ,xn, t)

∂|x2|β2,λ
+ · · ·+ ∂βn,λp(x1, . . . ,xn, t)

∂|xn|βn,λ

= g(X) in Rn\Ω,

respectively. The corresponding reflecting boundary conditions are with g(X) ≡ 0.

Remark 3.1. 1. The Neumann type boundary conditions (64)–(67) derived in
this section are independent of the choice of the flux j, provided that it satisfies
the condition (57). 2. Sending β → 2, the usual Neumann boundary condition is
recovered; for example, consider the model

∂p

∂t
−∆

β
2 p = f in Ω,

∆
β
2 p = g in Rn\Ω.

(68)

The weak solution p : [0,+∞)→ Hβ/2(Rn) of (68) satisfies∫
Ω
ptqdX +

∫
Rn

∆β/4p∆β/4qdX =
∫

Ω
fqdX−

∫
Rn\Ω

gqdX ∀q ∈ Hβ/2(Rn).

Taking β → 2 leads to the usual Neumann boundary condition since∫
Rn\Ω

gqdX =
∫

Rn\Ω
(∆p)qdX = −

∫
∂Ω

∂p

∂n
qds−

∫
Rn\Ω

∇p · ∇qdX

and ∫
Rn

∆1/2p∆1/2qdX =
∫

Rn
∇p · ∇qdX.
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4. Well-posedness and regularity of the fractional PDEs with general-
ized BCs. Here, we show the well-posedesses of the models discussed in the above
sections, taking the models with the operator ∆

β
2 as examples; the other ones can be

similarly proved. For any real number s ∈ R, we denote by Hs(Rn) the conventional
Sobolev space of functions (see [1, 23]), equipped with the norm

‖u‖Hs(Rn) :=
(∫

Rn
(1 + |k|2s)|û(k)|2dk

) 1
2

,

where û denotes the Fourier transform of u. The notation Hs(Ω) denotes the space
of functions on Ω that admit extensions to Hs(Rn), equipped with the quotient norm

‖u‖Hs(Ω) := inf
ũ
‖ũ‖Hs(Rn),

where the infimum extends over all possible ũ ∈ Hs(Rn) such that ũ = u on Ω (in
the sense of distributions). The dual space of Hs(Ω) will be denoted by Hs(Ω)′. The
following inequality will be used below:

C−1
(
‖∆

β
4 u‖L2(Rn) + ‖u‖L2(Ω)

)
≤ ‖u‖

H
β
2 (Rn)

≤ C
(
‖∆

β
4 u‖L2(Rn) + ‖u‖L2(Ω)

)
.

(69)

Let Hs
0(Ω) be the subspace of Hs(Rn) consisting of functions which are zero in

Rn\Ω. It is isomorphic to the completion of C∞0 (Ω) in Hs(Ω). The dual space of
Hs

0(Ω) will be denoted by H−s(Ω).
For any Banach space B, the space L2(0, T ;B) consists of functions u : (0, T )→ B

such that

‖u‖L2(0,T ;B) :=
(∫ T

0
‖u(·, t)‖2Bdt

) 1
2

<∞,(70)

and H1(0, T ;B) = {u ∈ L2(0, T ;B) : ∂tu ∈ L2(0, T ;B)}; see [12].

4.1. Dirichlet problem. For any given g ∈ R ∪ (L2(0, T ;H
β
2 (Rn)) ∩H1(0, T ;

H−
β
2 (Rn))) ↪→ C([0, T ];L2(Rn), consider the time-dependent Dirichlet problem

∂p

∂t
−∆

β
2 p = f in Ω,

p = g in Rn\Ω,

p(·, 0) = p0 in Ω.

(71)

The weak formulation of (71) is to find p = g + φ such that

φ ∈ L2(0, T ;H
β
2

0 (Ω)) ∩H1(0, T ;H−
β
2 (Ω)) ↪→ C([0, T ];L2(Ω))(72)

and ∫ T

0

∫
Ω
∂tφ q dXdt+

∫ T

0

∫
Rn

∆
β
4 φ∆

β
4 q dXdt =

∫ T

0

∫
Ω

(f + ∆
β
2 g − ∂tg)q dXdt(73)

∀ q ∈ L2(0, T ;H
β
2

0 (Ω)).
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It is easy to see that a(φ, q) :=
∫

Rn ∆
β
4 φ∆

β
4 q dX is a coercive bilinear form

on H
β
2

0 (Ω) ×H
β
2

0 (Ω) (cf. [34, section 30.2]) and `(q) :=
∫

Ω(f + ∆
β
2 g − ∂tg)q dX is a

continuous linear functional on L2(0, T ;H
β
2

0 (Ω)). Such a problem as (73) has a unique
weak solution (cf. [34, Theorem 30.A]).

The weak solution actually depends only on the values of g in Rn\Ω, independent
of the values of g in Ω. To see this, suppose that g, g̃ ∈ R ∪ (L2(0, T ;H

β
2 (Rn)) ∩

H1(0, T ;H−
β
2 (Rn))) ↪→ C([0, T ];L2(Rn)) are two functions such that g = g̃ in Rn\Ω,

and p and p̃ are the weak solutions of
∂p

∂t
−∆

β
2 p = f in Ω,

p = g in Rn\Ω,

p(·, 0) = p0 in Ω,

and


∂p̃

∂t
−∆

β
2 p̃ = f in Ω,

p̃ = g̃ in Rn\Ω,

p̃(·, 0) = p0 in Ω,

(74)

respectively. Then the function p− p̃ ∈ L2(0, T ;H
β
2

0 (Ω))∩H1(0, T ;H−
β
2 (Ω)) satisfies

∫ T

0

∫
Ω
∂t(p− p̃) q dXdt+

∫ T

0

∫
Rn

∆
β
4 (p− p̃) ∆

β
4 q dXdt = 0 ∀ q ∈ L2(0, T ;H

β
2

0 (Ω)).

(75)

Substituting q = p − p̃ into the equation above immediately yields p − p̃ = 0 a.e. in
Rn × (0, T ).

4.2. Neumann problem. Consider the Neumann problem
∂p

∂t
−∆

β
2 p = f in Ω,

∆
β
2 p = g in Rn\Ω,

p(·, 0) = p0 in Ω.

(76)

Definition 4.1 (Weak solutions). The weak formulation of (76) is to find p ∈
L2(0, T ;H

β
2 (Rn)) ∩ C([0, T ];L2(Ω)) such that

∂tp ∈ L2(0, T ;H
β
2 (Ω)′) and p(·, 0) = p0,(77)

satisfying the following equation:

(78)

∫ T

0

∫
Ω
∂tp(X, t)q(X, t)dXdt+

∫ T

0

∫
Rn

∆
β
4 p(X, t)∆

β
4 q(X, t)dXdt

=
∫ T

0

∫
Ω
f(X, t)q(X, t)dXdt−

∫ T

0

∫
Rn\Ω

g(X, t)q(X, t)dXdt

∀ q ∈ L2(0, T ;H
β
2 (Rn)).

Theorem 4.2 (Existence and uniqueness of weak solutions). If p0 ∈ L2(Ω), f ∈
L2(0, T ;H

β
2 (Ω)′), and g ∈ L2(0, T ;H

β
2 (Rn\Ω)′), then there exists a unique weak

solution of (76) in the sense of Definition 4.1.
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Proof. Let tk = kτ , k = 0, 1, . . . , N , be a partition of the time interval [0, T ], with
step size τ = T/N , and define

fk(X) :=
1
τ

∫ tk

tk−1

f(X, t)dt, k = 0, 1, . . . , N,(79)

gk(X) :=
1
τ

∫ tk

tk−1

g(X, t)dt, k = 0, 1, . . . , N.(80)

Consider the following time-discrete problem: for a given pk−1 ∈ L2(Rn), find pk ∈
H

β
2 (Rn) such that the following equation holds:

1
τ

∫
Ω
pk(X)q(X)dX +

∫
Rn

∆
β
4 pk(X)∆

β
4 q(X)dX

=
1
τ

∫
Ω
pk−1(X)q(X)dX +

∫
Ω
fk(X)q(X)dX−

∫
Rn\Ω

gk(X)q(X)dX ∀ q ∈ H
β
2 (Rn).

(81)

In view of (69), the left-hand side of the equation above is a coercive bilinear form
on H

β
2 (Rn)×H

β
2 (Rn), while the right-hand side is a continuous linear functional on

H
β
2 (Rn). Consequently, the Lax–Milgram lemma implies that there exists a unique

solution pk ∈ H
β
2 (Rn) for (81).

Substituting q = pk into (81) yields

‖pk‖2L2(Ω) − ‖pk−1‖2L2(Ω)

2τ
+ ‖∆

β
4 pk‖2L2(Rn)

≤ ‖fk‖
H
β
2 (Ω)′

‖pk‖
H
β
2 (Ω)

+ ‖gk‖
H
β
2 (Rn\Ω)′

‖pk‖
H
β
2 (Rn\Ω)

≤
(
‖fk‖

H
β
2 (Ω)′

+ ‖gk‖
H
β
2 (Rn\Ω)′

)
‖pk‖

H
β
2 (Rn)

≤
(
‖fk‖

H
β
2 (Ω)′

+ ‖gk‖
H
β
2 (Rn\Ω)′

)(
‖∆

β
4 pk‖2L2(Rn) + ‖pk‖2L2(Ω)

)
.(82)

Then, summing up the inequality above for k = 1, 2, . . . , N , we have

max
1≤k≤N

‖pk‖2L2(Ω) + τ

N∑
k=1

‖∆
β
4 pk‖2L2(Rn)

≤ ‖p0‖2L2(Ω) + Cτ

N∑
k=1

(
‖fk‖2

H
β
2 (Ω)′

+ ‖gk‖2
H
β
2 (Rn\Ω)′

+ ‖pk‖2L2(Ω)

)
.(83)

By applying Grönwall’s inequality to the last estimate, there exists a positive constant
τ0 such that when τ < τ0 we have

max
1≤k≤N

‖pk‖2L2(Ω) + τ

N∑
k=1

‖pk‖2
H
β
2 (Rn)

≤ C‖p0‖2L2(Ω) + Cτ

N∑
k=1

(
‖fk‖2

H
β
2 (Ω)′

+ ‖gk‖2
H
β
2 (Rn\Ω)′

)
.(84)

Since any q ∈ H
β
2 (Ω) can be extended to q ∈ H

β
2 (Rn) with ‖q‖

H
β
2 (Rn)

≤ 2‖q‖
H
β
2 (Ω)

,

choosing such a q in (81) yields
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∣∣∣∣ ∫
Ω

pk(X)− pk−1(X)
τ

q(X)dX
∣∣∣∣

=
∣∣∣∣ ∫

Ω
fk(X)q(X)dX−

∫
Rn\Ω

gk(X)q(X)dX−
∫

Rn
∆

β
4 pk(X)∆

β
4 q(X)dX

∣∣∣∣
≤ C

(
‖fk‖

H
β
2 (Ω)′

+ ‖gk‖
H
β
2 (Rn\Ω)′

+ ‖∆
β
4 pk‖L2(Rn)

)
‖q‖

H
β
2 (Rn)

≤ C
(
‖fk‖

H
β
2 (Ω)′

+ ‖gk‖
H
β
2 (Rn\Ω)′

+ ‖∆
β
4 pk‖L2(Rn)

)
‖q‖

H
β
2 (Ω)

,

which implies (via duality)

∥∥∥∥pk − pk−1

τ

∥∥∥∥
H
β
2 (Ω)′

≤ C(‖fk‖
H
β
2 (Ω)′

+ ‖gk‖
H
β
2 (Rn\Ω)′

+ ‖∆
β
4 pk‖L2(Rn)).(85)

The last inequality and (84) can be combined and written as

max
1≤k≤N

‖pk‖2L2(Ω) + τ

N∑
k=1

(∥∥∥∥pk − pk−1

τ

∥∥∥∥2

H
β
2 (Ω)′

+ ‖pk‖2
H
β
2 (Rn)

)

≤ C‖p0‖2L2(Ω) + Cτ

N∑
k=1

(
‖fk‖2

H
β
2 (Ω)′

+ ‖gk‖2
H
β
2 (Rn\Ω)′

)
.(86)

If we define the piecewise constant functions

f (τ)(X, t) := fk(X) =
1
τ

∫ tk

tk−1

f(X, t)dt for t ∈ (tk−1, tk], k = 0, 1, . . . , N,(87)

g(τ)(X, t) := gk(X) =
1
τ

∫ tk

tk−1

g(X, t)dt for t ∈ (tk−1, tk], k = 0, 1, . . . , N,(88)

p
(τ)
+ (X, t) := pk(X) for t ∈ (tk−1, tk], k = 0, 1, . . . , N,(89)

and the piecewise linear function

p(τ)(X, t) :=
tk − t
τ

pk−1(X) +
t− tk−1

τ
pk(X) for t ∈ [tk−1, tk], k = 0, 1, . . . , N,

(90)

then (81) and (86) imply∫ T

0

∫
Ω
∂tp

(τ)(X, t)q(X, t)dXdt+
∫ T

0

∫
Rn

∆
β
4 p

(τ)
+ (X, t)∆

β
4 q(X, t)dXdt

=
∫ T

0

∫
Ω
f (τ)(X, t)q(X, t)dXdt−

∫ T

0

∫
Rn\Ω

g(τ)(X, t)q(X, t)dXdt

∀ q ∈ L2(0, T ;H
β
2 (Rn))
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and

‖p(τ)‖C([0,T ];L2(Ω)) + ‖∂tp(τ)‖
L2(0,T ;H

β
2 (Ω)′)

+ ‖p(τ)‖
L∞(0,T ;H

β
2 (Rn))

+ ‖p(τ)
+ ‖

L∞(0,T ;H
β
2 (Rn))

≤ C
(
‖f (τ)‖

L2(0,T ;H
β
2 (Ω)′)

+ ‖g(τ)‖
L2(0,T ;H

β
2 (Rn\Ω)′)

)
≤ C

(
‖f‖

L2(0,T ;H
β
2 (Ω)′)

+ ‖g‖
L2(0,T ;H

β
2 (Rn\Ω)′)

)
,

respectively, where the constant C is independent of the step size τ . The last in-

equality implies that p(τ) is bounded in H1(0, T ;H
β
2 (Ω)′) ∩ L2(0, T ;H

β
2 (Rn)) ↪→

C([0, T ];L2(Ω)). Consequently, there exists p ∈ H1(0, T ;H
β
2 (Ω)′)∩L2(0, T ;H

β
2 (Rn))

↪→ C([0, T ];L2(Ω)) and a subsequence τj → 0 such that

p(τj) converges to p weakly in L2(0, T ;H
β
2 (Rn),(91)

p
(τj)
+ converges to p weakly in L2(0, T ;H

β
2 (Rn),(92)

∂tp
(τj) converges to ∂tp weakly in L2(0, T ;H

β
2 (Ω)′),(93)

p(τj) converges to p weakly in C([0, T ];H
β
2 (Ω)′) (see [20, Appendix C]).(94)

By taking τ = τj → 0 in (91), we obtain (78). This proves the existence of a weak
solution p satisfying (77).

If there are two weak solutions p and p̃, then their difference η = p − p̃ satisfies
the equation

∫ T

0

∫
Ω
∂t(p− p̃)q dXdt+

∫ T

0

∫
Rn

∆
β
4 (p− p̃)∆

β
4 q dXdt = 0 ∀ q ∈ L2(0, T ;H

β
2 (Rn)).

(95)

Substituting q = p− p̃ into the equation yields

‖p(·, t)− p̃(·, t)‖2L2(Ω) + ‖∆
β
4 (p− p̃)‖2L2(0,T ;L2(Rn)) = ‖p(·, 0)− p̃(·, 0)‖2L2(Ω) = 0,

(96)

which implies p = p̃ a.e. in Rn × (0, T ). The uniqueness is proved.

Remark 4.3. From the analysis in this section we see that, although the initial
data p0(X) physically exists in the whole space Rn, one only needs to know its values
in Ω to solve the PDEs (under both Dirichlet and Neumann boundary conditions).

5. Conclusion. In recent decades, fractional PDEs have become popular as the
effective models of characterizing Lévy flights or tempered Lévy flights. This paper is
trying to answer the question, What are the physically meaningful and mathematically
reasonable boundary constraints for the models? We physically introduce the process
of the derivation of the fractional PDEs based on the microscopic models describing
Lévy flights or tempered Lévy flights, and demonstrate that from a physical point of
view, when solving the fractional PDEs in a bounded domain Ω, the information of the
models in Rn\Ω should be involved. Inspired by the derivation process, we specify the
Dirichlet type boundary constraint of the fractional PDEs as p(X, t)|Rn\Ω = g(X, t)
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and Neumann type boundary constraints as, e.g., (∆β/2p(X, t))|Rn\Ω = g(X, t) for
the fractional Laplacian operator, which is the usual Neumann boundary condition
when β → 2.

The tempered fractional Laplacian operator (∆ + λ)β/2 is physically introduced
and mathematically defined. For the four specific fractional PDEs given in this paper,
we prove their well posedness with the specified Dirichlet or Neumann type boundary
constraints. In fact, it can be easily checked that these fractional PDEs are not well
posed if their boundary constraints are (locally) given in the traditional way; the
potential reason is that locally dealing the boundary contradicts the principles that
the Lévy or tempered Lévy flights follow.

Acknowledgments. W.D. thanks Mark M. Meerschaert and Zhen-Qing Chen
for discussions. We thank the anonymous reviewer for Remark 3.1 of section 3.2.
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