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Abstract We consider approximations on SO(3) by Wigner D-matrix. We establish basic
approximation properties of Wigner D-matrix, develop efficient numerical schemes using
Wigner D-matrix for elliptic and parabolic equations on SO(3), and establish correspond-
ing optimal error estimates. Numerical examples are presented to validate the theoretical
estimates and illustrate a physical application.
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1 Introduction

In most problems relevant to three-dimensional rotations, we need to express functions in the
rotational group SO(3). Because Wigner D-matrix is an irreducible representation of SO(3),
it is naturally used to expand functions in SO(3), similar to Fourier expansion for periodic
functions or spherical harmonic expansion for functions in spherical domains. Although
originally introduced in group representation and quantum mechanics [20,22,24], Wigner
D-matrix has now been applied to various areas [3], including image searching and analy-
sis [6], cosmology [21], molecular biology [11], polymeric and liquid crystalline materials

B Jie Xu
xu924@purdue.edu

Jie Shen
shen7@purdue.edu

Pingwen Zhang
pzhang@pku.edu.cn

1 Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

2 LMAM & School of Mathematical Sciences, Peking University, Beijing 100871, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0515-7&domain=pdf
http://orcid.org/0000-0002-4885-5732


J Sci Comput (2018) 74:1706–1724 1707

[17–19,23]. The development of fast transformation between the physical and the frequency
space [10] has brought great convenience to its applications.

When solving PDEs on SO(3), Wigner D-matrix is often used as basis functions
in a spectral-Galerkin approach. However, error estimates for such approach involving
Wigner D-matrix is not yet available. The main purposes of this paper are (i) to derive
a basic approximation theory for Wigner D-matrix; (ii) to derive an efficient spectral-
Galerkin algorithm usingWigner D-matrix and the corresponding error estimates for solving
elliptic and parabolic type equations on SO(3); and (iii) to illustrate how to use spectral-
Galerkin algorithm with Wigner D-matrix to simulate a worm-like chain on the spherical
surface.

It is known that the accuracy of the spectral-Galerkin solution is controlled by the approx-
imation properties of the basis functions. Analysis of this kind has been done for Fourier
series and orthogonal polynomials [2,8,9,12,16]. The key property in the proof of approxi-
mation results is a derivative relation similar to that satisfied by the Jacobi polynomials. Such
a derivative relation played a key role in the error estimate of Jacobi polynomials [9,16].
With the approximation results in hand, we then consider using Wigner D-matrix to solve
elliptic and parabolic equations on SO(3).

As an application, we focus on a model of polymers, where the chain propagator equation
needs to be solved. The chain propagator equation is crucial for the computation of the single
chain partition function [5]. The form of chain propagator equation is identical to Schrödinger
equation except without the unit i h̄. The space of variables depends on the symmetry of the
monomers/building blocks. If they do not have spherical or axial symmetry, the differential
equations are necessarily on SO(3). The space of variables also depends on the geometry of
the region inwhich themolecule is confined.An example isworm-likemolecules on spherical
surface [14], where the chain propagator equation is also on SO(3). Other applications we
plan to consider in a future work is the Smoluchowski equation which describes the evolution
of density function for liquid crystals [4].

The rest of paper is organized as follows. In Sect. 2, we introduce the notations in SO(3),
the definition and some important relations of Wigner D-matrix. Section 3 is dedicated
to the error estimate for approximation by Wigner D-matrix. Applications to elliptic and
parabolic equations are presented in Sect. 4 where we propose efficient algorithms and derive
optimal error estimates. Numerical examples are presented in Sect. 5 to validate the theo-
retical results and illustrate physical applications. A brief concluding remark is given in
Sect. 6.

2 Wigner D-matrix

Here we only write down the definitions and properties necessary for establishing the approx-
imation theory, where we avoid involving notations specifically for quantum mechanics. For
more details, we refer to [20,22,24].

2.1 The Elements of SO(3)

We choose a reference orthonormal frame (e1, e2, e3) in R
3. Each orthonormal frame

(m1,m2,m3) can be expressed by rotating (e1, e2, e3) with P ∈ SO(3), namely PPT = I ,
|P| = 1 and

(m1,m2,m3) = (e1, e2, e3) P.
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The elements of P ,

P =
⎛
⎝
m11 m21 m31

m12 m22 m32

m13 m23 m33

⎞
⎠

are given by

m jk = m j · ek .
In the above description, P is determined by m j . We may also view m j as functions of P .

The elements in SO(3) can be expressed by Euler angles α, β, γ :

P(α, β, γ )

=
⎛
⎝

cosβ − sin β cos γ sin β sin γ

sin β cosα cosβ cosα cos γ − sin α sin γ − cosβ cosα sin γ − sin α cos γ

sin β sin α cosβ sin α cos γ + cosα sin γ − cosβ sin α sin γ + cosα cos γ

⎞
⎠ ,

(2.1)

where

β ∈ [0, π ], α, γ ∈ [0, 2π).

The uniform unit measure in SO(3) is given by

dν = 1

8π2 sin β dα dβ dγ.

2.2 Differential Operators

In the tangential space at P , denoted by TSO(3)(P), we choose an orthonormal basis
(X1, X2, X3). For any differentiable function f , the directional derivatives can be calcu-
lated by

d

dt
f (P(t)) =

3∑
i=1

∂Xi f ·
(
Xi ,

dP

dt

)
.

Note that PPT = PTP = I . Thus we have

dP

dt
PT + P

dPT

dt
= dPT

dt
P + PT dP

dt
= 0.

So we can find skew-symmetric matrices Al , Ar such that dP/dt = Al P = PAr . Hence
(S1P, S2P, S3P) and (PS1, PS2, PS3) are two orthonormal basis of TSO(3)(P), where

S1 =
⎛
⎝
0 0 0
0 0 −1
0 1 0

⎞
⎠ , S2 =

⎛
⎝

0 0 1
0 0 0

−1 0 0

⎞
⎠ , S3 =

⎛
⎝
0 −1 0
1 0 0
0 0 0

⎞
⎠ . (2.2)

When we choose Xk = Sk P , we denote Jk = ∂Xk ; when we choose X ′
k = PSk , we denote

Lk = ∂X ′
k
. Intuitively, Jk represents the derivative of the infinitesimal rotation about ek , and

Lk represents the derivative of the infinitesimal rotation about mk . We can also write

Jk f (P) = lim
t→0

f (exp(t Sk)P) − f (P)

t
, Lk f (P) = lim

t→0

f (P exp(t Sk)) − f (P)

t
. (2.3)
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By computing the derivatives of P about Euler angles, we can write Jk and Lk by Euler
angles:

J1 = ∂

∂α
, (2.4)

J2 = cosα

sin β

(
∂

∂γ
− cosβ

∂

∂α

)
− sin α

∂

∂β
, (2.5)

J3 = sin α

sin β

(
∂

∂γ
− cosβ

∂

∂α

)
+ cosα

∂

∂β
, (2.6)

L1 = ∂

∂γ
, (2.7)

L2 = − cos γ

sin β

(
∂

∂α
− cosβ

∂

∂γ

)
+ sin γ

∂

∂β
, (2.8)

L3 = sin γ

sin β

(
∂

∂α
− cosβ

∂

∂γ

)
+ cos γ

∂

∂β
. (2.9)

Using (2.4)–(2.9), we can verify the following properties. First, we have

J 21 + J 22 + J 23 = L2
1 + L2

2 + L2
3 � L2 = J 2. (2.10)

Second, the operators satisfy

[Jk1 , Jk2 ] = Jk1 Jk2 − Jk2 Jk1 = −εk1k2k3 Jk3 , [Lk1 , Lk2 ] = εk1k2k3Lk3 , (2.11)

where

εk1k2k3 =
⎧⎨
⎩
1, (k1k2k3) = (123), (231), (312),
−1, (k1k2k3) = (132), (213), (321),
0, otherwise.

Thus we can verify that

[L2, Jk] = [L2, Lk] = [Jk1 , Lk2 ] = 0.

The derivatives of mi j are given by

Jk1mlk2 = εk1k2k3mlk3 , Lk1mk2l = εk1k2k3mk3l . (2.12)

The operators satisfy the equation of integration by parts in SO(3),
∫

dν f (Jkg) = −
∫

dν(Jk f )g,
∫

dν f (Lkg) = −
∫

dν(Lk f )g. (2.13)

2.3 Wigner D-matrix

By (2.13), the operators i Jk and i Lk are symmetric on L2(SO(3)), where i = √−1 is the
imaginary unit. Also −L2, i J1, i L1 are mutually commutative, so we may consider their
common eigenfunctions,

− L2φ = λφ, i J1φ = mφ, i L1φ = m′φ. (2.14)

By solving the eigenfunctionproblem,weobtain thatλ = j ( j+1), j ≥ |m|, |m′|, j,m,m′ ∈
Z, and the corresponding eigenfunction gives the Wigner D-matrix,

D j
mm′ = exp(−imα)d j

mm′(β) exp(−im′γ ), (2.15)
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where

d j
mm′(β) = (−1)ν

(
2 j − k

k + a

)1/2(k + b

b

)−1/2 (
sin

β

2

)a (
cos

β

2

)b

P(a,b)
k (cosβ).

In the above, k = j − max(|m|, |m′|), a = |m − m′|, b = |m + m′|,

ν =
{
0, if m′ ≤ m,

m′ − m, if m′ > m,

and

P(a,b)
k (x) =

∑
s

(
k + a

s

)(
k + b

k − s

) (
x − 1

2

)n−s (
x + 1

2

)s

is the Jacobi polynomial.Whenm′ = 0, theWignerD-matrix becomes the spherical harmonic
functions, i.e.,

D j
m0 = Y j

m,

where Y j
m are the spherical harmonic functions. By the theory of group representation [20],

we have

Proposition 2.1 D j
mm′ is a complete orthogonal basis of L2(SO(3)).

In fact, the orthogonality can also be verified directly by that of Jacobi polynomials. If
m1 �= m2 or m′

1 �= m′
2, it is obvious that D

j1
m1m′

1
and D j2

m2m′
2
are orthogonal. And we have

∫
dν D j1

mm′ D
j2∗
mm′ = C

∫ 1

−1
dx (1 − x)a(1 + x)b P(a,b)

k1
(x)P(a,b)

k2
(x) = Cδ j1 j2 .

The Wigner D-matrix also satisfies the following differential relations: define L± =
i L2 ∓ L3, J± = i J2 ± J3, then

L±D j
mm′ = √

j ( j + 1) − m′(m′ ± 1)D j
m,m′±1, (2.16)

J±D j
mm′ = √

j ( j + 1) − m(m ± 1)D j
m±1,m′ . (2.17)

The relations (2.14), (2.16) and (2.17) are crucial in the error estimate.

3 Approximation Error by Wigner D-matrix

We shall only consider the operator Lk , since Jk can be studied in exactly the same manner.
We define the H p space on SO(3) by

H p(SO(3)) = { f (P) : L j1 . . . L jp f ∈ L2(SO(3))}, (3.1)

with the semi-norm and norm

| f |2p =
∑

jr=1,2,3

|L j1 . . . L jp f |2, || f ||2p =
∑
k≤p

| f |2p. (3.2)

Denote || f || = || f ||0.
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Since {D j
mm′ } is a complete orthogonal basis, for f (P) ∈ L2(SO(3)), we may write

f (P) =
∑

0≤|m|,|m′|≤ j

f̂ j
mm′ D

j
mm′ .

If f ∈ H1, by (2.14) and (2.16), we have

3∑
r=1

||Lr f ||2 =
∑

0≤|m|,|m′|≤ j

j ( j + 1)| f̂ j
mm′ |2.

Recall that L2 is defined in (2.10). Thus, for f ∈ H2k ,

||(L2)k f ||2 =
∑

0≤|m|,|m′|≤ j

( j ( j + 1))2k | f̂ j
mm′ |2, (3.3)

and for f ∈ H2k+1,

3∑
r=1

||Lr (L
2)k f ||2 =

∑
0≤|m|,|m′|≤ j

( j ( j + 1))2k+1| f̂ j
mm′ |2. (3.4)

Using these equalities, we may define the fractional Sobolev space H ν as follows,

H ν =
⎧⎨
⎩ f : || f ||ν =

∑
0≤|m|,|m′|≤ j

(1 + j2)ν/2| f̂ j
mm′ |2 < ∞

⎫⎬
⎭ .

Next we estimate the derivatives L j1 . . . L jp . We can write

L2+ f =
∑

0≤|m+1|,|m′|≤ j

√[ j ( j + 1) − m(m + 1)][ j ( j + 1) − (m + 1)(m + 2)] f̂ j
mm′ D

j
m+2,m′ .

Therefore,

||L2+ f ||2 ≤
∑

0≤|m+1|,|m′|≤ j

( j ( j + 1))2| f̂ j
mm′ |2 ≤ ||L2 f ||2.

Similarly, we can derive ||Ls1Ls2 f || ≤ ||L2 f || for s1, s2 ∈ {1,+,−}. Thus, for jr ∈
{1, 2, 3}, we have

||L j1 . . . L jp f ||2 ≤ C(p)
∑

0≤|m|,|m′|≤ j

( j ( j + 1))p| f̂ j
mm′ |2, (3.5)

where C(p) = 2p .
Denote

XN = span{D j
mm′ : j ≤ N }. (3.6)

Define the projection operator πN as

(πN f − f, g) = 0, ∀g ∈ XN . (3.7)

Then πN can be written as

πN f =
∑

0≤|m|,|m′|≤ j≤N

f̂ j
mm′ D

j
mm′ . (3.8)

Now we can reach an error estimate of the πN .
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Theorem 3.1 For any f ∈ H p(SO(3)) and k ≤ p ≤ N,

||L j1 . . . L jk (πN f − f )|| ≤ CNk−p| f |p. (3.9)

Proof Using (3.5), (3.3), and (3.4), we have

||L j1 . . . L jk (πN f − f )||2 ≤C
∑

j>N ,0≤|m|,|m′|≤ j

( j ( j + 1))2k | f̂ j
mm′ |2

≤ C

(N (N + 1))2p−2k

∑
j>N ,0≤|m|,|m′|≤ j

( j ( j + 1))2p| f̂ j
mm′ |2

≤CN 2k−2p| f |2p.

�

4 Applications

We shall consider two problems in this section: one is an elliptic equation and the other is a
parabolic equation.

4.1 Elliptic Equation

Consider
− Li Ai j L j u + bi Li u + cu = f, (4.1)

with Ai j (P), bi (P), c(P) ∈ L∞(SO(3)), f (P) = L2(SO(3)), and the conventional nota-
tion about repeated indices is used. We also assume that the matrix

(
Ai j bi
b j c

)

is symmetric positive definite at each P ∈ SO(3), with the minimal eigenvalue ≥ λ > 0.
Under this assumption, the bilinear form

a(u, v) =
∫

(Ai j LivL ju + bivLiu + cuv)dν (4.2)

is continuous and coercive about the H1 norm in SO(3), namely,

a(u, v) ≤ C‖u‖1‖v‖1, ∀u, v ∈ H1;
λ‖u‖1 ≤ a(u, u), ∀u ∈ H1.

(4.3)

The weak form of the equation is to find u ∈ H1(SO(3)) such that

a(u, v) = ( f, v), ∀v ∈ H1(SO(3)). (4.4)

By the Lax-Milgram lemma, there exists a unique solution for the above problem.

4.1.1 Regularity

We first establish a regularity result for (4.4).
The following two lemmas are similar to the elliptic equations in R

n . The difference
quotient has the following estimate.
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Lemma 4.1 Let Lh
k f (P) = [ f (P exp(hSk)) − f (P)]/h, where Sk are given in (2.2).

A. Assume 1 ≤ p ≤ ∞ and f ∈ W 1,p . Then

||Lh
k f ||L p ≤ C ||Lk f ||L p . (4.5)

B. Assume 1 < p ≤ ∞, f ∈ L p , and there exists a constant C such that ||Lh
k f ||L p ≤ C

for all h and k = 1, 2, 3. Then f ∈ W 1,p , and

||Lk f ||L p ≤ C, k = 1, 2, 3. (4.6)

Proof A. If f ∈ W 1,p , then for every P ∈ SO(3),

f (P exp(hSk)) − f (P) = h
∫ 1

0
dt Lk f (P exp(thSk)).

Therefore
∫

dν|Lh
k f |p ≤ C

∫
dν

∫ 1

0
dt |Lk f (P exp(thSk))|p

≤ C ||Lk f ||L p .

B. Let φ ∈ C∞. We have
∫

dν f Lh
kφ = −

∫
dνLh

k f φ.

Note that Lh
k f is bounded in L

p . Thus we can choose a subsequence such that Lhl
k f ⇀ g

weakly in L p . Then
∫

dν f Lkφ = lim
l→∞

∫
dν f Lhl

k φ = − lim
l→∞

∫
dνLhl

k f φ = −
∫

dνgφ,

indicating that g = Lk f in L p . Hence we deduce that f ∈ W 1,p .

�

Lemma 4.2 Assume Ai j , bi ∈ W 1,∞ and c ∈ L∞. Let u be the solution of (4.4) with
f = g ∈ L2, then u ∈ H2 and

||u||2 ≤ C ||g||0. (4.7)

Here the constant C depends on ||Ai j ||W 1,∞ , ||bi ||W 1,∞ , ||c||L∞ .

Proof Substituting v with L−h
k v in (4.4), we obtain

∫
dνAi j Li uL j L

−h
k v =

∫
dν(g − (c − Libi )u + bi Li u)L−h

k v. (4.8)

From (2.3), we can deduce that

(L j L
h
k − Lh

k L j )v = ε jkl
sin h

h
Llv(P exp(hS2)) − 1 − cos h

h
L jv(P exp(hS2)). (4.9)
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Take ( j, k) = (1, 2) for example. Denote R(t, h) = exp(−hS2) exp(t S1) exp(hS2). Then we
have

lim
t→0

1

t
(R(t, h) − I ) = lim

t→0

1

t

⎛
⎝
cos2 h + sin2 h cos t − 1 − sin h sin t cos h sin h(1 − cos t)

sin h sin t cos t − 1 − cos h sin t
cos h sin h(1 − cos t) cos h sin t cos2 h cos t + sin2 h − 1

⎞
⎠

=
⎛
⎝

0 − sin h 0
sin h 0 − cos h
0 cos h 0

⎞
⎠

= S3 sin h + S1 cos h.

Hence,

h(L1L
h
2 − Lh

2L1)v = lim
t→0

1

t
[v(P exp(t S1) exp(hS2)) − v(P exp(hS2) exp(t S1))]

= lim
t→0

1

t
[v(P exp(hS2)R(t, h)) − v(P exp(hS2))]

− lim
t→0

1

t
[v(P exp(hS2) exp(t S1)) − v(P exp(hS2))]

= sin hL3v(P exp(hS2)) − (1 − cos h)L1v(P exp(hS2)).

By (4.9), we deduce that

||LLh
k u||0 ≤ ||Lh

k Lu||0 + C1||u||1. (4.10)

The left side of (4.8) can be rewritten as
∫

dνAi j Li uL j L
−h
k v

=
∫

dνAi j Li u

[
L−h
k L jv + ε jkl

sin h

h
Llv(P exp(−hSk)) + 1 − cos h

h
L jv(P exp(−hSk))

]

=
∫

dν − Lhk (Ai j Li u)L jv

+ Ai j Li u

[
ε jkl

sin h

h
Llv(P exp(−hSk)) + 1 − cos h

h
L jv(P exp(−hSk))

]

=
∫

dν − Ai j (P exp(hS1))L
h
k Li uL jv − Lhk Ai j Li uL jv

+ Ai j Li u

[
ε jkl

sin h

h
Llv(P exp(−hSk)) + 1 − cos h

h
L jv(P exp(−hSk))

]
.

Thus
∫

dνAi j (P exp(hS1))L
h
k Li uL jv

=
∫

dν − Lh
k Ai j Li uL jv − (g − (c + Libi )u − bi Li u)L−h

k v

+ Ai j Li u

[
ε jkl

sin h

h
Llv(P exp(−hSk)) + 1 − cos h

h
L jv(P exp(−hSk))

]

≤C2(||u||1 + ||g||0)||Lv||0.
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Then we substitute v with Lh
k u in the above, which yields

λ||Lh
k Lu||20 ≤

∫
dνAi j (P exp(hS1))L

h
k LiuL

h
k L j u

=
∫

dνAi j (P exp(hS1))L
h
k Liu

[
L j L

h
k u

−ε jkl
sin h

h
Llu(P exp(hSk)) + 1 − cos h

h
L ju(P exp(hSk))

]

≤C2(||u||1 + ||g||0)||LLh
k u||0 + C3||u||1||Lh

k Lu||0
≤C2(||u||1 + ||g||0)(||Lh

k Lu||0 + C1||u||1) + C3||u||1||Lh
k Lu||0

≤C4(||u||1 + ||g||0)(||Lh
k Lu||0 + ||u||1 + ||g||0).

Solving the above quadratic inequality about ||Lh
k Lu||0, we obtain ||Lh

k Lu||0 ≤ C5(||u||1 +
||g||0) with C5 = C4/2λ + √

(C4/2λ)2 + C4/λ, which implies u ∈ H2 and

||u||2 ≤ C5(||u||1 + ||g||0).
Finally, we have λ||u||21 ≤ a(u, u) = (u, g) ≤ ||u||0||g||0. Therefore ||u||1 ≤ (1/λ)||g||0
and (4.7) holds. 
�
Corollary 4.3 Assume Ai j , bi ∈ Wk+1,∞ and c ∈ Wk,∞. If u is the solution of (4.4) with
f = g ∈ Hk, then u ∈ Hk+2 and

||u||k+2 ≤ C ||g||k . (4.11)

Proof We prove by induction. Suppose (4.11) holds for 0, . . . , k − 1. Then u ∈ Hk+1 and
||u||k+1 ≤ C ||g||k−1. Since the coefficients and the right-hand term have better smoothness,
we can take derivatives on both sides of the equation,

L p1 . . . L pk (Li Ai j L j u + bi Li u + cu) = L p1 . . . L pk g.

Denote u′ = L p1 . . . L pk u. By using (2.11), we can rewrite the above equation as

Li Ai j L j u
′ + bi Li u

′ + cu′ = g′.

where g′ ∈ L2 and

||g′|| ≤ C(||u||k+1 + ||g||k) ≤ C(||g||k−1 + ||g||k) ≤ C ||g||k .
By Lemma 4.2, u′ ∈ H2 and ||u′||2 ≤ C ||g′|| ≤ C ||g||k . Since pk are arbitrary, we have
||u||k+2 ≤ C ||g||k . 
�

4.1.2 Error Estimate

The spectral-Galerkin method for (4.4) is: Find uN ∈ XN such that

a(uN , vN ) = ( f, vN ), ∀vN ∈ XN . (4.12)

Again the wellposedness of the above problem is assured by the Lax-Milgram lemma. As
for the error estimate, we have

Theorem 4.4 Assume Ai j , bi ∈ Wk+1,∞, c ∈ Wk,∞ and f ∈ Hk, where k is a nonnegative
integer. If u is the solution of (4.4) and uN is that of (4.12), then

||u − uN ||ν ≤ CN ν−k−2|| f ||k, ∀ν ∈ [0, 1]. (4.13)
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Proof We first show the result with ν = 1. We derive from (4.4) and (4.12) that

a(u − uN , vN ) = 0, ∀vN ∈ XN .

By (4.3) and Cea’s lemma, we immediately derive

||u − uN ||1 ≤ C inf
vN∈XN

||u − vN ||1.

Define the projection operator π1
N as

(π1
Nu − u, vN ) + (

L j (π
1
Nu − u), L jvN

) = 0, ∀vN ∈ XN . (4.14)

It can be verified by (3.8), (2.14) and (2.16) that the above equality holds when substituting
π1
Nu with πNu, thus π1

N = πN . Therefore, if u ∈ Hm(SO(3)), we have

inf
vN∈XN

||u − vN ||1 ≤ ||u − πNu||1 ≤ CN 1−m |u|m . (4.15)

Hence, we obtain the result for ν = 1 by combining the above and the regularity result in
Corollary 4.3.

Next, we prove the result for ν = 0 using a standard duality argument. We write

||u − uN ||0 = sup(u − uN , g)

||g||0 .

Denote by ϕg the solution of a(v, ϕg) = (v, g), ∀v. Let v = u − uN . Combined with
a(u − uN , πNϕg) = 0, (3.9), and (4.7), we obtain

(u − uN , g) = a(u − uN , ϕg − πNϕg)

≤C ||u − uN ||1||ϕg − πNϕg||1
≤CN−1||u − uN ||1||ϕg||2
≤CN−1||u − uN ||1||g||0.

Thus by (4.15) and (4.11),

||u − uN ||0 ≤ CN−1||u − uN ||1 ≤ CN−k−2|u|k+2 ≤ CN−k−2|| f ||k . (4.16)

Finally, the result for ν ∈ (0, 1) can be obtained by a standard space interpolation [1]. 
�

4.1.3 Implementation

Here we discuss how to solve (4.12) numerically. Write

uN =
∑

|m|,|m′|≤ j≤N

û j
mm′ D

j
mm′ .

1. If the coefficients Akl , bk , c are constant, it follows from (2.14) and (2.16) that

(Akl LkuN , Ll D
j
mm′) + (bk LkuN , D j

mm′) + (cuN , D j
mm′) (4.17)

is depends linearly on û j
mm′ , û

j
m,m′±1, û

j
m,m′±2. Thus we group û j

mm′ according to the

indices j andm. For fixed ( j,m), we can solve û j
mm′ fromapentadiagonal linear equations

with 2 j + 1 variables,

(M j
m)m′ p′ û j

mp′ = f̂ j
mm′ , − j ≤ |m′|, |p′| ≤ j,
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which can be done by LU factorization. Denote

C±( j,m′) = √
j ( j + 1) − m′(m′ ± 1).

Then the nonzero elements in the matrixM j
m can be computed by (2.14) and (2.16), given

as follows (where i = √−1),

(M j
m)m′m′ = A11m

′2 + 1

2
(A22 + A33)( j ( j + 1) − m′2) + ib1m

′ + c,

(M j
m)m′,m′±1 = 1

2
C±( j,m′)[(2m′ ± 1)(−A12 ± i A13) + (ib2 ± b3)],

(M j
m)m′,m′±2 = 1

4
(A22 − A33 ∓ 2i A23)C±( j,m′)C±( j,m′ ± 1).

2. Generally, Akl , bk , c are not constant. In this case, we first notice that (4.17) can be
computed efficiently from û j

mm′ with the help of transformation between physical and
frequency space. We will use the SOFT package1 in this work, where the computational
cost is O(N 4). Thus, to solve (4.12), we may use conjugate gradient method if bk = 0,
and BiCGSTAB or GMRES method for general cases. Furthermore, we may choose
constant coefficients Akl , bk , c, and use the matrix generated by them as a preconditioner
for the above methods.

4.2 Parabolic Equation

We consider the following parabolic type equation

ut − Li Ai j L j u + bi Li u + f (u) = g(P, t), (4.18)

where Ai j , bi are constant, A is symmetric and non-negative, and | f (x)− f (y)| ≤ K |x− y|.
For examples, the propagator equation of a worm-like chain on the sphere, as well as the
helical worm-like chain, can be written in this form, with f (u) = W (P)u.

As an example,we consider the second-order leapfrog scheme in time:Letu1N be computed
by using a first-order scheme. For n ≥ 1, we find un+1

N ∈ XN such that

1

2τ

(
un+1
N − un−1

N , φN

)
+ Ai j

(
L j

(
un+1
N + un−1

N

2

)
, LiφN

)

+
(
bi Li

(
un+1
N + un−1

N

2

)
, φN

)
+ ( f (unN ), φN ) = (g(tn), φN ), ∀φN ∈ XN .

(4.19)

At each time step, one needs to solve an elliptic equation of the kind (4.12) for un+1
N .

We will use the following discrete Gronwall’s inequality (see [15]):

Lemma 4.5 Suppose A ≥ 0, and φn, kn, gn are nonnegative sequences satisfying

φn ≤ A +
n−1∑
j=0

(k jφ j + g j ), n ≥ 0.

1 www.cs.dartmouth.edu/~geelong/soft/.
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Then

φn ≤ exp

⎛
⎝

n−1∑
j=0

k j

⎞
⎠

⎛
⎝A +

n∑
j=1

g j

⎞
⎠ , n ≥ 0.

Theorem 4.6 Let u and un+1
N be the solutions for (4.18) and (4.19), respectively. Then, we

have

||u(tn+1) − un+1
N || ≤ exp(C4T )

(
τ 2

(||utt ||L2(0,T ;H1) + ||uttt ||L2(0,T ;L2)

) + N−m ||u||C(0,T ;Hm )

)
,

(4.20)

where C4 ∼ (1 − τ(1 + K 2))−1.

Proof Define

ẽnN = πNu(tn) − unN , ēnN = u(tn) − πNu(tn). (4.21)

We have

1

2τ

(
ẽn+1
N − ẽn−1

N , φN

)
+ Ai j

(
L j

(
ẽn+1
N + ẽn−1

N

2

)
, LiφN

)

+
(
bi Li

(
ẽn+1
N + ẽn−1

N

2

)
, φN

)
+ (

f (u(tn)) − f (unN ), φN
) = (T n, φN ).

Here the local truncation error T n is the sum of the following three terms,

T n
1 = 1

2τ

(
u(tn+1) − u(tn−1)

) − ut (t
n) = 1

2τ

∫ tn+1

tn−1

1

2
(s − tn)2utttdt,

T n
2 = − Li Ai j L j

(
u(tn+1) + u(tn−1)

2
− u(tn)

)
= −Li Ai j L j

∫ tn+1

tn−1
(s − tn)uttdt,

T n
3 = bi Li

(
u(tn+1) + u(tn−1)

2
− u(tn)

)
= 1

2
bi Li

∫ tn+1

tn−1
(s − tn)uttdt.

Let φN = 2τ(ẽn+1
N + ẽn−1

N ), then we have

||ẽn+1
N ||2 − ||ẽn−1

N ||2 + τ Ai j

(
Li

(
ẽn+1
N + ẽn−1

N

)
, L j

(
ẽn+1
N + ẽn−1

N

))

+ 2τ
(
f (u(tn)) − f (unN ), ẽn+1

N + ẽn−1
N

)
= 2τ

(
T n
1 + T n

2 + T n
3 , ẽn+1

N + ẽn−1
N

)
.
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We have the following estimates,

2|(T n
1 , ẽn+1

N + ẽn−1
N )| ≤

∥∥∥ẽn+1
N + ẽn−1

N

∥∥∥2 + 1

4τ 2

∥∥∥∥∥
∫ tn+1

tn−1

1

2
(s − tn)2utttd

∥∥∥∥∥
2

≤ ||ẽn+1
N + ẽn−1

N ||2 + τ 3

40

∫ tn+1

tn−1
||uttt ||2dt;

2|(T n
2 , ẽn+1

N + ẽn−1
N )| = 2

∣∣∣∣∣Ai j (Li

∫ tn+1

tn−1
(s − tn)uttdt, L j (ẽ

n+1
N + ẽn−1

N ))

∣∣∣∣∣

≤ 1

2
Ai j (Li (ẽ

n+1
N + ẽn−1

N ), L j (ẽ
n+1
N + ẽn−1

N ))

+ 2Ai j (Li

∫ tn+1

tn−1
(s − tn)uttdt, Li

∫ tn+1

tn−1
(s − tn)uttdt)

≤ 1

2
Ai j (Li (ẽ

n+1
N + ẽn−1

N ), L j (ẽ
n+1
N + ẽn−1

N )) + Cτ 3
∫ tn+1

tn−1
|utt |21dt;

2|(T n
3 , ẽn+1

N + ẽn−1
N )| ≤ ||ẽn+1

N + ẽn−1
N ||2 + Cτ 3

∫ tn+1

tn−1
|utt |21dt.

And

2|( f (u(tn)) − f (unN ), ẽn+1
N + ẽn−1

N )| ≤ C1

(
||ẽn+1

N ||2 + ||ẽn−1
N ||2 + ||ẽnN ||2 + ||ēnN ||2

)
.

Thus

||ẽn+1
N ||2 − ||ẽn−1

N ||2

≤ C2τ
(
||ẽn+1

N ||2 + ||ẽn−1
N ||2 + ||ẽnN ||2 + ||ēnN ||2

)
+ C3τ

4
∫ tn+1

tn−1
|utt |21 + ||uttt ||2dt.

In the above, C2 � 1 + K 2. Hence

||ẽn+1
N ||2 ≤ 3C2τ

n∑
k=0

(||ẽk+1
N ||2 + ||ēk+1

N ||2) + C3τ
4
∫ tn+1

0
|utt |21 + ||uttt ||2dt, n ≥ 1.

By Gronwall’s inequality, if 3C2τ < 1, we have

||en+1
N || ≤ ||ẽn+1

N || + ||ēn+1
N ||

≤ exp(C4T )
(
τ 2(||utt ||L2(0,T ;H1) + ||uttt ||L2(0,T ;L2)) + N−m ||u||C(0,T ;Hm )

)
.

where C4 ∼ (1 − 3C2τ)−1
∼ (1 − τ(1 + K 2))−1. 
�

5 Numerical Results

We present in this section several numerical examples to validate our theoretical estimates
and to illustrate applications of Wigner D-matrix for solving PDEs on SO(3).
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5.1 Elliptic Equation

First we examine a stationary equation to test the spatial accuracy. Consider

− a j L
2
j u + b j L j u + cu = f (P). (5.1)

The coefficients are chosen as follows:

a1 = 0.5, a2 = 1, a3 = 1.5;
b1 = 0.2, b2 = 0, b3 = 0.3;
c = 1.

We choose an exact solution and compute the right-hand term from the equation. Specifically
we choose

1. u1(P) = (m22 − 0.5)2|m22 − 0.5|. In this case,

f1(P) = 6m22(m22 − 0.5)|m22 − 0.5| + 3(m22 − 0.5)|m22 − 0.5|(−0.3m12 + 0.2m32)

− 6(1.5m2
12 + 0.5m2

32)|m22 − 0.5| + (m22 − 0.5)2|m22 − 0.5| ∈ H1\H2.

2. u2(P) = exp(m22). In this case,

f2(P) = exp(m22)(1 + 0.2m32 − 0.3m12 + 2m22 − 0.5m2
32 − 1.5m2

12) ∈ C∞.

The equation is solved using the Galerkin method (4.12). The Wigner coefficients of f is
computed using the SOFT package. The error in the L2-norm is plotted vs. N in Fig. 1 (top).
For f = f1, since u1 and f1 are not smooth, we observe a convergence rate of N−3, while
for f = f2, an exponential convergence is observed since both u2 and f2 are smooth. One
can check that the convergence rate is consistent with Theorem 4.4.

5.2 Parabolic Equation

In polymer physics, the Eq. (4.18) is able to describe the chain propagator, the core of the
statistical mechanics of the polymer chain, of helical chains [23] and worm-like chains on
spherical surface [13,14]. In what follows, we examine the equation below,

ut − a1L
2
1u + b3L3u + W (P)u = 0. (5.2)

We first give an example with exact solution to verify the accuracy in time. Then we present
another example illustrating how to compute physical quantities from the propagator.

5.2.1 Accuracy Test

Here we choose a1 = 1, b3 = 0.2, and let

W (P) = −m22 + m2
32 + 0.2m12 + 1.

The initial condition is given by

u(P, 0) = exp(m22).

Then the exact solution is

u(P, t) = exp(−t + m22).
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Fig. 1 Errors in the L2-norm. Top spatial discretization error for the elliptic equation. N is plotted in linear
scale (left) and in logarithmic scale (right), respectively. In these two graphs, the dashed lines are a reference
curve CN−3. Bottom time discretization error for the parabolic equation

Since the solution is smooth in space, we choose N = 16 so that the spatial error can be
ignored and we concentrate on the accuracy in time. The equation is solved till t = 1 using
and the leapfrog scheme (4.19) and a first-order backward-Euler implicit scheme. To compute
W (P)u(P), we use the standard transform (i.e., pseudo-spectral) method [7]. The transforms
are also computed using the SOFT package. We compute the error in L2-norm at t = 1, and
plot it as a function of τ in Fig. 1 (bottom). It clearly shows that the leapfrog scheme is
second-order, compared with the first-order implicit scheme.

5.3 A Physical Example

We consider a worm-like chain on the spherical surface. We will briefly describe the problem
below and refer to [13,14] for more detailed derivation. We also refer to [5] for a general
interpretation of the models for polymer chains.

Suppose that the chain has the length l. The arc length parameter s ∈ [0, l], referred to as
contour length, is used to represent the location of a monomer on the chain. The configuration
of the chain is represented by a function r(s) ∈ S2(R), describing the location of themonomer
s on the sphere of the diameter R. The direction of the monomer s is given by the unit tangent
vector u = dr/ds. The problem can be non-dimensionalized such that wemay assume R = 1
and s ∈ [0, 1].

The Eq. (5.2) of the chain propagator u is derived from the total energy of the worm-like
chain, consisting of two parts. In this case, the contour length s is recognized as the time
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t in (5.2). The first part is the bending energy of the chain, reflected by −a1L2
1 + b3L3 in

(5.2); the second part is contributed by the monomers in the external field W . Both parts are
related to the position r and the direction u. For this reason, the propagator is a function of
t = s and the pair (r, u). Since the chain is on the spherical surface, the tangent vector u
must be vertical to r . Thus the pair (r, u) is equivalent to an element in P ∈ SO(3) if we let
r = m1(P) and u = m2(P). The parameter b3 = l/R is the ratio of the chain length over
the radius of the sphere, and a1 = 1/2λ is the bending constant of the chain.

The fundamental quantity is the density ρ(r, u) = ρ(P) of monomers at the position
r with the direction u. It is calculated from the propagator u(P) and the complementary
propagator uc(P, t), i.e. the propagator starting from the other end of the chain, which
satisfies

(uc)t − a1L
2
1uc − b3L3uc + W (P J )uc = 0, J = diag(1,−1,−1). (5.3)

The initial condition of (5.2) and (5.3) shall be u(P, 0) = uc(P, 0) = 1.
With u(P) and uc(P), the number density of monomers at contour s is given by

ρ(P, s) ∝ u(P, s)uc(P, 1 − s). (5.4)

Hence the number density of monomers, regardless of the contour length, is given by

ρ(P) ∝
∫ 1

0
ds ρ(P, s) =

∫ 1

0
ds u(P, s)uc(P, 1 − s). (5.5)

The normalization constant is given by

Z =
∫

dP u(P, 1) =
∫

dP u(P, s)uc(P, 1 − s), ∀s ∈ [0, 1]. (5.6)

Thus

ρ(P) =
(∫

dP u(P, 1)

)−1 ∫ 1

0
ds u(P, s)uc(P, 1 − s). (5.7)

We choose a1 = 0.3, b3 = 0.8, and

W (P) = −3 sin2 β cos2(γ − β) = −3(m31

√
1 − m2

11 − m11)
2. (5.8)

The discretization parameters are chosen as �t = 0.05 and N = 16. At each point on the
spherical surface, we compute the number density ρ̄(m1) of monomers regardless of the
direction u, and the second-order tensor Q(m1) describing the orientation,

ρ̄(m1) =
(
2π

∫
dP ρ(P)

)−1 ∫
dγ ρ(P), (5.9)

Q(m1) =
(∫

dγ ρ(P)

)−1 ∫
dγ

(
cos2 γ − 1

2 cos γ sin γ

cos γ sin γ sin2 γ − 1
2

)
ρ(P). (5.10)

The principal eigenvector n1 of Q represents the direction along which the monomers accu-
mulate. The corresponding eigenvalue describes how much they accumulate near n1.

Since W depends only on m j1, we know that ρ̄(m1) and p(m1) are functions of m11.
Suppose the two polars are chosen as (±1, 0, 0) and the longitudes are connecting the two
polars. We plot in Fig. 2 the number density ρ̄(m1), the principal eigenvalue λ1, and the
angle θ between n1 and the longitudinal line. We can see that under the field (5.8), more
monomers appear at low latitudes. Also they accumulate more along n1 at low latitudes. The
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Fig. 2 Top the number density. Bottom left the principal eigenvalue of Q. Bottom right the angle between the
principal eigenvector and the longitudinal line

principal eigenvector n1 is vertical to the longitudinal line at zero latitude, and turns toward
the longitudinal line when the longitude grows.

In the self-consistent field theory for polymer, the free energy can bewritten as a functional
of W . Minimizing the free energy gives another equation about W and ρ, forming a closed
system together with (5.2), (5.3), and (5.7). When solving the system, the iterating procedure
below is followed:

1. Solve the propagators u and uc from (5.2) and (5.3) for a given field W .
2. Compute from u the density function ρ using (5.7).
3. Update the field W from ρ.

The above procedure is repeated until convergence, which is done in Liang et al. [14]. In
every single iteration step, we need to solve (5.2) and (5.3). The accuracy and efficiency is
crucial to finding the self-consistent solutions.

6 Concluding Remark

Just as spherical harmonic functions are the natural basis for functions on the sphere, Wigner
D-matrix forms a natural basis for functions on SO(3). We established in this paper basic
approximation results of Wigner D-matrix on SO(3), and showed that they enjoy typical
spectral-type of approximation properties. We then developed efficient numerical methods
for solving elliptic equations and parabolic equation on SO(3), proved optimal error estimates
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and present numerical results to validate the numerical algorithms and error estimates. To
the best of our knowledge, this is a first paper on the numerical analysis of Wigner D-matrix
which plays important role in quantum mechanics and in modeling of liquid crystals and
polymers.

The approximation results and basic algorithms presented in this paper will be useful in
using Wigner D-matrix for other PDEs on SO(3), particularly those arising from quantum
mechanics and in liquid crystal polymers. Indeed, we aim to use the results presented here
to approximate Smoluchowski equations of liquid crystals.
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