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THE TRANSMISSION OF SYMMETRY IN LIQUID CRYSTALS∗

JIE XU† AND PINGWEN ZHANG‡

Abstract. In liquid crystals, the existing experiments and simulations suggest that for various
types of molecules: no homogeneous phase is found breaking the molecular symmetry. It has been
proved for rod-like molecules. We conjecture that it holds for two types of two-fold symmetries, and
prove it for some molecules with these symmetries.
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1. Introduction

The application of liquid crystals benefits from their subtlety in anistropy, which
originates from the anistropy at the moleculer level. Let us consider a rod-like molecule.
Except for its location x, we need to express its orientation by a unit vector m. The
distribution f thus depends on both x and m, and the anistropy may originate from
either of them. The phases in which f is independent of x are referred to as homogeneous
phases. These phases show anistropy while keeping mobility in all directions. A typical
example is the uniaxial nematic phase, where there exists a unit vector n such that
f =f((m ·n)2).

Symmetry is always a central topic in situations where anistropy appears. In liquid
crystals, we need to discuss the symmetry at both macroscopic level and microscopic
level: the phase symmetry and the molecular symmetry. The physical properties are
mainly connected to the phase symmetry. Aiming to design materials of physical prop-
erties more delicate, people have been striving for phases of other symmetries. This can
be done by exerting external forces or confinements, but it brings limitation to appli-
cation. With the hope of obtaining different phase symmetries spontaneously, people
choose to alter the molecular symmetry. Among these molecules bent-core molecules
have attracted considerable interests, whose rigid part possesses a bending (see the
molecule in the right of Figure 1.1). Numerous unconventional liquid crystalline phases
have been found for these molecules.

Despite the rich phase behaviors obtained, so far no homogeneous phases has been
found breaking the molecular symmetry. The uniaxial nematic phase, the only homoge-
neous phase rod-like molecules exhibit, is axisymmetric, identical to the symmetry of a
rod. It is also the case for cuboids and bent-core molecules, of which the homogeneous
phases observed are restricted to the uniaxial and the biaxial nematic phases [1,2,7,13].
It is common that a homogeneous phase has better symmetry than the molecular sym-
metry. For instance, the non-axisymmetric molecules we mentioned above are all able
to form the uniaxial nematic phase. If, for a molecule, all the homogeneous phases it
exhibits keep at least the molecular symmetry, we refer to it as that the molecular sym-
metry is transmitted to the phases. We would like to ask a question: Will the molecular
symmetry always be transmitted to the phases?
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The theoretical study of liquid crystals began in Onsager [18]. He proposed a free
energy functional for rods,

F [f ]=

∫
dmf(m)logf(m)+

c

2

∫
dmdm′f(m)G(m,m′)f(m), (1.1)

where c>0 is an intensity parameter, and f shall meet the normalization condition,

∫
dmf(m)=1. (1.2)

The energy functional considers homogeneous phases only, as it does not include x.
Each phase corresponds to a local minimum.

The energy functional is characterized by the kernel function G that reflects the
pairwise molecular interaction. Onsager considered the hard repulsive interaction and
calculated the leading term of the excluded volume of two rods

cG=2cl2D|m×m′| (1.3)

as the kernel function, where l is the length and D is the thickness. Later, Maier and
Saupe [14] proposed a quadratic approximate kernel function,

cG= c2(m ·m′)2. (1.4)

Both kernel functions are applied in the discussion of the isotopic – uniaxial nematic
phase transitions of rods. Because the polynomial form brings conveniences, the Maier–
Saupe kernel has received much more attention, and is adopted widely in dynamic
models [4, 6, 8].

Axisymmetry is an important concept for rods. A rod is invariant when rotating it
about its axis. This is why we can use the vector m to represent its oreientation. On
the other hand, a phase is axisymmetric if f is, which is expressed as f =f(m ·n). For
the Maier–Saupe kernel, the axisymmetry of f has been proved [5, 11, 28]:

The critical points of Equation (1.1) with the Maier–Saupe kernel (1.4) shall satisfy
f =f((m ·n)2), where n is a unit vector.

Armed with this result, it is not difficult to find all the solutions. It also provides a solid
foundation for the well-known Oseen–Frank theory [19] and Ericksen–Leslie theory [9],
which are built based on the axisymmetric assumption much earlier.

Although an elegant result has been acquired for rods, things become much more
complicated for generic rigid molecules. When dealing with these molecules, we need
a right-handed body-fixed orthonormal frame (m1(P ),m2(P ),m3(P )) to represent the
orientation of a molecule. The variable P ∈SO(3) determines the orientation of the
frame. The matrix representation of P can be written as

P =

⎛
⎜⎝

m11 m21 m31

m12 m22 m32

m13 m23 m33

⎞
⎟⎠ , (1.5)

where mij(P )=mi ·ej denotes the jth component ofmi in the space-fixed right-handed
orthonormal frame (e1,e2,e3). They can be expressed with three Euler angles

α∈ [0,π], β,γ∈ [0,2π)
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by

P (α,β,γ)

=

⎛
⎝ cosα −sinαcosγ sinαsinγ

sinαcosβ cosαcosβ cosγ−sinβ sinγ −cosαcosβ sinγ−sinβ cosγ
sinαsinβ cosαsinβ cosγ+cosβ sinγ −cosαsinβ sinγ+cosβ cosγ

⎞
⎠ . (1.6)

In this case, the uniform probability measure on SO(3) is given by

dν=
1

8π2
sinαdαdβdγ.

Sometimes we also use P to represent the body-fixed frame.

The energy functional is now written as

F [f ]=

∫
dνf(P )logf(P )+

c

2

∫
dν(P )dν(P ′)f(P )G(P,P ′)f(P ′), (1.7)

with the normalization condition
∫

dνf(P )=1. (1.8)

The kernel function G depends only on the relative orientation P̄ =P−1P ′, whose ele-
ments are denoted by

pij =mi ·m′
j .

In this paper, we consider molecules with two-fold symmetries. Some molecules of
these symmetries are drawn in Figure 1.1. Each of them is generated by inflating all
the points in a set A to a sphere of the same diameter D. For a bent-core molecule,
A is a broken line with two equal segments. Additionally for the other two molecules,
we add the prefix ‘sphero’ to the shape of A: for an isosceles spherotriangle, A is an
isosceles triangle (including the interior and the boundary); for a spherocuboid, A is a
cuboid. These molecules are regarded fully rigid. The body-fixed orthonormal frame
for each molecule is posed as drawn in Figure 1.1. Bent-core molecules and isosceles
spherotriangles possess two-fold rotational symmetry about m1 and a mirror plane
vertical to m3. Spherocuboids possess two-fold rotational symmetries about mi and
mirror planes vertical to mi.

Fig. 1.1. Rigid molecules of two-fold symmetry. From left to right: spherocuboid; isosceles sphero-
triangle; bent-core molecule.
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The molecular symmetry determines the form of G if we require G to be a quadratic
polynomial of pij [27]. With the body-fixed frame chosen as in Figure 1.1, the kernel is
written as

cG(P̄ )= c1p11+c2p
2
11+c3p

2
22+c4(p

2
12+p221), (1.9)

where c1 shall be zero if the molecule is nonpolar (such as spherocuboids). The kernel
function without the term c1p11 is introduced by Starley [25] in a form linearly equiva-
lent. It later received extensive numerical study by Virga et al. [3, 12, 15, 16, 24], and is
also adopted in some dynamic models [10, 21–23].

The phase symmetry, i.e., the symmetry of a local minimum f , is about the space-
fixed frame (ei). That the molecular symmetry is transmitted to f is stated as follows.

• For each local minimum f of the kernel (1.9), we can choose a frame (ei) such
that f has two-fold symmetry about e1 and a mirror plane vertical to e3,

• For nonpolar molecules (namely c1=0), we can choose a frame (ei) such that
f has two-fold symmetries about ei and mirror planes vertical to ei,

We claim the above statement as a conjecture, which is supported by our earlier
simulation in [27].

In the current paper, we will prove the following result.

Theorem 1.1. For each local minimum f of the kernel (1.9) with c1≥−1, we can
choose a frame (ei) such that f has two-fold symmetries about ei and mirror planes
vertical to ei, if either of the following condition holds:

(a) The quadratic form c2x
2+2c4xy+c3y

2 is not negative definite.

(b) It is negative definite, but

c24
c3

−c2≤2.

We have pointed out in our previous work [27] that ci can, in general, be derived
from molecular interaction. If the conditions about coefficients are satisfied for some
molecules, we can prove the transmission of symmetry for them. For the molecules
in Figure 1.1, we will show that the condition in the theorem is appropriate for the
coefficients derived from excluded-volume interaction. Therefore, we are able to prove
that for these molecules with excluded-volume interaction, the symmetry of nematic
phases always maintains the molecular symmetry.

The rest of the paper is organized as follows. In Section 2, we derive the equivalent
conditions for the transmission of symmetry. With these conditions, the problem is
reduced to analysis on some tensors. In Section 3, we give the proof and application of
the theorem. A concluding remark is given in Section 4.

2. The equivalent condition
Before continuing our discussion on the phase symmetry, we write down the critical

points of the energy functional. Generally, the Euler–Lagrange equation of Equation
(1.7) yields

f(P )=
1

Z
exp

(−W (P )
)
, (2.1)

where

W (P )= c

∫
dν(P ′)G(P̄ )f(P ′), (2.2)
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and

Z=

∫
dν(P )exp

(−W (P )
)
. (2.3)

If the kernel function is a polynomial of pij , the Euler–Lagrange equation can be reduced
to a few equations of tensors. With the kernel (1.9), we can write the energy functional
as

F =

∫
dνf logf+c1|p|2+c2|Q1|2+c3|Q2|2+2c4Q1 :Q2,

where p, Q1, and Q2 are angular moments,

p= 〈m1〉 , Q1= 〈m1m1〉 , Q2= 〈m2m2〉 ,
and their components are denoted by pi and Qα,ij for i,j=1,2,3. Here we use the
notation 〈u〉=∫

dν u(P )f(P ) and dots (‘:’) for tensor contraction. And W (P ) can be
written as

W (P )=c1p ·m1+
(
c2Q1+c4Q2

)
:m1m1+

(
c3Q2+c4Q1

)
:m2m2. (2.4)

The tensors shall satisfy the following equations,

p=
1

Z

∫
dν(P ′)m′

1 exp
(−W (P ′)

)
, (2.5)

Q1=
1

Z

∫
dν(P ′)m′

1m
′
1 exp

(−W (P ′)
)
, (2.6)

Q2=
1

Z

∫
dν(P ′)m′

2m
′
2 exp

(−W (P ′)
)
. (2.7)

The next lemma gives the equivalent condition on the tensors for the transmission
of symmetry.

Lemma 2.1. Let f be given by Equations (2.1) and (2.4).

(a) f has two-fold symmetry about e1 and a mirror plane vertical to e3, if and only if
Q1, Q2 are diagonal and p2=p3=0.

(b) Assume c1=0. f has two-fold symmetries about ei and mirror planes vertical to
ei, if and only if both Q1 and Q2 are diagonal.

Proof. Define

R1=diag(1,−1,−1), R2=diag(−1,1,−1), R3=diag(−1,−1,1); (2.8)

J1=diag(−1,1,1), J2=diag(1,−1,1), J3=diag(1,1,−1). (2.9)

That f has two-fold symmetry about ei expressed by f(RiP )=f(P ); and that f has a
mirror plane vertical to ei expressed by f(JiPJi)=f(P ).

(a) Let f(R1P )=f(P ) and f(J3PJ3)=f(P ). By Equation (2.1), we have W (R1P )=
W (P ) and W (J3PJ3)=W (P ). Then by Equation (2.4), this yields

Tp=p, TQ1T
T =Q1, TQ2T

T =Q2, T =R1,J3.

It requires that p2=p3=0 and that Qi are diagonal.
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(b) Let f(RiP )=f(P ) and f(JiPJi)=f(P ), which yields

RiQ1R
T
i =Q1, RiQ2R

T
i =Q2.

It follows that the off-diagonal elements of Qi equal to zero.
On the other hand, if the tensors meet the above conditions, it is easy to verify that
the symmetric requirements are satisfied.

Because the space-fixed frame (ei) is allowed to be chosen, it is sufficient that there
exists a frame such that the tensors satisfy the conditions in the above lemma. In the
following lemma, we summarize the existing results in the language of the tensors [27].

Lemma 2.2. Let (p,Q1,Q2) be the solution of Equations (2.5)–(2.7).

(i) If c1≥−1, then p=0.

(ii) If there exists a frame (ei) in which both Q1 and Q2 are diagonalized, then p is
an eigenvector of Qi.

Let us compare Lemma 2.2 with Lemma 2.1. To prove the transmission of symmetry,
we need to show that there exists a frame (ei) in which both Q1 and Q2 are diagonalized.

3. Proof and application
From the discussion above, we are going to prove Theorem 1.1 by showing that

there exists a frame (ei), in which both Q1 and Q2 are diagonalized. In fact, we have
proposed in [27] a very special condition of the coefficients such that it holds. But the
condition is too strong. In Theorem 1.1, we extend the condition so that it can be
applied to some molecules.

Proof. (Proof of Theorem 1.1.) We know that p=0 from Lemma 2.2. Therefore

W (P )=
(
c2Q1+c4Q2

)
:m1m1+

(
c3Q2+c4Q1

)
:m2m2.

(a) Write the quadratic form in the standard form,

c2x
2+c3y

2+2c4xy=λ1(d1x+d2y)
2+λ2(d2x−d1y)

2.

We may suppose that λ2≥0. Hence

W (P )=λ1(d1Q1+d2Q2) : (d1m1m1+d2m2m2)

+λ2(d2Q1−d1Q2) : (d2m1m1−d1m2m2).

Denote

Q̃1=d1Q1+d2Q2, Q̃2=d2Q1−d1Q2.

and

q̃1=d1m1m1+d2m2m2, q̃2=d2m1m1−d1m2m2.

Select a space-fixed frame such that Q̃1 is diagonal. We will show that Q̃2 is also
diagonal in this frame. Let J1 and J3 be defined in Equation (2.9). Then

mi1(J1PJ3)=−mi1(P ),mi2(J1PJ3)=mi2(P ),mi3(J1PJ3)=mi3(P ), i=1,2.

Thus

q̃2,12(J1PJ3)=−q̃2,12(P ), q̃2,13(J1PJ3)=−q̃2,13(P ), q̃2,23(J1PJ3)= q̃2,23(P ).
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Let

W1(P )=λ1Q̃1 : q̃1+λ2(Q̃2,iiq̃2,ii+2Q̃2,23q̃2,23).

We have W1(J1PJ3)=W1(P ), and

W (P )=W1(P )+2λ2(Q̃1,12q̃2,12(P )+Q̃1,13q̃2,13(P )).

W (J1PJ3)=W1(J1PJ3)+2λ2(Q̃1,12q̃2,12(J1PJ3)+Q̃1,13q̃2,13(J1PJ3))

=W1(P )−2λ2(Q̃1,12q̃2,12(P )+Q̃1,13q̃2,13(P )).

For any function h(P ) and L1,L2∈SO(3), it holds
∫
dν h(P )=

∫
dν h(L1PL2).

Therefore

Q̃2
2,12+Q̃2

2,13

=
2
∫
dν exp(−W (P ))(Q̃2,12q̃2,12+Q̃2,13q̃2,13)

2
∫
dν exp(−W (P ))

=

∫
dν[exp(−W (P ))−exp(−W (J1PJ3))](Q̃2,12q̃2,12+Q̃2,13q̃2,13)∫

dν[(exp(−W (P ))+exp(−W (J1PJ3))]

=

∫
dν exp(−W1(P ))(Q̃2,12q̃2,12+Q̃2,13q̃2,13)sinh(−2λ2(Q1,12q̃2,12+Q1,13q̃2,13))∫

dν exp(−W1(P ))cosh(−2λ2(Q1,12q̃2,12+Q1,13q̃2,13))
.

Since λ2≥0, the right side ≤0. Similarly, we can prove that Q̃2,23=0. Thus Q̃2 is
diagonal.

(b) From the condition, we can find d1, d2, and 0<ε≤2 such that

−c2= ε+d21, −c3=d22, −c4=d1d2.

Hence,

W (P )=−(d1Q1+d2Q2) : (d1m1m1+d2m2m2)−εQ1 :m1m1.

Similar to the first part of the theorem, we may suppose that d1Q1+d2Q2 is diag-
onal, and let

W1(P )=−(d1Q1+d2Q2) : (d1m1m1+d2m2m2)−ε(Q1,iim
2
1i+2Q1,23m12m13).

It also holds W1(J1PJ3)=W1(P ). Similar to what is done in (a), we obtain

Q2
1,12+Q2

1,13

=

∫
dν exp(−W1(P ))(Q1,12m11m12+Q1,13m11m13)

sinh(2ε(Q1,12m11m12+Q1,13m11m13))∫
dν exp(−W1(P ))cosh(2ε(Q1,12m11m12+Q1,13m11m13))

.

Since 0<ε≤2, using xtanh(x)<x2 (x �=0), we obtain

Q2
1,12+Q2

1,13

≤

∫
dν exp(−W1(P ))2ε(Q1,12m11m12+Q1,13m11m13)

2

cosh(2ε(Q1,12m11m12+Q1,13m11m13))∫
dν exp(−W1(P ))cosh(2ε(Q1,12m11m12+Q1,13m11m13))

.
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But,

(Q1,12m11m12+Q1,13m11m13)
2≤m2

11(Q
2
1,12+Q2

1,13)(m
2
12+m2

13)

=(Q2
1,12+Q2

1,13)m
2
11(1−m2

11)

≤1

4
(Q2

1,12+Q2
1,13).

Therefore, we get

Q2
1,12+Q2

1,13≤
ε

2
(Q2

1,12+Q2
1,13)≤Q2

1,12+Q2
1,13,

leading to Q1,12=Q1,13=0. Thus Q1 is diagonal.

Now we apply the theorem to the molecules drawn in Figure 1.1. We will focus
on the theoretical aspect. For the classification of homogeneous phases, we refer to our
previous work [27]. The coefficients ci in the kernel function can be written as functions
of molecular parameters. This is done by fitting the excluded volume V (P̄ ), one of the
interactions most commonly considered, with the quadratic kernel (1.9). The parameters
include (see Figure 1.1): the diameter of sphereD; for isosceles spherotriangles and bent-
core molecules, the length of lateral or arm l/2, the top angle θ; and for spherocuboids,
the length of three edges W,B,L.
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Fig. 3.1. Minimal c that makes ε>2, cmin.



J. XU AND P. ZHANG 193

For cuboids (the case D=0), Starley computed V (P̄ ) at specific P̄ and did the
interpolation to obtain ci [25]. They are given by

c2= c
[−B(W 2+L2)−W (L2+B2)+4WBL−(L2−BW )(B−W )

]
,

c3= c
[−B(W 2+L2)−W (L2+B2)+4WBL+(L2−BW )(B−W )

]
,

c4= c
[−B(W 2+L2)−W (L2+B2)+L(W 2+B2)+2WBL

]
.

Compared with interpolation, a more accurate method is to use the L2-projection, i.e.,
to minimize the distance

min

∫
dν(P̄ ) |V (P̄ ;Θ)−G(P̄ ;ci)|2,

where Θ is the set of molecular parameters. By solving this problem, we can write ci
as functions of Θ. All the ci given in the following are obtained from this method.

The coefficients given in [20] for spherocuboids, based on the excluded volume cal-
culated in [17], are

c2=
15c

16

[
−B(W 2+L2)−W (L2+B2)+4WBL−(L2−BW )(B−W )− πD

2
(L−B)2

]
,

c3=
15c

16

[
−B(W 2+L2)−W (L2+B2)+4WBL+(L2−BW )(B−W )− πD

2
(L−W )2

]
,

c4=
15c

16

[
−B(W 2+L2)−W (L2+B2)+L(W 2+B2)+2WBL− πD

2
(L−W )(L−B)

]
.

When D=0, they are proportional to the Starley’s. The coefficients for spherotriangles,
computed in [27], are

c1=
3

8
cl2DK(θ)≥0,

c2=−15

64
cl3 sinθcos2

θ

2
− 15π

128
cl2Dcos4

θ

2
,

c3=−15

64
cl3 sinθsin

θ

2
(1+sin

θ

2
)− 15π

128
cl2Dsin2

θ

2
(1+sin

θ

2
)2,

c4=− 15

128
cl3 sinθ(1+sin

θ

2
)− 15π

128
cl2Dcos2

θ

2
sin

θ

2
(1+sin

θ

2
).

For bent-core molecules, the coefficients can be calculated numerically as is described
in [27]. They are proportional to cl3 and depend on two dimensionless parameters D/l
and θ. It needs to be pointed out that c1≥0 for bent-core molecules.

The coefficients derived from spherocuboids and spherotriangles satisfy the first
condition. In fact, for spherocuboids, it gives

c24−c2c3=k(W −B)2(B−L)2(L−W )2≥0,

where k is a positive number. For spherotriangles, we have

c24−c2c3=

(
15cl3 sinθ

128

)2

(2sin
θ

2
−1)2(sin

θ

2
+1)2≥0.

Since the product of two eigenvalues equals to c2c3−c24≤0, it follows from the theorem
that for both molecules, Q1 and Q2 share an eigenframe.
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Now we turn to bent-core molecules. Because ci are propotional to the cl3, we set
l=2 without loss of generality. Then, we have

ε=−c2c3−c24
c3

=−c · c
(0)
2 c

(0)
3 −(c

(0)
4 )2

c
(0)
3

,

if c2c3−c24>0, where c
(0)
i stands for the value at c=1. Note that the theorem still holds

when switching c2 and c3. Therefore the minimal c to make ε≥2 is

cmin =
max{−2c

(0)
2 ,−2c

(0)
3 }

c
(0)
2 c

(0)
3 −(c

(0)
4 )2

.

We calculate cmin for D/l=1/20,1/10,1/5, plotted in Figure 3.1. In the regions outside
the dashed line, which are labeled with ∞, it holds c24−c2c3≥0. In the intermediate
region, the value of cmin is large enough to generate modulation, which is discussed in
another paper [26].

4. Concluding remarks
We have proved that Q1 and Q2 share an eigenframe conditionally. Here we would

like to provide more computational results suggesting that it holds always for the kernel
(1.9). In fact, we do simulation with c4=0 and c2+c3=−20 (c2,c3≤0), c1∈ [0,3]. Even
if c1=0, it is far from the condition in the theorem. To evaluate the distance between two
eigenframes, we calculate the Frobenius norm ||Q1Q2−Q2Q1||F , which equals to zero
when two eigenframes coincide. It turns out that ||Q1Q2−Q2Q1||F ≤10−9, indicating
that Q1 and Q2 shall share an eigenframe.

Summarizing the existing results, we claim a conjecture that the phase symmetry
maintains molecular symmetry for the quadratic kernels suitable for two types of two-
fold symmetries. We give a proof with a condition that is applicable to spherocuboids,
spherotriangles and bent-core molecules with the excluded-volume interaction. A com-
plete proof is yet to be reached and shall be an interesting problem. It is also intriguing
to see whether it holds for higher-order kernel and other symmetries.
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