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1.  Introduction

Crystals and quasicrystals are ordered materials with dis-
crete Fourier spectra. Because of their translational and 
orientational order, the Fourier spectra of crystals form a 
periodic lattices in the reciprocal space. On the other hand, 
the quasicrystals do not possess translational order but have 
orientational order, i.e. quasicrystals are characterized by 
quasiperiodic positional order and long-range orientational 
order. As a result of these features, the Fourier spectra of 
quasicrystals are dense discrete points in the reciprocal space. 
Because of the decay of the Fourier coefficients, in practice, 
only the most intense diffractions can be observed. Although 
the mathematical description of quasilattices was given by 
Meyer in early 70 s [1], the first quasicrystal was discovered 
by Shechtman in Al-Mn alloys in 1982 [2]. Since then more 
than a hundred different metallic alloys have been found 
to exhibit quasicrystalline order [3, 4]. Besides hard mat
erials such as metallic alloys, quasicrystalline order has been 
observed in many soft condensed matter systems, including 
micelle-forming liquid crystals [5–7], block copolymers 

[8–10], colloidal suspensions [11] and binary mixtures of 
nanoparticles [12].

The dimensionality of quasicrystals is determined by 
the lack of translational symmetry in different directions. 
Quasicrystals can be quasiperiodic in all three spatial dimen-
sions, usually with icosahedral symmetry; or they can be 
quasiperiodic in two or one directions, and periodic in the 
other directions, forming two or one dimensional quasicrys-
tals. Due to the efforts of a large number of researchers since 
the discovery of quasicrystals in early 80 s, the structure of 
quasicrystals, i.e. the distribution of atomic positions and the 
symmetry of the system are now well understood [13, 14]. One 
particularly elegant description of quasicrystals is that quasic-
rystalline structures can be regarded as the projection from a 
higher-dimensional periodic structure [1, 15]. Compared with 
the studies of the structure of quasicrystals, the study of the 
thermodynamic stability of quasicrystals remains a challenge 
[16, 17], largely due to the requirement of obtaining accurate 
free energy of the systems.

Theoretical approaches to investigating the stability of 
an ordered phase, including periodic and quasiperiodic 
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structures, often involve minimizing an appropriate free 
energy functional of the system. The solutions of such a min-
imization problem provide a set of candidate phases of the 
system. A comparison of the free energy of different candi-
date structures can then be used to construct the phase dia-
gram of the model system. Furthermore, the availability of the 
solutions corresponding to different ordered phases provides 
insight about the mechanism of the formation of these struc-
tures. Therefore, a systematic examination of the stability of 
quasicrystals requires the availability of suitable free energy 
functionals and accurate methods to compute the free energy 
of phases with quasicrystalline order. A large number of phe-
nomenological theories based on various coarse-grained free 
energy functionals have been proposed to study phases and 
phase transitions of ordered systems. The utilization of such 
coarse-grained density functional theories provides an effec-
tive and efficient method to investigate the phase behaviour 
of physical systems, especially soft matter, exhibiting ordered 
phases including quasicrystals. One example of such a free 
energy functional is the theory developed by Leibler [18], 
which provides useful insight and a rather accurate descrip-
tion of the ordered phases of diblock copolymers. Similarly, 
a number of coarse-grained free energy functionals have 
been proposed to explore the quasicrystalline order arising 
from model systems with more than one characteristic length 
scale [19–27]. The generic feature of these models is the 
introduction of a mechanism involving nonlinear interac-
tions between density waves at two length scales, which can 
stabilize quasicrystalline order. On the other hand, most of 
these coarse-grained free energy functional are developed to 
study the emergence and stability of two-dimensional (2D) 
quasicrystals, including metastable octagonal quasicrystal, 
and stable 10-, and 12-fold symmetric quasicrystals [28]. 
Very recently, Subramanian et  al [29] have shown that the 
three-dimensional (3D) icosahedral quasicrystal can become 
an equilibrium stable structure in a phase field model. The 
mechanism of the 3D model is similar to those 2D models 
with two-length-scale interaction potentials but designed in 
a more sophisticated way. In the present study we will focus 
on a minimal model which can promote the formation and 
stability of the 3D icosahedral quasicrystals.

Besides the availability of a proper free energy functional 
of the system, examining the thermodynamic stability of 
quasicrystals requires accurate and efficient methods to com-
pute the free energy of different ordered phases. Because of 
the spatial periodicity, the computation of the free energy of 
crystals can be carried out within a unit cell with periodic 
boundary conditions. On the other hand, quasicrystals are 
space-filling ordered structures without spatial periodicity, 
thus it is not possible to reduce the structure of a quasicrystal 
to unit cells. In the literature, a commonly used method to 
overcome this difficulty is to utilize periodic structures with 
large unit cells to approximate the quasicrystals [21, 29–34]. 
The free energy computed from these quasicrystal-approx-
imants is used as approximate values of that for quasicrys-
tals. Mathematically, the quasicrystal approximants approach 
can be considered as a Diophantine approximation problem, 

involving the approximation of irrational numbers by rational 
or integer numbers. It has been shown that a gap between 
the free energy of the quasicrystals and their corresponding 
approximants always persists [1]. An example of this mathe-
matical feature is demonstrated in the 2D dodecagonal quasic-
rystal and its approximant within the Lifshitz–Petrich model 
[35].

An alternative approach to calculate the free energy of 
quasicrystals is based on the observation that quasiperiodic 
lattices can be generated by a cut-and-project method from 
higher-dimensional periodic lattices. This method, initially 
proposed by Meyer in the study of the most periodic function 
in terms of the model set or Meyer set [1], provides a basic 
framework to investigate the quasicrystals. In particular, the 
cut-and-project method projects the higher-dimensional peri-
odic lattice points within a stripe onto a lower-dimensional 
space to obtain the quasi-lattices or quasicrystals. This cut-
and-project method is an approach to generate spatial posi-
tions of the hard (discrete) quasicrystals. Along this line, an 
approximate method, the Gaussian method, has been devel-
oped to study quasicrystals. The essence of the Gaussian 
method is that the density profile of a quasicrystal is assumed 
to be a sum of Gaussian functions centered at the lattice points 
of a predetermined quasicrystalline lattice [36]. The width of 
the Gaussian functions is treated as a variational parameter, 
which is optimized to minimize the free energy of the system. 
For soft (continuous) quasicrystals, there are large overlaps 
between the peaks of the density profiles. Therefore, they 
are different from the hard quasicrystals, and the Gaussian 
method does not provide an accurate description of soft 
quasicrystals. In order to study the continuous distributed 
quasicrystals, we proposed a generalized spectral method, 
the projection method for the computation of the continuous 
density profile and the free energy of quasiperiodic structures 
[35]. The projection method approximates a quasiperiodic 
(or almost periodic) function by a trigonometric polynomial 
defined on the whole space [1]. The expansion coefficients 
are computed in the higher-dimensional periodic domain. 
Therefore, the projection method is more suited to studying 
the soft quasicrystals. In our previous studies it has been dem-
onstrated that the projection method can be used to obtain the 
equilibrium density profile of quasicrystals and evaluate their 
energy densities to high accuracy [28, 35].

In the present work, we apply the projection method to 
study the relative stability of different ordered phases in a 
coarse-grained model with two length scales. The main objec-
tive of the study is to investigate the existence and relative 
stability of the 3D icosahedral quasicrystals. Specifically, the 
ratio of the two length scales is chosen as the golden ratio, thus 
favouring the formation of icosahedral quasicrystals. Besides 
the 3D icosahedral quasicrystals, a number of possible 2D 
quasicrystals and periodic crystal structures are included as 
candidate phases in the study. A comparison of the free ener-
gies of the different candidate phases is used to construct the 
phase diagram of the model system. The theoretical study 
predicts that the 3D icosahedral quasicrystals are stable phase 
within the model systems.
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2.  Model and method

2.1. Theoretical model

The structure of a system exhibiting ordered phases can be 
described by its density distribution or density profile ( )ϕ r . 
The thermodynamic behaviour of the system can be deter-
mined by a free energy functional [ ( )]ϕF r . In particular, the 
equilibrium phases of the system are determined by mini-
mizing the free energy functional with respect to the den-
sity profile. In the present study, a generic coarse-grained 
free energy functional is used,

[ ( )]   [ ( ) ( ) ( )]

( ) ( ) ( )

∫ ∫

∫

ϕ
γ
ϕ ϕ
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ϕ
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ϕ ϕ
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+ − − +
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where γ, ε and α are phenomenological parameters of the 
system and the function ( ) ( )= | − |′ ′G Gr r r r,  is a two-body 
correlation potential. In this expression, the polynomial term 
corresponds to the bulk free energy of the system, whereas 
the term involving ( )′G r r,  describes the free energy cost of 
inhomogeneity of the system. In particular, different choices 
of ( )′G r r,  result in the selection of different dominant modes 
at particular length scales, thus promoting the formation 
of ordered structures. When one length scale is selected by 

( )′G r r, , simple crystal structures with one length-scale, 
such as the body-centred-cubic (BCC) phase, are stabilized  
[18, 37]. When the function ( )′G r r,  is chosen such that two 
length scales with proper length ratios are selected, complex 
ordered phases including quasicrystals can be stabilized [20, 
21, 27, 38, 39].

The selection of two length scales in the potential ( )′G r r,  
can be realized by introducing gradient terms [20, 21, 27, 29],  
such that the wave vectors of the basic modes of density 
fluctuations are located on two spherical shells with radii 
determined by the two length scales. A more general method 
to introduce two or more length scales is using an effective 
function such that it has two equal-depth minima. This selec-
tion of two length scales can be realized by a steplike function 
[24] or a Gaussian-type potential family [25, 26]. In previous 
studies, most of these models aimed at the study of 2D sys-
tems in order to understand the formation and stability of soft 
quasicrystals.

In the present study, we examine the occurrence and sta-
bility of 3D icosahedral quasicrystals within the above theor
etical framework of equation (1) with an interaction potential 
possessing two length scales. Specifically, we adopt the 
Gaussian-polynomial function proposed by Barkan et al [26] 
to describe the pair interaction potential,

( ) ( )/= + + + +σ−G r c c r c r c r c re ,r 2
0 2

2
4

4
6

6
8

82 2
� (2)

where σ and ci are model parameters. The corresponding pair 
interaction potential in the Fourier space is
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where the coefficients di are related to ci as,
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The parameters of the model are chosen such that the inter-
action potential ˆ ( )G k  has two equal-depth minima at | | =k 1 
and | | = qk . To highlight the formation of icosahedral quasi
crystals, the second characteristic length scale is chosen as 

/( ( / ))π=q 1 2 cos 5 . Specifically, the model parameters are 
determined by solving the following five equations,

∑π σ= = =

= = = −

= =
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Furthermore the choice of the parameter σ does not affect 
the above required feature of potential function. The specific 
coefficients used in our study are summarized in table 1. The 
corresponding pair potential function is plotted in figure 1.

The parameter γ in equation (1) describes the strength of 
the pair interaction potential. In what follows, we will inves-
tigate the formation and stability of quasicrystals and crys-
tals when γ is either finite or infinite. At the limit of →γ ∞, 
all the Fourier modes of ϕ should be restricted to be on the 
spherical surfaces in 3D cases and the circles in 2D ones in 
the Fourier space with radii | | =k 1 and | | = qk . In this case, 
the interaction potential term becomes zero, and only the bulk 

Table 1.  Potential parameters used in the present study.

σ d0 d2 d4 d6 d8

0.568 81 1.969 17 −14.949 76 37.445 44 −38.839 19 13.999 17

c0 c2 c4 c6 c8

1.0 −0.826 761 0.131 652 −0.006 271 0.000 087

Figure 1.  One-dimensional schematic plot of the pair interaction 
potential in the model (1) used in the present study. ˆ ( )G k  is the 
Fourier transform whose first minimum is at /( ( / ))π=k 1 2 cos 5 , and 
the second one is at k  =  1. The inset is the corresponding G(r) in 
the real space.

J. Phys.: Condens. Matter 29 (2017) 124003
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free energy shall be analyzed. When γ is finite, the free energy 
functional of equation (1) can be recast in a scaled form by 
defining new parameters, ˜γ=F F2 , ϕ γφ= , ˜ε γε=  and 

˜α γα= . With the scaled parameters, the coarse-grained free 
energy model (1) becomes,

∫ ∫

∫

φ φ φ
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α
φ φ

=

+ − − +
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Therefore for all finite values of γ (γ≠ 0), the phase behaviour 
of our model (6) is governed by the scaled parameters ˜ /ε ε γ=  
and ˜ /α α γ= .

2.2.  Numerical methods

The possible equilibrium phases of the system correspond 
to local minima of the free energy functional. Specifically 
the candidate phases are obtained as solutions of the Euler–
Lagrange equation of the free energy functional,

( )
δ
δφ

=
F

r
0.� (7)

The Euler–Lagrange equation (7) is a nonlinear partial differ
ential equation. For structures with quasicrystalline order, an 
efficient method is the projection method formulated in the 
Fourier space [35]. The projection method is based on the fact 
that a d-dimensional quasicrystal is a combination of a class 
of exponentials { } ∈Rr ke , ,dk ri T

, located on a d-dimensional 
quasilattice. The expansion coefficients are related to the dif-
fraction intensities which can be calculated in an n-dimensional 
( ⩾n d) periodic region. In other words, the Fourier spectrum of 
the quasiperiodic structure can be lifted into an n-dimensional 
periodic structures. Specifically, the n-dimensional reciprocal 
vectors can be spanned by a set of bases bi, which are the 
primitive reciprocal vectors in the n-dimensional reciprocal 
space, with integer coefficients. That is, an n-dimensional 
reciprocal vector can be written as =H Bh, where Z∈h n and 

( ) R= … ∈ ×B b b, , n
n n

1  is the reciprocal primitive lattice. The 
physical, d-dimensional, wavevector k is then obtained from 
the n-dimensional vector H by a projection, = Pk H, where 
P is a projection matrix of ×d n-order. The dimensionality n 
and the specific form of the projection matrix is determined by 
the structure of the ordered phases. The expression of P is not 
unique and relies on the symmetry of the quasicrystals. The 
projection matrices could be analysed by the group theory and 
the representation theory [14, 40]. From the view of numerical 
computation, it can be easily determined by the choice of the 
basis vectors [35].

Using the n-dimensional periodic lattice and the projec-
tion matrix, the expansion of any d-dimensional quasiperiodic 
function ( )φ r  can be written in the form,

( ) ˆ( )   [ ] R
Z
∑φ φ= ∈
∈

⋅r h re , ,P d

h

Bh ri

n

T

� (8)

where the Fourier coefficients ˆ( )φ h  are calculated by the 
n-dimensional L2-inner product, ˆ( ) ˜(˜) ( ) ˜φ φ= −h r , e Bh ri T

, 

with ˜ R= ∑ ∈= sr ai
n

i i
n

1 , ⩽ ⩽s0 1i . Here ai, i  =  1, 2, .., n, are 
the primitive lattice vectors forming the primitive lattice 
A of the n-dimensional periodic structure. The primi-
tive vectors satisfy the dual relationship, πδ⋅ =a b 2i j ij. 
Furthermore, the function ˜(˜)φ r  is the n-dimensional inverse 
Fourier transform of ˆ( )φ h . One simple observation is that 
the expansion of equation (8) allows us to treat the d-dimen-
sional quasiperiodic structure as a slice of an n-dimen-
sional periodic structure whose orientation is determined 
by P. For description of the position of the quasilattice in 
d-dimensional Fourier space, we use k instead of PBh in 
equation (9). With this notation, the projection method has 
the following form,

( ) ˆ( )
Z
∑φ φ=
∈

r h e ,
h

k ri

n

T

� (9)

where ( ) R= ∑ ∈= h Pk bi
n

i i
d

1 . Despite the similarity with the 
common Fourier transform, it is important to note that the dis-
tribution of k is not a periodic lattice. Rather, it is a quasilat-
tice generated from a high-dimensional periodic lattice by the 
projection matrix P.

The free energy functional in terms of the Fourier coeffi-
cients ˆ( )φ h  can be obtained by expanding the order parameter 

( )φ r  in the form of equation  (9) and inserting it into equa-
tion  (1). For a given structure of interest, the reciprocal lat-
tice vectors are determined by its symmetry, and the optimal 
Fourier coefficients are obtained by minimizing the free 
energy functional. In our previous work [35], it has been 
shown that, when using the projection method, it suffices to 
have a free energy functional defined in the lower (physical) 
d-dimensional space. Therefore the computations are imple-
mented in the n-dimensional periodic unit cell, while the 
final results represent the d-dimensional structures through 
equation (9). As a special case of quasiperiodic structures, a 
d-dimensional periodic structure can be described within the 
projection method by setting the projection matrix as a ×d d 
identity matrix. In this case the projection method is reduced 
to the commonly used Fourier-spectral method. This does 
not provide any computational advantage when it comes to 
periodic crystals. However, this formulation provides a uni-
fied computational framework for studying the crystals and 
quasicrystals.

In practice, we use a relaxation method to obtain solutions 
of the Euler–Lagrange equation of the free energy functional. 
Inserting the generalized Fourier expansion (9) into 
equation (1), the free energy functional becomes a function of 
the Fourier coefficients,

  ˆ( ) ˆ ( ) ˆ( ) ˆ( )
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(10)

Instead of solving the nonlinear Euler-Lagrange 
equation directly, we adopt an iterative method to solve the 

J. Phys.: Condens. Matter 29 (2017) 124003



K Jiang et al

5

optimization problem. Specifically, the Fourier coefficients 
are iterated according to the Allen–Cahn dynamic equation,

ˆ( )
ˆ( )

ˆ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

φ
φ

εφ αφ φ γ φ

∂
∂

= −
∂

∂

= + − −

t

F

G

h

h

h h h h h .
2 3

�

(11)

It should be pointed out that the variable t is a parameter 
controlling the iteration steps, and it does not correspond to 
real time. In this expression the quadratic and cubic terms are 
given by,

ˆ ( ) ˆ( ) ˆ( )
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From these expressions it is obvious that the nonlinear (qua-
dratic and cubic) terms in equation  (11) are n-dimensional 
convolutions in the reciprocal space. A direct evaluation 
of these nonlinear terms will be computationally expen-
sive. Instead, these terms are simple dot-multiplication in 
the n-dimensional real space and the computation of these 
nonlinear terms in the real space is straightforward. The 
pseudospectral method takes advantage of this observation 
by evaluating the convolutions in the Fourier space and the 
nonlinear terms in the real space, thus providing an efficient 
technique to find solutions of the Euler–Lagrange equation. 
The pseudospectral method requires access to the density 
function in the real and reciprocal spaces. The transforma-
tion between the real-space and reciprocal space was done 
by performing fast Fourier transformation (FFT) in the 
n-dimensional space.

An accelerated algorithm, corresponding to a hybrid of the 
semi-implicit scheme and the Nesterov gradient method [41], 
is used to update the above dynamic equation (11). For a set of 

given initial values ˆ ( )φ h
0

, the first step of this scheme is to set, 
ˆ ( ) ˆ ( )ψ φ=h h

0 0
. Then the (n  +  1)th ordered parameter ˆ ( )φ + h

n 1
 

is updated according to

ˆ ( ) [ ˆ ( ) ˆ ( )] ˆ ( ) ( ˆ ( ))
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φ γ φ ψ ψ

ψ β φ βφ

+ ∆ = +∆ ⋅

= − +

+ +

+ +

t G t uh h h h h

h h h

,

1 ,

n n n n

n n n

1 1

1 1

�

(13)

where ∆t is the time step length, ψ εψ αψ= +u h h
2( ˆ( )) ˆ( ) ˆ

( ) ˆ ( )ψ−h h
3

 and β< <0 1. When β = 0, the above scheme 
becomes the semi-implicit method.

Starting from an initial configuration with a specified 
symmetry, a steady state solution of equation  (11), corre
sponding to a local minimum of the free energy functional, 
is obtained. Using initial configurations with different sym-
metries leads to different ordered structures as solutions 
of the optimization problem. The ordered structures corre
sponding to these solutions are taken as candidate phases of 
the problem. The free energies of these candidate structures 
are then compared and used to construct phase diagrams of 
the system.

3.  Results and discussion

Using the projection method outline above, we obtained 
a number of possible ordered phases for the model system. 
Their relative stability is then examined by comparing their 
free energy. In what follows we will focus on the occurrence 
and stability of the 3D icosahedral quasicrystals and related 
ordered structures, thus we will set the ratio between the two 
characteristic length scales in the interaction potential G to 

/( ( / ))π=q 1 2 cos 5 . It is possible that the 2D decagonal quasi
crystals are the equilibrium phases of this model system. 
In the projection method, the 3D icosahedral quasicrystals 
can be obtained from a projection of periodic structures 
in 6-dimensional space, while the decagonal quasicrystals 
can be embedded into 4-dimensional periodic structures. 
Furthermore, various periodic structures, corresponding to 
crystals with 2-fold, 6-fold and BCC symmetries, are included 
as candidate phases in our study. On the other hand, other 
quasicrystals, such as the 2D dodecagonal and octagonal 
quasicrystals, which occur with different characteristic length 
scales [26, 28], are not included in the current study. In prac-
tice, the n-dimensional Fourier space is discretized using 16 
basis functions along each direction. The total number of vari-
ables is thus 16n. We remark that the projection method works 
equally well if different numbers of basis functions along each 
dimension are used.

The accelerated method described above is used to solve 
equation  (11). It is observed that the accelerated algorithm 
converges 5–7 times faster than the semi-implicit scheme in 
order to achieve at the error of ( / )( )δ δφF hmaxh  less than 
10−6. This accelerated scheme allows us to investigate the 
stability of 3D icosahedral quasicrystals efficiently. For the 
cases of periodic crystals and quasicrystals, the computation 
starts with initial configurations with the desired symmetries. 
The choice of the initial configurations is another factor which 
could be used to speed up the computations by reducing the 
number of iterations. If the initial symmetric structure is a 
local minimum of the free energy functional for a given set 
of model parameters, the calculation will lead to a converged 
solution with the prescribed symmetry. In the case that the 
chosen symmetry of the initial configuration does not corre-
spond to a local minimum, the iteration procedure will lead 
to other phases, or more commonly, to the trivial solution 

( )φ =r 0 corresponding to the homogeneous phase. It should 
be noted that the homogeneous phase is always a solution of 
the Euler–Lagrange equation.

3.1.  Candidate patterns

The free energy functional of equation  (1) can be used 
to explore the formation and stability of ordered struc-
tures. Structures with icosahedral symmetry are obtained 
by setting the ratio of the two characteristic length scale to 

/( ( / ))π=q 1 2 cos 5  in the interaction potential function. The 
icosahedral quasicrystals can be embedded into 6-dimen-
sional periodic structures. Therefore, for obtaining numerical 
solutions of the 3D icosahedral quasicrystals, the computation 

J. Phys.: Condens. Matter 29 (2017) 124003



K Jiang et al

6

is carried out in the 6-dimensional primitive reciprocal lat-
tice B  =  [0, 1]6 correspondingly the primitive hypercube 

[ ]π=A 0, 2 6. After evolving the dynamical equation (11), we 
can obtain the optimized Fourier coefficients ˆ( )φ h  which cor-
respond to the solution of Euler–Lagrange equation (7). Then 
using the projection method, we can reconstruct the 3D quasi
crytalline pattern by a ×3 6-order projection matrix P,

/ / /
/ / /

( )/ ( )/ ( )/

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

τ τ τ

τ τ τ
= − −

− − −
P

1 2 2 2 0 0
0 1 2 1 2 1 2 1 0
0 1 2 1 2 1 2 0 1

,� (14)

where ( / )τ π= 2 cos 5  is the golden ratio. With the two length 
scale in the golden ratio, an alternative mechanism for rein-
forcing icosahedral symmetry is possible by the triangular 
interactions. Applying the projection method and the accel-
erated scheme to the dynamical equation  (11), the 3D ico-
sahedral quasicrytalline structure has been obtained. As an 
example of the converged solutions, the diffraction pattern of 
a 3D icosahedral phase is given in figure 2.

When the ratio of the two length scales is set at 
/( ( / ))π=q 1 2 cos 5 , the system tends to form 2D 10-fold sym-

metric quasicrystals. Since the decagonal quasicrystal can 
be realize as the projection from a 4D periodic structure, we 
carried out the computation in the 4D primitive reciprocal 
lattice B  =  [0, 1]4, correspondingly the primitive hypercube 

[ ]π=A 0, 2 4. After obtaining the optimized Fourier coeffi-
cients ˆ( )φ h  by the relaxation equation (11), we can project the 
solution onto 2D space by the projection matrix P,

( / ) ( / ) ( / )
( / ) ( / ) ( / )

⎛
⎝
⎜

⎞
⎠
⎟π π π

π π π
=P q

1 cos 5 cos 2 5 cos 3 5
0 sin 5 sin 2 5 sin 3 5

.� (15)

The diffraction pattern contains 20 basic Fourier modes, 
with 10 vectors located on the circle of | | = qk , and the other  
ten on the circle of | | =k 1. The ten wavevectors satisfy the 
decagonal symmetry on each circle. The distribution of φ in 
the real space and the diffraction pattern in the Fourier space 
are similar to what in the [28].

It should be noted that quasicrystals are the space-filling 
structures without spatial periodicity. As such, computations 
on quasicrystals using finite domains will lead to inaccurate 
results. On the other hand, quasicrystals can be embedded into 
the higher-dimensional periodic structures. For periodic struc-
tures, regardless of dimensions, their studies can be reduced 
to a primitive domain which may be a hyper-cube, or, more 
generally, a hyper-parallelepiped. The proposed projection 
method has the capability of adaptively optimizing compu-
tational domain, with respect to the lengths and angles, even 
in higher-dimensional space [27]. In the present work, we 
use hyper-cubes in our study of the 3D icosahedral and 2D 
decagonal quasicrystals. It is noted that the choice of the high-
dimensional lattice is not unique. The hyper-cubes are the 
simplest lattices which can be used to construct quasicrystals.

The projection method can be used to obtain periodic 
structures as local minima of the free energy functional 
of equation  (1) by setting the projection matrix as an iden-
tity matrix. Due to the existence of two characteristic length 
scales in the model of equation (1), two stable periodic struc-
tures with the same symmetry but different lattice spacings 
can be obtained [25, 28, 29, 42]. These structures are termed 
as sibling periodic crystals. When ≠q 1, a number of peri-
odic phases with their sibling periodic crystals, including 2D 
2-, and 6-fold symmetric patterns and a 3D BCC spherical 
phase (with space group ¯Im m3 ), have been obtained from our 

Figure 2.  Diffraction of 3D icosahedral quasicrystal computed by the projection method. Only these Fourier modes whose diffraction 
intensity is larger than × −1 10 4 are shown. The red and magenta points represent the basic 60 Fourier modes. The red points represent the 
largest 30 diffraction points located on the spherical surface of radius /( ( / ))π=q 1 2 cos 5 , while the rest of 30 magenta points located on 
the spherical surface of radius 1. (a) 3D diffraction image. (b) Diffraction pattern taken in a plane normal to the vector (1/q, −1, 0), in the 
Fourier space. The spherical surfaces of radii 1 and q are indicated. The 10-fold rotation symmetry of the diffraction pattern is indicated by 
the 10 peaks observed on each spherical surface. (c) Geometric figure, made by connecting the ends of 30 basic modes on each spherical 
surface, respectively, is two icosidodecahedra, with 20 triangular faces and 12 pentagonal faces. Edges on spherical surfaces with radii 1 
and q are indicated with black and green lines.

J. Phys.: Condens. Matter 29 (2017) 124003



K Jiang et al

7

calculations. The basic Fourier vectors of two sibling periodic 
phases are located at the spherical surfaces or circles with 
radii | | =k 1 and | | = qk , respectively.

3.2.  Phase behaviour at the limit γ +∞→

At the limit →γ ∞, the wave vectors of the density profiles 
of the free energy functional of equation (1) are restricted to 
the basic Fourier modes whose magnitude is either | | =k 1 or 
| | = qk , lying on two spherical shells in the Fourier space. In 
this case the interaction potential term becomes zero, other-
wise, the free energy value will increase indefinitely. Therefore 
it is only required to analyze the bulk free energy part. After 
performing a rescaling of the order parameter →ϕ αϕ, the 
free energy functional of the system can be written in the 
scaled form,

ˆ( ) ˆ( )

ˆ( ) ˆ( ) ˆ( )

ˆ( ) ˆ( ) ˆ( ) ˆ( )

∑

∑

∑

α ε ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= − −

− − −

+ − − −

− ∗

| |=

| |=

| |=

F h h

h h h h

h h h h h h

1

2

1

3

1

4
,

q

q

q

k

k

k

4

1,

1,
1 2 1 2

1,
1 2 3 1 2 3

i

�

(16)

where /ε ε α=∗ 2. The phase behaviour of this free energy func-
tional can be analyzed using the basic modes approximation 
(BMA) [43]. For a given candidate structure, the wavevectors k 
should satisfy corresponding symmetries. The set of Fourier coef-
ficients ˆ( )ϕ h , which gives rise to the lowest values of F for a given 
parameters ε∗, determines the stable phases of the free energy 
function (16). The 60 basic modes of the 3D icosahedral quasi-
crystal have the icosahedral symmetry, as shown in figure 2(c). 
The corresponding free energy function (16) becomes,

[ ˆ ˆ ] [ ˆ ˆ ˆ

ˆ ˆ ˆ ]

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

α ε ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ

= − + − +

+ +

+ + + +

+

− ∗

⎡
⎣⎢

⎤
⎦⎥

F 15 15 40 120

120 40

1665

2
1440 3150 1440

1665

2
,

q q

q q

q q q

q

4
3D 1

2 2
1
3

1
2

1
2 3

1
4

1
3

1
2 2

1
3

4

�

(17)

where ϕ̂1 and ϕ̂q are the Fourier coefficients on the spherical 
surfaces of | | =k 1 and | | = qk , respectively. For the 2D decag-
onal quasicrystals, there are twenty Fourier modes with ten 
vectors located on the circle of | | =k 1, and the other ten on 
the circle of | | = qk  [28]. These Fourier modes of the decag-
onal quasicrystal located on two circles are collinear. When 

→γ ∞, the free energy function of equation  (16) of the 2D 
10-fold symmetric quasicrystal is given by,

[ ˆ ˆ ] [ ˆ ˆ ˆ ˆ ]

[ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ]

α ε ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

= − + − +

+ + + + +

− ∗F 5 20

15

2
9 8 28 8 9 ,

q q q

q q q q

4
10 1

2 2
1
2

1
2

1
4

1
3

1
2 2

1
3 4

� (18)

where ϕ̂1 and ϕ̂q are the Fourier coefficients on the circles of 
| | =k 1 and = qk , respectively. The minima of equation (17) 

and equation (18) can be obtained by numerical optimization 
methods, such as the steepest descent method. For periodic 
crystals of 2-, and 6-fold symmetric structures and the 3D 
BCC spherical phase, we can directly obtain the minimum 
values F* of the free energy (16),

( )

   ( )

( )

α ε

α ε

ε ε ε

α ε

=

= − + +

− + + −

= − − +

− ∗ ∗

− ∗ ∗

∗ ∗ ∗

− ∗ ∗

F

F

F v v v

1

6
,

4

15
1 1 15

2

15
3 2 1 15

1

10
,

12 16 135 ,

4
2

4
6 3

2
2

4
BCC

2 2

�

(19)

where ( )/ε= + + ∗v 2 4 90 45. The free energy of the dif-

ferent candidate structures as a function of ε∗ is plotted in 
figure 3. The phase boundaries of the different phase trans
itions can be determined from the free energy comparison. For 

⩽ε −∗ 0.067, the 2-fold symmetric pattern has the lowest free 
energy. For ⩽ ⩽ε− −∗0.067 0.029, the 3D icosahedral quasi
crystal is the most stable. For ⩽ ⩽ε− −∗0.029 0.0035, the 
2D 10-fold symmetric quasicrystal is the most energetically 
favourable. For ⩾ε −∗ 0.0035, the 3D BCC spherical phase 
becomes stable. The 2D 6-fold symmetric structure is a meta-
stable in this parameter region. The phase behaviour of the 
model system at the limit →γ ∞ is summarized in the phase 
diagram in the ε α−  space (figure 4).

3.3.  Phase behaviour for finite γ

In this subsection, we will use the projection method to 
investigate the phase behaviour of the model system (1) for 
finite γ. As mentioned in section 2.1, for all finite values of 
γ (γ≠ 0), we can study the scaled model of equation (6). In 
this case, more non-zero Fourier modes arise besides those on 

Figure 3.  The free energy values of (16) with respect to parameter 
ε∗. Lines track the free energy α− F4  of the labeled structures, 
solid where these are locally stable, dashed where they are locally 
metastable.
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the spherical shells with radii | | =k 1 and | | = qk . The candi-
date structures for the construction of phase diagram include 
the 3D icosahedral quasicrystal, 2D decagonal quasicrystal, 
as well as periodic crystals of BCC, 2-, and 6-fold (HEX) 
symmetric phases. Due to the existence of two characteristic 
length scales in the model equation (6), the periodic structures 
with the same symmetry but different lattice spacings can be 
obtained from our calculations. The basic Fourier vectors of 
two sibling periodic phases are located at the spherical shells 
with radii | | =k 1 or | | = qk . Therefore, there are 8 candidate 
ordered structures considered in our calculations.

We start with the phase behaviour of the model system 
as a function of the parameter ε̃ for fixed α̃ = 0.08. The free 
energy difference of the candidate patterns, including 3D ico-
sahedral quasicrystal, 10-fold symmetric quasicrystal, and 
q-BCC, 1-BCC, q-HEX, 1-HEX, phases as function of ε̃ is 
presented in figure 5. Here q-BCC denotes the periodic crystal 
BCC whose basic Fourier vectors are located at the spherical 
surface with radius | | = qk . The notations of 1-BCC, q-HEX 
and 1-HEX have the similar meanings. The free energy plot of 
the 2-fold symmetric pattern is not given in this figure since 
this structure becomes unstable in this parameter region. From 
the results shown in figure 5, it is obvious that only the 3D 
quasicrstal and the q-HEX phase have global stable regions 
with the lowest free energy, whereas the other four candidate 
structures have relative higher free energies. As ε̃ is increased, 
the phase transition sequence is from 3D QC to q-BCC with 
the phase transition occurs at ε̃ = × −3 10 4.

In order to analyze the contributions to the free energy 
from the different Fourier modes, it is informative to sep-
arate the Fourier modes into two parts: basic modes and 
higher-harmonics. The basic modes are those modes with 
nonzero coefficients lying on the spherical shells with radii 
1 and /( ( / ))π=q 1 2 cos 5 , and the higher-harmonics are other 
Fourier modes with nonzero coefficients. The basic part of 
the free energy is defined by the contribution of the basic 

Fourier modes to the free energy, while the higher-harmonic 
part of energy is the remainder when subtracting the basic 
part of energy from the total energy. The basic part of energy 
can be calculated analytically using the BMA method. The 
analytic expressions of the basic part of energy for quasi
crystals are given in the section  3.2, while for periodic 
crystals, shown in the [28]. Figure  6 gives the basic and 
higher-harmonic contributions to the free energy for the 3D 
QC, 10-fold, q-BCC and 1-BCC structures. The separated 
energies for the metastable phases of q-HEX and 1-HEX are 
not given in this figure. From figure 6(a), it can be concluded 
that the quasicrystals, including the 3D QC and 2D 10-fold 
symmetric quasicrystal, are favoured by the basic modes. 
Since they have the larger number of nonzero Fourier modes, 
60 and 20, respectively, located on the spherical surfaces 
or circles with radii of 1 and q, rather than that of periodic 
crystals whose basic modes lie on one of the two spherical 
surfaces or circles. Therefore the non-zero basic models of 
quasicrystals can form more resonant triplets of modes in 
the Fourier space that can reduce the free energy to a larger 
degree. Specifically, 960 and 120 triangles are formed for 3D 
QC and 2D 10-fold symmetric quasicrystal, respectively. On 
the other hand, since the energy penalty factor γ is finite, the 
higher-harmonics cannot be completely ignored. Meanwhile, 
the interaction terms are no longer zero, which increases the 
energy. As figure 6(b) shows, these higher-harmonics have 
significant impacts on the free energy of the system. The q-
BCC phase has the lowest higher-harmonics contribution to 
the free energy, since its Fourier modes with nonzero coef-
ficients have smaller fourth-order terms than quasicrystals. 
It can be observed that the quadratic and the quartic power 
terms increase the free energy. Due to the competition of the 
basic modes and higher-harmonics, the stable phases are 3D 
QC and q-BCC patterns as α increases, whereas the decag-
onal quasicrystals become metastable.

The phase transition sequence for other values of α̃ 
can be obtained by repeating the free energy comparison 
among the candidate structures. The results of the phase 

Figure 4.  Phase diagram obtained by the BMA method of the 
model equation (16) for /( ( / ))π=q 1 2 cos 5  and →γ ∞. The phase 
boundaries are lines of constant /ε ε α=∗ 2.

Figure 5.  The free energies of various structures as functions of ε̃ 
on the phase path of fixed α̃ = 0.08.
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transition sequences can be summarized in terms of phase 
diagrams in the ε̃-α̃ plane. The phase diagram in the range 
of ⩽ ˜ ⩽ε− × − ×− −5 10 1.7 104 4 and ⩽ ˜ ⩽α0.04 0.11 is 
presented in figure 7 for our model system. Besides the 3D 
QC and q-BCC structures discussed above, the homoge-
neous phase (disordered) is included in the phase diagram. 
The regions of stability of the different phases are obtained 
by comparing the free energy of these candidate structures. 
Since the contribution from the higher-harmonics becomes 
significant for the cases of finite γ, the numerical phase dia-
gram demonstrates a different phase behaviour compared 
with the approximated phase diagram at →γ +∞ obtained 
by the BMA method. The 2-fold symmetric structures, which 
are stable in the phase diagram of →γ ∞, disappear in these 
parameter region. Meanwhile, the 2D decagonal quasicrystals 
become metastable in the range of parameters given in the 
numerical phase diagram. These differences in phase diagram 
can be attributed to the different values of parameter γ and 
the high accuracy projection method employed in our calcul
ations. When γ is finite, the contribution of higher-harmonics 
should be taken into account in stabilizing the ordered struc-
tures. Meanwhile, the projection method has the capability of 

obtaining the contribution. Irrespective of whether γ is finite 
or infinite, the 3D QC is a global stable phase in the model 
system equation  (1) with two characteristic length scales. It 
also should be pointed out that when ε is positive and large 
enough, the 2-, and 10-fold ordered structures have been pre-
dicted to be stable [28].

4.  Conclusion

In summary, we investigated the emergence and stability of 
3D icosahedral quasicrystals in a simple free energy func-
tional with two characteristic length scales. In the model 
system, the two characteristic length scales are contained in 
the interaction potential function. When the ratio of the two 
length scales is set at the golden ratio, we predicted that the 
3D icosahedral quasicrystals to be stable both for γ infinite 
and finite using the BMA method and a high-precision numer
ical method, the projection method. These results provide a 
good understanding of the rich phase behaviour contained 
in the two characteristic length scale systems. More signifi-
cantly, this work extends the nonlinear resonant mechanism 
from 2D to 3D that the interactions between Fourier modes 
of densities at two length scale can stabilize the quasicrystals. 
This work can be helpful for further studying more complex 
soft-matter systems such as block copolymers and soft par-
ticles with multi-length-scale interactions.
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Figure 6.  (a) Basic modes energy and (b) higher-harmonic energy 
of various patterns as functions of ε̃ for fixed α̃ = 0.08.

Figure 7.  ˜ ˜ε α−  phase diagram of the model system (1) for finite γ. 
The ratio of two characteristic length /( ( / ))π=q 1 2 cos 5 . The region 
labeled ‘uniform’ indicates that the homogeneous state is globally 
stable.
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