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Abstract In this paper, we investigate the structure and stability of the isotropic-nematic
interface in 1-D. In the absence of the anisotropic energy, the uniaxial solution is the only
global minimizer. In the presence of the anisotropic energy, the uniaxial solution with the
homeotropic anchoring is stable for L2 < 0 and unstable for L2 > 0. We also present many
interesting open questions, some of which are related to De Giorgi conjecture.

Mathematics Subject Classification 82D30 · 35A15 · 35J57 · 76A15

1 Introduction

Liquid crystal is a state of matter between liquid and solid, in which molecules tend to align
a preferred direction. It has attracted many scientists due to its complex and fascinating
structures for various applications. There are several phases in liquid crystals and phase
transitions between different phases give rise to a variety of mathematical questions of great
interest. In this article, we shall confine ourselves to the interface problem which appears
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ubiquitously in the physics literature. Interfacial behavior of liquid crystals differs from that
of a normal fluid due to the anisotropic structure. For mixed fluids, there are many models for
interface problems in the systems of coexistence of two phases including the Cahn–Hilliard
and Allen–Cahn equations which have been extensively studied. In most cases with simple
models, it is known that an interface tends to evolve proportionally to its mean curvature, and
minimal surface appears to be a stationary interface. In systems of liquid crystals, molecular
director field may play an important role in the shape of interface and interfacial stability.

Liquid crystals are characterized by aggregation of molecules, where a positional disorder
of molecules may coexist with a marked degree of orientational order. Their anisotropic
property gives a birth to various shapes of the molecules. Among many other phases, we are
interested in nematic liquid crystals which can be described by the local average orientational
order of the aggregation of the molecules at each position. Due to the head–tail symmetry,
let f : �×S

2 → R be a nonnegative orientational probability density satisfying f (x, m) =
f (x,−m) for any m ∈ S

2 and
∫
S2 f (x, m) dm = 1 for each position x . Since the first

moment of the density becomes zero, liquid crystals can be described by the order parameter
Q defined by

Q(x) =
∫

S2
mm f (x, m) dm − 1

3
I. (1.1)

For a vector v ∈ R
3, we denote by vv the tensor product v ⊗ v whose (i, j)-entry is viv j .

Since the order tensor Q vanishes when f is the probability density 1
4π

for the isotropic phase,
the tensor Q measures how the second moments of a given probability density deviates from
the isotropic value. We classify a liquid crystal by the tensor Q: uniaxial if Q has only two
distinct eigenvalues; biaxial if Q has three distinct eigenvalues; isotropic if all eigenvalues
are zero.

Although there are many other questions regarding interfaces, we are primarily interested
in the behavior of the molecular direction field near the phase transition and the shape of
the interface that is closely related to De Giorgi conjecture. In [5], Doi and Kuzuu used the
number density theory to study the structure of the interface between isotropic and nematic
phases of rodlike molecules. They obtained the magnitude of the interface tension and their
result indicates that near the phase transition, the parallel alignment which we refer to as
the planar anchoring of molecules is energetically more favorable than the perpendicular
alignment referred to as the homeotropic anchoring. For more general systems consisting
of both uniaxial and biaxial liquid crystals, Wincure and Ray in [16] investigated interfacial
moving fronts via nematodynamic equations based on the Landau-de Gennes theory. They
studied the growth of 2D nematic droplet upon rapid cooling the isotropic phase to tempera-
tures in the unstable and metastable states. With a certain fixed temperature, their numerical
simulations exhibit the biaxial interface with plannar anchoring and uniaxial interface with
the homeotropic anchoring at some times t . But the interfacial behavior for minimizers of
the governing energy may or may not differ from those of dynamic problems.

Based on the framework of the Ginzburg–Landau, de Gennes studied the interface between
the isotropic and nematic phases [3]. With a special ansatz that de Gennes made on the
variation of the order tensor, the biaxility does not appear in the isotropic–nematic interface.
Recently, numerical simulations done by Kamil et al. [9] agree with the de Gennes ansatz
in the absence of anisotropic elastic energy corresponding to L2-term (see Sect. 2). With
the presence of the anisotropic elastic energy term in the governing energy functional, the
interfacial profile can be very complex. Popa-Nita et al. [12,13] investigated the isotropic–
nematic interface by numerical and asymptotic analysis. They showed that the de Gennes’
ansatz is valid when the bend and splay elastic energies dominate over the twist energy. In the
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absence of the anisotropic energy, the de Gennes’ ansatz predicts that both the homeotropic
and planar anchorings on the interface are possibly stable. In fact, Kamil et al. in [9,10]
obtained a positive answer by investigating numerical solutions of equations associated with
the Landau-de Gennes theory. When the anisotropic energy(L2 term) is present, de Gennes
argued energetically that the homeotropic anchoring is stable when L2 < 0 while the planar
anchoring is stable when L2 > 0. It turns out that uniaxiality may lose in the interfacial
profile [9,13]. In fact, the ratio of the coefficients in the isotropic and anisotropic energies
plays an important role in the structure of the interfaces [9,13]. Another interesting problem
is to understand whether or not the orientation of molecules being neither homeotropic nor
planar on the interfaces is stable. This problem remains open although some numerical and
experimental results are found in [6,8,10,11,13].

To the best knowledge of the authors, there are no rigorous mathematical works regarding
the questions discussed above. In this paper, we formulate rigorous variational problems
and investigate the structure of the isotropic–nematic interface in 1-D. In the absence of the
anisotropic energy, the uniaxial solution is the only global minimizer. In the presence of the
anisotropic energy, the uniaxial solution with the homeotropic anchoring is stable for L2 < 0
and unstable for L2 > 0. Many interesting questions remain to be open, and we will provide
some open questions in the last section.

2 Landau-de Gennes theory

In this section, we present the energy density written in terms of the tensor order parameter
Q and its gradient ∇Q following de Gennes (1974). Suppose that a bounded domain � in R

3

is occupied by liquid crystals. As defined in (1.1), the traceless tensor Q is a function from
� to S0, where S0 denotes the set of all symmetric traceless 3 × 3 matrices. For each point
x ∈ Q, eigenvalues and the corresponding eigenvectors of Q(x) determine the structure of
molecules. For Q ∈ S0, Q can be written as

Q = S1nn + S2mm − 1

3
(S1 + S2)I,

where n and m are orthonormal eigenvectors of Q.
Let BQ be a symmetric traceless 3 × 3 matrix satisfying

1
∫
S2 exp(BQ(x) : mm) dm

∫

S2

(

mm − 1

3
I

)

exp(BQ(x) : mm) dm = Q(x),

where A : B denotes tr(Bt A) for 3 × 3 matrices A and B. Using the Bingham closure, the
following generalized Landau-de Gennes energy was introduced in [7]

F̃(Q,∇Q) =
∫

�

{Fe(Q,∇Q) + F̃b(Q)} dx, (2.1)

where

Fe = 1

2

(
L1|∇Q|2 + L2Qi j, j Qik,k + L3Qi j,k Qik, j + L4Qi j Qkl,i Qkl, j

)
,

F̃b = kBT c
(
Q : BQ − ln ZQ − γ |Q|2) .

Here γ > 0, c > 0, and

ZQ =
∫

S2
exp(BQ : m ⊗ m) dm.
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In the case that L1 > 0, L1 + L2 + L3 > 0 and L4 = 0, the direct method of the calculus
of variations guarantees the existence of minimizers for F̃ in the space

A =
{

Q ∈ W 1,2(�,S0) : Q = Qb on ∂�
}
,

where Qb is a smooth boundary data on ∂�.
The global minimizer for the bulk energy is uniaxial and near the isotropic–nematic

transition the bulk energy F̃b is approximated by

a

2
TrQ2 − b

3
TrQ3 + c

4
(TrQ2)2 + higher order terms.

In this paper, we focus on a special form of the energy, which is so-called the Landau-de
Gennes energy, that is

F(Q,∇Q) =
∫

�

{ a

2
TrQ2 − b

3
TrQ3 + c

4
(TrQ2)2

︸ ︷︷ ︸
Fb :bulk energy

+ 1

2

(
L1|∇Q|2 + L2Qi j, j Qik,k + L3Qi j,k Qik, j + L4Qi j Qkl,i Qkl, j

)

︸ ︷︷ ︸
Fe :elastic energy

}
dx.

(2.2)

Here a, b, c are material and temperature dependent nonnegative constants and Li (i =
1, 2, 3, 4) are material dependent elastic constants. We refer the reader to [4] for more details.
The bulk energy Fb is a potential function for uniaxial nematic liquid crystals, meaning that
Fb favors molecules to be uniaxial nematic. We note that the total energy functional may not
be bounded due to the term L4Qi j Qkl,i Qkl, j when L4 �= 0. The reader is referred to see
[2] for detailed discussion. In order to avoid this situation, we restrict ourselves to the case
L4 = 0. It is also easy to check that the integration of the difference between L2 and L3

terms depends only on the boundary data for Q. Without loss of generality, we may consider
the energy functional given by

F(Q,∇Q) =
∫

�

{1

2

(
L1Qi j,k Qi j,k + L2Qi j, j Qik,k

) + Fb(Q)
}

dx. (2.3)

We assume that the following conditions for elastic constants are satisfied

L1 > 0, L1 + L2 > 0

so that

∫

�

{
L1Qi j,k Qi j,k + L2Qi j, j Qik,k

}
dx ≥ C

∫

�

|∇Q|2dx + boundary terms,
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for some C > 0 and thus F achieves its minimum in the space A. Here we have used the
fact that
∫

R3
L1|∇Q|2 + L2Qi j, j Qik,kdx =

3∑

i=1

∫

R3
L1|∇Qi |2 + L2|∇ · Qi |2dx

=
3∑

i=1

∫

R3
L1|∇ × Qi |2 + (L1 + L2)|∇ · Qi |2dx

+ boundary terms

≥ min(L1, L1 + L2)

∫

R3
|∇Q|2dx + boundary terms,

where Qi = (Qi1, Qi2, Qi3).

3 Isotropic–nematic phase transition

The polynomial form of the bulk energy in (2.2) can characterize the isotropic–nematic phase
transition for liquid crystals. The critical points of the bulk energy are

Q = 0 or s±
(

nn − 1

3
I
)

, (3.1)

where s± are the solutions of 3a − bs + 2cs2 = 0, and n ∈ S
2. In addition, if 0 < a < b2

24c
then Q = 0 and Q = s+(nn − 1

3 I) are stable critical points, which correspond to isotropic
phase and nematic phase respectively, and Q = s−(nn − 1

3 I) is unstable. See [15] for more
details.

Since we are interested in the stable interface between the two co-existence phases, we
impose the condition b2 = 27ac, meaning that the bulk energy at each phase are equal.

Let � be a bounded domain in R
3 occupied by a liquid crystal. The stable two constant

states 0 and s+ (
n ⊗ n − 1

3

)
could coexist in the global minimizer, but the elastic energy

prevents instantaneous jump from one stable state to another. The transition between two
states appears in a thin region of width

√
L1. Thus, we introduce new variables

x̃ = 1√
L1

x, Q̃(x̃) = Q(
√
L1x̃)

and consider the scaled energy

1

3L1
√
L1

F(Q,∇Q) =
∫

1√
L1

�

{
1

6
(|∇Q̃|2 + L2

L1
Q̃i j, j Q̃ik,k) + Fb(Q̃)

}

dx̃.

For the rest of this paper, we assume that the following limits exist

lim
L1→0

2L2

3L1
= L , lim

L1→0

a

L1
= ã, lim

L1→0

b

L1
= b̃, lim

L1→0

c

L1
= c̃.

Passing to the limit as L1 → 0, we obtain the following limiting energy functional (not
relabelled) after removing the tilde

F(Q,∇Q) =
∫

R3

{1

6
|∇Q|2 + L

4
Qi j, j Qik,k + 1

3
Fb(Q)

}
dx. (3.2)
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In what follows, we always assume that the constants, after scaling if necessary, satisfy

a = 1, b = 9, c = 3

so that s+ = 1 and s− = 1/2 and Fb(Q) = 0 if Q = 0 or n⊗n− 1
3 I. In this case, the energy

functional takes as follows

F(Q,∇Q) =
∫

R3

{1

6
|∇Q|2 + L

4
Qi j, j Qik,k + 1

6
TrQ2 − TrQ3 + 1

4
(TrQ2)2

}
dx. (3.3)

4 Isotropic–nematic interface in 1-D

In this section, we consider the global minimizer of the Landau-de Gennes energy in the
class of functions Q which depends only on x3. In this case, the total energy functional (3.3)
becomes

FL(Q,∇Q) =
∫

R

{1

6
|Q′|2 + L

4

3∑

i=1

(Q′
i3)

2 + 1

6
TrQ2 − TrQ3 + 1

4
(TrQ2)2

}
ds, (4.1)

where
′

denotes d
ds = d

dx3
.

4.1 The global minimizer for the case L = 0

We first investigate the global minimizer of the energy functional

F0(Q, Q′) =
∫

R

{1

6
|Q′|2 + 1

6
TrQ2 − TrQ3 + 1

4
(TrQ2)2

}
ds (4.2)

with the boundary condition

Q(+∞) = nn − 1

3
I, Q(−∞) = 0. (4.3)

We obtain the following theorem.

Theorem 4.1 The global minimizer of F0(Q,∇Q) must take the form

Q(s) = 1

2
(1 + tanh(s − t))

(

nn − 1

3
I
)

, (4.4)

where t is an arbitrary constant due to the translation symmetry

Proof Let

Q = λ1n1n1 + λ2n2n2 + λ3n3n3.

Then for 3-D case we see that

|∇Q|2 = |∇λ1|2 + |∇λ2|2 + |∇λ3|2 + 2
∑

λ2
i |∇kni |2

+
3∑

k=1

∑

1≤i< j≤3

4λiλ j (ni · ∇kn j )(n j · ∇kni )

= |∇λ1|2 + |∇λ2|2 + |∇λ3|2 +
3∑

k=1

∑

1≤i< j≤3

2
(
λi (n j · ∇kni ) + λ j (ni · ∇kn j )

)2

≥ |∇λ1|2 + |∇λ2|2 + |∇λ3|2.
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Here we use the following property

λ2
i |∇kni |2 = λ2

i

3∑

j=1

(n j · ∇kni )
2 = λ2

i

∑

j �=i

(n j · ∇kni )
2.

Therefore, we obtain

F(Q) ≥ F(diag{λ1, λ2, λ3}).
We also have that the global minimizers Q satisfy that for all 1 ≤ i < j ≤ 3, 1 ≤ k ≤ 3,

λi (n j · ∇kni ) + λ j (ni · ∇kn j ) = 0,

which is equivalent to

(λi − λ j )(n j · ∇kni ) = 0.

If there is an eigenvalue which is different from the other two eigenvalues, (say λ1 �= λ2, λ3),
then we have n1 · ∇kn1 = n2 · ∇kn1 = n3 · ∇kn1 = 0, which means ∇n1 = 0, i.e, n1 is a
constant vector. In particular, for 1-D problem, we also have n1 being a constant vector.

We assume that n = (0, 0, 1), and Q(∞) = diag{− 1
3 ,− 1

3 , 2
3 }. This enables us to assume

that global minimizers are of the form

Q = diag

{

− S + T

3
,− S − T

3
,

2S

3

}

.

Then the energy functional reduces to

F0(S, T ) = 2

9

∫

R

(1

2
(S′)2+ 1

6
(T ′)2 + 1

6
(3S2 + T 2) − S(S2 − T 2) + 1

18
(3S2 + T 2)2

)
ds,

(4.5)

and the boundary condition becomes

S(−∞) = T (±∞) = 0, S(+∞) = 1. (4.6)

The Euler–Lagrange equations are

−S′′ + S − 3S2 + T 2 + 2S(3S2 + T 2)

3
= 0,−∞ < s < ∞, (4.7)

−T ′′ + T + 6ST + 2T (3S2 + T 2)

3
= 0,−∞ < s < ∞. (4.8)

The above system has an explicit solution

S(τ ) = S∗(τ ) � exp(τ − t)

1 + exp(τ − t)
, T (τ ) = 0. (4.9)

From now on, we shall prove that this solution is the only global minimizer for (4.5) and
(4.6).

Let z = S + T i/
√

3. It follows from (4.7) and (4.8) that

−z′′ + z − 3z̄2 + 2|z|2z = 0.

We also express the energy functional in terms of z as

F0(z) = 1

9

∫

R

(
(z′)2 + |z|2 − (z3 + z̄3) + |z|4

)
ds.
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With z = reiθ , the energy can be written as

F0(r, θ) = 1

9

∫

R

(
(r ′)2 + r2(θ ′)2 + r2 − 2r3 cos 3θ + r4

)
ds.

The boundary conditions (4.6) becomes

r(−∞) = 0, r(+∞) = 1, θ(+∞) = 0.

Then we have

F0(r, θ) = 1

9

∫

R

(
(r ′)2 + r2(θ ′)2 + r2 − 2r3 cos 3θ + r4

)
ds

≥ 1

9

∫

R

(
(r ′)2 + r2 − 2r3 + r4

)
ds = F(r, 0).

It is easy to see that the equality holds only if θ ≡ 0. The minimizer for the energy functional
∫

R

(
(r ′)2 + r2 − 2r3 + r4

)
ds, r(−∞) = 0, r(+∞) = 1,

must solve

−r ′′ + r − 3r2 + 2r3 = 0.

This ODE has only one solution r(s) = exp(s−t)
1+exp(s−t) , where t ∈ R.

Therefore, we can conclude that (4.9) is the only global minimizer for (4.5) and (4.6).
The analysis at the beginning implies that the eigenvector corresponding to the third eigen-
value is a constant vector. We can finally see that the global minimizer must take the
form (4.4). ��
4.2 The global minimizer for the case L �= 0

In the case of L �= 0, the one-dimensional Landau-de Gennes energy functional reads

FL(Q,∇Q) =
∫

R

{1

6
|Q′|2 + L

4

3∑

i=1

(Q′
i3)

2 + 1

6
TrQ2 − TrQ3 + 1

4
(TrQ2)2

}
ds (4.10)

with the boundary condition

Q(+∞) = nn − 1

3
I, Q(−∞) = 0. (4.11)

Unlike in the case of L = 0 the direction vector n on the anchoring condition at +∞ makes
a significant effect on the behavior for the global minimizers. There are three different types
of the alignment director n on the boundary as below

(1) Homeotropic anchoring: n · (0, 0, 1) = 1;
(2) Planar anchoring: n · (0, 0, 1) = 0;
(3) Tilt anchoring: 0 < n · (0, 0, 1) < 1.

For the remaining part of this section, we consider the homeotropic anchoring condition
on which the direction field n is perpendicular to the interface.

We look for minimizers of the diagonal form

Q =
⎛

⎝
− 1

3 (S + T ) 0 0
0 − 1

3 (S − T ) 0
0 0 2

3 S

⎞

⎠ (4.12)
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with S(+∞) = 1, T (+∞) = S(−∞) = T (−∞) = 0. Then the energy functional becomes

FL(S, T ) = 2

9

∫

R

(1 + L

2
(S′)2 + 1

6
(T ′)2 + 1

6
(3S2 + T 2) − S(S2 − T 2)

+ 1

18
(3S2 + T 2)2

)
ds. (4.13)

The corrresponding Euler–Lagrange equations are

−1 + L

2
S′′ + S

2
− 3S2

2
+ T 2

2
+ S(3S2 + T 2)

3
= 0,−∞ < s < ∞, (4.14)

−1

6
T ′′ + T

6
+ ST + T (3S2 + T 2)

9
= 0,−∞ < s < ∞. (4.15)

It follows from direct calculations that (4.12) is a solution to the Euler–Lagrange equation
corresponding to (4.10) if (S, T ) satisfies (4.14)–(4.15). It is also clear that a uniaxial state
with T = 0 and S(s) = S∗(s/

√
1 + L) [see (4.9)] solves

−(1 + L)S′′ + S − 3S2 + 2S3 = 0. (4.16)

Thus, we obtain a uniaxial solution

Q0(s) = S(s)diag

{

−1

3
,−1

3
,

2

3

}

, S(s) = S∗(s/
√

1 + L), (4.17)

to the Euler–Lagrange equation corresponding to (4.10). Therefore, Q0 is an equilibrium
state for (4.10) with boundary condition (4.11).

Next, we investigate the stability of this solution.

Theorem 4.2 The uniaxial equilibrium state Q0 for (4.2) is stable for the energy functional
(4.10) when L ≤ 0 and unstable when L > 0.

Proof For any P = (Pi j ) ∈ C∞
c (R,S0), we calculate

lim
ξ→0

1

ξ2

(FL(Q0 + ξP) − FL(Q0)
)

=
∫

R

(1

6
|P′|2 + L

4

(
(P ′

13)
2 + (P ′

23)
2 + (P ′

33)
2)

+ 1

6
|P|2 − 3 tr(Q0P2) + (

1

2
|Q0|2|P|2 + (Q0 : P)2)

)
ds

=
∫

R

{1

6
|P′|2 + L

4

(
(P ′

13)
2 + (P ′

23)
2 + (P ′

33)
2) + 1

6
|P|2

− 3
(

− S+T

3
(P2

11+P2
12+P2

13)−
S−T

3
(P2

21 + P2
22 + P2

23) + 2S

3
(P2

31 + P2
32 + P2

33)
)

+ (3S2 + T 2

9
|Q|2 + (

S + T

3
P11 + S − T

3
P22 − 2S

3
P33)

2)
}

ds

=
∫

R

{1

6
|P′|2 + L

4

(
(P ′

13)
2 + (P ′

23)
2 + (P ′

33)
2) + 1

6
|P|2

+ S
(
P2

11+2P2
12+P2

22−(P2
31+P2

32 + 2P2
33)

)
+ S2

9

(
3|P|2 + (P11 + P22 − 2P33)

2)
}

ds.
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For the terms of P12, we see that

1

3
(P ′

12)
2 +

(
1

3
+ 2S + 2S2

3

)

P2
12 ≥ 0,

by using the fact that S(s) = S∗(s/
√

1 + L) > 0.
Next, we take a look at the terms of P11, P22, P33. Since P is trace free, we have P11+P22 =

−P33 so that

P2
11 + P2

22 ≥ 1

2
(P11 + P22)

2 = 1

2
P2

33, (P ′
11)

2 + (P ′
22)

2 ≥ 1

2
(P ′

11 + P ′
22)

2 = 1

2
(P ′

33)
2.

Then we have
∫

R

{1

6

(
(P ′

11)
2 + (P ′

22)
2 + (P ′

33)
2) + L

4
(P ′

33)
2 + 1

6

(
P2

11 + P2
22 + P2

33

)

+ S
(
P2

11 + P2
22 − 2P2

33

)
+ S2

3

(
P2

11 + P2
22 + P2

33 + 3P2
33

)}
ds

≥
∫

R

{1 + L

4
(P ′

33)
2 + 1

4
P2

33 − 3S

2
P2

33 + 3S2

2
P2

33

}
ds.

Since S′(z) > 0, we can let P33 = S′u with u ∈ C∞
c (R). Then it follows that

∫

R

{1 + L

4
((S′u)′)2 + 1

4
(S′u)2 − 3S

2
(S′u)2 + 3S2

2
(S′u)2

}
ds

=
∫

R

{1 + L

4
((S′′u)2 + 2S′′uS′u′ + (S′u′)2) + 1

4
(S′u)2 − 3S

2
(S′u)2 + 3S2

2
(S′u)2

}
ds

=
∫

R

{1+L

4
(S′u′)2+u2

(1+L

4
[(S′′)2−(S′′S′)′] + 1

4
(S′)2 − 3S

2
(S′)2 + 3S2

2
(S′)2

)}
ds

=
∫

R

1 + L

4
(S′u′)2ds ≥ 0.

Here the last equality is obtained by (1+L)S′′′ = S′ −6SS′ +6S2S′, which is a consequence
of (4.16).

Now, let us look at the terms of P13, P23. Taking P13 or P23 = Sv with v ∈ C∞
c (R), we

have
∫

R

{1

3

(
(P ′

13)
2 + (P ′

23)
2) + L

4

(
(P ′

13)
2 + (P ′

23)
2) + 1

3

(
P2

13 + P2
23

)

− S
(
P2

13 + P2
23

) + 2S2

3

(
P2

13 + P2
23

)}
ds

=
∫

R

{4 + 3L

12

(
(P ′

13)
2 + (P ′

23)
2) +

(
1

3
− S + 2S2

3

)
(
P2

13 + P2
23

)}
ds.

When L ≤ 0, the above integral is not less than

∫

R

{1 + L

3

(
(P ′

13)
2 + (P ′

23)
2) +

(
1

3
− S + 2S2

3

)
(
P2

13 + P2
23

)}
ds,
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which is nonnegative because
∫

R

{1 + L

3

(
(Sv)′

)2 +
(

1

3
− S + 2S2

3

)

(Sv)2
}

ds

=
∫

R

{1 + L

3

(
(S′v)2 + 2S′vSv′ + (Sv′)2) +

(
1

3
− S + 2S2

3

)

(Sv)2
}

ds

=
∫

R

{1 + L

3
(Sv′)2 + v2

(1 + L

3

( − (S′S)′ + (S′)2) +
(

1

3
− S + 2S2

3

)

S2
)}

ds

=
∫

R

1 + L

3
(Sv′)2ds ≥ 0.

Here we use (4.16).
From the above estimates, we conclude that

lim
ξ→0

1

ξ2

(FL(Q0 + ξP) − FL(Q0)
) ≥ 0

and thus the uniaxial solution Q0 is stable.
Next, we shall show that the uniaxial solution is unstable when L > 0. Let P23 = 0 and

P13 = S(s)u(s). Then we have
∫

R

{4 + 3L

12
(P ′

13)
2 +

(
1

3
− S + 2S2

3

)

P2
13

}
ds

=
∫

R

{1 + L

3
(P ′

13)
2 +

(
1

3
− S + 2S2

3

)

P2
13 − L

12
(P ′

13)
2
}

ds

=
∫

R

{1 + L

3
(S(s)u′(s))2 − L

12

[
(S(s)u(s))′

]2
}

ds.

Now we verify that for any L > 0, there exists u(x) satisfies u(+∞) = 0, u(−∞) being
bounded, such that

sup
u(+∞)=0,|u(−∞)|<∞

∫
R

(
(Su)′

)2ds
∫
R
(Su′)2ds

= ∞,

or equivalently

sup
u(+∞)=0,|u(−∞)|<∞

∫
R
(S′u)2ds

∫
R
(Su′)2ds

= ∞.

For this, we prove that

sup
u(+∞)=0,|u(−∞)|<∞

∫ ∞
0 (S′u)2ds

∫ ∞
0 (Su′)2ds

= ∞. (4.18)

After translation with respect to s, we may assume that S′ ≥ Ce−αs , for some C, α > 0. Let
u(s) = e−λs , then

∫ ∞
0 (S′u)2ds

∫ ∞
0 (Su′)2ds

≥
∫ ∞

0 (Ce−αxu)2ds
∫ ∞

0 (u′)2ds
= C2

λ(λ + α)
.

Taking λ → 0, we obtain (4.18). ��
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For non-zero L , we do not fully understand the behavior of equilibrium solutions for the
Landau-de Gennes energy with plannar and tilt anchoring boundary conditions. In fact, the
term L

∫
�
Qi j, j Qik,kdx is L

∫
�

| div Q|2dx and can also be written as −L
∫
�

|curl Q|2dx +∫
∂�

gdH2 for some function g depending only on the boundary data. This term plays a key
role in the study of the behavior for minimizers near the isotropic–nematic phase transition.

5 Open questions

In this section, we formulate some of interesting mathematical problems arising from phase
transitions in liquid crystals. Some of problems bear a striking resemblance to the famous
De Giorgi’s conjecture which we address later in this section.

Consider the local minimizers of the following Landau-de Gennes energy

F(Q,∇Q) =
∫

R3

{1

6
|∇Q|2 + L

4
Qi j, j Qik,k + 1

6
TrQ2 − TrQ3 + 1

4
(TrQ2)2

}
dx, (5.1)

or more generally, the solution to the Euler–Lagrange equation

−�Q + Q − 9Q2 + 3|Q|2Q + 3|Q|2I = 0, (5.2)

with boundary condition

lim
x3→+∞ Q(x1, x2, x3) =

(

nn − 1

3
I
)

, lim
x3→−∞ Q(x1, x2, x3) = 0. (5.3)

Here n ∈ S
2 is fixed. We remark that for a function Q with the boundary condition (5.3), the

energy may not be bounded. For this reason, we say that Q is a local minimizer of (5.1) if Q
is a solution to the Euler–Lagrange equation (5.2) and is energetically stable with compact
perturbation, that is for all P ∈ C∞

c (R3,S0) it holds

lim
ε→0

∫

R3

{1

6
|∇(Q+εP)|2+ L

4
(Q+εP)i j, j (Q + εP)ik,k + 1

6
Tr(Q + εP)2 − Tr(Q + εP)3

+ 1

4
(Tr(Q+εP)2)2−

(1

6
|∇Q|2+ L

4
Qi j, j Qik,k+ 1

6
TrQ2−TrQ3+ 1

4
(TrQ2)2

)}
dx ≥ 0.

We begin with the case of L = 0. Assume

Q(x) = s(x)

(

nn − 1

3
I
)

and let u(x) = 2s(x) − 1.

By replacing x by 3
2 x in (5.2) and (5.3), we obtain

�u + u − u3 = 0, lim
x3→±∞ u(x1, x2, x3) = ±1.

Assuming that |u| ≤ 1 and ∂x3u > 0, Savin [14] proved that De Giorgi’s conjecture holds
true for local minimizers of the Ginzburg–Landau energy

∫

Rn

(1

2
|∇u|2 + 1

4
(1 − u2)2

)
dx. (5.4)

Analogously, one can ask the following problem.
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Problem 1 For the local minimizers of Landau-de Gennes energy

F(Q,∇Q) =
∫

R3

{1

6
|∇Q|2 + 1

6
TrQ2 − TrQ3 + 1

4
(TrQ2)2

}
dx,

the level sets of each component of Q are hyperplanes.
This problem concerns about a five-components system, which may lead to high com-

plexity. In the proof of Theorem 4.1, by restricting Q = diag
{− 1

3 (S+T ),− 1
3 (S−T ), 2

3 S
}
,

we obtain a two-components system as below, which seems not only much simpler but also
mathematically interesting even for 1-dimension case:

−S′′ + S − 3S2 + T 2 + 2S(3S2 + T 2)

3
= 0, (5.5)

−T ′′ + T + 6ST + 2T (3S2 + T 2)

3
= 0, (5.6)

with boundary conditions

S(−∞) = T (±∞) = 0, S(+∞) = 1. (5.7)

First, we conjecture the uniqueness of solution to the system (5.5)–(5.7).

Problem 2(a) The system (5.5)–(5.7) has only one solution S(x) = S∗(x), T (x) = 0.

One may write the above conjecture in complex form.

Problem 2(b) The equation

− z′′ + z − 3z̄2 + 2|z|2z = 0, z ∈ C,

z(−∞) = 0, z(+∞) = 1,

has only one solution z(x) = S∗(x).

We also make the following De Giorgi Type conjecture for the above two components
system whose form seems much simpler than Problem 1.

Problem 1* For the local minimizers of

F(S, T ) =
∫

R3

(1

2
|∇S|2 + 1

6
|∇T |2 + 1

6
(3S2 + T 2) − S(S2 − T 2) + 1

18
(3S2 + T 2)2

)
dx,

the level sets of S and T are hyperplane.

In addition, we can ask the following De Giorgi Type conjecture for the higher dimensional
case. For more information on De Giorgi conjecture, we refer the reader to [1,14] and the
references therein.

Problem 3 (the generalized De Giorgi conjecture) Let Q : Rn → S0 be a smooth entire
solution of the Euler–Lagrange equation

−�Q + Q − 9Q2 + 3|Q|2Q + 3|Q|2I = 0, x ∈ R
n .

If
∂Qi j
∂xn

> 0, then all level sets {x ∈ R
n : Qi j (x) = ϑ}(ϑ ∈ R) are hyperplanes. In particular,

the most interesting problem goes to the case when n = 2 or 3.
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The case of L �= 0 is much more complicated. A main distinct feature in this case
is that the anchoring alignment at +∞ will make a significant effect on the behavior of
minimizers in one-dimensional case, as we have seen in Sect. 4.2. A uniaxial solution Q =
S diag

{ − 1
3 ,− 1

3 , 2
3

}
to the Euler–Lagrange equation for homeotropic anchoring boundary

condition has been found and the stability is studied there. The behavior of equilibrium
solutions with plannar and tilt anchoring boundary conditions remains to be open. For this,
let us consider a special order tensor depending only on x3 of the form

Q =
⎛

⎜
⎝

− (S+T )
2 cos2 θ + S cos2 θ 0 − (3S+T )

4 sin 2θ

0 − (S−T )
2 0

− 3(3S+T )
4 sin 2θ 0 − (S+T )

2 sin2 θ + S cos2 θ

⎞

⎟
⎠ (5.8)

with the boundary condition

S(−∞) = T (±∞) = 0, S(+∞) = 1, θ(+∞) = θ0. (5.9)

Here we restrict ourselves to the case that the molecular director is parallel to x1–x3 plane and
the function θ measures the angle between the molecular director and the positive x3-axis.
Let

A =
{

Q : Q satisfies (5.8) and (5.9), S, T, θ ∈ W 1,2(R)
}
.

Problem 4 (planar anchoring condition) Let θ0 = π
2 and Q be a global minimizer of

FL(Q,∇Q) =
∫

R

{1

6
|Q′|2 + L

4

3∑

i=1

(Q′
i3)

2 + 1

6
TrQ2 − TrQ3 + 1

4
(TrQ2)2

}
dx3 (5.10)

in A. Let (S, T, θ) represent the global minimizer Q. An interesting problem is to prove that
S is monotonically increasing and θ(−∞) = 0. Does F also have a unique minimizer in A?

Problem 5 (tilt anchoring condition) Let 0 < θ0 < π
2 . Does a global minimizer Q ∈ A of

energy (5.10) satisfy θ(−∞) = 0? and does (5.10) have a unique minimizer? and what are
the profiles for S, T, θ corresponding the global minimizer?

Even for the homeotropic anchoring case, solutions for the 1-D problem are not clearly
understood yet. One may ask the following questions.

Problem 6 Can we find all solutions to system

−1 + L

2
S′′ + S

2
− 3S2

2
+ T 2

2
+ S(3S2 + T 2)

3
= 0, (5.11)

−1

6
T ′′ + T

6
+ ST + T (3S2 + T 2)

9
= 0, (5.12)

with boundary condition S(+∞) = 1, T (+∞) = S(−∞) = T (−∞) = 0?

In the proof of Theorem 4.2, we know that for all L > −2/3, the solution S =
S∗(·/√1 + L), T = 0 is stable for the energy (4.13), and it may be the only solution.

Finally, we state the De Giorgi type conjecture for L �= 0.

Problem 7 For all local minimizers of the Landau-de Gennes energy

FL(Q,∇Q) =
∫

R3

{1

6
|∇Q|2 + L

4
Qi j, j Qik,k + 1

6
TrQ2 − TrQ3 + 1

4
(TrQ2)2

}
dx,

the level sets of each component of Q are hyperplanes.
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