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Liquid crystalline bilayers self-assembled from
rod–coil diblock copolymers

Yongqiang Cai, a Pingwen Zhang*b and An-Chang Shi *c

The structure and phase behaviour of bilayer membranes self-assembled from rod–coil diblock copolymers

are studied using the self-consistent field theory, focusing on the occurrence and relative stability of liquid

crystalline phases induced by the geometric shape and orientational interaction of the rod-blocks. A variety

of liquid crystalline bilayers, corresponding to the smectic phases in bulk systems, are predicted to occur as

equilibrium phases of the system. The ordered morphologies and phase behaviour of the system are

analyzed. Phase diagrams of the self-assembled bilayers are constructed. The theoretical results provide an

understanding of the formation mechanisms of these intricate phases.

1 Introduction

Block copolymers are macromolecules composed of chemically
distinct subchains, or blocks, tethered together by covalent
bonds. The unique architecture of block copolymers leads to
the formation of ordered phases composed of nanoscopic
domains arranged on various lattices. The phase behaviour
and ordered morphologies of block copolymers have been
attracting tremendous attention since the 1970s.1–3 Furthermore,
the self-assembly of block copolymers under various confine-
ments such as thin films and nanochannels could lead to ordered
morphologies that are not obtainable in bulk systems.4–6 Most
of the previous studies were carried out on block copolymers
composed of flexible or coil blocks, in which the polymeric
domains are fluid-like or disordered. On the other hand,
many polymers, especially conducting polymers and certain
biopolymers,7 are semiflexible or even rod-like in nature. It is
well known that semiflexible and rod-like polymers tend to
form liquid crystalline phases due to the geometric shape and
orientational interaction intrinsic to these macromolecules.
Therefore it is natural to expect that the liquid crystalline
ordering of the rod blocks could have significant effects on
the phase behaviors of rod–coil diblock copolymers in various
states such as melts, solutions or under confinement.7–11 In
particular, previous experimental and theoretical studies have
revealed that the self-assembly of rod–coil diblock copolymer
melts could lead to very rich phase behaviours, exhibiting

ordered phases combining the features of block copolymer
microphases and liquid crystals.7,12 The observed morphologies
include, to name a few, nematic, smectic, lamellar, cylindrical,
gyroid, body-centred cubic, and zigzag structures.7,12,13 From a
practical point of view, the self-assembled structures of rod–coil
diblock copolymers containing conjugate blocks provide nano-
structured materials for potential technological applications
such as photovoltaics.14,15

Compared with block copolymer melts, block copolymer
solutions exhibit even rich phase behaviours because of the
additional degree of freedom, viz. polymer concentrations and
polymer–solvent interactions. For dilution solutions, it has been
well established that amphiphilic molecules such as lipids,
surfactants and diblock copolymers in hydrophilic solvents
could self-assemble to form a variety of structured aggregates,
including spherical micelles, cylindrical micelles and bilayers.16

One particularly interesting type of aggregates is the self-
assembled bilayer, which could be used as mimetics for biological
membranes.17,18 In bilayer membranes the hydrophilic blocks are
located on the outer surface while the hydrophobic blocks are
hidden in the interior. At the molecular scale, it is expected that
flexible blocks would exhibit disordered lateral arrangement in a
bilayer, resulting in a fluidic or disordered bilayer membrane. On
the other hand, for block copolymers with semiflexible or rigid rod
blocks, the arrangement of the macromolecules inside the bilayers
could exhibit orientational order due to the geometric shape and
orientational interaction of the hydrophobic blocks, resulting in
liquid crystalline bilayer membranes.19 The orientational order
of the rod-like blocks within a bilayer could be perpendicular
or inclined to the bilayer, forming ordered membranes with
structures analogous to the smectic-A or smectic-C phases,
respectively. Furthermore, the spatial arrangement of the rod
blocks in the smectic morphologies could assume end-to-end or
interdigitated configurations. A combination of the orientational
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and spatial arrangements of the rods within a bilayer could lead
to the formation of at least four types of liquid crystalline phases,
similar to the smectic phases in bulk systems.20–22

Theoretically, the understanding of the structure and thermo-
dynamic behaviour of self-assembled bilayers could be obtained
from generic coarse grained models of amphiphilic molecules.
One commonly used model for the study of self-assembled
bilayers is composed of AB diblock copolymers dissolved in A
homopolymers.23–25 The phase behaviour of rod–coil diblock
copolymers in the melt state has been studied by a large number
of researchers using different theoretical approaches including the
asymptotic method,20,26 Landau theory,27 computer simulations,28,29

mean-field theory of lattice models30,31 and the self-consistent field
theory.22,32–37 These previous theoretical studies have revealed very
rich liquid crystalline behaviours of rod–coil diblock copolymer
melts. Furthermore, it has been shown that the addition of coil or
rod homopolymers to a self-assembling rod–coil diblock copolymer
is an effective method to induce liquid crystal phase transition and
control the domain spacing of the ordered structure.38–40 However,
despite extensive experimental and theoretical studies of rod–coil
diblock copolymer melts and solutions, the morphology and
phase behaviour of self-assembled bilayers from rod–coil diblock
copolymers remain largely unexplored.

In this paper, we report on a systematic study of the structure
and phase behaviour of bilayer membranes self-assembled from
rod–coil diblock copolymers using the self-consistent field
theory (SCFT). It has been demonstrated that the SCFT provides
a flexible and accurate framework for the study of inhomogeneous
polymeric systems41 including different micelle structures.42 In the
current study, we obtain accurate numerical solutions of the SCFT
equations corresponding to various liquid crystalline bilayers,
including three types of A-phase, two types of C-phase, OB-phase
and P-phase, where the A-phases and C-phases are bilayer
analogues of the smectic crystalline phases in bulk systems.22,33,39

The structure and energetics of the different phases are analyzed. In
particular, the effects of the conformational asymmetry between
rods and coils on the structure of A-phases and C-phases are
systemically studied. Phase diagrams of the bilayers are constructed
by comparing the free energy of the different phases. The results
reveal that various bilayer phases with different liquid crystalline
order could be obtained, providing a rich library of ordered
structures for potential applications of polymeric systems involving
rod–coil diblock copolymers.

The rest of the paper is organized as follows. A detailed
description of the SCFT model and the candidate bilayer phases
are presented in Section 2. Our main results on the phase
diagrams and phase transitions are given in Section 3. The final
section presents some discussions relating to our results and
the main conclusion from the study.

2 Model and theoretical framework
2.1 Basic model and numerical methods

The model system used in our study is a binary mixture of A
(coil)–B (rod) diblock copolymers and A (coil) homopolymers.

The phase behaviour of the model system is examined using
the polymeric self-consistent field theory (SCFT) formulated in
the grand canonical ensemble.24,43,44 The model system is
controlled by a large number of parameters. In the current
study, the copolymers and the homopolymers are assumed, for
simplicity, to have the same degree of polymerization N.
Furthermore, we consider AB diblock copolymers with equal
A and B volume fractions, fA = fB = 0.5. The interaction between
A and B monomers is described by a Flory–Huggins
parameter45 w, whereas the orientation interaction between
the rods is assumed to have the Maier–Saupe form46 with an
interaction parameter Z. Furthermore, the conformational
asymmetry between the coil (A) and rod (B) blocks is quantified
by a geometrical asymmetry parameter,22,47 b = bN/Rg, where

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Na2=6

p
is the gyration radius of A-chains, and a and b are

the statistical segment lengths of A (coil) and B (rod) blocks,
respectively. Finally the chemical potential of the copolymers
mc, or the corresponding activity zc = exp(mc), is used as a control
parameter to regulate the average concentration of the diblock
copolymers in the blends.

Within the SCFT framework, the free energy of the binary
mixture is given by41

NF

kBTr0
¼
ð
dr wNfAðrÞfBðrÞ �

X
a¼A;B

oaðrÞfaðrÞ
"

þ 1

2ZN
MðrÞ : MðrÞ � xðrÞ fAðrÞ þ fBðrÞ � 1ð Þ

�

� zcQc �Qh;

(1)

where fa(r) and oa(r) are the local concentration and the mean
field of a-type monomers (a = A, B). The tensor field M(r) is the
mean orientational field of the rod (B) blocks. The local
pressure field x(r) is a Lagrange multiplier introduced to
enforce the incompressibility condition of the system. The last
two terms in eqn (1) are contributions from the single-chain
partition functions of the two polymers, Qc and Qh.

The fundamental quantity to be computed in the SCFT study
is the polymer segment probability distribution functions (or
the propagators), qh

A(r,s) for A homopolymers, and q�A (r,s),
q�B (r,u,s) for AB diblock copolymers, where u is a unit orienta-
tional vector. These propagators satisfy the modified diffusion
equations41 in the presence of the mean fields (oA, oB and M),

@

@s
qhAðr; sÞ ¼ ðRg

2rr
2 � oAðrÞÞqhAðr; sÞ; s 2 ð0; 1Þ; (2)

@

@s
q�Aðr; sÞ ¼ Rg

2rr
2 � oAðrÞ

� �
q�Aðr; sÞ; s 2 0; fAð Þ; (3)

@

@s
q�B ðr; u; sÞ ¼ �bRgu � rr � Gðr; uÞ

� �
q�B ðr; u; sÞ; s 2 0; fBð Þ;

(4)

with the initial conditions,

qhAðr; 0Þ ¼ 1; q�Aðr; 0Þ ¼ 1; q�B ðr; u; 0Þ ¼
1

4p
; (5)
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qþAðr; 0Þ ¼
ð
duq�B r; u; fBð Þ; qþB ðr; u; 0Þ ¼

1

4p
q�A r; fAð Þ: (6)

Here the r, u-dependent field G(r,u) is defined by

Gðr; uÞ ¼ oBðrÞ �MðrÞ : uu� 1

3
I

� �
: (7)

In terms of the chain propagators, the single-chain partition
functions are given by

Qc ¼
ð
drqþA r; fAð Þ; (8)

Qh ¼
ð
drqhAðr; 1Þ: (9)

Furthermore, the density distributions of A and B monomers
are obtained from the propagators as

fAðrÞ ¼ fh
A þ fc

A

¼
ð1
0

dsqhAðr; sÞqhAðr; 1� sÞ þ zc

ð fA

0

dsq�Aðr; sÞqþAðr; fA � sÞ;

(10)

fBðrÞ ¼ 4pzc

ðfB
0

ds

ð
duq�B ðr; u; sÞqþB r; u; fB � sð Þ: (11)

Finally the orientational order parameter of B blocks is given by

SðrÞ ¼ 4pzc

ðfB
0

ds

ð
duq�B ðr; u; sÞ uu� I

3

� �
qþB r; u; fB � sð Þ: (12)

The rest of the SCFT equations concerning the mean fields to
the density distributions are

oA(r) = wNfB(r) � x(r), (13)

oB(r) = wNfA(r) � x(r), (14)

M(r) = ZNS(r), (15)

fA(r) + fB(r) = 1. (16)

For a given set of control parameters, the above SCFT equations
are solved to obtain solutions corresponding to different candidate
phases. The free energy of the different phases is then compared to
construct the phase diagram. Numerically, the SCFT equations
are solved by iteration methods, whose convergence could be
accelerated by the Anderson mixing.48 The most time-consuming
step of solving the SCFT equations is the computation of the
propagators by solving the modified diffusion equations (MDE).
When the rod-blocks are assumed to be semi-flexible, various
efforts49,50 have been devoted to develop numerical algorithms
for the MDE of the wormlike chain model. In particular, the fast
Fourier transform (FFT) can be used to treat the periodic boundary
condition. In the current study, the compact finite difference
scheme51 is used to enforce the reflecting boundary conditions.
Specifically, the partial derivative operators about r are treated using
a fourth-order compact finite difference scheme, and the s
dependence is treated using a third-order implicit Runge–Kutta
method.52 The scheme is especially suitable for the current
problem, where a well-designed nonuniform grid is used to

capture the sharp interface especially for large values of wN and
ZN. In the current study, computation domain is constrained in
one dimension and the domain size D is determined by the
condition that the concentration profile near the boundaries of
the computational box is the same as the bulk concentration
within a prescribed error. The number of u grid points is 32� 36, r
grid points are changed over 200–400 and s grid points are
changed over 300–800 under different model parameters to ensure
that the free energy is converged in the order of 10�4 and the fields
are self-consistent with L2-norm error less than 10�6.

2.2 Candidate phases

Because the SCFT equations are a set of non-linear and non-local
equations, the SCFT equations have more than one solution.
Each solution of the SCFT acts as a candidate phase. On the other
hand, finding the different solutions of SCFT depends crucially
on the initial configurations used in the SCFT calculations.53,54 A
popular choice is random configurations. On the other hand, it
has been demonstrated by a number of researchers53,54 that
random configurations alone would lead to a limited number
of candidate phases. A large number of metastable phases would
be missed if one only uses a restricted set of initial configurations.
In our study of the phases and phase transitions of block
copolymer systems, we have used various initial configurations,
including random and designed initial configurations, to obtain
the candidate structures. The structure and orientational order of
these candidate phases are described in this subsection.

As the simplest case, the solution of the spatially homo-
geneous phase of the system can be obtained analytically.
Assuming that the orientational field is uniaxial, i.e. M(r) �
diag(M, M, �2M), the free energy of a spatially homogeneous
phase is given by

NFbulk

kBTr0V
¼ 3M2

ZN
þ wNfB

2fbulk
2 þ ln 1� fbulkð Þ � 1; (17)

where M and the bulk copolymer concentration fbulk are
determined by a set of nonlinear equations,

mc ¼ lnfbulk � ln 1� fbulkð Þ þ wNfB 1� 2fBfbulkð Þ

� ln

ð1
0

exp 1� 3x2
� �

MfB
� �

dx

� �
;

M ¼ ZNfBfbulk

6

Ð 1
0 1� 3x2
� �

exp 1� 3x2
� �

MfB
� �

dxÐ 1
0exp 1� 3x2ð ÞMfBð Þdx

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(18)

The second equation in eqn (18) depends only on MfB if the
combination ZNfB

2fbulk is taken as a control parameter.
Further analysis of the right hand side of this equation reveals
that a solution with non-zero M a 0, corresponding to the
nematic phase, exists only if ZNfB

2 4 6.72. On the other hand,
solutions with M = 0, correspond to the isotropic or disordered
phase, always exist. Specifically, the SCFT equations may have
up to three isotropic solutions, where the solution with small
fbulk is the hA-rich phase, and the solution with large fbulk is
the AB-rich phase. For the given set of parameters used in our
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study, the hA-rich phase has lower free energy than the AB-rich
phase when wN 4 4 ln zc.

For the inhomogeneous phases, the structure is described
by the density profiles fA(r), fB(r) and the orientational order
parameter S(r). In particular, the eigenvalues and eigenvectors
of the orientational order parameter, S, can be used to classify
the liquid crystalline order of the self-assembled bilayers. By
denoting the eigenvalues and relevant eigenvectors of S by l1,
l2, l3, n1, n2, n3 (with |l1| Z |l2| Z |l3|), and the angle between
n1 and the normal vector (z) of interface by y, a classification of
the bilayer phases could be carried out according to these
parameters as summarized in Table 1. In the current study,
solutions of the SCFT equations, corresponding to the A, C, P
(perpendicular, biaxial) and OB (oblate, uniaxial) phases, are
obtained. These phases are bilayer analogues of the bulk
smectic phases of rod–coil diblock copolymer melts obtained
from SCFT calculations.22,55

The morphologies of the different liquid crystalline bilayers
are obtained from the order parameter distributions. In the
A-phase, corresponding to the smectic-A phase in the bulk, the
rods are aligned parallel to the normal direction of the bilayer.
In the C-phase, corresponding to the smectic-C phase in the
bulk, the direction of the rods, n1, is tilted by an angle y away
from the normal direction of the bilayer. In the P-phase the
local distribution of the director n1 is biaxial with two peaks
away from the bilayer normal z and an average orientation n1

perpendicular to z. In the OB-phase, the average orientation n1

is parallel to z, but the maximal absolute eigenvalue l1 is negative
resulting in an oblate distribution, i.e. the local distribution of n1

is very close to perpendicular to the bilayer interface. The number
of possible ordered phases of a bilayer is further increased by the
fact that there are different types of A and C phases depending on
the alignment of the rods and the tilt angle y of the C-phase,
which might be multi-valued. The basic structure of the different
ordered phases is sketched in Fig. 1. It is noted that the spatial
distributions of the individual rod segments fs(r) could be
computed from the propagators,39

fs0
ðrÞ ¼ 4pzc

ð
duq�B r; u; s0ð ÞqþB r; u; 1� s0ð Þ: (19)

The value of s0 is set as fA, fA + fB/2 and 1 separately in this paper
to define fjoin, fmid and fend, representing the concentrations of
the joint, middle and end segments of rod blocks.

The free energy of the different phases is obtained by
inserting the SCFT solutions into the free energy functional
of the system (eqn (1)). The relative stability of an ordered
bilayer phase is determined by its excess free energy, i.e. the
free energy difference between the ordered phase and the

isotropic phase, F � Fbulk. For a planar bilayer geometry,
the excess free energy (F � Fbulk) is proportional to the area
(A) of the membrane; therefore we can define the excess free
energy density as24

Fex ¼
N F�Fbulkð Þ

kBTr0A
: (20)

Similarly, the thickness of a bilayer can be defined as the
copolymer excess per unit area,24

O ¼ 1

A

ð
dr fcðrÞ � fbulkð Þ; (21)

where fc(r) = fc
A(r) + fB(r) is the local concentration of the

copolymers. In what follows these quantities are used to
examine the relative stability of the different phases.

3 Liquid crystalline phases and phase
diagrams of bilayers
3.1 Property of the A-phases and C-phases

In this subsection the property of a self-assembled bilayer is
analyzed by examining its excess free energy, thickness and
segment distributions obtained from the SCFT calculations.
For rod–coil diblock copolymer melts, it has been shown that,
besides the copolymer composition f, the conformational asym-
metry between the rods and coils, quantified by the parameter b,
greatly affects their phase behaviour.47 It is therefore expected
that the parameter b will have a strong influence on the phase
behaviour of self-assembled bilayers from rod–coil diblock
copolymers. In what follows, the effects of b on the property
and phase behaviour of the bilayers are investigated.

3.1.1 The A-phases. As shown in Fig. 1, the A-phase of the
bilayer is a liquid crystalline structure in which the rod blocks
are oriented perpendicular to the bilayer. According to the
spatial arrangements of the rods within a bilayer, the A-phase
can be divided into a number of sub-phases, such as the Ac and
As types illustrated in Fig. 1. In the Ac phase the rods assume a
completely interdigitated arrangement, whereas the rods assume
an end-to-end arrangement in the As phase.

Table 1 Classification of liquid crystalline bilayer structures

y = 01 01 o y o 901 y = 901

Uniaxial l2 = l3 l1 4 0 A C —
l1 o 0 OB — —

Biaxial l2 a l3 l1 4 0 — — P
l1 o 0 — — —

Fig. 1 Schematics of the phases of a bilayer. In the As and Cs phases the
rods assume an end-to-end arrangement, whereas the rods assume an
interdigitated arrangement in the Ac and Cc phases. When the tilt angle is
multi-valued, Cc could be further differentiated as the CA (y o 451) and CP

(y4 451) phases. In the OB and P phases the rods are nearly perpendicular
to the bilayer normal z, where the local distribution of the director n1 is
oblate in the OB phase and biaxial in the P phase, as shown in the
accompanying plots.
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The effect of the asymmetry parameter b on the spatial
arrangements of the rods could be elucidated by the behaviour
of the excess free energy and the thickness of the bilayer as a
function of b. As an example, the excess free energy density (Fex)
and the bilayer thickness (O) of the A-phases are shown as a
function of b in Fig. 2 with a set of parameters wN = 15, ZN = 30,
zc = 10. The first feature to notice from Fig. 2 is that the free
energy and bilayer thickness as a function of b are multi-valued
in certain regions of b. The stable phase is the one with the
lowest free energy, and thus the triangle loop at b B 3
corresponds to metastable or unstable state. In particular, the
structure with partially interdigitated arrangement of rods,
denoted as Acs, represents an unstable phase. As the value of
b is increased across this transition point, the bilayer changes
from the As phase to the Ac phase with an abrupt decrease of
the bilayer thickness.

For bilayers with perfect interdigitated and end-to-end
arrangements, the bilayer thickness should follow two straight
lines given by O/bRg = 1 and O/bRg = 2. The calculated bilayer
thickness curves for the As and Ac phases shown in Fig. 2
deviate from these two straight lines, indicating that a small
degree of interdigitation of the rod blocks is present in the
structures. For the case of very short rod blocks corresponding
to small b, their centre of mass could have a broad distribution,
resulting in a structure, termed as the An phase, analogous to
the nematic phase in bulk liquid crystals.

The structure of the self-assembled bilayers is revealed by
the spatial distribution of the rod segments. Typical segment
distributions are shown in Fig. 3 for b = 3.5, 3, 2.5 and 0.5,
corresponding to the different A-phases presented above.
Specifically, the distributions of the joint, middle and end
segments of the rod blocks are shown in Fig. 3. The interdigitate
state of the different A-phases can be clearly seen from the
distribution of the middle-segment of the rods, fmid. For the Ac

phase, fmid is sharply peaked at the middle of the bilayer as
shown in Fig. 3(a), indicating an almost completely interdigitated
arrangement of the rods. For the As phase, fmid exhibits two
peaks near the peaks of the joint-segment distribution as shown
in Fig. 3(c), indicating an end-to-end arrangement of the rods.
For the intermediate Acs phase, fmid shows three peaks as shown
in Fig. 3(b), indicating a partially interdigitated arrangement.

These structural features are corroborated by the corresponding
end-segment distribution functions (fend). For the An phase, the
distribution of the middle- and end-segments exhibits one peak
at the middle of the bilayer as shown in Fig. 3(d), indicating a
random spatial distribution of centre of mass of the rod blocks.

The phase transformation sequence and transition boundaries
are determined by the minimum of the free energy of the different
phases. From the free energy curves shown in Fig. 2, a phase
transition sequence from An to As to Ac for increasing b is
predicted. For very small values of b, the rods are so short that
their centre of mass could assume a random spatial distribution,
resulting in the formation of the An phase. For very large values of
b, the rods are long favouring a completely interdigitated spatial
arrangement, leading to the formation of the Ac phase. For
intermediate values of b, the spatial distribution of the rods could
assume an end-to-end arrangement forming the As phase. It is
interesting to note that, at an intermediate value of b B 3, As

and Ac coexist, and the partially interdigitated structure (Acs) is a
metastable or unstable phase in this case.

3.1.2 The C-phases. Similar to the bulk smectic-C phase,
the orientation of the rods in the C-phase of a bilayer self-
assembled from rod–coil diblock copolymers is tilted away
from the normal direction of the bilayer with a tilt angle y. In
this case the interdigitation and orientation of the rods are
coupled, resulting in a more complex behaviour than that of the
A-phases. From the perspective of the spatial arrangement of
the rods, the C-phase could be divided into Cs and Cc structures,
similar to the corresponding As and Ac phases. The tilted rods
assume an end-to-end spatial arrangement in the Cs phases,
whereas the rods form an almost completely interdigitated
spatial arrangement in the Cc phase. Similar to the case of the
A-phases, it is expected that the parameter b controls the
formation of the different C-phases as well. The influence of b

Fig. 2 Plots of the free energy density Fex and bilayer thickness O of
A-phases as a function of b with fixed wN = 15, ZN = 30, zc = 10. Two
straight lines specified by O/bRg = 1 and 2 are shown as references.

Fig. 3 The spatial distribution of the individual rod segments (join, mid
and end) and the corresponding schematic of A-phases. (a) Ac phase with
b = 3.5. (b) Acs phase with b = 3. (c) As phase with b = 2.5. (d) An phase with
b = 0.5.
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on the C-phases is revealed in Fig. 4, in which the excess free
energy density (Fex) and the average tilt angle (y) of various C-
phases are given as a function of b. The first thing to notice in
Fig. 4 is that, as a result of the coupling between the spatial
arrangement and orientation of the rods, the free energy curves
are more complex than the case of the A-phases. There exist
more free energy loops and the average tilt angle y could be
multi-valued. In what follows, for the Cc phase, the case of
y 4 451 is termed the CP phase (near perpendicular) and the
case of y o 451 is termed the CA phase (near the A-phase). It is
interesting to note that the example shown in Fig. 4 exhibits
three possible values of the tilt angle, labeled by CP, CA

0 and CA,
when b is near 7.2. The CA

0 phase is always metastable or
unstable, the CA phase is stable within a very narrow window
while the CP phase is stable within a larger window.

The equilibrium phase of the bilayer is again determined by
the minimum of the free energy. For the case shown in Fig. 4,

the predicted phase transition sequence is from An to As to Cs to
Ac and to Cc as b is increased. The corresponding tilt angle y changes
from zero for the A-phases to non-zero values for the C-phases.

3.2 Phase diagrams

The phase behaviour of the self-assembled liquid crystalline
bilayers is summarized in a set of phase diagrams. The phase
diagrams are constructed by a comparison of the excess free
energy density of the different candidate phases described
above. A typical set of the phase diagrams, plotted in the wN–zc

or ZN–zc plane, is shown in Fig. 5. The parameter b is chosen to
be b = 9.8 and b = 4 in accordance with previous studies of the
bulk phase behaviour of rod–coil diblock copolymer systems.22,55

3.2.1 The case of b = 9.8. The phase diagrams for the case
of a relatively large value of b = 9.8 are given in Fig. 5(a)–(c). In
this case b = 9.8 is large enough such that the interdigitated
arrangement of the rods is the preferred structure. At small
values of the activity, zc, corresponding to low concentration of
diblock copolymers, the system is in a disordered or isotropic
state in which the rod blocks do not possess liquid crystalline
order. Ordered bilayers emerge when zc is increased beyond a Z,
w-dependent critical value. For large values of the ratio Z/w, e.g.
ZN 4 22 with fixed wN = 15 as shown in Fig. 5(a), the first
ordered bilayer is the CP-phase when zc is increased. The critical
value of zc exponentially decreases as ZN is increased.

Fig. 5(b) gives the phase diagram with a large ratio Z/w = 4. In
this case the bilayer structure has an almost horizontal phase
transition boundary, wN E 6.5, for zc 4 4. That is, the system
would change from a disordered state at wN o 6.5 to a liquid
crystalline bilayer at wN 4 6.5. It is interesting to note that this

Fig. 4 Plots of the free energy density Fex and the average tilt angle y of
C-phases as a function of b with fixed wN = 15, ZN = 30, zc = 10.

Fig. 5 Phase diagrams of liquid crystalline bilayers. b = 9.8 for (a–c), (a) wN = 15, (b) Z/w = 4, (c) Z/w = 1. b = 4 for (d–f), (d) wN = 15, (e) Z/w = 4, (f) Z/w = 1.
To make the region of A-phases more precise, we regard the Ac-phase as the thickness O/Rg o 1.25b, As-phase as 1.5bo O/Rg o 2.1b, and the Acs-phase
as 1.25b o O/Rg o 1.5b. The dashed lines are wN = 4 ln zc which is the critical condition of the hA-rich bulk phase having lower free energy than the
AB-rich bulk phase.
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critical value of wN agrees with the value of the order–disorder
transition (ODT) point, wNODT, of the rod–coil diblock melts.22,33

For small values of the ratio Z/w and as zc is increased, the
first ordered bilayer could be the P-phase or the OB-phase. The
stability region of these two phases is relatively narrow even at a
very small ratio of Z/w = 1, as shown in Fig. 5(c). It is worth
mentioning that these two structures are analogous to the
smectic-OB and smectic-P phases in rod–coil diblock copolymer
melts, where they become metastable or unstable when two-
dimensional structures are considered and a large value of
Z/w = 4 is used.55

The C–A and C–P transitions. When the activity zc or the
diblock copolymer concentration is increased, the tilt angle of
the rods in the Cc phase decreases, reaching zero at which the
bilayer undergoes a C–A transition from the Cc phase to the Ac

phase. When ZN o 30, the tilt angle y is single-valued and it
decreases rapidly when zc is increased for values of ZN close to
30. A similar rapid decrease had been observed for the rod–coil
melt system by Reenders and Brinke using Landau theory.27

The C–A transition could also be induced by increasing the
value of ZN, similar to the case of rod–coil melts.22

When multiple metastable C-phases are present, the average
tilt angle y could be multi-valued in certain regions of the phase
diagram, e.g. ZN 4 30 at wN = 15, resulting in a first-order
transition from the CP phase to the CA phase. Details of this
phase transition are revealed for the case of wN = 15 and ZN = 40
in Fig. 6(a), where the excess free energy density Fex and the
average tilt angle y are plotted as a function of zc. The region
with multi-valued y occurs when zc is between 5.5 and 7.5, and
the stable y jumps from 591 to 311 at the transition point given
by zc = 6.2.

The tilt angle of the bilayer P-phase is 901. It is tempting to
argue that this phase represents a limiting case of the CP phase
with the largest tilt angle. However, it is observed that the
maximal tilt angle of the CP phase does not reach to 901.
Therefore, the C and P phases are two different liquid crystalline
phases which are connected via a first-order phase transition. In
addition, the symmetry of these two phases is different. The
C-phases are uniaxial but the P-phase is biaxial.

The OB–A phase transition. For the OB-phase, the eigenvalue
with the maximal amplitude, l1, of the orientational order
parameter S is negative (l1(S) o 0). The average value of l1(S)
increases when the activity zc is increased, and it becomes
positive at the point when the OB-phase undergoes an OB–A
transition to the A-phase. The OB–A transition is a first-order
transition as shown in Fig. 6(b) for the case of ZN 4 16 and
wN = 15. The triangle loop in the free energy curve and the
multi-valued feature of the eigenvalue l1(S) demonstrate clearly
the first-order nature of the OB–A transition. The transition
point in this case is identified at zc = 24.5, at which the value of
l1(S) jumps from �0.05 in the OB-phase to 0.22 in the A-phase.

3.2.2 The case of b = 4. The phase diagrams for the case
with a smaller b = 4 are shown in Fig. 5(d)–(f). In this case the
end-to-end arrangement of the rods is the preferred structure.

The first ordered bilayer phase as zc is increased could be the Ac

or Cs phase. Although the phase diagrams for the small b = 4
are quite different from that for the larger b = 9.8, the disorder-
to-order transition point is almost the same. In addition, the
OB-phase and P-phase are found to be metastable or unstable
for this small value of b.

One interesting feature of the phase diagrams shown in
Fig. 5(d)–(f) is that the Cs phase is surrounded by the A-phases,
resulting in re-entrance A–C–A transitions. It is interesting to
note that, for the rod–coil diblock copolymer melts with similar
values of b, this type of re-entrance transition has been considered
by Halperin.26 Further theoretical studies by Matsen and Barrett33

and by Song et al.39 have also confirmed the re-entrance phase
transition behaviour in the bulk systems. Qualitative analysis
based on the thickness of the bilayer indicates that the Ac phase
is preferred at relatively low values of zc, whereas at large zc the
As phase is favoured. However, there is no phase transition
between these two structures at small values of ZN because the
free energy and bilayer thickness of the A-phases are continuous
functions in this case. In the phase diagrams the regions
designated as the Acs phase Fig. 5(d–f) are determined by the
condition 1.25b o O/Rg o 1.5b. It should be noted that these
two boundaries are guide to the eyes and they are not phase
transition boundaries.

The A–C–A phase transition. As an example of the Ac–Cs–As

transition when the activity zc is increased, the excess free

Fig. 6 Free energy and transition of phases. (a) C–A transition and
multi-value of the average tilt angle y (b = 9.8, wN = 15, ZN = 40).
(b) OB–A transition with a jump of the average maximal absolute eigen-
value l1(S) (b = 9.8, wN = 15, ZN = 17).
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energy and the thickness of the bilayer are shown in Fig. 7 for
the case of wN = 15 and ZN = 35. The free energy curve of the As

and Cs phases is tangent near zc = 67, at which the thickness
curves of these two phases merge into one curve, indicating a
second-order Cs–As transition. On the other hand, it is obvious
that the Ac–Cs transition is a first-order transition because their
free energy curves crossover with a discontinuity in their slopes.

4 Conclusions and discussion

In summary, the phase behaviour of bilayers self-assembled
from rod–coil diblock copolymers is studied using the self-
consistent field theory (SCFT) formulated in the grand canonical
ensemble. The occurrence and relative stability of various liquid
crystalline phases of the bilayers are examined. The theoretical
results predict that a variety of ordered structures could become
equilibrium phases in the self-assembled bilayers of rod–coil
diblock copolymers. The orientational order of rod-blocks within
the bilayer could be perpendicular, inclined or parallel to the
bilayer, forming ordered membranes of A-phase, C-phase, P-phase
and OB-phase. Furthermore, the spatial arrangement of rod blocks
could be interdigitated, end-to-end or randomly distributed. A
combination of the orientational and spatial arrangements of
rod blocks leads to three types of A-phases (Ac, As and An) and
two types of C-phases (Cc and Cs). The transitions between the
various A-phases and C-phases could be regulated by increasing
the geometrical asymmetry parameter b between the rod blocks
and coil blocks, and a phase transition sequence of An–As–Cs–Ac–
Cc is predicted. When b is large enough, the tilt angle of rod-blocks
in the Cc-phase could be multi-valued (denoted as CP and CA

phases). Equilibrium phase diagrams are constructed from the
SCFT results by comparing the free energies of various ordered
structures. The CP–CA–A and A–C–A phase transition paths are
predicted by changing the chemical potential or concentration of
the copolymers. The results from the theoretical study indicate that
the self-assembly of rod–coil diblock copolymer solutions provides a
route to obtain nanoscopic bilayers with liquid crystalline order. The
ability to control the spatial and orientational arrangements of the
rod blocks within a bilayer provides a platform to engineer nano-
structured membranes, which could have potential applications in
advanced technologies such as photovoltaics.

In this paper we have carried out a detailed theoretical study
of the phase behaviour of bilayers self-assembled from rod–coil
diblock copolymers. Previous studies of self-assembled bilayers
were mostly on the model system composed of coil–coil diblock
copolymers and homopolymers, focusing on the elastic properties
of the self-assembled bilayers.24,25,44 Because of the nature of the
flexible polymers, the bilayers self-assembled from coil–coil
diblock copolymers do not possess internal structures, resulting
in fluid or disordered bilayers. In the current study, we focus on
the liquid crystalline behaviour of the bilayers self-assembled from
rod–coil diblock copolymers. For simplicity, the current study is
restricted to the case of fA = fB = 0.5. Furthermore, we assumed that
the bulk phase of the block copolymer/homopolymer mixture is
the hA-rich phase, with the bilayers of diblock copolymers self-
assembled within the hA-rich homogeneous phase. It is noted that
the binary mixture of rod–coil diblock copolymers and homo-
polymers could have a number of homogeneous phases. In
particular, a bulk phase with block copolymers as the majority
component becomes the phase with lower free energy when
wN 4 4 ln zc. This critical line is plotted in the phase diagrams
(Fig. 5) for reference. Furthermore, the bulk phase could also
possess liquid crystalline order. For example, a bulk nematic
phase exists for ZNfB

2 4 6.72. Previous phase diagrams of the
rod–coil systems reveal the narrow window of the stable nematic
phase.22,39 For the cases examined in the current study, the
nematic phase is not an equilibrium bulk phase because the
homogeneous phases have lower free energy.

One interesting point worth discussing is that a significant
number of experiments and theoretical studies have demonstrated
that, at low block-copolymer concentrations, the diblock copolymers
could self-assemble to form cylindrical and spherical micelles,
besides the bilayer structure. For example, Zhou and Shi42 studied
the critical micelle concentration (CMC) of coil–coil diblock
copolymers using the SCFT framework in which the cylindrical
or spherical micelles have lower CMC than the planar micelles
or bilayers when fA is larger than 0.54. Furthermore, the self-
assembly of diblock copolymers within the bilayer could lead to
the formation of complex morphologies such as perforated
bilayers. It is natural to expect that the rod–coil diblock copolymers
could self-assemble to form non-planar micellar structures and
compartmentalized layers. Exploring the liquid crystalline order of
these complex morphologies and non-planar micelles is a very
interesting topic. Another interesting extension of the current
study is to go beyond one-dimensional calculations. The coupling
between the liquid crystalline order and the bilayer conformation
could lead to interesting deformations of the planar bilayers.
However, a detailed study of these topics is beyond the scope of
the current paper and we will leave this topic to future studies.
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