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Abstract

We investigate the effect of anisotropic elastic energy on defect patterns of liquid
crystals confined in a three-dimensional spherical domain within the framework of
Landau–de Gennes model. Two typical strong anchoring boundary conditions, namely
homeotropic and mirror-homeotropic anchoring conditions, are considered. For the
homeotropic anchoring, we find three different configurations: uniaxial hedgehog, ring
and split-core, in both cases with or without the anisotropic energy. For the
mirror-homeotropic anchoring, there are also three analogue solutions: the uniaxial
hyperbolic hedgehog, ring and split-core for the isotropic energy case. However, when
the anisotropic energy is taken into account, the numerical results and rigorous analysis
reveal that the uniaxial hyperbolic hedgehog is no longer a solution. Indeed, we find
ring solution only for negative L2 (the elastic coefficient of the anisotropic energy),
while both split-core and ring solutions can be stable minimizers for positive L2. More
precisely, the uniaxial hyperbolic hedgehog for L2 = 0 bifurcates to a split-core solution
when L2 increases and to a ring solution when L2 decreases. This example shows that
the anisotropic energy may significantly affect the symmetry of point defects with
degree −1 whenever it is introduced.

1 Background
Configurations and defect patterns of nematic liquid crystals, subject to some topological
constraints, remain to be one of the most attractive topics among research on liquid
crystals, as predicting defect patterns is important both in practical and in theoretical
points of view [4]. There are lots of studies on configurations and structures of defects in
liquid crystals by various differentmathematicalmodels, such asOseen–Frankmodel [15],
Ericksen’s model [5] and Landau–de Gennes (LdG)model [7,10,18]. The first twomodels
postulate that one director preferred by molecules at each point, while the Landau–de
Gennes theory allows the molecular orientation to have two preferred directions at each
point. Since the Landau–de Gennes theory can capture biaxial behavior of liquid crystals
near defect points, there are many studies on the defect patterns under this framework,
see [11,16–21] and the references therein.
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In the Landau–de Gennes model, the state of liquid crystals is described by a matrix-
valued function Q ∈ S0 often referred as Q-tensor, where

S0 = {Q ∈ R
3×3 : Q = QT, tr(Q) = 0}. (1)

If all eigenvalues of Q are equal, then Q = 0 and it is called isotropic. If Q has two equal
nonzero eigenvalues, Q can be written as Q = s(n ⊗ n − 1

3 I) with s ∈ R and n ∈ S
2. In

this case, we callQ uniaxial. If in addition s > 0 (or s < 0), we callQ positive uniaxial (or
negative uniaxial). When Q has three distinct eigenvalues, it is called biaxial.
The Landau–de Gennes free energy functional is given by

F [Q] =
∫

Ω

fb(Q) + fe(Q)dx, (2)

where fb(Q) is the bulk energy density

fb(Q) = A
2
tr(Q2) − B

3
tr(Q3) + C

4
tr(Q2)2 (3)

and fe(Q) is the elastic energy density

fe(Q) = L1
2
Qij,kQij,k + L2

2
Qij,jQik,k + L3

2
Qij,kQik,j . (4)

Here, we use the Einstein summation convention that we take summation over repeated
indices. The commas indicate spatial derivatives.A, B, C are constants depending on tem-
perature andmaterials, and L1, L2 and L3 are elastic constants. The first term in the elastic
energy is called isotropic elastic energy, and the latter two are called anisotropic elastic
energy terms.
From mathematical viewpoint, the presence of anisotropic energy will bring analytical

difficulty due to its asymmetric structure; thus, some powerful tools, such as maximum
principle, cannot be used to study the minimizers or equilibrium solutions. A well-known
example is that the minimizers of isotropic Oseen–Frank energy, which are harmonic
maps, have only finite singular points in three-dimensional domain, while it is quite dif-
ficult to prove a similar result for minimizers of anisotropic Oseen–Frank energy [9].
The same difficulty occurs in studying related problems within the Landau–de Gennes
model. Therefore, in many existing studies, the elastic energy is assumed to be isotropic,
which is referred as one-constant approximation. However, there are few concrete liquid
crystal materials that have isotropic elastic coefficients. Hence, it becomes important to
understand whether the anisotropic energy could affect the static or dynamic behaviors
of liquid crystals. A typical example arises from the isotropic–nematic interface problem,
in which it is found that whether the elastic energy is isotropic or anisotropic corresponds
to different boundary conditions on the interface [6].
In this paper, we study how anisotropic energy affects the configuration with certain

given boundary conditions within the framework of the Landau–de Gennes model, by
combining numerical simulations and theoretical analysis. In particular, we focus on
static equilibrium configurations of liquid crystals confined in a three-dimensional ball
with strong anchoring conditions at the boundary.
The paper is organized as follows: In Sect. 2, we introduce the scaling and boundary

conditions. In Sect. 3, we state the numerical methods we implement, followed by our
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main numerical results in Sect. 4. Section 5 presents a preliminary theoretical analysis
on the behavior of uniaxial solutions under the mirror-homeotropic boundary condition.
Finally, we summarize and discuss our results in Sect. 6, along with some open problems.

2 Models and boundary conditions
2.1 Models and scaling

First, we nondimensionalize the Landau–de Gennes energy (2)–(4) as in [10]. It is not
hard to check that the L3 term only differs from the L2 term by a null Lagrangian (see
[9] for a similar proof for the Oseen–Frank energy), so we assume L3 = 0 for simplicity.
Introduce the following parameters:

• effective temperature: t = 27AC
B2 ,

• characteristic length: ξ0 =
√
27CL1
B ,

• “normalized” elastic constant: ε = ξ0
R =

√
27CL1
BR ,

• anisotropic rate: L21 = L2
L1 ,

and let

x̃ = x
R , Q̃ =

√
27C2

2B2 Q, F̃ = ε3

√
27C3

4B2L31
F.

We drop the tildes and then obtain the nondimensionalized energy functional

F [Q] =
∫

Ω

{ t
2
tr(Q2) − √

6tr(Q3) + 1
2
tr(Q2)2 + ε2

2
Qij,kQij,k + ε2

2
L21Qij,jQik,k

}
dx.

(5)

In addition, wework on the unit three-dimensional ballΩ = B1(0).Minimizing (5) subject
to boundary conditions given below, we will find stable configurations.

2.2 Boundary conditions

There are several different ways to determine boundary conditions. One of the most
physical boundary conditions is the Dirichlet boundary condition, also referred as strong
anchoring condition in the literature. It prescribes the value of the order tensor Q on the
boundary. In particular, the order tensor is often given to be a global minimizer of bulk
energy, that is,

Q|∂Ω = s+
(
nb ⊗ nb − I

3

)
, (6)

with s+ =
√

3
2
(3+√

9−8t)
8 and nb being a unit vector field on the boundary ∂Ω .

When nb is simply taken as the normal vector of the boundary, the boundary condition
is called homeotropic anchoring. The nematics confined in a ball BR(0) := {|x| ≤ R} with
homeotropic anchoring boundary condition is an important example to understand the
local structures and locations of point defects with degree +1 in dimension three. There
aremany studies on the profiles of the solutions aswell as their stabilities both theoretically
and numerically [3,8,13,14,18,20] in this setting. It is known that one can find a radially
symmetric uniaxial solution, which is explicitly given by
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Q(x) = s(|x|)
( x

|x| ⊗ x
|x| − I

3

)
, x ∈ BR(0). (7)

This solution is called radial hedgehog solution, which contains an isolated point defect
at the center of the ball. If the temperature is sufficiently low, it has been proved that
the hedgehog solution will be unstable [18], and the so-called ring solution will be more
energetically favored [10]. Another solution called split-core solution has also been found
and shown to be meta-stable [10].
In this paper, we are also interested in another type of strong anchoring boundary

condition on ∂BR(0):

Qb = s+
(
nb ⊗ nb − I

3

)
, nb = 1

R (x, y,−z), (8)

referred asmirror-homeotropic anchoring boundary condition. The motivation of assign-
ing such anchoring condition is to model the point defects with topological degree −1.
This kind of boundary condition has also been considered in [12] to study the stability of
the following elementary defect

n(x) = 1
r (x, y,−z) (9)

of the Oseen–Frank theory with k1 = k3.
The homeotropic and mirror-homeotropic anchoring can be regarded as two special

cases of a family of boundary conditions. Let (r, θ ,ϕ) be the usual spherical coordinate
in three-dimensional space with θ ∈ [0,π ],ϕ ∈ [0, 2π ). We can define the following
boundary conditions for all k ∈ Z:

Q(k)(R, θ ,ϕ) = s+
(
n(k)(R, θ ,ϕ) ⊗ n(k)(R, θ ,ϕ) − I

3

)
, (10)

with

n(k)(R, θ ,ϕ) = Pϕ(sin(kθ ), 0, cos(kθ ))T, (11)

and

Pϕ =
⎛
⎜⎝
cosϕ − sin ϕ 0
sin ϕ cosϕ 0
0 0 1

⎞
⎟⎠ . (12)

The cases for k = 1 and k = −1 correspond to the homeotropic andmirror-homeotropic
anchoring, respectively. In “Appendix,” we also present some numerical results on the
equilibrium configurations subject to boundary conditions with |k| ≥ 2.
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3 Method for numerical simulation
The numerical algorithm we implement in this paper is the same as that in [10], which
is a spectral method based on Zernike polynomial expansion with high accuracy [22]. To
explain the algorithm, we first assume

Q =
⎛
⎜⎝
q1 q2 q3
q2 q4 q5
q3 q5 −(q1 + q4)

⎞
⎟⎠ (13)

and expand qi into Zernike polynomials

qi(r, θ ,φ) =
M−1∑

m=1−M

L−1∑
l=|m|

N−1∑
n=l

A(i)
nlmZnlm(r, θ ,φ), (14)

where N ≥ L ≥ M ≥ 0, and

Znlm(r, θ ,φ) = R(l)
n (r)Ylm(θ ,φ), (15)

with

R(l)
n (r) =

⎧⎪⎨
⎪⎩

(n−l)/2∑
s=0

Nnlsrn−2s, n−l
2 ≥ 0, n−l

2 ∈ Z;

0, others,
(16)

Nnls = (−1)s
√
2n + 3

n−l∏
i=1

(n + l − 2s + 1 + i)
l∏

i=1

(n − l
2

− s + i
)

2l−n

s!(n − s)! . (17)

Ylm(θ ,φ) = P|m|
l (cos θ )Xm(φ) are the spherical harmonic functions,

Xm(φ) =
{
cos(mφ), m ≥ 0;
sin(|m|φ), m < 0.

(18)

Pm
l (x)(m ≥ 0) are the normalized associated Legendre polynomials. Given coefficients

A(i)
nlm, the orthogonal relations of the Zernike polynomials provide us with the gradient

information, which allows us to implement gradient optimization method such as BFGS
[1] to determine A(i)

nlm minimizing the total energy.
To apply particular boundary conditions, we adopt the penalty functionmethod, i.e., we

introduce to the energy density function an additional term ηFp, in which η is the penalty
coefficient and

Fp =
∫

∂Ω

fp dS, (19)

where fp is the penalty energy density function like

fp(x) =
5∑

i=1
(qi(x) − q+

i (x))
2. (20)
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Therefore, fp is quadratic and reaches 0 when Q is strictly subordinated to the boundary
condition. We can expect that the numerical solutions will obey the boundary condition
well if η is large enough.
To obtain numerical results both efficiently and accurately enough, we start with small

N, L,M and gradually increase some or all of them until the numerical results converge,
i.e., no significant change in the value of free energy.
To visualize biaxiality and characterize different defect patterns of liquid crystals, fol-

lowing [10] we define a function which characterizes the biaxiality of liquid crystals:

β = 1 − 6
(tr Q3)2

(tr Q2)3
. (21)

It is not difficult to show that 0 ≤ β ≤ 1, β = 0 when Q is uniaxial and β �= 0 when Q
is biaxial. Moreover, β = 1 when Q has exact two nonzero eigenvalues opposite to each
other.
To detect the locations of defects, following [10] we define

cl = λ3 − λ2
λ3 − λ1

, (22)

in which λ1 ≤ λ2 ≤ λ3 are the eigenvalues of Q. At defects, cl = 0, so a small positive
value of cl is a good indicator of the locations of defects.

4 Numerical results
4.1 Homeotropic anchoring condition

When L21 = 0, as having been well studied in [10], there exist three different kinds of
solutions called radial hedgehog, ring disclination and split-core, which are described as
follows and illustrated in Fig. 1.

• Radial hedgehog solution: A uniaxial state withQ satisfying the profile (7). The center
of the ball is the isolated isotropic point. Hedgehog solution is stable only for large t
and ε. For small t and ε, the isotropic point broadens into a biaxial ring.

• Ring disclination: A biaxial state containing a ring which is a combination of point
defects with degree +1/2. Around the ring is shelled by a strong biaxial region. This
solution is rotationally symmetric. For small t and ε, ring solution ismore energetically
favored than radial hedgehog solution.

• Split-core solution: A biaxial state containing a short +1 disclination line connecting
two isotropic points. This solution is also rotationally symmetric. It seems to bemeta-
stable for all considered parameters, i.e., the ring solution or radial hedgehog solution
always has lower free energy under the same parameters.

We further perform some numerical simulations with L21 �= 0. The results suggest that
there is no essential difference between cases with andwithout anisotropy energy. In other
words, the possible stable states remain to be hedgehog and ring. The split-core solution
is also obtained as a meta-stable solution.

• There still exists a radial hedgehog solution which satisfies the profile (7), but the
scalar functions h for L21 �= 0 are different from those in L21 = 0 (see Fig. 2). The
radial hedgehog solution has been studied in [8], in which the stability/instability for
different L21 are discussed when t and ε are small.
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Fig. 1 Three possible configurations under k = +1. a–c show, respectively, qualitative alignment directions
of hedgehog, ring and split-core solution on the x − z plane. e–g show corresponding distribution of β on
the x − z plane. This figure is from [10]

Fig. 2 Curves of radial scalar function s(r) for different L21. Other coefficients are t = −0.5, ε = 0.2. The
orders of Zernike polynomials are N = 64, L = 64, M = 32, and we take penalty coefficient η as to 105, forcing
the penalty energy Fp to be <10−15

• One can also obtain a ring solution and a split-core solution for L21 �= 0 similar
to the case of L21 = 0. Our numeral results indicate that they are still rotationally
symmetric. To verify it, we define the error function

err(r, θ ,ϕ) = |Q(r, θ ,ϕ) − PϕQ(r, θ , 0)PT
ϕ |. (23)

If Q is axially symmetric, err will be 0 everywhere. Due to the existence of numerical
error, a small maximum of error function will support the axial symmetry. Numerical
verifications on the axial symmetry are listed in Table 1.
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Table 1 Numerical verifications of rotational symmetries of the ring and the split-core
solutions with nonzero L21 for homeotropic anchoring

t = 0.3, ε = 0.1, L21 = 3 t = −3, ε = 0.2, L21 = −0.2

N L M ‖err‖∞
L N L M ‖err‖∞

L

Ring

32 16 4 6.06e−7 32 16 4 1.70e−6

32 16 8 4.85e−7 32 16 8 3.70e−6

32 32 16 4.72e−7 32 32 16 2.22e−6

32 32 32 4.71e−7 32 32 32 2.22e−6

t = −7, ε = 0.2, L21 = 0.3 t = −7, ε = 0.2, L21 = −0.1

N L M ‖err‖∞
L N L M ‖err‖∞

L

Split-core

32 16 4 3.03e−6 32 16 4 8.37e−7

32 16 8 1.64e−6 32 16 8 1.30e−6

32 32 16 9.71e−6 32 32 16 1.07e−6

32 32 32 2.13e−6 32 32 32 1.06e−6

We have also obtained phase diagrams for different L21, which is shown in Fig. 3. This
implies that L21 affects the stability of radial hedgehog and ring solution continuously. It is
worth remarking that the equilibrium solutions under homeotropic anchoring condition
have also been studied in [20] under the assumption of axial symmetry. Our full 3D
simulation verifies the validity of this assumption.

4.2 Mirror-homeotropic anchoring condition

4.2.1 The case of L21 = 0

Thecase ofL21 = 0 inmirror-homeotropic anchoring condition actually shares the “same”
behavior with homeotropic case, due to a simple argument: If Q(x) is an equilibrium
solution/a minimizer for homeotropic anchoring condition, then

Q̂(x) = MzQMz (24)

Fig. 3 Phase diagram of radial hedgehog and ring for homeotropic anchoring condition with different L21
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is an equilibrium solution/a minimizer for mirror-homeotropic anchoring condition, and
vise versa. HereMz = diag{1, 1,−1}.
Therefore, we can find two stable solutions analogue to the radial hedgehog and ring

solution in homeotropic anchoring case and a meta-stable solution similar to split-core,
respectively:

• Hyperbolic hedgehog solution: This solution is a “mirror” version of the radial hedge-
hog. Thus, it is uniaxial everywhere (except an isolated isotropic point in the center),
and the order parameter is a radial symmetric function. Precisely, it has the following
form

Q(x) = s(r)
(
m ⊗ m − 1

3
I
)
, m = (x, y,−z)/r. (25)

However, the orientation directors in this solution are no longer aligned as “hedge-
hog,” so we call it hyperbolic hedgehog. This solution is illustrated in Fig. 4a.

• The ring solution and the split-core solution of mirror-homeotropic anchoring case
are quite similar to the corresponding solutions of homeotropic anchoring case, with
the same distributions on β but different eigenvectors. These solutions are illustrated
in Fig. 4.

4.2.2 The case of L21 > 0

When L21 > 0, numerical simulation reveals two different solutions, which are split-
core and ring disclination (see Fig. 4b, c). These two kinds of solutions preserve the axial
symmetry, which is verified by the numerical results in Table 2.

Fig. 4 Three possible configurations under mirror-homeotropic case. a–c show, respectively, qualitative
alignment directions of hyperbolic hedgehog, ring and split-core solution on the x − z plane. d–f show
corresponding distribution of β on the x − z plane. Comparing with Fig. 1 which shows the homeotropic
case, the only difference of corresponding solution is the alignment’s z-coordinate to be the inverse number
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Table 2 Numerical verification of ring’s and split-core’s axial symmetry with
mirror-homeotropic anchoring condition

t = −2, ε = .050, L21 = 2 t = .50, ε = .10, L21 = 2

N L M ‖err‖∞
L N L M ‖err‖∞

L

Split-core

32 16 4 1.79e−6 32 16 4 6.62e−7

32 16 8 1.92e−6 32 16 8 6.47e−7

32 32 16 2.04e−6 32 32 16 4.38e−7

32 32 32 2.10e−6 32 32 32 4.38e−7

t = −2, ε = .10, L21 = −.20 t = −8, ε = .10, L21 = .50

N L M ‖err‖L∞ N L M ‖err‖L∞
Ring

32 16 4 1.67e−6 32 16 4 2.61e−5

32 16 8 1.67e−6 32 16 8 2.61e−5

32 32 16 1.47e−6 32 32 16 2.60e−5

32 32 32 1.52e−6 32 32 32 2.57e−5

As for stability, phase diagrams are shown in Fig. 5. Here for large t and ε, split-core
solution is stable, and ring solution is energetically favored if taking small t and ε. We
remark that when L21 > 0 we cannot find the hyperbolic hedgehog solution. Actually,
when L21 �= 0, it can be proved that such uniaxial solution cannot be an equilibrium
solution of the Landau–de Gennes energy functional.We will carry out a detailed analysis
in the next section.

4.2.3 The case of L21 < 0

ForL21 < 0 case, ournumerical results suggest that there exists onlyone stable equilibrium
solution, ring solution, whatever coefficients t and ε vary. Not only hyperbolic hedgehog
solution but also split-core solution disappears.

Fig. 5 Phase diagram of split-core/hyperbolic hedgehog and ring solution for different L21 ≥ 0 with
mirror-homeotropic anchoring condition. When L21 = 0, the notation “split-core” indicates hyperbolic
hedgehog. The partition of different solutions is based on the lowest energy of all the possible configurations.
Here, there is no phase diagram of L21 < 0 because there is only ring solution
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Table 3 Numerical value ofQ(0)with parameters t = 0.2, ε = 0.2 and t = −2, ε = 0.05

t = 0.2, ε = 0.2 (N = 64,L = 32,M = 32)

L21 Q11 Q12 Q13 Q22 Q23 ‖∇F‖
−0.10 −3.88e−2 5.33e−12 −6.9e−14 −3.88e−2 −3e−15 9.85e−5

−0.05 −1.68e−2 3.19e−13 2e−15 −1.68e−2 −2e−15 9.34e−5

−0.01 −3.04e−3 1.11e−13 −6e−15 −3.04e−3 1e−15 1.00e−5

0 −8.57e−6 −3.27e−12 −6.0e−14 −8.57e−6 −3.1e−14 1.26e−4

0.01 2.93e−3 1.57e−13 −1.1e−14 2.93e−3 0 3.71e−4

0.05 1.37e−2 2.78e−13 1.76e−13 1.37e−2 −5.51e−13 1.04e−4

0.10 2.52e−2 2.31e−12 2.1e−14 2.52e−2 −5e−15 1.96e−4

t = −2, ε = 0.05 (N = 64,L = 32,M = 32)

L21 Q11 Q12 Q13 Q22 Q23 ‖∇F‖
−0.10 −4.75e−2 −7.06e−11 2.07e−13 −4.75e−2 −1.42e−12 1.53e−4

−0.05 −2.10e−2 −1.31e−11 −2.86e−13 −2.10e−2 −1.16e−13 2.06e−4

−0.01 −3.93e−3 −2.59e−12 1.04e−13 −3.93e−3 7.3e−14 1.92e−4

0 -6.99e−6 −1.26e−11 4.93e−13 −6.99e−6 −5.53e−13 2.93e−4

0.01 3.72e−3 −4.16e−12 2.06e−13 3.72e−3 9.0e−14 1.37e−4

0.05 1.81e−2 6.62e−13 4.56e−13 1.81e−2 2.65e−13 3.85e−4

0.10 3.41e−2 5.23e−13 6.8e−14 3.41e−2 7.5e−14 5.63e−4

The rows of L21 = 0 represent stable hyperbolic hedgehog solutions which serve as initial values to obtain split-core
(L2 > 0) or ring (L2 < 0) solutions

This interesting phenomenon leads to a natural conjecture that there exists at least one
split-core solution, which is stable when L21 > 0; however, all split-core solutions are
unstable when L21 < 0 and are at most meta-stable for L21 = 0.

4.2.4 More detailed transition behavior of hyperbolic hedgehog solution near L21 = 0

According to our aforementionednumerical results, we findout that there is nohyperbolic
hedgehog solution when L21 �= 0. Now, we study how the hyperbolic hedgehog solution
evolves when L21 varies near zero. For this, we focus on the values of all components of
Q-tensor at the center of ball, namely Q(0). From the definitions of three basic solutions,
we know that: Q(0) = 0 for hyperbolic hedgehog solution, Q(0) is positive uniaxial for
ring solution and Q(0) is negative uniaxial for split-core solution.
The values ofQ(0) for minimizers with respect to different L21 are presented in Table 3

for two different choices of (t, ε). All these results are obtained by an iterativemethod with
initial value taken to be the hyperbolic hedgehog solution. It can be observed that Q(0) is
always uniaxial when L21 �= 0. In addition,Q(0) is negative uniaxial if L21 > 0 and positive
uniaxial if L21 < 0. These results reveal that a positive L21 may break the hyperbolic
hedgehog into a split-core and a negative L21 can broaden it into a ring disclination.
We also investigate the qualitative relationship between the size of biaxial region and

L21. We call the distance between two isotropic points “split length.” The relationship
between split length and L21 is shown in Figs. 6 and 7. It can be observed that split length
is proportional to L21 near L21 = 0. Thus, the hyperbolic hedgehog solution for L21 can
be viewed as a special split-core solution with zero split length.
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Fig. 6 Relationship between split length and L21 for L21 = 0.01, 0.05, 0.1, 0.3. Here we choose
t = −2, ε = 0.05 and show a zoom-in view for a better resolution of the size of split-core

Fig. 7 Relationship between split length and L21
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5 Nonexistence of uniaxial hyperbolic hedgehog solutions for
mirror-homeotropic anchoring condition with L21 �= 0
In this section, we take ε = 1 and work on Ω = BR(0) for convenience. Then, the Euler–
Lagrange equation to the Landau–de Gennes energy reads as


Qij + L21
2

(
Qik,kj + Qjk,ki − 2

3
δijQkl,kl

)

= −tQij − 3
√
6

(
QikQkj −

δij
3
tr Q2

)
+ 2Qijtr Q2. (26)

For the homeotropic boundary condition, there is a radial hedgehog solution to (26) in
BR(0) explicitly given by

Q(x) =
√
3
2
h(r)

(x
r ⊗ x

r − 1
3
I
)
, (27)

where h(r) satisfies the following equation:

(
1 + 2

3
L21

) (
h′′ + 2

r h
′ − 6

r2 h
)

= −th−3h2 +2h3, h(0) = 0, h(R) =
√
2
3
s+. (28)

In this section, we will show that the hyperbolic hedgehog solution cannot be a solution
to (26) with mirror-homeotropic boundary condition.
Assume that

Q(x) =
√
3
2
h(r)

(
m(x) ⊗ m(x) − 1

3
I
)
, m(x) = 1

r (x, y,−z), (29)

is a solution to the Euler–Lagrange equation (26). Substituting (29)–(26), we have

1√
6
L21P =

(
− h′′ − 2

r h
′ + 6

r2 h − th − 3h2 + 2h3
) (

m(x) ⊗ m(x) − 1
3
I
)
, (30)

in which

Pij = Qik,kj + Qjk,ki − 2
3
δijQkl,kl . (31)

Notice that

∇
( h
r2

)
=

( h′

r3 − 2h
r4

)
(x, y, z), (32)

we have

∂2

∂x2
( h
r2

)
= x2

r4 h
′′ + r2 − 5x2

r5 h′ − 2r2 − 8x2
r6 h,

∂2

∂y2
( h
r2

)
= y2

r4 h
′′ + r2 − 5y2

r5 h′ − 2r2 − 8y2
r6 h,

∂2

∂z2
( h
r2

)
= z2

r4 h
′′ + r2 − 5z2

r5 h′ − 2r2 − 8z2
r6 h,

∂2

∂x∂y

( h
r2

)
= xy

r4 h
′′ − 5xy

r5 h′ + 8xy
r6 h,
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∂2

∂x∂z

( h
r2

)
= xz

r4 h
′′ − 5xz

r5 h′ + 8xz
r6 h,

∂2

∂y∂z

( h
r2

)
= yz

r4 h
′′ − 5yz

r5 h′ + 8yz
r6 h.

Therefore, applying the chain rule

(uv)ij = uijv + uivj + ujvi + uvij ,

we obtain

√
2
3
Q11,12 =

(x3y
r4 − xy

3r2
)
h′′ +

(
−5x3y

r5 + 7xy
3r3

)
h′ +

(
8x3y
r6 − 4xy

r4
)
h,

√
2
3
Q12,22 =

(xy3
r4

)
h′′ +

(
3xy
r3 − 5xy3

r5
)
h′ +

(
−6xy

r4 + 8xy3
r6

)
h,

√
2
3
Q13,32 =

(
−xyz2

r4
)
h′′ +

(
5xyz2
r5 − xy

r3
)
h′ +

(
−8xyz2

r6 + 2xy
r4

)
h,

√
2
3
Q21,11 =

(x3y
r4

)
h′′ +

(
3xy
r3 − 5x3y

r5
)
h′ +

(
−6xy

r4 + 8x3y
r6

)
h,

√
2
3
Q22,21 =

(y3x
r4 − yx

3r2
)
h′′ +

(
−5y3x

r5 + 7yx
3r3

)
h′ +

(
8y3x
r6 − 4yx

r4
)
h,

√
2
3
Q23,31 =

(
−xyz2

r4
)
h′′ +

(
5xyz2
r5 − xy

r3
)
h′ +

(
−8xyz2

r6 + 2xy
r4

)
h,

and

√
2
3
Q11,13 =

(x3z
r4 − xz

3r2
)
h′′ +

(
−5x3z

r5 + 7xz
3r3

)
h′ +

(
8x3z
r6 − 4xz

r4
)
h,

√
2
3
Q12,23 =

(xy2z
r4

)
h′′ +

(
−5xy2z

r5 + xz
r3

)
h′ +

(
8xy2z
r6 − 2xz

r4
)
h,

√
2
3
Q13,33 =

(
−xz3

r4
)
h′′ +

(
−3xz

r3 + 5xz3
r5

)
h′ +

(
6xz
r4 − 8xz3

r6
)
h,

√
2
3
Q31,11 =

(
−x3z

r4
)
h′′ +

(
−3xz

r3 + 5x3z
r5

)
h′ +

(
6xz
r4 − 8x3z

r6
)
h,

√
2
3
Q32,21 =

(
−xy2z

r4
)
h′′ +

(
5xy2z
r5 − xz

r3
)
h′ +

(
−8xy2z

r6 + 2xz
r4

)
h,

√
2
3
Q33,31 =

(z3x
r4 − zx

3r2
)
h′′ +

(
−5z3x

r5 + 7zx
3r3

)
h′ +

(
8z3x
r6 − 4zx

r4
)
h.

Hence, we arrive at

√
2
3
P12 =

(
4xy
3r2 − 4xyz2

r4
)
h′′ + (−4xy

3r3 + 20xyz2
r5 )h′ +

(
−32xyz2

r6
)
h,

√
2
3
P13 =

(
−2xz
3r2

)
h′′ +

(
−4xz
3r3

)
h′ +

(
4xz
r4

)
h.
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In order to show that the Euler–Lagrange equation (26) cannot hold, we consider the
equations for i = 1, j = 2 and i = 1, j = 3,

(
h′′ + 2

r h
′ − 6

r2 h
) xy
r2 + 1√

6
L21P12 =

(
− th − 3h2 + 2h3

)xy
r2 , (33)

(
h′′ + 2

r h
′ − 6

r2 h
) −xz

r2 + 1√
6
L21P13 =

(
− th − 3h2 + 2h3

)−xz
r2 . (34)

Compare this two ODEs, we obtain

P12
r2
xy = −P13

r2
xz ,

which is equivalent to
(
4
3

− 4z2
r2

)
h′′ +

(
−4
3

+ 20z2
r2

)
1
r h

′ +
(

−32z2
r2

) h
r2 = 2

3
h′′ + 4

3
1
r h

′ − 4
h
r2 .

Since the above equation holds for all z and r, we have

h′′ − 4
r h

′ + 6h
r2 = 0,

h′′ − 5
r h

′ + 8h
r2 = 0.

Combined with the boundary conditions, these two ODEs can be explicitly solved as

h(r) =
√
2
3
s+
R2 r

2. (35)

However, one can easily check that (35) is not the solution of (33). Such contradiction
indicates that the hyperbolic hedgehog cannot be a solution to (26).

6 Discussion and conclusion
In this paper, we investigate the effect of anisotropic energy to the local structure of
point defects in a three-dimensional ball. Both homeotropic and mirror-homeotropic
anchoring conditions, which correspond to degree +1 and -1 point defects, respectively,
are considered.
Our numerical results reveal that the anisotropic energy will affect the phase behavior

significantly for the mirror-homeotropic anchoring condition even if the absolute value
of anisotropic elastic coefficient |L21| is small. When L21 �= 0, there is no uniaxial solu-
tion with radial symmetric order parameter which may be stable minimizer for certain
parameters. More precisely, the uniaxial solution will deform into a split-core solution
for L21 > 0 and into a ring solution for L21 < 0 in high-temperature region. This is very
different from the homeotropic anchoring case, in which the three basic configurations
still exist and their stabilities are not essentially affected by L21. In particular, the radially
symmetric solution is preserved when L21 �= 0 in homeotropic anchoring case.
We further perform analysis on the hyperbolic hedgehog solution for the mirror-

homeotropic anchoring. We prove that the hyperbolic hedgehog solution cannot be a
solution to the Euler–Lagrange equation when L21 �= 0. Based on this result, it is quite
reasonable to make the following conjecture.
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Conjecture 1 Uniaxial solution with degree −1 cannot be a stable minimizer once
anisotropic elastic energy is considered.

We have also found out that there exist stable split-core solutions for high temperature
whenL21 > 0.This is different from the isotropic energy case, inwhich split-core solutions
are shown to be only meta-stable. More interestingly, the stable split-core solution will
reduce to hyperbolic hedgehog when L21 goes to zero and will deform to the ring solution
if L21 decreases to be negative. This inspires us to make the following conjecture.

Conjecture 2 For the mirror-homeotropic anchoring condition, there exists stable split-
core solution for high temperature when L21 is positive, but split-core solution is unstable
everywhere once L21 is negative.

As a final point, we remark that all the solutions obtained in this paper are axisymmetric
although such a symmetric constrain is not imposed in our simulation. Whether there is
any other solution without axisymmetry is worth being investigated. We leave it to future
works.
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Appendix: Numerical results on general boundary conditions with |k| ≥ 2
We also present some numerical results with general boundary conditions (10) with |k| ≥
2. First, we emphasize that for such boundary conditions there is no difference with or
without anisotropic elastic energy. However, there do exist some interesting phenomena
related to such boundary conditions, so we state this part of results in “Appendix.”
Weonly find ring-type solutions as stable equilibriumconfigurations for a broad range of

parameters (t, ε, L21). The typical configurations of ring-type solutions for k = ±2,±3,±4
with L21 = 0 are shown in Fig. 8.
It can be observed that there are |k| rings of defects with charge sgn(k)/2. In addition,

these solutions admit axial symmetry with respect to z-axis and mirror symmetry with
respect to x − y plane. The anisotropic energy will not affect the result that ring-type
solutions are the only observed stable ones.
Of course, we cannot exclude the existences of other type solutions, but it is reasonable

to conjecture that other type solutions are at most meta-stable if they exist. For example,
we can construct a uniaxial solution, which takes the following form:

Q(x) =
√
3
2
h(|x|)

(
m(x) ⊗ m(x) − 1

3
I
)
, (36)

with h is given by the Euler–Lagrange equation of minimizing the energy function on Q
which has the form (36). Such solutions include only a point defect with degree k at the
center of the ball. It seems that this uniaxial solution could be stable for k = ±1 for large
t and ε under isotropic case, but will never be stable for |k| ≥ 2 if R is large enough no
matter how t and L21 vary. It may be an interesting issue to prove it analytically.
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