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Abstract. We propose a general framework of computing interfacial structures be-
tween two modulated phases. Specifically we propose to use a computational box
consisting of two half spaces, each occupied by a modulated phase with given posi-
tion and orientation. The boundary conditions and basis functions are chosen to be
commensurate with the bulk phases. We observe that the ordered nature of modu-
lated structures stabilizes the interface, which enables us to obtain optimal interfacial
structures by searching local minima of the free energy landscape. The framework is
applied to the Landau-Brazovskii model to investigate interfaces between modulated
phases with different relative positions and orientations. Several types of novel com-
plex interfacial structures emerge from the calculations.
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1 Introduction

Interfaces are transition regions connecting two different materials, two different phases
of the same material, or two grains of the same phase with different orientations (grain
boundaries). Interfacial regions are where the symmetries and patterns of the ordered
structures are interrupted. Frequently in these regions defects of various types emerge
[1]. The structure of interfaces greatly affects the mechanical, thermal and electrical prop-
erties of a material. In particular, the strength and conductivity of a material depend
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critically on the distribution and morphology of grain boundaries. In first-order phase
transitions, the interfacial properties play an important role in the nucleation-growth pro-
cess.

Theoretical discussions of interfaces usually start from the coexistence of two homo-
geneous phases, for which the order parameters are spatially uniform. If the contribution
of inhomogeneity is included in the free energy, the interfacial structure becomes an in-
trinsic property of the energy functional. A simple and widely-used energy functional
describing coexisting homogeneous phase is proposed by Cahn and Hilliard [2]. Since
interfaces are non-equilibrium structures with long relaxation time, two different points
of view could be held. One regards the interface as a metastable state and its morphology
is obtained as a local minimizer of the free energy under certain constraints. The mini-
mization approach is able to reach full relaxation and resolves the interfacial structure.
This approach has been applied to two-component fluid interfaces to study the thickness
and shape in various circumstances [2–6], as well as isotropic-nematic interfaces in liquid
crystals [4, 7, 8]. An alternative approach is to treat the interface as a transient state and
focuses on its dynamics, which is governed by the free energy, in some complex processes
(see [9,10] for two examples built on the Cahn-Hilliard energy). The dynamical approach
enables the study of the dynamical evolution of interfaces.

Interfaces between modulated phases have unique features. Because of spatial mod-
ulation, the interfacial profile depends on the relative position and orientation of the bulk
phases. Also interfaces may exist between two grains of the same phase, i.e. grain bound-
aries. These features make it extremely interesting to study the mechanism of how two
modulated structures are connected, which is very helpful to understanding the origin of
epitaxial relationship and the anistropic nucleation. Therefore, it is important to investi-
gate the morphology of a single interface using the minimization approach. In previous
studies, the minimization approach has been used successfully in the tilted grain bound-
aries of the lamellar phase [11–14] and the bcc phase [15], and twist grain boundaries of
several cubic phases [16]. Some works use dynamical approach [17–19], but it usually
generates several interfaces because there is limitation in choosing boundary conditions,
which we will explain later in detail. From the computational perspective, dynamical
approach is more time-consuming, while in the minimization approach fast optimization
algorithms can be used. In what follows, our discussion is limited to the minimization
approach.

To convert a non-equilibrium interface into a metastable state, we need some anchor-
ing conditions. Let us explain the anchoring conditions using a planar liquid-vapor inter-
face as an example, where the density φ can be viewed as varying only in the x-direction.
Suppose that the density of the liquid is φ1, and that of the vapor is φ2. The density far
away from the interface shall be identical to the bulk values,

φ(−∞)=φ1, φ(+∞)=φ2. (1.1)

Note that these conditions do not determine the location of the interface. If we want to
fix it, say, at x = 0, an extra constraint is needed. A possible constraint is to choose an
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interval [−L,L] and fix the total number of molecules in it,

∫ L

−L
dx φ(x)=N. (1.2)

The constraint can easily be extended to the study of interfaces of other shapes on sub-
strate or with external forces [5, 6]. The conditions (1.1) and (1.2) are both physical, and
are sufficient to pose the interfacial profile as a minimization problem.

For interfaces between two modulated phases, specifying the anchoring conditions
is not straightforward. We need to consider the relation between the conditions and the
bulk profiles. Since the anchoring conditions actually specify the function space in which
the minimization problem is solved, we may evaluate how good the conditions are by
comparing the function space with the bulk profiles. If the bulk profiles are included in
the function space, the anchoring conditions are compatible. The condition (1.1) is com-
patible, and it becomes incompatible if we set φ(+∞) to a value other than φ2. We believe
that compatibility would be more significant for modulated phases, because we need to
anchor the phases with given relative position and orientation. Besides the compatibil-
ity, the anchoring shall include as few artificial restrictions as possible to enable the free
relaxation of the interface.

In previous works, however, the compatibility and the reduction of artificial effects
are usually not considered simultaneously. As a simple extension of the disordered in-
terfaces, some researchers construct the interface profile by a mixing ansatz, which is a
direct weighted combination of two bulk phase profiles:

φ(x,y,z)=(1−α(x))φ1(x,y,z)+α(x)φ2(x,y,z), (1.3)

where φk are profiles of two bulk phases, and α(x) is a smooth monotone function sat-
isfying α(−∞) = 0, α(+∞) = 1. This method proves to be convenient and effective as
shown in the literatures [4,20,21]. But this artificial approach may exclude the possibility
of complex interfacial structures as we will present later in this paper. Another conve-
nient method is to fill a large cell with modulated structures and let the interface relax
(see, for example, [17]). However, besides the computational challenges, the boundary
conditions commonly used and the bulk structures are incompatible. Although large-cell
computations have brought some beautiful results in [11], where considerable efforts are
made to fit the bulk structures with the boundary, the incompatibility may easily gener-
ate many interfaces together, like Fig. 5.20 in [22]. On the other hand, it may alter the
position and orientation of the bulk structures from the desired values, or even destroy
the bulk structures (see the examples in [18]).

There have been attempts to balance between anchoring bulk structures and reducing
the artificial effects. In the study of kink [12] and T-junctions [14] in lamellar grain bound-
aries, a set of basis functions are carefully chosen to retain the symmetry of the system.
However, the basis functions are only partially compatible with the lamellar structure,
and they cannot be easily extended to other structures. Therefore, we aim to propose
compatible anchoring conditions with universal applicability and no artificial effects.
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When investigating an interface between different phases, a mechanism is required
to prevent it from moving gradually towards the phase with higher energy density. We
may choose parameters to equalize the energy densities, but it is difficult to realize in
computation. Intuitively, we need to propose an analog of the constraint (1.2). However,
we observe in the computation that constraints of such kind are not necessary if the bulk
phases are modulated. The interface will be pinned at a locally optimized position as
long as the energy densities of the two phases do not differ too much. Thus we may let
the interface freely relax by itself during the computation.

In this work, we propose a general framework for the computation of interfacial struc-
tures between two modulated phases. We consider two phases or grains, large in size,
connected via an interfacial region. We choose basis functions compatible with the bulk
structures in two directions parallel to the contact plane, and use a compatible boundary
anchoring analogous to (1.1) in the direction vertical to the plane. The computational
setting is applicable to any modulated phases, and is well-posed as a minimization prob-
lem for phases with energy difference. By this setting, we can take the advantage of full
relaxation of the system and fast optimization methods. We will apply this framework
to the Landau-Brazovskii model to illustrate the above features. Several lamellar-gyroid
and cylindrical-gyroid interfaces with different relative positions and orientations are ex-
amined, and some complex structures are obtained. The rest of the paper is organized as
follows. In Section 2, the computational framework is described, and its well-posedness
is illustrated. Some interfacial structures in the Landau-Brazovskii model are presented
in Section 3. Finally we summarize the paper in Section 4. Some details of numerical
method are given in Appendix.

2 Computational framework

2.1 Compatible anchoring conditions

For two ordered structures with an interface, their spatial and orientational relations are
essential variables. Let us place the two phases in two half-spaces separated by the plane
x=0. Denote the two phases by α and β, respectively. Both phases can be rotated and dis-
placed, represented by two orthogonal rotation matrices Rα, Rβ, and two displacement
vectors dα, dβ. Each of these four quantities has three degrees of freedom. Note that the
relation of two phases remains unchanged if they are rotated together round the x-axis
or displaced together in the y-z plane, so there are nine independent degrees of freedom
in total.

Assume that the density profile, or order parameter, of a phase can be expressed by
a scalar function φ. More specifically, for modulated phases the order parameter φ is
assumed periodic, which can be written as

φ(r)= ∑
k∈Z3

φk exp

(

i
3

∑
j=1

kjbj ·r
)

. (2.1)

https://doi.org/10.4208/cicp.OA-2016-0020
Downloaded from https://www.cambridge.org/core. Peking University, on 24 Feb 2021 at 07:05:37, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.4208/cicp.OA-2016-0020
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


J. Xu et al. / Commun. Comput. Phys., 21 (2017), pp. 1-15 5

If the phase is rotated by R, then shifted by d, the profile becomes

φ(r;R,d)=φ(RT(r−d))= ∑
k∈Z3

φkλk exp

(

i
3

∑
j=1

kj(Rbj)·r
)

, (2.2)

where λk =exp(−i∑3
j=1kjd

TRbj).
As mentioned above, we aim to propose anchoring conditions with compatibility.

First we check the y- and z-directions. Consider the projection of profile φα and φβ onto
the plane x= x0. Denote r′=(y,z), we have

φα(x0,r′;Rα,dα)= ∑
k∈Z3

φαkλ̃αkexp

(

i
3

∑
j=1

kjb
′
αj(Rα)·r′

)

,

where b′
αj(Rα) denotes the y and z components of Rαbαj, and

λ̃αk=λαk exp

(

ix0

3

∑
j=1

kj(Rαb
′
αj)1

)

.

It becomes a quasiperiodic function in the plane. And for φβ, we have

φβ(x0,r′;Rβ,dβ)= ∑
l∈Z3

φβlλ̃βl exp

(

i
3

∑
j=1

ljb
′
βj(Rβ)·r′

)

.

Then a natural choice will be the set of quasiperiodic function

F=

{

f (r′) : f (r′)= ∑
k,l∈Z3

fkl exp

(

i
3

∑
j=1

(

kjb
′
αj(Rα)+ljb

′
βj(Rβ)

)

·r′
)}

. (2.3)

In general, a quasiperiodic function is a projection of a higher-dimensional periodic func-
tion onto a lower-dimensional linear subspace. Actually, this choice is also valid if φ itself
is quasiperiodic, namely to substitute the sum over 1≤ j≤3 with 1≤ j≤m. In special cases
where kjb

′
αj(Rα)+ljb

′
βj(Rβ) lie on a 2D lattice, F is reduced to a set of periodic functions,

indicating that two phases, with their relative position and orientation determined, have
common period in the y-z plane. The current work will focus on these special cases. Al-
though we do not consider the general quasiperiodic cases currently, interfaces of this
type have been observed (see Fig. 24 of [23]).

In the x-direction, we select a length L and set φ outside [−L,L] equal to the bulk
value. Here L is large enough to contain the transition region. Such setting will induce
some anchoring conditions at x=±L dependent on the energy functional. If a Laudau-
type energy functional is used, these conditions can usually be determined by smooth-
ness requirements of the density profile φ. For example, if φ is Ck, then φ,··· ,∇kφ shall be
fixed to bulk values at x=±L. It should be noted that in some other models boundary
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Figure 1: Schematic of the setting of interface problem.

conditions are not directly imposed on the density profile. For example, in self-consistent
field theory (we refer to [22] for details), the profile is calculated through a propagator q,
on which boundary conditions are imposed. In this case the anchoring conditions can be
used on q.

To initialize the density profile for computation in our frame work, we use the setting
shown in Fig. 1. We first choose a common period in the y- and the z- direction for
phase α and β, and then fill in the bulk profiles and anchor both ends of the region. To
obtain a smooth initial value, the density profile in the middle region is set as the convex
combination of the bulk densities as in (1.3).

2.2 Existence of local minima

Before solving the optimization problem, the well-posedness of this setting should be
discussed. Specifically, we need to demonstrate in our setting that there exists a local
minimum such that the interfacial region is far from the boundary, because an interface
locating near the boundary is likely not physical for the anchoring boundary condition.
It is obvious that for an interface between two homogeneous phases, if there exists a
difference in the bulk energy densities, no matter how small it is, the interface would
move continuously to the one with higher energy density. In this case, the total energy
can be written as

E= fαVα+ fβVβ+γS, (2.4)

where f is the bulk free energy density, V is the volume of each phase, S is the area of
interface, and γ is the interfacial energy density. The isotropy of two phases along the x-
direction makes γ independent of interface location. Suppose fα< fβ, then E is monotone
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Figure 2: Energy landscape in the movement of cylindrical-gyroid interface in the Landau-Brazovskii model (3.1)

within a single period. The parameters in (3.1) are chosen as ξ2 = 1.0, τ =−0.383, γ= 0.3. The location of
interface is calculated from the distance between the points on the minimal energy path [24,25]. The distance

is measured by the unit cell of gyroid L0=2
√

6. For the morphology at local minima, see Fig. 4. Although we
choose different parameters, the morphology is identical.

decreasing when Vα increases, driving the interface to the phase β until it reaches the
boundary. For homogeneous phases, a constraint like (1.2) is usually easy to propose to
fix the volume fraction of each phase. Nevertheless, constraints of this type are difficult
to be extend to modulated phases.

Fortunately, we can take advantage of the anisotropy in modulated phases. The
anisotropy implies that γ is no longer constant. Intuitively we write γ=γ(x) as a function
of interface location, and still write the total energy as (2.4). If γ(x) varies more drasti-
cally than the bulk energy difference, some local minima exist, towards which we may
let the interface relax. Such condition is easier to be attained when the energy difference
between two phases is not large. This can be achieved when model parameters lie in a
region near the coexistence line. In fact, if the parameters are far away from the coexis-
tence line, usually it is difficult for the interfaces to exist for long time, for the phase with
higher energy density is more probable to decompose because of fluctuations.

A typical energy landscape is like what is plotted in Fig. 2, which is obtained for the
cylindrical-gyroid interfaces in the Landau-Brazovskii model (3.1). It shows clearly that
the energy exhibits an oscillatory behavior as the interface moves. Four local minima are
found within a single period along the x-direction, and they are connected with the min-
imum energy path computed using string method [24,25]. The morphology of interfaces
at local minima is drawn in Fig. 4 (where we draw the interfaces within two periods of
the bulk phase).

We note that only a few works study interfaces between different modulated phases
with such a weak anchoring condition. The reason could be the lack of knowledge of the
existence of local minima produced by modulated structures. Although in the current
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work it is only confirmed in one model, we believe that this phenomenon is generic. The
clarification of the energy landscape would be helpful to the computation of interfacial
structure in other systems.

2.3 Outline of the computational method

To compute the optimal interfacial structure of two modulated phases with given relative
positions and orientations, one can follow the steps below.

1. Select an L such that x∈ [−L,L] is large enough to contain the interfacial region.

2. In the y-z plane, choose a set of basis functions (generally quasiperiodic) such that
they include the basis functions of two phases. In particular, if the two phases
are posed in such a way that they have public periods in the y-z plane, set the
computational box identical to the periods.

3. Specify the anchoring boundary conditions needed according to the smoothness
requirements. Fill the bulk profile of one phase in [−L,0], as well as the boundary
conditions at x=−L. Do the similar things in [0,L]. Introduce a smooth connection
to make the whole profile a continuous one.

4. Let the free energy relax to a local minimum. If the energy density difference of the
two phases are not large, the interface is very likely pinned far from the boundary,
thus can be regarded as a physical one.

3 Application to the Landau-Brazovskii model

In this section, we apply our framework for interfaces to the Landau-Brazovskii (LB)
model. We first present the cylindrical-gyroid and lamellar-gyroid interfaces in epitaxi-
ally matching cases, in which the local minima are shown clearly. We then demonstrate
the emergence of a few novel examples of non-matching cases to show the effectiveness
of the framework.

3.1 The Landau-Brazovskii free energy

The LB model is a free energy functional originally developed for weak crystallization
[26–28]. This model can be viewed as a generic model for modulated phases occurring in
a variety of physical and chemical systems, and its form is similar to many Landau-type
free energy functionals for different kinds of materials. In addition, the LB model can de-
scribe frequently observed patterns, including lamellar(L), cylindrical(C), spherical and
gyroid(G) structures. Therefore our results could reveal properties of interfaces in a wide
range of systems. In its scaled form, the LB free energy density is given by

F[φ]=
1

V

∫

Ω
dr

{ ξ2

2
[(∇2+q2

0)φ]
2
}

+
τ

2
φ2− γ

3!
φ3+

1

4!
φ4, (3.1)

https://doi.org/10.4208/cicp.OA-2016-0020
Downloaded from https://www.cambridge.org/core. Peking University, on 24 Feb 2021 at 07:05:37, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.4208/cicp.OA-2016-0020
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


J. Xu et al. / Commun. Comput. Phys., 21 (2017), pp. 1-15 9

Figure 3: Bulk phases of the Landau-Brazovskii model.

where q0 = 1 is the critical wavelength, ξ, τ, γ are phenomenological parameters, and φ
is conserved,

∫

drφ=0.

The parameters can be determined by measurable parameters in some cases. An example
is the system of A-B diblock copolymer, in which these parameters are derived from χN
and f , where χN is a normalized parameter characterizing the segregation of two blocks,
and f is the fraction of block A. The phases in the LB model can be easily recognized by
the isosurface of φ, drawn in Fig. 3. For the interfaces, we will also draw the isosurface to
reveal their structures.

3.2 Boundary conditions

Bulk values of φ are needed for setting initial and boundary values of the problem. For
each phase in Fig. 3, a cubic unit cell can be found that occurs periodically in the bulk
phase. Thus the bulk profile can be computed by minimizing (3.1) with periodic bound-
ary condition in all three directions. The existence of second-order derivatives in the
energy functional requires φ and ∇φ to be fixed at x =±L. These values can be easily
computed with bulk profiles.

When computing bulk profiles, the period lengths should be optimized as well. This
is because the size of the unit cell also affects the energy density of the system. Refined
computation shows that for different phases, there is slight distinction between the op-
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timal size of unit cell [29]. When two phases coexist, however, it is usually observed
experimentally that two unit cells match each other [30–33]. To capture the interfacial
structure in our framework, we slightly stretch the two bulks to let them have common
period lengths. Then our framework for the interface could be applied directly. Such ap-
proximation leads to a small bulk energy increase, but we will adopt it as it is consistent
with experimental results. It should be pointed out that besides the period matching,
different modulated structures have certain preferences in orientation when they coexist,
namely the rotations Rα, Rβ and the shifts bα, bβ prefer certain values. Such epitaxial
relationships are also noted in the experimental works mentioned above, and are studied
in [21] extensively. We will examine such epitaxies as well as less optimal matching cases
for the interfacial systems.

The profiles of L, C and G are calculated with the common period 2
√

6π×2
√

6π×
2
√

6π, which is almost accurate for L and C, while about 4% smaller for G. The number
of meshes used in a unit cell is 32×32×32. Details of discretization and optimization
method, including acceleration techniques, are given in Appendix.

3.3 C-G and L-G interfaces

We start with the cases in which two phases are epitaxially matched: in the lattice of G,
the layer of L parallels to the plane (112̄) and the hexagonal lattice of C lies in the plane
(111). The results in Fig. 4 are calculated with ξ2=0.0389, γ=0.0681; τ=−0.0121 for C-G
interfaces and τ =−0.0159 for L-G interfaces. Fig. 4 presents C-G and L-G interfaces at
local energy minima. Both C-G and L-G interfaces show four local minima within one
period, and when moving a full period, the interfacial structures reappear. We are also
able to capture how the interface moves from the ones at discrete locations.

In the following, we will present some results of non-matching cases, in which we
can observe some interesting phenomena. The results described in this paragraph are
calculated with ξ2 =0.0389, γ=0.0601, τ=−0.0121. First, we examine the case where L
is shifted a half period along the y-axis (Fig. 5, right). Comparing it with the epitaxially
matching case (Fig. 5, left), we find the structure distinct from L and G in the middle. It
resembles the metastable perforated layer structure, supporting the prevalent observa-
tion of perforated layer phase in the L↔G transitions (see the discussion in [34]). Next
we look at the effects of relative rotation. In Fig. 6 L is rotated θ=arcsin(3/5) and θ+π/2
counter-clockwise respectively, G unchanged. Local distortions help to keep their con-
nection, leading to non-planar interfaces.

The next two examples are based on the newly-found epitaxially relationship between
C and G [33], where the lattice of C is slightly deformed from the regular hexagon and lies
in the plane (11̄0). The parameters are chosen as ξ2=0.0375, γ=0.0757, τ=−0.0102. The
interface is drawn in the left of Fig. 7, which is planar with smooth connection. The right
of Fig. 7 shows the interface where C is rotated π/2 in the x-y plane. To connect these
two phases, C of the regular hexagonal type with classical epitaxy appears in between.
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Figure 4: L-G and C-G interfaces at local minima (within two periods of the bulk phase): the epitaxially
matching case.

Figure 5: The L-G interface. Left: the epitaxially matching case; Right: L is shifted a half period along the
y-axis. Viewed along the layer of L (upper) and the unit cell of G (lower).

Figure 6: L-G interfaces with L rotated counter-clockwise θ=arcsin(3/5) (left), and θ+π/2 (right).
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Figure 7: Left: C-G interface with newly found epitaxy (11̄0). Right: C is rotated π/2 from the new epitaxy
and cylinder along 〈111〉 direction is found in between.

4 Summary

A general framework is proposed for the computation of interfacial structures between
modulated phases. The boundary conditions and the basis functions are carefully cho-
sen to anchor the bulk phases with given position and orientation with compatibility.
Because of the anistropy in the modulated structure, no extra constraint is necessary to
stabilize the interface. Putting together, the optimal interfacial structure is posed as a
minimization problem that enables us to reach full relaxation and to utilize fast opti-
mization methods. We apply the framework to the Landau-Brazovskii model. L-G and
C-G interfaces with various relative positions and orientations are investigated, where
some complex structures are obtained.

In the current work we demonstrate the application of the framework to special cases
where common period can be found in the y-z plane. The choice of basis functions (2.3)
actually allows us to investigate quasiperiodic phases. For future works we aim to apply
this framework to broader cases, especially for quasiperiodic phases.

Appendix: Numerical details

In this Appendix, we describe some numerical details of discretization and optimiza-
tion. For the discretization of density profile, finite difference scheme is adopted in the
x-direction. In the y-z plane, both finite difference scheme and Fourier expansion can be
used.

In the x-direction, the Laplacian operator is approximated by

∂2
xφ(xk)≈δ2

xφ(xk)=
φk+1−2φk+φk−1

∆x2
.

The same approximation is adopted when using finite difference scheme in the y-z plane.
When using Fourier expansion in the y-z plane, we write φ as

φ(x,y,z)=∑
G

φG(x)exp(i(G ·r′)),
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where G=mb′
1+nb′

2, |m|,|n|≤N, b′
i are reciprocal vectors with respect to the lattice in

the y-z plane, and r′=(y,z). Note that φ is real-valued, thus it requires φ−G(x)=φ∗
G
(x).

The anchoring boundary conditions at x=±L are implemented by adding two extra
grids on each side and setting φ equal to bulk values. This can be equivalently viewed as
approximating boundary conditions with finite difference scheme,

φ(−L)=φα(−L), ∂xφ(−L)≈ φ0−φ−1

∆x
=

φα(x0)−φα(x−1)

∆x
≈∂xφα(−L).

The gradient vector can be calculated by

∇F̃(φ(x))= [ξ2(δ2
x+δ2

y+δ2
z+1)2+τ]φ(x)− γ

2
φ2(x)+

1

6
φ3(x)

for finite difference method, and by

∇F̃(φG(x))=[ξ2(δ2
x−G

2+1)2+τ]φG−
γ

2 ∑
G1+G2=G

φG1
φG2

+
1

6 ∑
G1+G2+G3=G

φG1
φG2

φG3
(A.1)

for Fourier expansion. The convolution sum can be calculated by FFT.
The conservation of φ is attained by a projection on the gradient vector: for finite

difference scheme, we use
∇F(φ(x))=∇F̃(φ(x))−c;

and for Fourier expansion, we use

∇F(φG(x))=∇F̃(φG(x))−cδ(G=0).

In the above, c can be determined by the following observation: if we set φ=φα for x<0
and φ=φβ for x>0, the constraint is satisfied. So we can just require

∫

S

∫ L

−L
φdxdydz=

∫

S
dydz

(

∫ 0

−L
φαdx+

∫ L

0
φβdx

)

, c0.

For finite difference scheme, we use a gradient method

φn+1(x)−φn(x)=−an∇F(φn(x)).

The coefficient an is altered adaptively with Barzilai-Borwein method [35,36]. For Fourier
expansion we use a semi-implicit scheme to solve the Euler-Lagrange equation (A.1) with

φn+1
G

(x)−φn
G
(x)

∆t
=−[ξ2(δ2

x−G
2+1)2+τ]φn+1

G

+
γ

2 ∑
G1+G2=G

φn
G1

φn
G2
− 1

6 ∑
G1+G2+G3=G

φn
G1

φn
G2

φn
G3

−cδ(G=0).
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