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Nematic ordering of semiflexible polymers
confined on a toroidal surface

Shiwei Ye,a Pingwen Zhang*a and Jeff Z. Y. Chen*b

We study the isotropic-like and nematic states of wormlike liquid-crystal polymers embedded on the

surface of a torus. The role played by surface curvature, which couples to the molecular rigidity, is

reported as the main reason that causes the weak nematic ordering in an otherwise ordinary isotropic

phase. The same coupling has a profound effect on the nematic states as well, which are stabilized by the

Onsager excluded-volume interaction; the latter has been frequently used to study lyotropic liquid crystal

polymers and is used here as an example of the physical mechanisms that drive the system to make

orientational ordering. We identify important parameters in the system which are used as axes of the four-

dimensional phase diagram. The numerical study demonstrates a strong correlation between the liquid-

crystal defect-free and defect structures and the geometry of the liquid-crystal embedded surface.

1 Introduction

The structure of surface-confined liquid crystals has drawn
significant theoretical and experimental attentions in recent
years. Depending on the geometry of the confining surface, the
system may display both density and orientational field defects,
which can be detected experimentally.1–7 The nature of an
ordered state depends on the geometric parameters as well as
how far the system is away from the isotropic-nematic transition.
One frequently used example in theories and computer simula-
tions is the nematic defect structure formed by a two-dimensional
fluid containing liquid-crystal molecules confined on a spherical
surface.1,8–17

A distinctive feature of a toroidal surface is that it is not a
geometrical shape that frustrates the nematic-director field.
Mathematically, its Euler characteristic of the manifold is zero,
hence any embedded director field has either no defect or a
defect pattern that must have all winding numbers summed up
to zero.18 However, the toroidal surface provides an interesting
playground for the interplay between the local surface curvature
and the distorted nematic surface. Unlike the uniform curvature
on a spherical surface, on a toroidal surface the curvature depends
on the location of the considered point and the tangent direction
at which a molecular segment points.

A number of theoretical and computer-simulation approaches
have been taken to study nematic structures in confinement. The
Frank elastic and Landau-de Gennes free-energy models are often

used and contain phenomenological parameters.1,8–10,13,19–21

The molecular-level based models, either the simpler Onsager
and Maier-Saupe theories, or the more complicated density-
functional theories, contain system parameters that can be
traced back to the physical origins.14,15,17,22–27

Previous studies of liquid crystals confined on a toroidal
surface are mostly based on simplified versions of the Frank-
energy model. Studying the Frank energy in a covariant form,
Evans reported that structural defects can be stabilized in a
system containing molecules displaying p-atic orderings on a
toroidal membrane surface.28 Bowick et al. investigated the
liquid-crystal patterns generated by hexatic ordering on a
toroidal surface, developing a general comparison between
the defect-substrate interaction with the electrostatic inter-
action.29 Selinger et al. treated the variation of the directional
ordering in a Frank energy by a full three-dimensional deriva-
tive on a toroidal surface, which can be directly transformed
into a surface XY-spin model in addition to an energy
penalty.30 Using the same Frank energy on a toroidal surface,
Li et al. examined the structure of the defect-free nematic
states and revealed that multiple nematic states can exist in
this system; a simulated annealing Monte Carlo method was
used to obtain the free energy minima in this work.21 Segatti
et al. investigated the stable states that can be obtained from
the Frank-energy model and also discovered different defect-
free nematic states;31 their analysis combined methods
from differential geometry, topology, functional analysis,
and numerical solutions. Jesenek et al. calculated the liquid-
crystal defect patterns using a two-dimensional Landau-de
Gennes free-energy expansion on the order-parameter tensor,
with and without the consideration of the surface-curvature
effects.32 In all these studies except for the last one, it is
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assumed that the system can be described by a single Frank
constant K. The importance of a curvature related bending-
energy term for studying liquid crystals on a curved surface
was first emphasized by Selinger et al. with K as the
coefficient.30,33,34

One of the main contributions of the current work is
to identify the molecular origin of such a bending-energy
term (see Section 2.3). We study a system composed of n
semi-flexible polymer chains. Following a series of work
on liquid-crystal polymers in spatially homogeneous and
inhomogeneous systems,35–42 here the same self-consistent
field theory (SCFT) is used to treat wormlike polymer chains,
now confined on a toroidal surface. The theory takes the
Onsager excluded volume into account and yields the rigid-
rod and flexible-chain limits by adjusting the polymer-length
to persistence-length ratio.43 The formalism is briefly reviewed
in Section 2.1. Using the coordinate system in Fig. 1, in
Section 2.2 we produce the necessary mathematical structure,
for wormlike liquid crystal chains confined on a toroidal
surface, in particular. Rather than the phenomenological
parameters (e.g., the Frank constants), four system-parameters
are identified in the current model, each having physical

significance at the molecular level. This is summarized in
Section 3.1.

The origin of the curvature related bending-energy term
from this derivation is physically transparent – it is directly
equal to the bending-energy cost of confining semiflexible
molecules on a toroidal surface. In comparison, the bending
energy term yielded from the Frank-energy model is related to
bending a surface element. This simple difference has a
fundamental consequence: the bending-energy term derived
here is related to square normal curvature of a line element
along a direction, whereas the bending-energy term in ref. 21,
30–32 is related to the surface curvature tensor. Details are
discussed in Section 2.3.

Another main contribution of the current work is to show
that a pure isotropic state does not exist anymore, even below
the traditional isotropic-nematic transition. Most previous
studies treated the nematic states by making the assumption
that a liquid-crystal ordering already exists, with no attention
paid to the isotropic state.21,28–32 As it turns out, an isotropic-
like state of this system possesses a weak nematic orientational
ordering. The physical mechanism that drives this weak nematic
ordering is quite different from a typical nematic state – the
directional ordering is directly caused by the local curvature
coupling. This is addressed in Section 3.3, where two isotropic-
like states are identified.

As the molecular density increases, the system undergoes
a traditional isotropic-like-to-nematic phase transition, due to
the preferred molecule–molecule interaction represented here
by the Onsager interaction. This is in concert with the phase
transition seen in a bulk problem. On toroidal surface, how-
ever, the interplay between geometric effects, molecular den-
sity, and molecular semi-flexibility yields three low-free-energy
nematic states; each has its own orientational characteristics, as
explained in Section 3.4. The analysis verifies the existence of
multiple nematic states recently identified in ref. 21, 31 and 32. In
Section 3.5 we describe the four-dimensional phase diagram which
divides the phase space into regions where these states are stable.

The analysis carried out here is based on a free-energy
model that contains a density distribution as a function of
both spatial position and molecular orientation. Such a formal-
ism is capable of producing real defects in both orientational
and density fields, where a defect is related to a singularity in
the density distribution function. This can be contrasted to the
tool used in a Frank-energy model where a unit-vector field
(the nematic-director field) is the main focus. Because of the
unit-vector nature, a defect point cannot be described by a
continuous variation of the field, rather, often represented by a
disclination of the vector field. In Section 3.6 we describe the
various defect structures found in this work, verifying previous
findings.21,30,32 Because the defect energy can be clearly esti-
mated in our model, in the same section we discuss the
metastability of these defect states.

The theoretical formalism and a discussion on the surface
curvature effects are contained in Section 2. Readers who are
not interested in the theoretical and mathematical details can
directly skip to Section 3.

Fig. 1 (a) Illustration of liquid-crystal polymers on a curved surface and
(b) coordinate system used for a toroidal surface of axial radius R and
revolving-ring radius r. A point on the two-dimensional toroidal surface is
specified by two angular variables, x and z. In the current work, the
direction of a polymer segment is specified by a unit vector u, which
makes an angle y with respect to the normal of a constant x plane.
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2 Free energy of wormlike liquid
crystal polymers on curved surface
2.1 General formalism

The basic liquid-crystal model in this study is made of n
wormlike polymer chains which are confined on a closed sur-
face of a total area A. The reduced surface chain density is then

s � nL2/A, (1)

where L is the total contour length of a polymer. In this section
we describe the free energy yielded from a self-consistent field
theory, taking the Onsager excluded-volume interaction into
account.

The configuration of a polymer chain is described by the
coordinate vector r(t) where t is an arc-variable that continu-
ously varies from t = 0 at one end to t = 1 at another end.
The tangent direction of a chain segment at t is specified by
u(t) � L�1dr/dt [see Fig. 1]. The statistical weight for the chain
configuration is assumed to be44

P½rðtÞ� ¼ exp � l
2L

ð1
0

dt
duðtÞ
dt

����
����
2

�
ð1
0

dtW ½rðtÞ; uðtÞ�
( )

; (2)

where l is the bare persistence length, defined through the
orientation–orientation correlation function of a free wormlike
polymer in three-dimensional space. At this stage, W is the
mean potential field acting on the chain under consideration
from the neighboring polymer chains.

Let f(r,u) be the dimensionless probability function to find
any polymer segment, which has a tangent vector pointing at
the direction of the unit vector u, at a location specified by the
vector r. The function is normalized according to

1

A

ð
drdufðr; uÞ ¼ 1: (3)

Within SCFT, the reduced free energy per polymer chain can be
written as

~F ¼ 1

nkBT
F ½fðr; uÞ;Wðr; uÞ� ¼ ln

sA
Q

� �

þ 1

A

ð
drdu½�Wðr; uÞfðr; uÞ

þ s
2

ð
du0fðr; uÞju� u0jfðr; u0Þ�;

(4)

where W(r,u) is a mean field introduced to represent the
average effects of polymers on a representative chain. Here,
kB is the Boltzmann constant and T temperature. The free
energy expression in (4) is a functional of two yet-to-be deter-
mined functions, f(r,u) and W(r,u). The last term is the result
of generalizing the Onsager interaction for rodlike molecules to
a wormlike liquid-crystal system.43,45,46 Taking rodlike particles
confined on a surface as an example, we can show that the
excluded-volume between two rods is proportional to L2 and the
rod width (assumed much smaller than L) does not enter into
the excluded-area expression.43 In any case, s represents the

magnitude of the directionally-dependent molecule–molecule
interaction.

The single-chain partition function Q in the above expres-
sion can be calculated from the propagator q(r,u;t),

Q ¼
ð
drduqðr; u; 1Þ: (5)

The propagator itself is a reduced Green’s function that represents
the probability of finding the terminal point of polymer segment
of length t to appear at a spatial position located at r and to point
at a direction specified by u. One can show, based on the
configurational probability assumed in (2), that the propagator
satisfies a differential equation47,48

@

@t
qðr;u; tÞ ¼ �Wðr;uÞ � Ll

2
k2ðr; uÞ �Lu � rr

����
u

þL

2l
ru

2

� �
qðr; u; tÞ;

(6)

with an initial condition q(r,u,0) = 1. All derivatives are taken in
a covariant form on the surface of consideration. In particular,
rr is treated with the u vector fixed in space.

The rigorous derivation of eqn (6) based on (2) can be found
in ref. 43 and 48. Here we note that k2(r,u) is the square normal
curvature along direction u on a surface of arbitrary shape. The
term Llk2(r,u)/2 comes from the energy penalty to bend a
polymer segment on the surface along direction u; for a given
geometry it has a specific form. Using vector analysis, we have

k2 = |[(u�rr)N(r)] � (u � N)|2, (7)

where N(r) is the normal vector of a surface element located at
position vector r. A simpler version of k2 is given in Section 2.3.

Minimization of the free energy with respect to f(r,u) yields

Wðr; uÞ ¼ s
ð
du0 u� u0j jfðr; u0Þ; (8)

and minimization of the free energy with respect to W(r,u)
yields

fðr; uÞ ¼ A

Q

ð1
0

dtqðr; u; tÞqðr;�u; 1� tÞ: (9)

The equation set, from (5) to (9), forms complete self-consistent
equations that need to be solved.

2.2 Wormlike liquid crystals confined on a toroidal surface

In this subsection we set up a covariant coordinate system on a
toroidal surface that is described by two radii: the toroidal
circular-axis-to-center radius R and the torus cross-section
radius r. A point on the toroidal surface can be described by
two angular parameters x and z as shown in Fig. 1(b). The unit
vector u is specified by the angle y shown in the figure. In the
rest of this paper, we reduce all length variables and parameters
by r. For example, the radius R, is now specified through

k�1 � R/r, (10)

and the total surface area is A ¼ r2
Ð 2p
0 dx

Ð 2p
0 k�1 þ cosz
� �

dz ¼
4p2r2k�1.
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Within this coordinate system, a point on the torus surface
is written in Cartesian coordinates,

r/r = (k�1 + cos z)cos xx̂ + (k�1 + cos z)sin xŷ + sinzẑ.
(11)

The directional unit vector is written

u = x̂cos y + ẑsin y, (12)

where the axis unit vectors are

x̂ = �sin xx̂ + cos xŷ, (13)

and

ẑ = �cos x sin zx̂ � sin x sin zŷ + cos zẑ. (14)

The operators in (6) can then be expressed by

ru
2 ¼ @2

@y2
: (15)

The operate u�rr|u needs to be performed with care, as fixing
the direction vector u in a curvilinear coordinate system is not
the same as fixing the direction variable such as y. One can
write u�rr|u = u�rr � [(u�rru)�ru] where the derivatives of all
terms on the right-hand side are taken with respect to the
variables and rru is taken on the rotating unit axis-vectors of
u.43,48 We then have

u � rrju¼
1

r

cos y
ðk�1 þ cos tÞ

@

@x
þ sin y

@

@z
� cos ysin z
cos zþ k�1

@

@y

� �
: (16)

According to eqn (7) the square curvature is expressed by

k2 ¼ 1

r2
sin2 yþ k cos z
k cos zþ 1

� �2
: (17)

Once the propagator is solved, the single chain partition func-
tion is found from

Q ¼ r2
ð
dxdzdyqðx; z; y; 1Þ k�1 þ cos z

� �
: (18)

2.3 Curvature energy penalty and covariant form

The theoretical formalism in this work is written by using W as
a mean field. We can rewrite the equation in another repre-
sentation that makes the curvature energy penalty in a more
identifiable form.

The starting point is to define a new field,

W 0ðr; uÞ ¼Wðr; uÞ þ Ll
2
k2ðr; uÞ: (19)

Using it in the free-energy-per-chain expression before mini-
mization, (4), we obtain

~F ½fðr; uÞ;Wðr; uÞ� ¼ ~F ½fðr; uÞ;W 0ðr; uÞ�

þ Ll
2A

ð
drduk2ðr; uÞfðr; uÞ:

(20)

The propagator equation becomes

@

@t
qðr; u; tÞ ¼ �W 0ðr; uÞ � Lu � rrjuþ

L

2l
ru

2

� �
qðr; u; tÞ: (21)

The mathematical structure of these two expressions is such
that a bending penalty term is added to the otherwise covariant
theory formed by (21) and the first term in (20).

Using the Frank-energy model for liquid crystals that contains
the covariant-derivatives only,49,50 Evans studied the structure of
possible structural defects of surface-embedded liquid-crystals
on a toroidal membrane surface.28 On the other hand, Selinger,
Konya, Travesset and Selinger (SKTS) treated the variation of
the directional ordering by a full three-dimensional derivative
on the toroidal surface.30 Within the assumption of one Frank
elastic constant, the difference between the two models can be
viewed from

FSKTS ¼ FEvans þ K

ð
ðn � K � K � nÞdr (22)

where K is the Frank elastic constant, n(r) is the nematic
director field assumed in the Frank-energy theory, and K is
the surface curvature tensor.30 Eqn (22) can be directly com-
pared with (20). The similarity is that both contain the curva-
ture effects as an addition to a covariant model.

However there are some major differences between (20) and
(22). First, we note that the bare persistence length l is directly
proportional to the bending energy of a wormlike chain.43,44

The origin of the last term in (20) stems from the bending
energy of placing a typical polymer on the curved surface. In the
more flexible case where l { L, the coefficient Ll is propor-
tional to the mean square radius of gyration of a polymer in a
free space. This term then becomes the energy needed to bend
and shape an originally free polymer to fit to the local curvature
of the embedding surface. In the rigid limit where l { L, this
term reflects the reality that it is hard to bend a rigid molecule
to suit a large local surface curvature; as a result, molecules
prefer to align themselves along the direction of a lower
curvature. Within the Frank energy, K is a phenomenological
parameter that deals with the bending of the nematic texture,
represented by the director field, on a curved surface.

Second, k in eqn (7) is the normal curvature at a surface
point where a surface-embedded curve passes with a tangent
direction u. This is the direct consequence of bending a
polymer (a curve) on a surface. In differential geometry, it is
defined by the first and second fundamental forms of surface
differentials. According to the Euler curvature formula,

k2 = (k1 cos2 y + k2 sin2 y)2 (23)

where k1 and k2 are the two principal curvatures, in our case
along x̂ and ẑ,

k1 ¼
cos z

Rþ r cosz
and k2 ¼

1

r
: (24)

The angle y is defined in (12). One can directly verify the
expression in eqn (17), which is obtained from the more
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involved expression in eqn (7), by substituting these principal
curvatures into eqn (23).

In contrast, K appearing in (22) is the surface curvature
tensor, the tensor form of the so-called shape operator. As a
surface property, it is defined through the third fundamental
form and is independent of u. This is a natural form appearing
in the Frank-energy model, as it deals with a bending surface
element. The projection to u takes place when the last term is
considered in (22). In a diagonalized K, the diagonal elements
are k1 and k2, respectively. Hence

n�K�K�n = k1
2 cos2 y + k2

2 sin2 y = k1
2 + (k2

2 � k1
2)sin2 y

(25)

with the assumption that the vector n makes an angle y with x̂,
locally. Apart from the unimportant constant

Ð
k12dr, the last

term above is exactly the expression used in eqn (9) of ref. 21
and yet apart from another constant, eqn (8) of ref. 31. Hence,
originated from the different starting points, bending a curve
and bending a surface element, the energy penalty term
appearing in the current work is different from the energy
penalty used in ref. 21, 30 and 31. Qualitatively, results on the
nematic structures yielded from the two approaches are simi-
lar, as described below.

Third, as we show below, instead of the completely isotropic
state, there exists isotropic-like states. While the last term in
(20) contains the consideration of a distribution of molecular
segments along all directions, the last term in (22) is written for
the nematic direction only. This is a particularly interesting
point here, as we see below, (22) lacks a mechanism to describe
the weak orientational distribution of an isotropic-like state. As
we describe the nematic defect patterns in a later section, (20)
can be used for calculating the defect energy, whereas (22) can
not be used for calculating the disclination of the nematic field
at the singularity.

Finally we remark that the last term in (20) is independent of
the orientationally dependent interactions between polymer
segments. To showcase the usefulness of the model, we adopt
the Onsager interaction, the last term in (4), following the tradition
of a series of studies on the subject of liquid-crystal polymers.45,46,51

One could study wormlike polymer liquid crystals, replacing
the Onsager interaction by, for example, the Maier–Saupe free
energy50,52–54 or replacing the Onsager interaction by a more
complicated density-functional theory.22–25

3 Orientational ordering on a toroidal
surface
3.1 System parameters

Here we identify the essential parameters that appear in the
model described in the last section. Within the theory the orienta-
tional structure of the wormlike polymer fluid on the toroidal
surface depends on four parameters:

(a) Bending-energy coefficient

g = Ll/2r2 (26)

from the coefficient of a reduced k2 in (6). It is a system
parameter that competes with, for example, the entropy coeffi-
cient L/2l and the coefficient of the Onsager interaction s.

(b) The reduced polymer density s defined in (1), which
appears as the coefficient of the Onsager interaction term in (4).
In a typical lyotropic system,55 a low-s system is in an isotropic
state and a high-s system is in a nematic state. Within the same
theoretical foundation, one can determine the critical surface
density of an isotropic-nematic transition on a two-dimensional
flat surface, by removing the rr and k2 terms in eqn (6). As a
function of L/l, the transition density is s* = 3p/4A1(L/l) where
A1(L/l) = (l/2L)[1 + (l/2L)(e�2L/l � 1)]. This was determined in
terms of an effective two-dimensional Kuhn length in ref. 51
and reviewed in terms of the persistence length in ref. 43.

(c) The geometric ratio k defined in (10), which appears in
(6). The same parameter was used in the Frank-energy
models21,30,31 and in the Landau-de Gennes model.32 It has
the characteristic parameter for a torus and has the parameter
range [0,1]. That different defect-free nematic states can be
obtained from varying k was shown previously.21,31,32

(d) The flexibility of the polymers in the system,

a = L/2l, (27)

which appears as a coefficient of the last term on the right-hand
side in (6). It is a characteristic measure of a free polymer. The
L/l { 1 limit corresponds to rodlike molecules and L/l c 1
flexible molecules. In three dimensions, 2l can be identified
with the effective Kuhn length. The parameter defined above is
consistent with the definition of the degree of polymerization
(ratio between the total length and Kuhn length) in three
dimensions. Note that the coefficient of the coupling term,
L/r in (6) is not an independent system parameter. It is related
to other parameters by L=r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2gL=l

p
.

All these four system parameters can be traced back to the
physics at a molecular level.

3.2 Order parameter and nematic director

Within the current coordinate set up, the density distribution
function f(r;u) is expressed by f(x,z;y). We can then examine
two characteristic quantities of orientational ordering as func-
tions of the location: the main order parameter S(x,z) and the
direction of the nematic director ym(x,z), at which the distribu-
tion function f(x,z;y) has a maximum in y.

To calculate these quantities, on a two-dimensional surface,
we define the orientational order parameter tensor

Qðx; zÞ ¼
Q1ðx; zÞ Q3ðx; zÞ

Q3ðx; zÞ Q2ðx; zÞ

" #
; (28)

which should not be confused with the notation Q used for the
partition function. The elements in the matrix are defined by

Q1ðx; zÞ ¼
ð2p
0

cos2 y� 1

2

� �
fðx; z; yÞdy=fðx; zÞ;

Q2ðx; zÞ ¼
ð2p
0

sin2 y� 1

2

� �
fðx; z; yÞdy=fðx; zÞ;

(29)
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and

Q3ðx; zÞ ¼
ð2p
0

cos y sin yfðx; z; yÞdy=fðx; zÞ; (30)

where

fðx; zÞ ¼
ð2p
0

fðx; z; yÞdy (31)

is the overall molecular fraction at a specific location.
Based on this definition, the main order parameter measured

from a local nematic director n(x,z) is found from diagonalizing
the Q tensor,

Sðx; zÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1

2ðx; zÞ þQ3
2ðx; zÞ

q
: (32)

The director field itself is specified from

n(x,z) = x̂ cos ym(x,z) + ẑ sinym(x,z) (33)

where ym is calculated by

cos ymðx; zÞ ¼
1

2
þQ1ðx; zÞ

Sðx; zÞ : (34)

When the distribution function has a strong peak along the
direction n, S B 1. When the distribution function is isotropic,
S = 0. However, we remark that on a curved surface, there is no
ideal isotropic state.

3.3 Isotropic-like states

On a flat two-dimensional space, k = 0, the low-s state is an
isotropic state with no orientational ordering. The system
makes a continuous phase transition to a nematic state at a
critical s; this has been well documented previously.51 Here,
however, due to the curvature effects, there is no pure isotropic
state. As it turns out, depending on the geometric ratio k, there
are two low-s states that have a weak, regional nematic order-
ing. These states can be traced back to the isotropic state as we
take k- 0 asymptotically. Strictly speaking, these isotropic-like
states are (weak) nematic states.

As our first example, we consider the case of s = 0, a =
L/2l { 1, with a fixed, moderate g. Note in this case L/r { 1.
Basically, we have a dilute rodlike system containing almost
rigid molecules which are confined on a toroidal surface with a
small rod-length to r-radius ratio. Dropping the first, third, and
fourth terms on the right-hand side of (6), we obtain an analytic
solution for q. Carrying out all necessary integrations, we finally
obtain the distribution function

fðx; z; yÞ ¼
exp �g�k2
� �
Q

(35)

where �k2 � r2k2 is a dimensionless version of (17), which
depends on z and y only. Hence we see that the distribution
function of the low-density state has both orientational and
molecular-density dependencies. The magnitude of g deter-
mines the degree of the curvature-driven nematic distribution.
We call this an isotropic-like state, to be distinguished from a

strong nematic state, driven from the directionally dependent
Onsager interaction.

Even in this simple example, the main nematic director of
the weak nematic ordering displays an interesting variation as a
function of k. In the small-k regime, the square curvature in (17)
has a minimum at y = 0. According to (35), the nematic director
on the entire surface is along this direction. In the k Z 1/2
regime, the square curvature in (17) has a minimum at y = 0
when z = p/2 and a minimum at y = p/2 when z = p. Hence the
nematic director changes from ym = 0 to ym = p/2 somewhere
between z = p/2 and z = p in a k Z 1/2 system, all within the
same state. In a short summary, we have:

(a) ISO0 state. In a k o 1/2 system, ym = 0 on the entire
pattern.

(b) ISO1 state. In a k 4 1/2 system, ym is non-uniform,
making a jump at a certain z, from 0 at z = 0 to p/2 at z = p.

This is a typical behavior of low-s systems. Here we show
a few more examples by numerically solving SCFT presented
in Section 2.2. The curves in Fig. 2 represent this behavior
for systems at s = 3, g = 1, and various a. To demonstrate the
general ideas, in the first and second columns of Fig. 3, we
illustrate a typical directionally ordered pattern, using short
straight lines to represent the nematic director n and color to
represent the density and order-parameter variations. In general,
the division of the two k regimes, ISO0 and ISO1, is always found
at k Z 1/2 for a system of any a value. The stability of these
states can be determined from numerically solving SCFT and
then comparing the free energies associated with each branch
of solutions.

3.4 Defect-free nematic states

At a high density s, a defect-free nematic state can be found
from solving SCFT, where the orientational order parameter is
significantly large on the entire toroidal surface. The conforma-
tion of the system has a rotational symmetry about the z axis
shown in Fig. 1. As such, all structural properties are functions
of z and y only and are independent of x. Examples of typical
order parameter fields are illustrated in Fig. 3(c), (d), and (e).

Fig. 2 The nematic-director angle ym as a function of z of an isotropic-
like state at a low-s case (s = 3.0, g = 1.0) for various a.
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As it turns out, there exist at least three defect-free nematic
states as listed below:

(a) NEM0 state. In a low-k parameter regime, ym = 0 over the
entire toroidal surface. What differs from the ISO0 state is the
strong nematic order parameter S. All three cases of Fig. 4(a)
and one case of Fig. 4(b) (a = 0.5) are examples of this state.
A typical configuration is demonstrated in Fig. 3(c).

(b) NEM1 state. This state emerges in a moderate k system
where a nonzero ym appears at z = p. Unlike ISO1, the variation
of ym as a function of z becomes smooth, as shown by the
examples in Fig. 4. A typical configuration is demonstrated in
Fig. 3(d). The director field in this plot has the symmetry
ym(x,z) = ym(x,2p � z). Ref. 21, 31 and 32 have all identified
the existence of this state.

(c) NEM2 state. This is a state typically seen in a high-k
system where ym is always p/2 at z = p. The director field in this
plot has the symmetry ym(x,z) = p � ym(x,2p � z). The variation
shown in Fig. 5 is different from the symmetry of the NEM1

state. It has the same symmetry as the first excited state y2

described in ref. 21. As we discuss below, here we found that it
can be energetically degenerate to coexist with NEM1 in some
parameter regime. A typical configuration is demonstrated in
Fig. 3(e).

Other x-independent, defect-free nematic configurations
can also be stabilized. The characteristic of NEM1 and NEM2

is such that as z varies from 0 to 2p, ym varies by an angle 0 and
p, respectively. Our numerical solution shows that a defect-free
nematic state NEMn exists such that as z varies from 0 to 2p, ym

Fig. 3 The five defect-free states that have no x-dependence: (a) isotropic-like, ISO0 (at a = 0.1, g = 0.1, k = 0.4 and s = 2.5), (b) isotropic-like, ISO1

(at a = 0.1, g = 0.1, k = 0.8, and s = 2.5), (c) nematic, NEM0 (at a = 0.1, g = 0.1, k = 0.15 and s = 6.0), (d) nematic, NEM1 (at a = 0.1, g = 0.1, k = 0.8, and s = 6.0),
and (e) nematic NEM2 (at a = 0.1, g = 0.1, k = 0.8, and s = 6.0). The conformation for every case is shown by four methods: top-torus view (looking down
from the z-axis, see Fig. 1), expanded view by using x and z as coordinates, nematic-director angle ym as a function of z, and order parameter S as a function
of z. The color on the top-torus view represents the magnitude of the density distribution f(x,z), and the color on the expanded view the order parameter
S(x,z). Short straight bars are added to the color plots to illustrate the nematic directors and they should not be confused with the actual presence of
molecules. The selected parameters, a = 0.1 and g = 0.1, correspond to L/r = 0.2 – the rod-like molecules have a length that is much shorter compared to
the toroidal tube radius r.
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varies by an angle (n � 1)p. The states with higher n (Z3) are
metastable.

3.5 Phase transition

To understand the stable phases of the current system, we plot
the phase diagram as a function of k and s, after specifying
values of two other parameters a and g. All stable states discussed
in preceding sections are summarized in the phase diagram.

To start, we present three phase diagrams on the left column
for g = 0 and different values of a. Here is a special case where
all curvature-related features are erased. The system undergoes
a transition from the ideal, uniform isotropic phase where S = 0
to an ideal, uniform nematic phase where S a 0. The transition
density s* of the second-order transition line is given in point
(b) of Section 3.1. The nematic director can take any directions
on the toroidal surface. This scenario is consistent with the
nematic texture described by Evans, after the removal of the
bending energy penalty term in (22).21,28

Characteristically different from the g = 0 case are the
systems with a finite g. The transition between the isotropic-
like states and the nematic states is now first order at suffi-
ciently strong s. The different branches of the free energy cross
each other at the transition point. The finiteness of g generally
encourages nematic ordering, even at low s. As the consequence,
the isotropic state has a weak nematic feature as discussed above
and the isotropic-nematic transition phase boundaries move to a
lower s regime. Following the trend of how these phase boundaries

move in Fig. 6, we can conjecture that the isotropic-like region on
the phase diagram diminishes in a large g system.

For convenience we highlight the phase regions in the phase
diagram according to properties of a particular state as we
addressed in the previous sections.

(a) Low-k systems (grey areas on the phase diagram). The
nematic directors are all uniform, pointing to the direction
represented by ym = 0.

(b) k - 1 systems (line-shaded areas on the phase diagram).
The toroidal surface close to the z axis has a much greater,
directionally dependent curvature; this dependence yields a
non-uniform ym on the surface and in particular a nematic
director angle ym = p/2 at z = p. The variation of the nematic
director on the toroidal surface, however, now has two possi-
bilities: NEM1 and NEM2 states are degenerate in this phase
region. In the former case, beyond z = p, the angle ym varies
back to 0 from p/2. In the latter case, beyond z = p, the angle ym

reaches a higher value from p/2 [see Fig. 3(d) and (e)].
(c) Mid-k systems (unshaded area). A large phase region in

the middle is occupied by the NEM1 state. The nematic director
makes an angle ym a p/2 at z = p. Although the NEM2 state
could be stabilized in this region, it has a higher free energy
hence is metastable only.

The coexistence of NEM1 and NEM2 in the line-shaded
region can be further demonstrated by a plot of the energy
difference, b(F2 � F1)/n where F1 and F2 are the free energies of
states NEM1 and NEM2. The triangles in Fig. 7 show this
difference as a function of k for a system at s = 7.5, a = 0.1,
and g = 0.1. Below k C 0.80, NEM1, which has an angle ym a p/2
at z = p, is energetically preferred. At k C 0.80, the angle ym

smoothly rises from a lower z to p/2 at z = p. The free energies
of NEM1 and NEM2 become equal. Above k C 0.80, these two
states are energetically degenerate.

The first-order nature of the transition is determined in this
work by examining crossing of two branches of the free energy,
each associated with one phase. The state that has the lower
free energy is deemed stable. One can, on the other hand,
understand the first-order nature on the basis of a symmetry
analysis. Consider a given position on a flat two-dimensional
surface (g = 0) where the nematic state is described by a nonzero
S = hcos[2(y � ym)]i. Now, if we rotate the entire plane by p/2
about the plane normal, S - �S. Because the system is still the
same hence the free energy at this point is the same. This gives
rise to a Landau expansion in terms of even powers of S; the
transition is then second order. This transformation, however,
is unavailable on toroidal surface. At a given point in most
region, the change of S - �S gives rise to different curvature-
generated energy penalties. The free energy hence is not an
even function of S. Thus the transition between the isotropic-
like and nematic states is of first order.

Finally, we remark that under otherwise the same physical
conditions (that is, fixing g, s, and k), a nematic state of a
system with a larger a has weaker directional ordering (that is, a
smaller overall S). This can be inferred directly from a series of
plots in Fig. 6, by an examination of phase diagrams vertically.
Take (c4), (b4), and (a4) for example. When a changes from 0.0,

Fig. 4 The nematic-director angle ym as a function of z of the NEM0 and
NEM1 states at a high-s case (s = 4.5, g = 1.0).

Fig. 5 The nematic-director angle ym as a function of z of the NEM2 state
at a high-s case (s = 4.5, g = 1.0).
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0.1, to 0.5, the isotropic regions expand and nematic regions
retract, which is a direct sign of how a lager-a system prefers
weaker directional ordering. This observation is consistent with

the trend seen in a completely flat system, g = 0, from (c1), (b1),
to (a1). Fig. 4 and 5 display ym, the angle that the nematic
director makes with respect to x̂, which indicate another
interesting effect of varying a. In a more rigid system (a = 0),
the nematic texture is harder to bend hence the variation of ym

is more gradual. In a more flexible system (a = 0.5) where the
overall nematic ordering is weaker, the nematic texture can
more easily bend hence the variation of ym is step-function
alike. Note that the higher maximal value of ym, seen in Fig. 4(c)
and (d) of the a = 0.5 case, is not an indication of the strength of
the nematic ordering; it is a result of weaker nematic ordering
of a larger-a system.

3.6 Defect states

So far we focused on the discussion of defect-free states where
the distribution function does not explicitly depend on the
variable x. As we shall see as the dependence on x is included
in our numerical solution, the nematic textures that contain
defects can be stabilized. All have higher free energies than the
stable, defect-free nematic states discussed above.

Fig. 6 Phase diagram yielded from the current model as a function of the four system parameters explained in Section 3.1, k, s, a, and g. The boundary
lines on the left column are the second order transition lines. The solid curve behind the circles are first order boundaries. The grey regions are either
ISO0 or NEM0 states and the other regions are either ISO1 or NEM1 states, depending on the location. In the line-shaded regions NEM1 has an
energetically degenerate NEM2 state. In the unshaded area, the nematic state is NEM1 and NEM2 is a metastable state. Fig. 3 demonstrates a few examples
of these states.

Fig. 7 Here bDF = b(F � F1), F1 is the corresponding free energy of NEM1.
The energy of these defect structures are higher than the energy of NEM1,
and they are only stable in a small region of k. a = 0.1, g = 0.1.
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A few examples of the defect textures are shown in Fig. 8
where top-torus, back-torus, and expanded views are shown.
We have produced these structures by numerically solving
SCFT with initial guesses that are designed to follow a specific
symmetry pattern, or by random initial conditions. Defects
points always emerge by pairs, which have +1/2 and �1/2
winding numbers.2 Fig. 8(a) shows a structure that contains
one pair of defects; the defect location and nematic-director-
field symmetry completely agree with the structures in Fig. 2(b)
of ref. 30, in Fig. 5(a) of ref. 21 (both based on the Frank-energy
model). Other patterns in Fig. 8, each displaying a specific
symmetry, contain two pairs of defects. The pattern in Fig. 8(c)
agrees with the ones shown in Fig. 5(b) of ref. 21 (based on the
Frank-energy model) and in Fig. 8(c) of ref. 32 (based on
Landau-de Gennes model). The front view of the patterns in
Fig. 8(c) or (d) agrees with the pattern shown in Fig. 2(c) of
ref. 30 (which does not have the back view). All other defect
patterns are newly generated from this work. According to the
Poincaré–Hopf theorem, on the torus surface the total winding
number as the summation of individual contributions, should
be zero.18 An analysis of the winding numbers of these patterns
indicates that the nature of the defects found from the numer-
ical solution completely agrees with the theorem. Overall, Fig. 8
contains defect patterns that were previously determined in
the literature, under similar physical conditions. We have not

produced defect patterns that contain more than two pairs of
defects29 but believe that they can also be produced from the
current model with a calculation that has a better numerical
accuracy.

Nelson and Peliti made an interesting comparison between
electrostatics and surface nematic field containing disclina-
tions;56 the topological defect on a curved surface behaves in a
way similar to a charge in an electrostatic problem. Within this
analogy, the positive Gaussian curvature plays the role of a
negative charge distribution and a topological defect with a
positive winding number plays the role of a positive point-like
charge. Hence, the high positive Gaussian curvature region
attracts a disclination with a positive winding number. A
common feature of these defect patterns is that the +1

2 defects
are located far away from the z axis where the Gaussian
curvature is positive, whereas the �1

2 defects are closer to the
z axis, where the Gaussian curvature is negative.

To find the defect locations, here we considered the con-
tinuous distribution functions such as f(x,z;y) and q(x,z;y), in a
numerical representation of the continuous distribution func-
tion. The location of the defects has a low order parameter
S B 0 which is represented by the blue color in Fig. 8. This can
be contrasted with a typical model based on the director vector
field, either the nematic director field in ref. 21 or the XY-spin-
model realization of the nematic director field in ref. 30;

Fig. 8 Defect patterns that are stabilized from the numerical solutions of the model presented in this work. These patterns are generated from local free
energy minimum for a system that has parameter values k = 0.8, a = 0.1, g = 0.1, s = 6.0. The color on the top-torus view (first row) and back-torus view
(second row) represents the number density f(x,z) and the color on the expanded view (third row) represents S(x,z). Defects can be identified by the blue
color on the figure (S B 0).
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in these approaches, the defect positions are related to dis-
clinations in the corresponding vector field. In a typical numerical
treatment, within the vector representation, the derivatives in the
Frank energy model become undefined at the disclination point.
A continuous model, such as current SCFT, does not have this
difficulty.

As a metastable state, a defect pattern has a higher free
energy than that of the stable nematic state. Fig. 7 shows
examples of the difference between the free energy per chain
of a defect state and that of NEM1 for a = 0.1, g = 0.1 and s = 7.5.
The corresponding defect patterns are shown in Fig. 8. All these
defect patterns contain point-like defects that are localized. In
the vicinity of a defect, locally the configuration creates a higher
free energy, in comparison with the configuration in the same
regime of the NEM1 state. In the low-k regime, the configura-
tions near the entire z = p line of the NEM2 state create a high
local energy cost; hence a defect-free state could have an free
energy higher than a defective state.

4 Summary

In this paper, we start with a simple density-functional theory,
at the same level as the Onsager model for lyotropic rods,
to study the stable nematic structures of wormlike chains
confined on a toroidal surface. All structures are analyzed by
minimization the total free energy of the system.

The model is based on the molecular-level physics, rather
than phenomenological concept such as the Frank-energy
model21,28,30,31 and the Landau-de Gennes model for the Q
tensor.32 The bending energy contribution to the liquid-crystal
free energy on a curved surface is a subject that has been
highlighted in the literature as a focal point, but mostly based
on the one-constant Frank-energy model. The current approach
provides a new insight into such an energy contribution – the
embedding of molecules on the curved surface gives rise to a
term that is proportional to the square normal curvature along
the molecular direction. Although this term differs from the
surface bending energy contribution deduced from the Frank
energy model, some features of the resulting structural properties
from the two approaches are similar.

The connection between the current approach and the Frank
energy needs to be further clarified and is beyond the scope of
the current paper. Various previous attempts have been made
to connect molecular-level based model with the Frank energy
for a liquid crystal system. For three-dimensional nematics, the
Frank constants were deduced from the Flory-Onsager model.57

One good starting point would be to use a trial function
describing the angular distribution about a vector director field
n(r). An expansion of the Onsager free energy for rods in terms
of the first spatial derivatives, exactly recovered the structure of
the Frank energy.58,59

The interplay between the four system parameters yields
isotropic-like and nematic states in the system. We describe the
four-parameter phase space by a series of phase diagrams, which
cover a majority phase regime that concerns us. An important

parameter is the reduced number density of molecules on the
surface, s. This is the coefficient of the Onsager interaction term,
which drives the system to make orientational ordering at
high density, to reduce the excluded-volume interaction. The
appearance of such a parameter is typical in a theory for
lyotropic system. However, we are not restricted to a lyotropic
system here. The coefficient should be regarded more broadly
as the coefficient that drives the system to make orientational
ordering. The Onsager term can be replaced by the Maier-Saupe
interaction energy, for example; in this case, we have a phenom-
enological coefficient to represent the magnitude of the Maier–
Saupe term. The Maier–Saupe coefficient can have temperature
or/and density dependencies to describe thermotropic and
lyotropic systems. A similar physical picture is expected here.
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