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THE SMALL DEBORAH NUMBER LIMIT OF THE DOI-ONSAGER
EQUATION TO THE ERICKSEN-LESLIE EQUATION

WEI WANG, PINGWEN ZHANG, AND ZHIFEI ZHANG

ABSTRACT. We present a rigorous derivation of the Ericksen-Leslie equation starting from
the Doi-Onsager equation. As in the fluid dynamic limit of the Boltzmann equation, we first
make the Hilbert expansion for the solution of the Doi-Onsager equation. The existence of
the Hilbert expansion is connected to an open question whether the energy of the Ericksen-
Leslie equation is dissipated. We show that the energy is dissipated for the Ericksen-Leslie
equation derived from the Doi-Onsager equation. The most difficult step is to prove a
uniform bound for the remainder in the Hilbert expansion. This question is connected to
the spectral stability of the linearized Doi-Onsager operator around a critical point. By
introducing two important auxiliary operators, the detailed spectral information is obtained
for the linearized operator around all critical points. However, these are not enough to justify
the small Deborah number limit for the inhomogeneous Doi-Onsager equation, since the
elastic stress in the velocity equation is also strongly singular. For this, we need to establish
a precise lower bound for a bilinear form associated with the linearized operator. In the
bilinear form, the interactions between the part inside the kernel and the part outside the
kernel of the linearized operator are very complicated. We find a coordinate transform and
introduce a five dimensional space called the Maier-Saupe space such that the interactions
between two parts can been seen explicitly by a delicate argument of completing the square.
However, the lower bound is very weak for the part inside the Maier-Saupe space. In order
to apply them to the error estimates, we have to analyze the structure of the singular terms
and introduce a suitable energy functional.

1. INTRODUCTION

1.1. The Doi-Onsager theory. Liquid crystals are a state of matter that have proper-
ties between those of a conventional liquid and those of a solid crystal. One of the most
common liquid crystal phases is the nematic. The nematic liquid crystals are composed of
rod-like molecules with the long axes of neighboring molecules aligned approximately to one
another. A classic model which predicts isotropic-nematic phase transition is the hard-rod
model proposed by Onsager [I§]. Onsager introduced the notion of orientational distribution
function and considered a mean-field model in which the rod-rod interaction was modeled
by the excluded volume effect. Following Onsager, Maier and Saupe [16] proposed a slightly
modified interaction potential, now known as the Maier-Saupe potential. Doi and Edwards
[4] extended the Onsager theory for describing the behavior of liquid crystal polymer flows.
We use x € 2 C R3 to denote the material point and f(x,m,t) to represent the number
density for the number of molecules whose orientation is parallel to m at point x and time t.
For the spatially homogeneous liquid crystal flow, the Doi-Onsager equation [4] takes
%:DLGR-(Rf~I—fRU)—R-(m></¢-mf), (1.1)
where De is the Deborah number, R is the rotational gradient operator(see Section 3), k
is a constant velocity gradient, and U is the mean-field interaction potential. Onsager [18]
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considered the potential
U=Uf(m,t) = a/ lm x m’|f(m’t)dm’,
S2

where « is a parameter that measures the potential intensity. In this paper, we will use the
Maier-Saupe potential [I6] defined by

U= a/ m x m'|?f(m’, t)dm’.
S2
This model has a free energy
Al = [ (Fmt)in fm, 1) + 5 (om0 (. 1) dm (12)

as its Lyapunov functional. The chemical potential is given by

_0A
The equation (ILI]) can be written as

0 1
a_{zmﬂ.(fRu)—R(mxmmf).

The stress tensor is given by

=Inf+U.

o1 1
oPe = §D : (mmmm) § — ﬁ<mm X R ¢, (1.3)

where D = %(H + xT) is the symmetric part of , and
def

((Ny = /SQ(-)f(m,t)dm.

The homogeneous Doi-Onsager equation has been very successful in describing the prop-
erties of liquid crystal polymers in a solvent. This model takes into account the effects of
hydrodynamic flow, Brownian motion and intermolecular forces on the molecular orientation
distribution. However, it does not include effects such as distortional elasticity. Therefore it
is valid only in the limit of spatially homogeneous flows.

The inhomogeneous flows were first studied by Marrucci and Greco [I7], and subsequently
by many people [8, 20]. Instead of using the distribution as the sole order parameter, they
used a combination of the tensorial order parameter and the distribution function, and used
the spatial gradients of the tensorial order parameter to describe the spatial variations. This
is a departure from the original motivation that led us to the kinetic theory. Wang, E, Liu
and Zhang [21] set up a formalism in which the interaction between molecules is treated
more directly using the position-orientation distribution function via interaction potentials.
They extend the free energy (L.2) to include the effects of nonlocal intermolecular interaction
through an interaction potential as follows:

Alf] = k‘BT/Q/S2 f(x,m,t)(In f(x,m,t) — 1) + T

where kp is the Boltzmann constant, 7" is the absolute temperature, and the mean-field
interaction potential U is defined by

U(x,m,t)f(x,m,t)dmdx, (1.4)

U(x,m,t) = k:BT/ B(x,x,m,m’)f(x',m’ t)dm’dx’.
QJs?
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Here B(x,x’;m, m’) is the interaction kernel between the two polymers in the configurations
(x,m) and (x’,m’). It should be symmetric with respect to the interchange of m and m’, x
and x’. B is often translation invariant and hence it can be written in the form

B(x —x';m,m’).
In this paper, we take the following form as in [5] 25]:

1 x-—x
B(X7 le m, m/) = Oé|l’Il X m,|2ﬁg(T)7
where L is the lenth of the rods, and g(x) is a radial Schwartz function with [ps g(x)dx = 1.
This potential neglects the interaction between orientation and position. But is sufficient in

many cases. The chemical potential is given by

0A
= % =kpTn f(x,m,t) + U(x,m,t).
The inhomogeneous Doi-Onsager equation takes the form

ot
D,
+ R-(fRp) =R - (mx k-mf),
kT
ov
E—FV'VV:—V]?—FV'T—I—FG, V-v=0.

Here D) and D, are respectively the translational diffusion coefficients parallel and normal

to the orientation of the LCP molecule, D, = '?%T is the rotary diffusivity, V is the gradient
operator with respect to the spatial variable x. The total stress 7 is the sum of the viscous
stress 7° and the elastic stress 7¢. There are two contributions to the viscous stress, one

from the solvent and the other from the constraint force arising from the rigidity of the rod
(derived in [4]),

1
7% =2nD + §£TD : (mmmm) ¢,

where D = %(/{ + /{T), k= (Vv)T is the velocity gradient tensor, 7, is the solvent viscosity.
The elastic stress 7¢ and body force F€ are given by

7¢ = —(mm x Ru)¢, F=—(Vpy);.

Let Ly be the typical size of the flow region, V{, be the typical velocity scale, Ty = ‘L,—g be
a typical convective time scale. Another important time scale is the relaxational time scale
due to orientation diffusion: T, = kiTT' The ratio of these two time scales is an important

parameter called the Deborah number

T &W
T, kgTLy

De

Let 1, = &,n = ns + 1np,y = 1s/1, and Re = % be the Reynolds number. We denote

Ue(x,m,t):// B-(x,x',m,m’) f(x/,m’, t)dm’dx’,
QJs?

e

78 = —(mm X Rpe)r, Fi=—(Vue)y,



4 WEI WANG, PINGWEN ZHANG, AND ZHIFEI ZHANG

where the small parameter /e = represents the typical interaction distance and

x —x

\/E))

1
B.(x,x',m,m’) = ajm x m'|2ﬁg(

e =1In f(x,m,t) + Us(x, m, ).
We set
f'(x,m,t) = f(Lox,m, Tot), V'(x,t) = v(Lox,Tot)/Vp.

Then the non-dimensional Doi-Onsager equation takes the following form (drop the prime
for the simplicity):

0 €
a—{ +v-Vf= D_ev. {(yymm +~, (I—mm)) - (Vf+ fVU.)}
1
+D—R'(Rf—i—fRUE)—R-(mxm-mf), (1.5)
ov 1—~ 1-— .
E—i—v Vv = —Vp+R—Av+ 5o V(D : (mmmm)y )+DeR (V-1 4+ F9),
where
LQDe LQDG
NPl Ty
The system (LLT)) has the following energy dissipation relation:
d/ 1,
_E</ Zv] dx+D - A.[f])
_ [ - D2y LY ,
/ ReD D+ 5Re ((mm : D)”) 4+ Do 2Re<RM€ Rie)
+——— (Ve - (yymm + v, (I — mm)) - Vp )dx, (1.6)

62 Re

where
1
Alf] = / f(x,m,t)(In f(x,m,t) — 1) + §U€(X, m, t) f(x, m, t)dmdx.
S2
We refer to [25] 23] for the numerical study and the well-posedness of the system (LH]).

1.2. The Ericksen-Leslie theory. Ericksen-Leslie theory [6, [I0] is an elastic continuum
theory. The liquid crystal material is treated as a continuum and molecular details are
entirely ignored, and this theory considers perturbations to a presumed oriented sample.
FElastic continuum theory is a very powerful tool for modeling liquid crystal devices.

The configuration of the liquid crystals is described by a director field n(x,t). The hydro-
dynamic equation takes the form

ov v 1—7
E“‘V Vv = —Vp—l— EAV—FFV‘O', (17)

where the stress o is modeled by the phenomenological constitutive relation:
o=ocl 40"
Here o* is the viscous (Leslie) stress

ol = a1(nn - D)nn 4+ aonN + asNn + a4D + asnn - D + oD - nn (1.8)
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with
On 1
N=—+v-Vn+Q-n, Q==(s7 —k).
ar " * gk = #)
The six constants aq,--- ,ag are called the Leslie coefficients. Parodi’s relation [19] gives a
constraint for Leslie coefficients: g + a3 = ag — . While, o is the elastic (Ericksen) stress

ovm) (Vn)T, (1.9)

where Er = Ep(n,Vn) is the Frank energy. The dynamic equation for the director field is
given by

nx (h—~N-1D-n)=0, (1.10)
where v1 = asg — as,v2 = ag — a5, and h is the molecular field
po 0B _ g 9Bk OEr
on d(Vn) On
In this paper, we will consider Fr = % Jo IVn(x)[?dx. In this case, we have
h=kAn, of = —kVno Vn=—k(V;npV;np)3x3. (1.11)

The energy dissipation for Ericksen-Leslie equation is given by

d Re 2
—&(/972(1_7)1\4 dx + Ep)

g 3
:/ ( Vv + (01 + )P omf’ +0uD D
Q - 1

2
1
Has +ag — 2)D -nf2 + —|n x h|2)dx. (1.12)
71 Y1

We refer to [5] for a derivation of (I.I2]). Concerning the mathematical study of the simplified
Ericksen-Leslie equation, we refer to [I11, [12] 13 [14] and references therein.

1.3. From the Doi-Onsager theory to the Ericksen-Leslie theory. Two kinds of the-
ories were put forward to investigate the liquid crystalline polymers from the different points
of view. The Ericksen-Leslie theory is phenomenological in nature, and will be become invalid
near defects where the director cannot be defined. The Ericksen-Leslie equation contain six
unknown parameters called the Leslie coefficients, which are difficult to determine by using
experimental results. Especially, whether the energy defined in (IL.I2]) is dissipated remains
unknown in Physics. Hence, it is very important to establish the relationship between two
theories.

Kuzuu and Doi [9] formally derive the Ericksen-Leslie equation from the Doi-Onsager
equation (LIJ), and determine the Leslie coefficients. However, the Ericksen stress is missed
in the homogeneous case. E and Zhang [5] extend Kuzuu and Doi’s formal derivation to the
inhomogeneous case. To recover the Ericksen stress, they find that the Deborah number De
and the interaction distance /e should satisfy De ~ e.

Roughly speaking, Kuzuu and Doi shows that when the Deborah number is small, the
solution f of (L)) has the formal expansion

f=fom-n)+efi+--,
where fo(m - n) denotes the equilibrium distribution function satisfying

R - (Rfo+ foRUfy) =0,
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and n is determined by ([Z3]). E and Zhang shows that the solution (f,v) of (LI) has the
formal expansion

f=Jfolm-n)+efi+---,
V=vgtevyi+---,

where (vg,n) is determined by (7)) and (LI0]).

The main goal of this paper is to give a rigorous derivation of the Ericksen-Leslie equation
from the Doi-Onsager equation. This is a singular small Deborah number limit problem. To
justify this limit, we first make the Hilbert expansion for the solution of the Doi-Onsager
equation, then show that the error term is small in a suitable Sobolev space. The existence of
the Hilbert expansion is connected to the question whether the energy of the Ericksen-Leslie
equation is dissipated. We will show that the energy is dissipated for the Ericksen-Leslie
equation derived from the Doi-Onsager equation. The error estimates rely heavily on the
spectral analysis of the linearized Doi-Onsager operator around the critical point, which
includes

1. Give a complete classification for all critical points h of A[f], which satisfies
R - (Rh+ hRUR) = 0.

2. The spectral analysis of the linearized Doi-Onsager operator G, around a critical point
h defined by

Gnf=R- (Rf +hRUS + fRL{h).
3. Establish a precise lower bound for the bilinear form <g,§ M f > with

gﬁsz-(Rf—l—hRZ/laf—i-fRUh), Zfz%—kugf.
The first point has been given by the second author and coworkers [I5]. The second point and
the third point are completely new. To prove the second point, we introduce two important

auxiliary operators Ay, and Hj, defined by

Anf=-R- (h'Rf), Hy = % +Uf.
It is easy to see that G, = —ApHp, and Hj, is self-adjoint. Then we reduce the spectral

analysis of Gy, to that of Hy. The proof of the third point is very subtle. Since the orthogonal
structure is destroyed when e # 0, the interactions between the part inside the kernel of Gj
and the part outside the kernel become very complicated. To prove a lower bound, we find a
coordinate transform and introduce a generalized kernel space of G; (this is a five dimensional
space called the Maier-Saupe space) such that the interactions between two parts can be seen
explicitly by a delicate argument of completing the square.

With the above preparations, it is still not enough to complete the error estimates in the
inhomogeneous case. When € # 0, we can only get a strong lower bound of <QZ fiH f > for the
part outside the Maier-Saupe space, and a weak lower bound for the part inside the Maier-
Saupe space. In order to apply them to the error estimates, we have to analyze the nonlinear
interactions between two parts for the singular term like %(f R,at(f_lo)fR> and introduce a
suitable eriergy functional. Since we have no decay in € for the part of fr inside the kernel,

the term 1(f R,at(f—lo) fr) seems to have an order 1(Very singular). Surprisingly, we will

show that it is bounded.
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We believe that the spectral information of the linearized operator will be very important
to study the other problems like the nonlinear stability and instability of the critical points.
These will be left to the future work.

2. PRESENTATION OF MAIN RESULTS
2.1. The homogeneous case. We consider the homogeneous Doi-Onsager equation

IR (RF* 4 FRUF) ~ R(m x (D~ 9) -mf?). 2.)

Here D = %(/ﬁ +r7),Q = %(HT — k), and ¢ is the Deborah number. The corresponding stress
tensor ¢° is given by

1 1
ot = §D : <mmmm>fs — E<mm X ’R1w€>fE (22)

with 4 =In f€ + U and Uf = a [ |m x m’|? f(m’, ¢)dm’.
In the homogeneous case, the Ericksen-Leslie equation is reduced to

nx(%—?JrQ-n—AD-n):o, (2.3)

together with the stress o given by
ol = aj(nn - D)nn + asnN + asNn + a4D + asnn - D + agD - nn. (2.4)
Our main results are stated as follows.

Theorem 2.1. Let hyn be a stable critical point of A[f], and n(t) be a solution of (2-3) with
the initial data ng € S* and X given by
(3(m-mn)*—1)

dug

<90W>h,7,n

and go is a solution of ({-8). Assume that the initial data f§(m) € H*(S?) with [s, f§(m)dm =
1 takes the form

hn,n

(o) = , ug =Uhyn, (2.5)

3
£5(m) = Ry g (m) + Y &* fi(m, 0) + £ 5 (m),
k=1
where fi.(m,t)(k = 1,2, 3) is determined by Proposition[6.1, and f§ o(m) satisfies || ff oll -1 (s2) <
C. Then for any T > 0, there exists an €9 > 0 such that for each 0 < € < gq, the solution
fe(m,t) of (21)) takes the form
3

fe(m,t) = hn,n(t) (m) + Z 5kfk(ma t) + 52ff€(ma t),
k=1

where fr(m,t) satisfies
IfR@Or1(s2) <C forany tel0,T].
Remark 2.1. The Ericksen-Leslie equation (2.3) is equivalent to
on

E—I—Q-n—)\(l—nn)D-n:O.

It is easy to show that it has a unique global solution.
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Let Sy = (P(m - n))

hyn and Sy = (Py(m - n))y, ., where P(x) is the k-th Legendre
polynomial. We take the Leslie coefficients aq, - - - , ag in the definition of o as follows
Sy 1 1 1
a1 :—7, a9 :—5(14- /\)Sg, 043:—5(1—X)52, (2.6)
4 ) 1 6 1 1
- - _“gq _ S =_S,+=5 = =54 —=5. 2.7
Q=9 T o P2 T gptl @5 74-1-72, A6 = 04— 202 (2.7)

Then we have

Theorem 2.2. Let p(t) = —%D :nn. For any T > 0, there exist an €9 > 0 such that for
each 0 < € < gq, there holds

|0%(t) — oL (t) — p(t)I] < Ce  for te€0,T].

2.2. The inhomogeneous case. In order to derive the Ericksen-Leslie equation with the
Ericksen stress, we have to consider the system (LBl with De = e. For the simplicity of
presentation, we will consider the case when the translational diffusion coefficients vanish.
Then the non-dimensional Doi-Onsager equations takes

=

1
U e ovfe = LR R+ fRUS) Rt omp), (28)
ove 1-
a‘; +vE-VVvE = -Vp° 4+ — e T AV + Wv ( De: <mmmm>f5)

1 - e e
+ Re (V Tt Fs)? (2'9)
where K° = (Vva)T D = I (k* + (r°)T), and
(mm X Rye) fe —(Vie)se,  pe=Inf+US,

U.f = / / a/m x m |2 (X X )f(x',m',t)dm’dx’
2 Ve
We also require that the Fourier transform of g satisfies

0<g(€)<1 for €#0, §'(0)<0.

Now we can derive the full Ericksen-Leslie equation

n x (h—le—wD-n) =0, (2.10)
8v 1-

where 71 = ag—aa, 2 = ag—as, h = kAn, N = W—kv'Vn—i—Q-n, D= %(VV—F(VV)T),Q =
%(VV — (VV)T), and o = ol + oF with
ol = a1(nn - D)nn 4+ aonN + asNn + a4D + aznn - D + oD - nn,
E = kVno Vn.
Our main result is stated as follows.
Theorem 2.3. Let Q = R® and h,yn be a stable critical point of A[f], and let (n,vo) €
C ([0, T]; H®(R)) be a solution of (Z10)-(211) on [0,T] for some T > 0 with the initial data

(ng,vo,0), A given by (Z4), and Leslie coefficients defined by (2.8)-(2.7). Assume also that
there exist constant vector ¢ € S* and constant co € (0,1) such that

In(x,t) x ¢| > o for any (z,t) € 2 x[0,T]. (2.12)
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Assume that the initial data (f§(x,m),v§) with [o f§(x,m)dm =1 takes the form

3

fo(x,m) = hn,no(x)(m) + Zekfk(X, m,0) + 53f16~2,0(xa m),
k=1

2
vi(x) = Z e*vio(x) + 530%70(x),
k=0

where (fl,fg,f3,V1,V2) is determined by Proposition [7.1], and (ff%’o(x, m),viw(x)) satisfies

I fRollm2@xs2) + IVRollH2(0) £ C < 400, |[fRoll2(xs?) < Ce.

Then there exist g > 0 such that for each 0 < € < g, the system (2Z38)- (Z29) has a unique
solution (fa(x,m,t),va(x,m,t)) on [0,T] which takes the form

3

fE(x,m, 1) = Ry o) (m) + Z e fr(x,m,t) + 3 f5(x, m, t),
k=1

2
vi(x,t) = ) efwi(x, 1) + Evi(x, 1),
k=0

where (ff%,v‘j%) satisfies
(5,62 V 7,62 AfR) O r2(xgzy T [ (Vi eVVR, 2AVE) ()] 12 () < €
for any t € [0,T].

Remark 2.2. The non-degenerate assumption (ZI12) allows us to construct a global coordi-
nate transformation, which is the key to establish a lower bound of a bilinear form associated
with the linearized operator in Section 5.

Remark 2.3. We will study the existence of the solution for the full Ericksen-Leslie equation
in a separate paper. We refer to [12] for the simplified Ericksen-Leslie equation.

3. CLASSIFICATION AND STABILITY OF CRITICAL POINTS OF ENERGY FUNCTIONAL

We consider the homogeneous energy functional A[f] defined by
1
A = [ (rm) o fam) + 5 o)t o) dm
for f € L?(S?). We define

Pos?) = {we 226 [
S2

We are concerned with the local minimizer of A[f]. That is, we find all h € L?(S?) such
that

o(m)dm = O}.

Alh + e¢] > A[h]
for all ¢ € Py(S?) when ¢ is small enough. Taking a formal expansion, we find that

¢

Alh+e¢) = AR + e{Inh +Uh, ¢) + e2<ﬁ +UB, P) + O(e?).

This motivates us to introduce the following definition.
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Definition 3.1. We say that h € L*(S?) is a critical point of the energy functional A[f] if

SA[f] B B
szh =Inh +Uh = const.
A critical point h is said to be stable if for any ¢ € Po(S?), there holds
<% +U, ¢) > 0.

It is easy to see that if h is a critical point of A[f], then h is a solution of stationary
Doi-Onsager equation

R - (Rh + hRZ/lh) =0. (3.1)
A complete classification for all critical points of A[f] was given by Liu, Zhang and Zhang
[15]; see also [3| [7], 24].
Proposition 3.1. All the critical points of A[f] take the form
en(mmn)?
PGNP
where n is an arbitrary unit vector, and n = n(«) is determined by the equation

3e'l n?
—— =342n+ —. 3.2
fol en??dz 7 « (3:2)

hipn(m)

Furthermore, we have

e Forallaw>0,n=0(ie h= %) 1s always a solution.
o Fora < a* = 6.731393, n = 0 is the only solution. While for o = o, there is another
solution n = n*.
e For o > o, besides n = 0, there are exactly two solutions n = n1(a),n2(a) satisfying
= () >n* > m(a), limg o (@) = limg o m2(a) = 7*;
— mi(a) is an increasing function of «, while na(c) is a decreasing function;
- 7]2(7.5) = 0.

Except the monotonicity of n(«), the others have been proved in [I5]. The monotonicity
will be proved in Lemma
Concerning the stability of the critical point, Zhang and Zhang [22] showed

Proposition 3.2. h = % is a stable critical point of A[f] if and only if « < 7.5; If a > o,

hy, n is stable, while hy, o is unstable.

Let us conclude this section by collecting some properties of the rotational operator, which
will be used throughout the paper. Let m € S? and V,, be the gradient operator on the unit
sphere S?. The rotational gradient operator R is defined by

R=mXx Vp.
Let (6, ¢) be the sphere coordinate on S?. Then R can be written as

R =(—sin ¢i + cos ¢j)9p — (cos 6 cos pi + cos 0 sin ¢j — sin Hk)%&b
sin

LR +jR2 + kRs.

The following properties can be easily verified.
1. R-R= Agz;
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2. Rimj = —ekm,., where m = (mq, mg, m3). If u is a constant vector, then
Rm-u)=mxu, R-(mxu)=-2m-u;

3. [Rj, Ri] = €9*R;;

4. Jee Rfifodm = — [oo fiR fodm;

5. [R,U] = 0.

Here Age is the Laplace-Beltrami operator on S?, €% is the Levi-Civita symbol.

4. SPECTRAL ANALYSIS OF THE LINEARIZED OPERATOR

We linearize the Doi-Onsager equation R - (Rf + fRUSf) = 0 around a critical point h.
The linearized Doi-Onsager operator Gy, is given by

Guf ¥R (Rf +hRUF + FRUR). (4.1)
We denote by H*(S?) the Sobolev space on S?, and HE(S?) = H%(S?) N Py. Gy, is a bounded
operator from H?(S?) to L2(S?), and has the discrete spectra.This section is devoted to
studying the kernel and spectra of the linearized operator G, . These information will play
a vital role in the study of small Deborah limit, and will be very important in the study of
nonlinear stability and instability of the critical point.
When h is a trivial critical point hg = ﬁ, the linearized operator Gj, is reduced to

Grof = e (f + 1-UT).

Proposition 4.1. The eigenvalues of Gy, are \p = —k(k+1) (fork # 2, k> 1) and —6+ %O‘,
and the corresponding eigenfunction is the spherical harmonics Yy, o of degree k. Specifically,
Gho has a positive eigenvalue if and only if o > 7.5.

Remark 4.1. The critical value 7.5 is consistent with that in Proposition [3.2 deduced from
the energy stability analysis.

Proof. Let ¢ be an eigenfunction of G, associated with the eigenvalue A, that is,

Gno¥ = .
We choose the spherical harmonics {Y3 ¢}1<¢<5 of degree 2 as
1
Yl = (m% — m%), Y2 = m% — g, YE), = mimsy, Y4 =mims, Y5 = maoms.
Then we make a spherical harmonics expansion for 1):
5
Y = ZMiYi + Z Pk 0 Y - (4.2)
i=1 k#2,0
We have
AUy = —aR-R [ (m-m')*)(m’)dm’
S2
= —2aR- [ (m-m')(m x m')y(m’)dm’
SQ

== 07 m-m/2 m/ m/.
= 6o [ (mem)u(m)d
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Hence,

A

3
Ag21) + % /Sz(m -m’)%(m’)dm’

= Ag¢ + z—:miij,-- (4.3)

with M;; = [c mym;(m)dm. Noting that
Ag2 Yy = —k(k + 1),
and plugging (4.2]) into ([4.3)), we find that
Mg = —k(k 4+ 1)y 0.

This implies that

AN=—k(k+1) or pg,=0.
Hence, if A > 0, then pj, = 0 and we have

5
d(m) =Y Y.
i=1

Then it follows from (43 that

5
(A+6) Z piYi
i=1
3a [ 1., 3., , , S T
=5 /. (Y11 + 5YaY5 + 253 + 2Y4Y] + 2¥5Y5 + ) > piYidm
i=1
3o 1 2,3 2 2 2 2
= % - (§M1Y1Y1 + §M2Y2Y2 + 2M3Y3}/3 + 2M4Y4Y4 + 2M5Y5Y5 )dm
A direct computation shows that
167 167 4
Vidm = — Yidm = —— Vidm = —
o 1T e 2T e [, T
which implies that
dor, &
(A+6-—) D mYi=0.
i=1
Hence, \ = %‘J‘ — 6. Specifically, Gy, has a positive eigenvalue if and only if o > 7.5. O

When h = hy, n(i = 1,2), the problem becomes more complicated. Kuzzu and Doi [9]
conjectured that all the eigenvalues of G;, are non-positive, and Ker G, = {@ -Rh,©® € R3}.
Here we will give a rigorous proof of Kuzzu and Doi’s conjecture when h is a stable critical
point. Let us introduce an important operator A, defined by

Anp R - (hRe)

The operator Aj, has the following properties:

Lemma 4.1. The operator Ay, is a one-one mapping from HZ(S?) to Po(S?). We denote by
At its inverse. Then it holds that

-Ah = A;kn <Ah¢7 ¢> > 07 <A}:1¢7 ¢> > 0.
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Now we introduce another important operator H; defined by

thd:ef£+uf.

We have the following important relation:
Gnf = —AnHnf. (4.4)
Basically, we can reduce the spectral analysis of Gy to that of H,.
Proposition 4.2. If h is a critical point of A[f], then Gh Ay is a symmetric operator and
(G, Ay 6) = —(Hnto, 8) = (G, Ay ).

Moreover, if h is a stable critical point of A[f], then G, Ay, is a non-positive operator, and Gy
has only non-positive eigenvalues.

Proof. The identity follows from (£4]). Since h is a critical point, we have by ([B.1) that
App=—hR-R¢$p —Rh-Rp=—hR-Ré+ hR(UR) - Re.
Then for any 1, ¢ € H%(S?), we have
(GrARY, ¢) = —(RARY + hRUARY + A RUK, Ro)
= —(RAW + A RUR, RY) + (UAY, R - (hR))
= (A, R-Rp — R(UK) - Ro) — (UAY, Apd)

= (A, T10) — (U, M),
Specifically,
(GnAnt. 6) = —(And, 18 1 Ut

This means that G, A;, is a non-positive operator if h is a stable critical point. Furthermore,
if ¢ is an eigenfunction of G, associated with the eigenvalue A, then we have

0> (GrAnAy 6, Ayl d) = (Gno, Ay 0) = Mo, Ay ).
Hence, A <0. O
Now we establish a lower bound of the operator Hj,.

Proposition 4.3. Let hy = hy, n. For any f € Py, there holds
<7'[h1 f7 f> > 07

and the equality holds if and only if f € Span{Rihl,i = 1,2,3}. Moreover, there exists a
positive constant cg depending only on n1 such that if f satisfies

/S 2 f(m) A, "Rhydm = 0,

then we have a lower bound

<Hh1f7f> > CO<f7f>'

We need the following key lemma.
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Lemma 4.2. Let n = n(a) be determined by (3.2), and define Ap(n) = f_ll 2% dz. Then
there hold

A]H_g ? — (k + 1)—, AO = a(A2 — A4)

Moreover, 6%5;7) > 0 when n > n*; 60(") < 0 when n < n*.

Proof. The first equality can be easily verified by integrating by parts. While, the relation
[B2) is equivalent to

6ae” — (3 + 2n)ady = 4n? Ay <= Ay = a(Ay — Ay).

In order to prove the second statement, it suffices to show that the equation 60(") =0 has

only one root, since %n) = 0. We have

% (e_” (AO(A4 — Aﬁ) — AQ(AQ — A4)))

2 o / / r y4 + :1:4y2 6 yﬁ + ot y4 o 2$2y2)en(x2+y2—1)d$dy
n

=3 / / —(z? —9*)*(1 — 2 — y2)2e’7(x2+y2_1)dxdy < 0.
—1J-1

Hence, Ag(Ay — Ag) — A2(Ay — Ay) = 0 has only one root. Then from the fact that

da(n) _ ( Ap )’ _ As(Ay — Ay) — Ao(As — A)
on Ay — Ay (Ag — Ay)? '

a01(17)

we know that = 0 has only one root. g

Proof of Pr0p051tion Without loss of generality, we may assume n = (0,0,1). Intro-
duce the sphere coordinates (0, ¢) € [0,7] x [0,27] with m = (sin 6 cos ¢, sin 0 sin ¢, cos 6).
Hence,

e77(Cos )2

) = e a

We make a Fourier expansion for f with respect to the variable ¢:

f=ao(0 +Z ar(0) cos(k¢) + by (6) sin(kg)).

k>1

Noting that the area element dm = sin #dfd¢, we make a change of variable z = cos 6 to get

<L, f> = /S2 en(cos0)? 4 e_"°°S26<a(2) + % Z(ai + bi))dm

h 2
nn S k>1

= 27‘(2(/11 e’722dz> . </_11 e_"ZQ{Qa% + Z(ai + bi)}dz).

- k>1
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Routine computations show that
wr.)==a [, [ (mm ) f)dmdn
S2 J§2

=—a 23: </S2 mimjf(m)dm)2

ij=1
1 1 1
:—2a7r2{(/_1(1—z2)a0dz)2—1—2(/_1 z2a0dz)2+ (/_1 Z\/l—zzaldz)2
1 1 1
+ (/_12\/1—22b1d2)2+i(/_l(l—22)a2d2)2+i(/_1(1—22)b2dz)2}.

We use Lemma and Cauchy-Schwartz inequality to get

N 1 ) 1 )
2772(/ e’ dz> . (/ e ? a%dz) - 2a7r2(/ V1= 22a1dz)
—1 -1

-1

= 2a7r2</1 " 22(1 — 22)d2> . </1 e_"z2a%dz> — 2a7r2</1 21— 22a1d2)2 > 0.
0 —1

-1

Moreover, the equality holds if and only if a;(2) = Ce"* 2/T = 22 or 0 for some constant C.
If a1(z) satisfies f_ll " 2/T — 22a,(z)dz = 0, then

</01 e"z2z2(1 - z2)dz) . (/_11 e_”ZQa%dz) - </_11 21— z2a1dz)2
= (/01 en2222(1 - zz)dz) . (/_11 e_"z2a%dz) - (/_11 zV1—22(1— Ce"ZQ)a1d2>2
> </01 el (z2(1 — 2221 -2H0 - Ce"z2)2)dz> . </1

)
e " a%dz)
-1

1

= (/01 e27722z2(1 —2%)(2¢ — Cze"ZQ)dz> : (/_1 e_"'zza%dz)
> ) [ ata (45)

-1

if we take ¢ small enough. We denote

1
Wa(n) = / (1= )52 - 1

which is positive for n > 0 by noting that

1 2 1
Wi(n) = /_1(6772 —e"5)(1 — 2?)(52% — 1)dz > 0.
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By Lemma .2 and Cauchy-Schwartz inequality, we get
1

27T2</1 e"z2dz) . (/1 e_"z2a%dz> - %om2</ (1- z2)a2dz)2
-1 -1 -1

1

= 204712(/01 e’72222(1 - Zz)dz) . (/_1 e_"'zzagdz) - %OMTz(/_ll(l — 22)a2d2>2
= %()471'2</1 e"z2(1 - z2)2dz) . (/1 e_"z2a%dz> - %om2</l (1- z2)a2dz>2
0 1 1

1

1 1
+§a712W1(n)/_1 e_"'zza%dz > co(n)/_l a3dz

for some co(n) > 0.
In the following, we take n = n;(«) for a > a*. By Lemma [L.2] we have

- 8&(7]) . AQ(AQ — A4) — A()(A4 — AG) . 3A% + 2A0A9 — 5A0A,
on (Ap — Ay)? 2n(Agy — Ay)? ’

which implies that

0

3(AgAy — A3) < 240(Ay — Ay).

Then using the fact f_ll apdz = 0 and Cauchy-Schwartz inequality, we infer that

1

(/_11(1 - 22)a0dz)2 + 2(/_1 z2a0dz)2
= </11(j—z — z2)a0dz)2

< 3(/1 e"ZQ(j—i - z2)2dz> : (/1 e_”ZQa%dz)
0 -1
=3(4i - j_f> /1 e agdz
-1

1 2 1 2 1 2
o —7722 2 _ “ nz . —nz© 2
< 2(Ag — Ay) /_1 e 7 agdz - < /_1 e dz) (/_1 e aodz),

which implies that
1 1

%(/_11 e"zzdz> : (/_11 e‘”zzagdz) - (/_1(1 - 22)a0d2>2 — 2(/_1 22a0d2>2

1
>co(n) / ) agdz  for some co(n) > 0.

Summing up all the above estimates, we conclude that if n = n;(a), then

(Hn fo f) = / f>+<Uff>>00(n)Z/la2dz
140 h ) ’ - 1 k )

7,0 k£17 ™

and hence,

< f

71,1

)+ Ut f)=0
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if and only if f is of the form C12v/T — 226" cos ¢ + Ca2v/1 — 22¢"*” sin ¢, which belongs to
span{Rihmn,i =1, 2,3}, since we have

Rhyn =2n(m X n)(m - n)e"(m'“)2 = 21)(sin @ sin ¢, — sin  cos ¢, 0) cos e’ cos” 0

=2n(sin ¢, — cos ¢,0)zv/1 — 22eM7

This proves the first statement of Proposition [£3l To obtain a lower bound of Hp,, we
decompose g into

f=Ffi+f f1€ span{R;hi,i=1,2,3}.
If g satisfy [ f(m)Aglthldm = 0, then we have

/82 fl(m)A,;lfldm = — /S2 fg(m)Agllgldm,
which implies that
<f17f1> < C<f27f2>7

since (f1, f1) ~ <f1,.A;11f1>. This together with (435l and (6] gives

<Hh1f7f> = <Hh1f27f2> > CO<f27f2> > CO<f7 f>
The proof is finished. U

We define KerGy, , ' {¢ € H3(S?) : G, .0 = 0}.

Theorem 4.1. Let h; = hy, n,i = 1,2. For a > o, it holds that

1. Gn, has no positive eigenvalues, while Gy, has at least one positive eigenvalue;
2. KerGy, = {G) -Rh1;0 € R3} is a two dimensional space;
3. If ¢ € KerGy,, then Hp, ¢ = 0;

Proof. Since h; is a stable critical point of A[f], Gy, has no positive eigenvalues by Proposition
From the proof of Proposition @3] we know that there exists g € Py(S?) such that

(Hnyg.9) < 0. (4.7)

Assume that all eigenvalues {\;} of Gy, are non-positive. We denote by Ej the eigen-
subspaces of Gy, corresponding to Ag. Then for ¢y € Ey, ¢y € Ei(k # {), we have

Mot Apt o) = (Gobw, Al e) = (Gbe, Al o) = N, Ayl ).
Hence, (Y, A,_L;"L/@ =0 for k # ¢. We write g = >, 1, with ¢, € Ej. Then

<Hh297g> = —<gg7-f4;:219> = - Z)\k<¢k7-f4;;¢k> > 07
k

which leads to a contradiction with (£1). Thus, Gy, has at least one positive eigenvalue.
If ¢ € KerGy,, then Hp, ¢ = constant. Hence, (Hp, ¢, ¢) = 0, and then ¢ € Span{Rihl,i =
1,2,3} by Proposition On the other hand, if ¢ = Rhy, then we find
Hh1¢ = R(lnhl +Z/{h1) =0.

This proves KerGy, = {G) -Rh1;0 € R3} and the third point. Due to n - Rh; = 0, KerGy,
is a two dimensional space. ]
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Finally let us give a characterization of the functions in Kerg;;71 .+ see also [@.
Proposition 4.4. If ¢y € Kerg;;71 .+ then 1o takes the form 0,9)
o0, ¢) = O - eygo(cos ),
in the spherical coordinate, where ey = (—sin ¢, cos ¢,0) and go satisfies

1 d < . dgo) 90 dug dgo dug
S11

sn0aa\"M%0) TS50 a0 as T ao (4.8)

Proof. Note that Kerg;in1 = A,_Lnl Kergh,71 .- Hence, vy € Kerg;in1 if and only if there
,n 1,0 > n
exits a vector ©® such that

R - (hnyy nRtbo) = © - Rhp,,, o
which is equivalent to

R - Rl/)o — RU() . R¢0 =-0- RUQ, (4.9)
where uy = Uh,), » is a function of m -n. We take 6 be the angle between m and n, and
rewrite ([49) in terms of in the spherical coordinate (6, ¢) as

2
1 0 ( . 981/10) i 1 0 1/1() duo a¢0 - _0 duo

sin 0 00 o0 sin2f 9 40 00 - °Pag-
We rewrite ¢y (6, ¢) as

Yo(0,¢) = © - egg0.
Then it easy to find that gy satisfies (LS]). O

5. LOWER BOUND OF A BILINEAR FORM FOR THE LINEARIZED OPERATOR

In the inhomogeneous case, the linearized operator G; around h is given by
G.f=R- (Rf—l—hRZ/{Ef—i-fRZ/{h).

To justify the small Deborah number limit for the inhomogeneous system, the main difficulty
is that the elastic stress in the velocity equation is strongly singular(a loss of %) To overcome
it, we have to establish a precise lower bound for the following bilinear form:

/
When ¢ # 0, the orthogonal structure is destroyed such that the interactions between the
part inside the kernel and the part outside the kernel of G; become very complicated. We
find a coordinate transformation and introduce a generalized kernel space of G; such that the
interactions between two parts can been seen explicitly, then a lower bound is obtained by

very subtle calculations.

5.1. New coordinates frame. At each point x, we choose a right hand cartesian coordi-
nate frame (k;j(x), ka(x), ks(x)) such that k3(x) = n(x), and k;(x), ko(x) depend on n(x)
smoothly. For instance, under the assumption that |ni(x)| < 1 — ¢ for all x € Q, we can
take

Ko (x) — n x (1,0,0)" _ (0 ns B no )T
? Inx (1,0,0)7] — \7 (nd +nd)/2" (n3+n)H/2/

k1=k2><n=<(n%+n§)l/2,— -

ning ning >T
(n3 +n3)2" (n3 +n3)l/2
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At each point x, let (é, @) be the sphere coordinate on the unit sphere S?, that is,
m = sin 6 cos ¢k (x) + sin f sin ¢k (x) + cos Oks(x)
= A(x) - (sinf cos ¢, sin fsin ¢, cos )7,
where the matrix A = [k; ko k3]. We set
e; = —sinpky +cos pka, €5 = —(cos 0 cos ok + cos 0 sin pko — sin ékg).

We denote 1i1 = (sin 6 cos ¢, sin 0 sin 3, cos 0)7, hence m = A(x) - 1.
In this coordinate, the rotational gradient operator R = m x Vy, can be written as

) R R A 1 0
R = ( — sin ¢k; + cos ¢ks)— — (cos 6 cos pk1 + cos 6 sin ks — sin 0k - —
( ok ('02)89 ( Pkq Pko 3)sin9590
0 _cosf O 0 cosf & O .7
=A- (—sinp— — cos CcoSp— —sinp———, —) . 5.1
( (‘089 (psm@aﬁp (‘089 (‘DSinQ&P &P) (5:1)

We also have

af 1 of dg 1 dg
R Rg = (e;—= + e e,— +e;——=—
fRg= ( <p89 9sm06<,0) ( Y00 esinea(ﬁ)

df dg 1 9f 0g
:—A—A—F .
00 00  sin 9890890

(5.2)

5.2. The Maier-Saupe space and the lower bound inequality. For any f € L?(Q xS?)
with [o, f(x,m)dm = 0, we decompose it as

f=ao(x,0) + Z (ar(x, 0) cos kp + by (x, 0) sin k@), (5.3)
k>1
with ag(x,0) = ag(x,7) = bp(x,0) = b(x,7) = 0 for k > 1. We set
Jncos? 0
2mAg

We further decompose the coefficients ag, a1, as, b1, bs as follows

A = / e"COSQ‘g(COS 0)Fsin0dl, fo(h) =
0

ao(x,0) = Co(x) fo(0)(cos® O — Az/Ag) + 70 (x, ),
a1(x,0) = Co1(x) fo(0) sinfcos § + v,1(x,6),
b1 (x,0) = Cp1(x) fo(6) sin 6 cos  + 1 (x, 0),
az(x,0) = Caa(x) fo(0) sin? 6 + y,2(x, ),
by (x,0) = Cpo(x) fo(B) sin? G + v, (%, 6),

where the functions o, vq,1, - ,Vp2 satisfy

/ Yo(x, 0) sin #df = 0, / (3cos? 0 — 1)y0(x,0)sinOd = 0,
0 0

/ sin @ cos By,.1(x, §) sin fdf = 0, / sin 6 cos é’7b71(X, 6) sin 0df = 0,
0 0

/ sin? éva,g(x, é) sin #df = 0, / sin? éyb,g (x, é) sin 6dd = 0.
0 0
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Noting that

s . R . A2
/ fo(cos? 0 — Ag/Ag)(3cos? O — 1) sin fdh = 3 (Ay—=2) >0,
0 Ao Ag
hence (p is uniquely determined. Obviously, (4,1,- - , (3,2 are also uniquely determined. Thus,

the above decompositions make sense.
The space spanned by the following five functions

fo(B)(cos20 — Ay /Ag),  fo(B)sinBcoshcosp, fo(f)sinbcosfsinp,
fo(0)sin® O cos(2¢), and  fo(6)sin® 0 sin(2p)

can be viewed as a generalized kernel of the operator G;, and will be called as the Maier-
Saupe space. The kernel of G, is spanned by the second and the third function.
We denote

M(x) = [ rrfd, M(x):/ mmfdm:/ (A -1)(A 1) fdmm,
S2 Ng S2

Nij(x) = ApiAyj (ge * Myg),  No(x) = 2N33 — N1y — Nag,  Na(x) = N1 — Nao.

Proposition 5.1. (Lower bound inequality) Let hy(y, be a stable critical point of A[f].
Then there exits ¢ > 0 such that any f € H'(Q x S?) with Jez f(x,m)dm = 0, there holds

<Q;€me, Hin,nﬂ = c{ /Q/ (% + 72,1 + 7&?,1 + ’Yg,g + 75,2 + Z(ai +b7)) sin 6dhdx
0 k>3

+/Q ((2¢0 — alNo)? + (Cap — 2aN13)2 + (Gop — 2aN23)2 + (Ca2 — aN2)2 + (Cp2 — 04N12)2)dX}-

Remark 5.1. This inequality gives a good bound for the part outside the Maier-Saupe space,
and a weak bound for the part inside the Maier-Saupe space.
Remark 5.2. By letting € tend to zero, the lower bound inequality implies that

<ghn,7;f7 H0f> > C<7_[0f7 f>7 Ho = th,n’
which can also be deduced the following simple argument. Noting that H(KerGy, ) = 0, we
may assume that f € (KerGy n)J-, Then by Poincaré inequality and Proposition[{.3, we have

(Mof, AHof) > (RHof, RHof) > (Hof — Hof, Hof — Hof)

_ (Hof —Fof. 1)’
- 0D

ZC<H0f7f> Zc<f7f>7

where Hof = ﬁ fgz Hofdm.

5.3. Proof of the lower bound inequality. First of all, we can get by direct calculations
that

U-f = oz/Q/S2 ge(x —x')(1 — mm : m'm’) f(x/, m")dm’dx’
= —amm : / ge(x — x/)M(x’)dx/
Q

——a(A- ) (A1) [ g.(x—x)M()ax

= —amimjAkiAlj (ge * (A Alj'Mi'j,)) :
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For the simplicity, we denote fo = hy,n in what follows. Using (G.I)-([E3), we get by very
tedious calculations of competing the square that

f f

<gJ€"of7 H;of> - <f0R(% +u5f)772(% +uaf)>
<f0R(f amzijZ]) R(},f am;m; Nj )>
// fo‘a — anmm;Nyj ‘ dmdx+// — am;m;N;; ‘ dmdx
S2 s2 sin 9
/ / fo‘(? ) + a(2N33 — N1y —NQQ)SIDQCOSH‘ dmdx
fo a .
— fo‘(?é(—) — 2aNq3 cos 29| + (— — 2aNy3 511190059) dmdx
52 sin? 6 fo
// fo‘(‘) bl ) — 2aNa3 cos29| + fO (;—1 — 2aeNo3 sinécosé)2drhdx
2 0
2
// fo\a N11—N22)sm9c3089| 0292 (N - Ny sin? 0) dindx
sin26 " fo
// fg‘@ b2 2ozN1281n9c:os(9| + 4f0A(——olegsin29A)2dri1dx
52 sin? 4 " fo
k2 al +b?
+ = 94 + fold; (=57 + _—k 7k qrndx.
Z// fo‘ )| fo‘ lg(fo)‘ sin?@  fo

k>3
Making a change of variable z = cos f, we obtain
(G5, 1 15 )
— /Q/_ll Jo(1 — 22)(&(%) — a(2Ng3 — Ny1 — Nap)z) dzdx

1 1
+ 5/ / fo‘az(%)\/l—z2+2aN13(2z2 —1)‘2—1— T fozz (% — 2aN132v/1 —z2)2dzdx
QJ-1 0 - 0

1
1/ / fo‘ﬁz(ﬁ)\/ 1 — 22 + 2aNp3(22% — 1)|2 + 1 f022 (% —2aNo3zy/1 — 22)2dzdx
- 0

/ / f(] 1 — Z (f ) + Oé(Nn — Ngg) )2 + fO (@ — Oé(Nn — N22)(1 — 22))2dZdX

1—22" fo
// fo(1 —2%) ( )+2aN z) + 4fo (b — alV: (1—z))2dzdx
0 7 12 =2\ 12
ak k2 ak—H)k
+ = Z//fo‘a |—|—fo‘8 ‘ 20 T dmdx.

k>3

e Lower bound for the term including ag
To deal with the cross term, we need to introduce a slightly different decomposition

ao(x, 2) = Co(x) fo(2) (2 —A—i)wo(x,z),
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where 4 satisfies f_ll Jo(x,2)(32% — 1 — 2n2%(1 — 2%))dz = 0. From the fact that
1
/ fo(Agz? — Ag) (322 — 1 — 2n2*(1 — 2%))dz
~1
= 3(AOA4 — A%) + 277(A2(A2 — A4) — A(](A4 — AG)) >0

we know that (y are uniquely determined. Then we have

/Q/_ll fo(l—z2)|8z(;— — aNy(x ‘ dedx
= / /1 fol1 = 2%)(0. ’?o(;c, Z)))2dzdx+ (/ (26 _aN0)2dx></_11(1 _22)22f0d2>

_2/ (24060 (x) — aNo(x / a,( ZZ))fo(z)z(l—z2)dzdx

Z/Q/_lfo(l—z)(zfmxz ddX+(/Q 2CO_CYNO ></_11(1—22)22f0d2>

+2/(2Aoéo( ) — aNo(x )/ Yo(x,2) (1 — 322 4 2n2%(1 — 2%))dedx

// foll d.( ddx+(/Q 20y — aNp)” )(/_11(1—z2)z2f0dz>.

Recall that we have decomposed ag(z, z) as

Ay
ao (%, 2) = Co(x) fo(2)(2* — A_o) + 70(x, 2),
thus (o — (o) fo(2) (22 — ﬁ—i) = 40 — 70, which implies that

1
Co(x) — Co(x) = /_1 J0(32% — 1)dz/(3Ag Ay — 3A3).

Thus we have

/Q/_l1 fo(1 = 2%)(0. dzdx—// fo(1—2%) }—)—2A0((0—§0)Z)2d2dx

0 2 ~2
§C’// fo(1 =22 82(—)) + J5dzdx.
ol fo
Then we infer that

1
/Q/_l fo(l—=2 )\az(f — alNy(x ‘ dzdx
1

> c{ /Q /_11 fo(l — z2)(az(70(};, z)))2dZdX+/g (QCO _ OéNo)2dx/_1(1 _ z2)z2f0dz}
= C{/Q/_ll ’Yg+(3z70)2dzdx+/ﬂ(2®(x) —aN0)2dx}, (5.4)

where we used the following Poincaré type inequality in the last inequality:
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Lemma 5.1. There exists ¢ > 0 such that if v(z) satisfies

1 1
/ vdz =0, / (322 — 1)ydz = 0,
-1 -1

1
/ fo(1 = 2% (fo)) dz>c/_1’yzdz.

Proof. We define 7(m) = v(m - n). By the assumption, we know

then there holds

mmy(m)dm =0, Hey= €
52 Jo

Hence, 7 € (KerGy, )t and we have

u/juRHmv|mn—2w/’ﬁ31—z>(<;gfdz

Set C' = ﬁ | H s, 7dm. Tt follows from Poincaré inequality and Proposition 3] that

(Jio(Hsy7 — C)7dm)?
Jg2 7*dm

(fSZ Hp7) ’Ydm) >c [ 32dm = cdn? ' 24,
f d /7 ’7 )
s2 y°dm s2 ~1

/S2 folRH ;7[> dm > C/ (Hp7 — C)*dm > ¢

which completes the proof. ]
e Lower bound for the terms including a1, b;

Recall that we have a decomposition for a;(x, z) as

a1(x,2) = Ca1(x )2V1 =22 + 941 (x, 2),

where f_11 Zm%,ldz = 0. Thus, we can get
/ / 1_ 22 - = 20N13Z\/U)2dzdx
/ / %1 x) + (Cag1(x) = 204N13(X))Zm>2dzdx
// %1 d dx+/ (a1 (%) — 2N 3(x dx/ fo2(1 — 2%)dz. (5.5)

A lower bound for the terms including b; can be obtained in the same way.

e Lower bound for the terms including as, bo

We have decomposed ag(z, z) as

aQ(X,Z) - Ca72(x)f0(z)(1 - 22) + ’Ya,2(x7 2)7
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where fll Ya2(%,2)(1 — 22)dz = 0. Then we have

4
[ v

’ya72x,z) — aNsy(x — 22 ? zdx
Z/Q/_14f0 T+(Ca,2(x) Ny(x))(1 )) dzd

b yaa(x2)
= 2 —Ldzdx + [ (Ca2(x) — aNa(x dx fo 1- 22 (5.6)
-1 fo Q
We can obtain a similar bound for the terms including bs.
Finally, the lower bound inequality follows from (&.4]), (5.5) and (G.6]). O

6. SMALL DEBORAH NUMBER LIMIT FOR THE HOMOGENEOUS SYSTEM

This section is devoted to justifying the small Deborah number limit for the homogeneous
system (2.0). For the simplicity of notations, throughout this section we denote

hn — hn,ny gn = ghn7 An = -Ahna
11 = Ul 17l = Wl (0= [ Fom

6.1. Hilbert expansion. As in the fluid dynamic limit of the Boltzmann equation [I], we
make the Hilbert expansion for f¢(m,t):

3
Fm,t) = eF fi(m, t) + €2 f3(m, 1), (6.1)

k=0

Plugging it into (2.I]) and collecting the terms with the same order with respect to €, we find
that fi(m,t)(k =0,1,2,3) satisfies

Rfo+ foRUfy =0, that'is fo(m,t) = hyg(m), (6.2)
%Zgn@ﬁ—?@(mx;{-mﬁ]), (6.3)
N G o+ R (ARUR) R (mx - mfy), (6.4
U Guofs + R (RUS) + R (5RUF) ~ R (mx 5-mf). (65)

The global in time existence of the Hilbert expansion is nontrivial, since f; satisfies a
nonlinear equation. However, we find that the part of f inside the kernel of G, satisfies a
linear equation by Lemma

Proposition 6.1. Let n(t) be a solution of (2:3) on [0,T] with A given by (24). We can
construct smooth functions fi(m,t)(k =0,1,2,3) € Py defined on [0,T] such that (63)-([675)
hold on [0,T].

We need the following two lemmas in order to prove it.
Lemma 6.1. [ 5] Let fo(m,t) = hy(m). Then fo(m,t) satisfies

(P R (mx s -mfo), 0) =0 (6.6)

for any ¢ € KerGy , if and only if n(t) is a solution of (Z3) with A = A«).
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Lemma 6.2. For any ¢,<§ € KerGy, there holds
¢ = —hallp, (U)? ) =0.

Proof. For ¢ € KerG,, there exists ® € R3 such that ¢ = © - Rhy, by Theorem EIl Due to
Inhy = —Uhy,, we see that

Rhn = —hnRUIhy = —hnldRhy.

Hence, ¢ = —hnlUU¢. To prove the second equality, we choose the sphere coordinates such
that n = (0,0,1) and m = (sin  cos ¢, sin fsin p, cos ). Let ¢ = © - Rhy, for some © € R3.
Then we have

¢ = nhycosf Sin9(6)1 sin ¢ — O cos gp),

¢ = nhy cos O sin@((:)l sin g — O, cos 4,0).

It is easy to check that
27
/ (1 sin @ — O3 cos )2(0 sinp — O cos )dp = 0,
0

which implies that [, %jqzdm = 0, or equivalently ((Up)?,¢) =0 by ¢ = —hnldo. O

Proof of Proposition 6.1l Let us first solve f; and write f; = ¢(t) + ¢ (t), where ¢ €
KerGy, ¢ € (KerG:)t. Then ¢+ will be determined by (G.3)), while ¢ will be determined by
(4). However, (6.3) has a solution ¢ if and only if

9fo

<§+R-(m></i'mfo),w>20

for any ¢ € KerG};. From Lemma [6.1] this is equivalent to require that n(¢) is a solution of
@3) with A = A(a). Given ¢, ([G4) implies that ¢ satisfies

9 I+
(G ) = (R ((6+ " IRUG+ ") =R - (m x (k- m)(@ + 1), v) = (=0
for any ¢ € KerG};. Since KerG;, is a two dimensional space, we take 11,12 as a base of
KerG;, and write ¢ = a1 (¢)Y1 + az(t)2. Then we can get an ODE system for (aq(t), as(t)).

For any ¢ € KerG}:, we write ¢ = A~1¢ with ¢ € KerG. Due to Lemma[6.2] we find that
(R (6RUP),¥) = (R - (§RUS), Ay &) = —(¢§RUS, RAL'S)

R i1 ~
= (hUoRUS, RAL 6) = - (R[UG)*], nRAL'S) = o (W), &) = 0.
This means that (a1 (t),a2(t)) satisfies a linear ODE system, hence is global in time.
Once fi is determined, we can get fo and f3 by solving (6.4) and (6.5]) in a similar way
(note that the equation for f; is linear). O

6.2. Error estimates. This subsection is devoted to proving Theorem 2.1l Due to the weak
nonlinearity of the kinetic equation (Z), given the initial data f§ € H'(S?), it is easy to
show by standard energy method that there exists a unique global solution f¢(m,t) to (21
such that

fe € ([0, +00); HY(S*)) N L*(0,T; H*(S?))  for any T < +oo.
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Thanks to Proposition 6] and (Z1)), it is easy to find that fj satisfies

TR0, 0) = 20nff R (1 x 5o mF) + <R - (RRUST)

3
+ ) ETIR (fiRUSR + fRRUS) + €A, (6.7)
i=1

where A is given by

A= %fg + > EHTR(ARUS).

1<1,j<3,i+j=>4

To complete the proof, it suffices to prove that
lfe®)]-1 <C forall 0<t<T. (6.8)
For this purpose, we need the following lemmas.

Lemma 6.3.
[ 8
ot’

Proof. Direct calculations give that

9fo

A g(m, 1) = A;'R - <8t

R(AZ g)).

é(Ang) =- QR - (hnRg) = =R - <%'Rg) R <hn'R@>

ot ot ot Ot
Ohn dg
=R <at g)“‘“‘@'
Replacing ¢g by A, g, the lemma follows. O

Lemma 6.4. For any vector field V € C1(S?), there holds

(R-(VE), AT ) < C(IV]so + RV o) (f, AZLf).

Proof.Let V = (V4, Vo, V3)T, Rf = (R1f, Raof, R3f)T, and g = A,'f. Recalling Anf =
—R - (haRf), we get

(R-(VF), A\ f) = — (Ri[ViR;j(haR;9)], 9)
= — <hnRjg, (R] ) ig + ViRjRig>
= — (hnR;g. (R;Vi)Rig — Vi""Ry.g) + (hnRjg, ViRiR;g)
= = (haRjg, (R; Vi) Rig — Vi Ryg) — %(Rxhnvi), (Rj9)*),

which implies the lemma by using the fact that
[Rgl2 < Cllfl-1 < C(F, ARYS).

The proof is finished. O
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Now we are in position to prove ([G8]). With the help of Lemma [63, we make the energy
estimate for (B:ZD to obtain

d_<fR7 1f}E%>

0
= (o o AT )+ 5 (An R (SRORAT 7). )
§<gnfR, 2 R — (R (o kmfR), AL f7)

NI)—t

3
+(eR - (FRRUSR), AL ) + Y e (R (FIRUFR + fRRUS), AL fR)
=1

ve(A AR 3 (DR (AT ), RAG R,

Since hy, is a stable critical point, we know from Proposition that
(Gnfi An' fi) = = (HufR [R) < 0.
We infer from Lemma [6.4] that
—(R-(mx r-mfR), Ay fR) < C(fR AL fR),
(R (FRRUSR) AZ'f7) < Celf AL fR)*,
(R (fRRUS), AG fR) < Ol fill -1 (R AT ),
while the other terms on the right hand side are bounded by

[NIES

3
(DM il + 19ufola ) (fs AT F7) + el All-1(f7s AR f5)
i=1

(NI

Here we use the fact that ]Rkblffz\oo for k € N can be bounded by <f}52, lfR>

1
(f5 Axtfi)? ~ |Iffll=1. In conclusion, we obtain

d
FIRIZ < CAUFRIZ + llfRIE: + el fRl-)-
This implies (G.8]). O

6.3. The Lesile stress and coefficients. This subsection is devoted to proving Theorem
We introduce the 2-order tensor Qq[f] and 4-order tensor Q4[f] as follows

Qalf] = (mm — 21) .

1
Quapyulf] = <mam5mymu - §(mam55w + My Mydag + Maty g, + MEMyday

1
iy Sy + M Gas) + o= (Bagdye + SO + 5auagw)>f.
Lemma 6.5. It holds that
1

Qz[hn] = (P2(m - n))p, (nn — 3)

1
Quasrullin] = (Pa(m - 1), (mamsnom, = =(ramsdsy + nymudas +nansds,

1
+nsnu0ay + Nanudpy + ngnqdap) + g(‘saﬁ‘sw + Oar Oy + 5(1#567))-
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Proof. We only prove the first equality, the proof of the second equality is similar but
more complicated. Since both sides of the first equality are tensors, they are coordinate-
independent. So, we may choose the sphere coordinates such that n = (0,0,1) and m =
(sin 6 cos ¢, sin Osin ¢, cos #). Since hy(m) depends only on cos 6, it is easy to check that

mimjhy(m)dm =0 for i# j,

S2
1 2 1 2
. (m3 — g)hn(m)dm =3 /g2 5(3 cos? 0 — 1) hy(m)dm = §<P2(cos 9)>hn,
1 1 1
/82(m% - g)hn(m)dm = /§2 (m3 — g)hn(m)dm = —§<P2(cos 9)>hn,
which give the first equality. U

Lemma 6.6. Let f°(t) be given by Theorem[21] and P(x) be a smooth function on R. Then
we have

hn(t)| < (Ce.

‘<P(m : n(t))>f5(t) - <P(m : n(t))>
Proof. By the definition, we get
3
(P(m-n)),. - (P(m-n)), = /Sz Pl ) (3 e fifm, 1) + & fi(m, 1)) dm,
k=1
Using the facts that f1, fa, f3 are bounded and

/ Pm - n)fp(m,t)dm = AnP(m - n)A ! f5(m, t)dm
S2 S2
[ AnP (- n)fo][ fR -1,

the lemma follows. O

IN

Now we are in position to prove Theorem Direct computation shows that

%Qg[fe] 1 / (mm — %I)(R (f*Ru) —eR(m X k - mfe))dm

Te e
1
:E<m X Rpfm + mm X 72,u‘€>fS — (2D : (mmmm) -
— D (mm)s: + Q- (mm)s- — (mm) - (D + Q).
So by Lemma [6.6], the stress o° can be written as

1 1
o :§D : (mmmm) - — g(mm X Rulfe]) e
1 1
:§D : (mmmm) pe — 5 (2D : (mmmm) - — D - (mm) -

n

1 1
:§D : (mmmm),_ — 5 (2D :(mmmm), — D - (mm),

+ Q- (mm);,, — (mm), - (D+ Q)+ %Qﬂhn])
3

1 0 0 ..
— §Q2 [kzﬂekafk(m,t) + 62EfR(m,t)} + Ce.
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For any constant vector U, V', we have

0
U Q[ 0] v =2 [ e U)m V) [ Gaff - Rl x 6 m)
3
+eR - (fRRUSR) + S 'R - (FFRUSS, + [RRUSE) + EA} dm,
i=1
which is bounded by Ce|| fg||-1 by using the argument of integration by parts. Then we infer
that

1 1
o° :§D : (mmmm);_ — 2 <2D : (mmmm), — D - (mm)),

n

d
+ Q- (mm),, — (mm)y, - (D + Q)+ Qulhn]) + Ce.
We see from the definition of Q4 that

D : (mmmm), =D: Q4+7D (mm), I+ = (D Q2+ Q2:D) + %D.

Using Lemma [6.5] we can calculate

of :%< — S4(D : nn)nn — %(D :nn)I — Sy(nN + Nn)
8§ 10 ) 2
(55— 575 - %54)D + (282 +=81) (0D + D - nn)) + C=.

So, we conclude that

1 1
o — ok —pI——%( (XN—D-n)—(XN—D-n)n)+C€:C‘€,

here we used the equation (2.3]). This completes the proof of Theorem O

7. SMALL DEBORAH NUMBER LIMIT FOR THE INHOMOGENEOUS SYSTEM

This section is devoted to justifying the small Deborah number limit for the inhomogeneous
system (2.8)-(29]). Throughout this section, we will use the following notations. (,) denotes
the inner product on L*(Q x §?) or L*(€2). We also denote || f|zr = |[fllLoxs2) (1| o))

for f defined on Q x S*(for f defined on Q), and || - || o = ||| - HHk(Q)HLQ(S2).

7.1. Hilbert expansion. Due to the choice of g, we have the formal expansion to the
operator U.:

Z/{Ef _Z/[f :/]R(3 /S2 Oé’m X m/’29€(x o x,)(f(x,,m/,t) o f(X, m/,t))dm/dx’
= [ [t m o) 5+ By, )~ sl ) amay

/RS /g2 afm > m ’ 9(y )<Z (y V) f(x, m/,t))dm/dy

k>1

/Rz/gﬂ’mxm’ 9y )<Z( 20 Sy - V) f(x,m! t))dmd

k>1
We denote

Gl ) = i [ [ am o oty - 9% ol dmdy o k1
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Formally, we have

U = Uolf] + elh[f] + 2 Ua[f] + -, Uolf] =UF. (7.1)
Then we make a formal expansion for the solution of (Z.8])-(2.9):

3
FEeem ) =Y ek fi(x,m, ) + € f(x, m, 1),

k=0

= Z ePup(x,t) 4 3v5(x, ).

Plugging them into (2.8])-(2.9) and collecting the terms with the same order with respect to
g, we find that

Rfo+ foRUfo =0, thatis, fo = hynux) (m); (7.2)
and for the terms of order O(1), there hold
0
5;0 +vo- Vo =Gpfi+R- (foRULfo) =R - (m x (Vvo)" - mfy), (7.3)
N0 4 vy Vvo = — Vpo + L-Avo+ 2205 . (Dy : { Vo)
ot Vo VVgy = Po Re Vo 2Re - {mMmimim,) ¢,
1—
-V mmx R+ Y AUS) + (VUL (T4)

i+jtk=1

and for the terms of order O(g), there hold

0
ajil +vo-Vii=Grfo+R- < Z fiRUjfk) —v1-Vfo
i+j+k=2,5>1
—R- (m X (VV(])T -mjf, +m X (VVl)T . mfo) (75)
avl
s +vy-Vvi=—-Vp + R—Avl + —V (ZJ;ID (mmmm) ) —v1-Vvy
1—
-V mmx R+ Y ARUSD) (DD FVUS) f o (76)
i+j+k=2 i+j+k=2

and for the terms of O(g?), there hold

of
8t2 +vo-Vfo=Gpfz3+R- < | Z | fiRUjfk>
i+j+k=3,7>1
-R- (Z m X ((VVi)T'm)fj>—Vl'Vf1—V2'Vf0, (7.7)
itj=2
8v2
ot 4+ vgp-Vvy=—-Vpy + R—AV2 + (Z;QD (mmmm) >

~ O (mm (R + Z FRU i), +4 Y 90U i }

Re
i+j+k=3 i+j+k=3

— V- VVl — Vo - VVQ. (78)
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Proposition 7.1. Let (vo,n) € C([0,T]; H*(Q)) be a solution of (ZI0)-(Z11) with X given
by (223) and Leslie coefficients defined by (2.8)-(2.7) on [0, T]. Then there exist the functions
fi € C([0,T); H*O4(Q x $?))(i = 0,1,2,3) and v; € C([0,T]; H*~*(Q))(i = 0,1,2) such
that (7-2)-(7-8) holds on [0,T].

We need the following lemma.
Lemma 7.1. [5] Let fo = hynxs)(m). Then fo(x, m,t) satisfies

<% +vo-Vfo+R-(mx (Vvg)l -mfy) + R - (fORUlfO)’¢>L2(SQ) =0

for any ¢ € KerG} if and only if n(x,t) is a solution of (ZI0) with v = vo.

Proof of Proposition [l We denote by P, the projection operator from Py(S?) to
KerGy,, and denote by Py, the projection operator from Po(S?) to (Kergj’io)l. Let P, f1 =
&1, Poutf1 = 1. Now 11 will be determined by ([.3]), whose existence is ensured by Lemma
[Tl Once 1 is determined, it can be proved that the equation (4] is equivalent to (2IT]),
see [B]. Now we solve (¢1,v1). In what follows, we denote by L(¢,v) the terms which only
depend on (¢, v)(not their derivatives) linearly. Let ¢ = nt - Rfy. We have

(2 4 vo - 9)61 = (2 4 vo- V)nt - Rfo + 0 - R((S +vo- V) fo)-

ot ot ot
This means that
Pout (2 +v0- V)61) = Pou (" R((S 4o V)fo)) 2 L(o0),  (7.9)
Pin((% +vo - V)¢1> = (% +vo- V)1 — L(¢1). (7.10)
We also have
Pin(Gfo fo + R - (¢1RUS1)) = 0. (7.11)

For a matrix x, we denote
K(k) = IPin(R- (m X K- mfo)), L(k) = IPout(R- (m X K- mfo)),
Bin(¢1) = Pin(R - (foRU161)), Bout(¢1) = Pout (R - (foRU1¢1)).
Taking P;, for the equation of f1, we get by (ZI0) and (ZII]) that

(% +vo - V)1 = L(¢1) — K(Vv1)") + Bin(e1)
+ Pin (R - (01 RUYL + 01 RUG1 + 91 RUYP1)) — vi -V fo
—Piu(R- (mx (Vvo)" -mf1)) + Pin(R - (foRU1¢1)) + Pin(R - (fiRU1 f5))
= —K(Vv1)") 4 Bin(¢1) + L(¢1, v1)- (7.12)
Taking P,y for the equation of f1, we get by ([L9]) that
— (Grofo + R+ (01RUB1)) = —L(¢1) + LU(VV1)") = Bour(61)
+ Pout (R - (1 RUY1 + 1 RUPL + 11 RUYP1 ) )
—Pout (R - (m x (Vvo)" -mf1)) + Pouw (R - (foRU1%1)) + Powt(R - (AARU1 fo))
= L((Vv1)T) = Bout(¢1) — L(¢1,v1).
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So, the stress in the equation of vy can be rewritten as

—(mmx (Rfy+ > fiRUfi)),
- _%«mm - %1)(gfof2 + R (1 RUG))), — (mm x (foRU1én)), + L(d1)
1

= §<(mm - %I)(ﬁ((v"l)T) — Bout(¢1))), — (mm x (foRU1¢1)), + L(¢1,v1)

2 o1+ 09 + L(¢1,v1).

Set 03 = D; : (mmmum) fo- Then the equation for vi can be rewritten as

avl Y 1 —
—875 — EAV1+V0-VV1+V})1 = —2R€ V- (0'1+O'2—|-0'3)
1—
B R67<f0VU1¢1>1 + VL(¢1,v1) + L(¢1, v1). (7.13)

In order to solve (TI2)-(7I3]), we introduce the energy functional

(&
<V1,V1>.

E(t) = (¢1,¢1) + (61, U1¢1) + T~

Due to the choice of g, it is easy to see that

(D1, 1) + (91, Urh1) > c((d1, 01) + (V1,Ver)).

Notice that (V - 03,v1) = —(D1 : (mmmm)¢,,D;) <0 and by Lemma B8 and Lemma [8:6]

(= K(Vv)T) + Bin(¢1), Urgr) — (V - (01 + 02), v1)
< (= K(VvD)T) + Bin(61), — AL (Bin(1) + Bout(61)))

+ %<Bout(¢1)a m-Vvy - Il’l> + <U1¢1,R(m X (VVl)T . mf0)>
= < — IC((VVl)T) + an(¢1)7 _-Ajjol(an((bl) + Bout(¢l))> + %<Bout(¢l)7 _2AJ;()1(]C(D1) + ﬁ(Dl))>

+ (= A Bin(1) + Bouwr(61)), K(Vvi)T) + L(Vv)T))
= —(Bin(¢1), A}, Bin(¢1)) < 0.

Then by a simple energy estimate, we can deduce that

%E(t) <C(1+E(@)).

The estimate of the higher order derivative for (¢1,vy) can be obtained by introducing a
similar energy functional. Once (f1,v1) is determined, we can get (fa,v2) and f3 by solving
([T7)-(78) in a similar way. Here we omit the details. O
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7.2. The remainder equations. We denote

V=vo+evi+eivy, f=fitefo+elfs, D=Dy+eD;+e’Dy,
Z/{e—UO

= (fi+tefo+f3)TUfs + [sTUf1 +efo +E2f3) + foTUfo + f3T fo

U. — Uy — el — €2U. U — Uy — €U U: — U

P LI YT Y
U. — Uy — eUy — 20y — e3U L{—U—U—QU

—l—foT(e 0€1€4€2€3f0+5 0€<€31€2f1

Uyl Ty U= T

g2 g2 39
0

L1:_<£+Vo Vfs+vi- (f2+€f3)+V2’V(f1+5f2+52f3))

+R- (XR —mx (Vvo)" mfs —m x (Vvi)' -m(fs +efs) —m x (Vvo)' -m(f1 +efo+ €2f3)>7

Ly = 123 V- { t (mmmmf3) + Dy : (mmmm(fz +ef3)) + Da: (mmmm(fi +efz + €2f3)>}

1R67{V . <mm X XR>1 + (Xv>1} —ve-Vvy —vy-Vvy —evy - Vv

Then we can deduce the equations of (f,v)(drop e for the simplicity):

P B ~ 1

=-R- (m x (VV)T - mfr+m x (Vvg)" -m(fo +cf) +m x (Vvg)T - mfR>
R (et f + 1R TR R gt 2 i) + 1,

0
%—I—VR VvV +v- VVR—I—E VR - VVR—I—Vp—R—AvR

_ 1 Iy {D (mmmm/fg); + Dp : (mmmm(fy +ef))1 +&°Dp : (mmmmfR>1}

"~ 2Re
- %v <mm X ( foRH5, fr+ frRU: f+fRR(u%)f

1 —’Y<<ifoV7—Lf0fR+fRVU f+rIr VM +fv“€fR+€2fRngR)>l "L

Re

+ FRUfr+ € frRUfr) ).

Here Dp = %(VVR + (VVR)T). We denote Fp = Fi + - - + Fg with

Py =—vg V(fo+ef),

Fy=-R- (m x (V)T - mfr + frRRU: f+f1z73% fRUefR),
Fy=—eR-(mx (Vvp)"-mf)), Fi=-R-(mx (Vvg)’  mfg),
Fy=—*R- (faRU-fr), Fs=c>vr Vi,
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and Gg = G1 + --- + Gg with

Gi=-vVvr-Vv—v-Vvg, Gy= 12sz (eDg : <mmmmf> )
Gs = —1]gefyv : <mm x (D : (mmmm{g)1 + fRRUS + fr R(u%)f + fmfR)>1’
Gi= (2 joVH S+ fvit] + 10 T gy
Gs = 121_%26 V- (DR : (mmmmfR>1), Gg = —e3vRp - Vg,
Gr = — 21R 1y. (mm x (frRRU:fR)),, G8=—€21£—67<fRVUefR>1-
Then we rewrite the equations for (fz, vg) as
aaitR+V-VfR+€3vR-VfR+éAfoﬂjeofR
=-—R-(mx (Vvg)" -mfo) + Fg + L, (7.14)
ag—tR - ]; Avp — ZTV (Dg : (mmmm o)1) + Vp
_ 1;% (mm x (ngR%§OfR)>1+GR+L2. (7.15)

7.3. Some key estimates. In this subsection, we mainly present a control for a singular
term in the error estimates. The proof is based on the lower bound inequality. Since we only
have good lower bound for the part outside the Maier-Saupe space, we have to analyze the
nonlinear interactions between the part inside the Maier-Saupe space and the part outside
the Maier-Saupe space. Throughout this section, we will repeatedly use the notations from
Section 5. Due to the assumption (2ZI2]), we can construct a global coordinate transformation
so that all results from Section 5 can be applied.

Proposition 7.2. For any § > 0, there exists C = C(8) such that for any f € H'(Q x S?)
with [e f(x,m)dm =0, there holds

LU FOUM)) < S JoRHS, 1 RHG, ) + CL(H5, 1, )+ (F, ).

f >

We need the following lemmas.

Lemma 7.2. It holds that

~ ~ (A() — 2A2 + A4)
My — Moy = a A )
11 22 C 2 2 0
AOA4 — A%

2Mss — M1 — Moo = 3¢ yE
0
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Proof. Recall that M fSZ mmfdm. We get by direct calculations that
~ 1 .94 R 1 . 9 A R AOA4—A ( 0—2A2—|—A4)
My, :§/sm fapdm + Z/sm fasdm = —( 2A2 + a2 14, ,
R 1 R 1 A AgA — 24,4+ A
Mas :§/Sin2 fagdin — Z/sin2 fazdin = —(p =2 ;242 ga2( 4A(2) T4),
- A AgAy — A3
M33 :/COS2 andﬁl = Co%,
Aj
~ 1 Y . Ag—24A5+ A
Mo =1 /Sln2 Obodm = <b72( 0 4A(2) 4),
. 1 A . Ay — A
M3 :—/sinﬂcosealdrﬁzgal 2 4,
2 ’ Ag
. 1 . . Ay — A
Mog == /sin@cos@bldﬁl =Ga 2 1
2 ’ Ap
Then the lemma follows. ]

Lemma 7.3. There exists ¢ > 0 such that
(HG, [ ) > el f 5 ) + (Mg, My — g * M),
Proof. Noting that

m m 2 X, m X, m m amdadx
(15, 0.8) =t f) o [ [ ] e m) o 'y dim
_/9/9/82 SQ(m'm/) ge(X—X/)fR(x,m)fR(x’,m’)dm’dx’dmdx)
=(Hsf f) —l—oz/QM(x) : (M(x) — g= * M(x))dx,

then the lemma follows from Proposition 3] O
Lemma 7.4. We have

é«fl — ge * f1), f3f2) < C(é«fl —g:* f1), f1) + %((fz — e * f2), f2) + <f2,f2>)'

where the constant C' depends on || f3||p~ and ||V f3]|pe~.

Proof. We write f1 — g- x f1 = (1 — X(\/ED)) f1, that is x(§ — /1 - . Hence,
(= o F), o f) =2((0 - X(\/ED))Qfl,fsf2>
1

=—((1 = X(VED)) f1. f5(1 = X(VED) )
+ §<(1 — x(VED)) f1. [f3, x(VED)] fo).

Then the lemma follows from the commutator estimate

113, X(VED)] fall L2 < Ce2 ||V fa| oo | fo | 12

By a scaling argument, it suffices to prove the commutator estimate with ¢ = 1. Let Kj;(x)
be the kernel associated with the Fourier multiplier i(9;x)(D) (It is easy to show that K is
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a Calderon-Zygmund kernel). We have
3 1
[x(VED =3 [ K=y [ oyfalrc+ (1= miy)ar iy)ay.

whose L? norm is bounded by ||V f3]| e || f2||12; see [2] for example. O
Now we are ready to prove Proposition[7.2l With the notations in section 5, we decompose

f as
f=ap(x,0)+ Z (ar(x, 0) cos k¢ + by (x, 0) sin kp).

k>1
Then we can get
. R 2
<f f@t / / ao )+ Z (ak(x,0) cos k¢ + by(x, 0) sin kgﬁ)) drmdx
52 fo =
<C// 70—1—71—1—514—72—1—524—2ak+b2))dmdx

k>3

+0// <§+<31+<32+<§1+<£,2)dmdx
/ 8t f CO cos2 6 — —) +Sln90089(Ca,1 cos @ + (p,1 80 Q)
S2 0

+ sin? Q(Ca’g oS 2¢ + (p 2 sin 2@)) dmdx.

As at(l/fo) = —0,fo/ ¢ and O, fy € Ker Gy,, we may assume that
1 1

ox(+) = %

7 (w1 (x) cos ¢ + wa(x) sin @) sin § cos .
0

We have

/ at Co Cos 9—j—)—I—Slnﬁcosﬁ(galcosgo—|—Cblsln<p)
S2
+ sin? G(Caz cos 2¢ + (p 2 sin 2@)) dmdx

Ag
/ . E?t f_ smHCOSH(Calcosgp—i—Cblsm(p)(ﬁo(cos H—A—O)

+ sin? 9(§a 5 €08 29 + (2 8in 2¢) ) drndx

AL

/ E?t i sm@cosH(Calcosgp—i—(blslnw) (C0(0052é— %)
g 0

Ao
) (¢o(cos 20— A—) + sin? G(Cmg cos 2¢ + (p 2 sin 24,5))2drhdx

. C
+ sin? H(Ca,g cos 2¢ + (p 2 5in 2¢) ) drndx + - / (¢ + (372 + ng)dx, (7.16)
Q

where we have used the fact
1

f—(wl(x) cos ¢ + wy (x) sin @) sin 0 cos é( sin  cos é((a,l cos ¢ + (p,1 sin @))2drh =0.
sz Jo



FROM THE DOI-ONSAGER EQUATION TO THE ERICKSEN-LESLIE EQUATION 37

We get by Lemma [Z.2 that
QC()(X) — OéNO — 04(2M33 — MQQ — Mll — NO)
AgAy — A% B 3A% + 2AgAs — 5AgA,
A} Ag(Az — Ay)

Note that the coefficient is positive in the front of (y(x) if fp is a stable critical point. This
implies that

= [ 160G ox < [ 5520060 = aNa(x) + O, o) (x)dx

€

= 2(p(x) — 3aCo(x) Co(x).

+ g<2M33(x) — M1(x) — Moy(x) — No(x), Ca1 (x)wr (x)).
On the other hand, we have
M;j — Nij = Api Ay My — ApiAj(ge * M) = Api Ay (Mg — g= % M),
Ca1 = %Mli’» = %Ak’lAl’BMk’l’y

from which, Lemma [Z.4] and Lemma [.3] it follows that

1, 1 2
E<Mi (%) = Nij(x), a1 (¥)wi(x)) = E<Mkl — 9= x My, EAkiAlemAl'ng'l' (x)w1(x))

1
< C(Aa’wl)(g(Mkl — e * My, Myg) + (Mg, M)

1
Thus, it follows from Proposition 5] that

2 [ 160G (0 < [ 5526000 = aNo(x))? + . )2 (xdx
+C(A,w) (2H5f, )+ (. 1)

< (S faRHG, I RHG, 1) + ZH5, £.1) + (F. ).

This gives the desired estimate for the term in (Z.I6):
2 1 s A A Ao
= 9y (=) sinf cos ¢, ; 20 — —=)dmdx.
8 /Q /S2 t(fo) sin @ cos 0,1 cos ¢ (cos Ao) mdx
The other terms in (Z.I6]) can be treated similarly. We omit the details. O

The following lemma is used to control the other singular terms like %<§ Vfr,HS, fR> in
the error estimates.

Lemma 7.5. We have

IVFI: < CUMEVE V) + Z(H5, f. ). (7.17)
Proof. Let us first claim that
1fI172 < C((Hef, f) + (M[f], M[f])), (7.18)

where M[f] = [o mmfdm. Due to the choice of g, we have

EF©F < C((1 ~ gO)IEFOR + (1~ §EO)FOP).
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This implies that

V532 < O(F ~ 00 % VI V) + 27 — g2 % £, ).
which along with (ZI8) gives
IVfl72 <C((H7, VS 0if) + <VM[f],VM[f]>)
<C((H3, V£ V) + <’H§vo,f>>,

where we have used

H5 f f >a/ /82 . (m-m')?f(x, m)(f(x m’) — /Qge(x—x')f(x',m')dx’)dm/dmdx
af(1 — g=) + M[f], M[f]).

To complete the proof, it remains to prove the claim. We write f = f++fT with f| € KerG o
and f+ e (Kerg}o)L. By Proposition [4.3] we have

HfJ_H%2 < C<Hfof’f> = C< ?of’f>
While, from the proof of Lemma [.2] we know that
£ 1172 < C((Myz, Mys) + (Mag, Mas)) < C(M[f "], M[f']) = C(M[fT],M[f]).

This implies (T.I8]). O
In the nonlinear estimates, we will frequently use the following basic lemmas.

Lemma 7.6. It holds that
[ M G0natocm) 0 ., ) dmx < M| Mo |
/Q My (x) M2 (x, m) M3 (x, m)dmdx < C|| My | g1 || Ma|| gro.r | M3][ 2,
/Q [ 3006) M5 ¢, )My e, ) < CTM s |0 12 M
Proof. By Holder inequality and Sobolev embedding, we get

/ M (x) Ma(x, m) M3 (x, m)dmdx
QJs?

<[ My 2| M2 oo 2, 1M3(x, m) || g2 < || M| g2 || Mallp2, oo [[M3][ 22
< O M| g2 || Mz|| o2 || M]| 2.

The other two inequalities can be proved similarly. O
The following Bernstein type lemma is a direct consequence of Young’s inequality.

Lemma 7.7. Let k > 0 be an integer and p > 2. Then it holds that

IVFUF || Loaxszy < Ce™32A2TUPR2) £l o ) goy.
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7.4. Error estimates. Let us first explain how to choose a suitable energy functional. It’s
helpful to look at the following toy model for (fr,VRg):

0 1

8ftR + - ApHG fr = —R- (mx (Vvg)" - mfo),

Ve v el LR
5~ EAVR +Vp = —@V : <mm X (gfoRHfofR)>1'

Compared with the homogeneous case, the new difficulty is caused by the singular term
%V . <mm X ( foR”H‘}O fR) >1. To deal with it, it is natural to introduce the energy functional

1
g<fR7H§‘OfR> + 1

since we have the following important observation:

(m x (Vvg)" - mfo, RH5, fr) + ((mm x foRH5, fr)1, VVr) = 0.

e
(VR,VR),
-7

However, < fr, 1%, fR> does not give a control for the part of fr inside the kernel. To have a

control for the part inside the kernel, we need to introduce another functional < IR, Ajiol fR>
similar to the homogeneous case. So, the suitable energy functional for the toy model should
be

(fr.Aj) fr) + §<fR,H§OfR> + 1?67 (VR,VR).

However, if we take %%@C& ’H?OfR>, a new singular term %<fR, (9t(f—10)fR> will appear. Since
there is no any decay in ¢ for the part of fr inside the kernel, this term seems to have the
order of O(1/¢)(Very singular!). Surprisingly, by analyzing the nonlinear interactions for
< IR, &g(f—lo)f R> and using the lower bound inequality, we find that it is bounded.

In order to control the nonlinear terms, we also need to introduce a higher order analogous
of the energy functional, whose choice is also very subtle. In all, our energy functional takes
the form

CHORS

(fr AL fR) + §<fR, % fR) + 11367 (VR,VR)

+C12(V i, A7V fR) + Ca 2V fr H3, T fr) + 1 —e2(VvR, VVR)|

l—x
R
efy€4<AVR, AVR>:| s

+e3 (A fr, A7 AfR) + Ca | (Afr, 15, AfR) + -

e
e

1
3-(t) C=(fr, §OfR>+€—2<H§OfR,AH;OfR>+ﬁwv}z,wﬁ

+ OV 15,V Fr) + Ca | (M5, f i, ARG,V fi) + 20— (V2VR, V2vi) |

~
L—n

+&(A i, H5, AT + C [ (H5, A S, AHG, A fr) + 1 ~(Vavg, VAvg)|.
Here the constants C,Cy and C3 bigger than one will be determined later.

Proposition 7.3. There exist ¢; > 0 and g9 > 0 such that for any € € (0,g9) and t € [0,T],
there holds

%@E(t) +iFe(t) SO+ & (t) + e (1) + e (1)?) + C22 €. ()5 (t).
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where the constant C' depends on || fill Lo 0, 7;m3(0xs2)) (0 = 0,1,2,3), [|Villpeo0,1:m3(0)) (1 =
0,1,2).
Proof. From the definition of €.(t),§-(t) and Lemma [T3] it is easy to see that

1FrI1Z2 + Cille"? frllFron + €% frlFo.2

+[IVRlI72 + Collevrlin + Cslle®vrllfe < CE.(1),

IVvRlZ: + ColleVvali + Cslle® Vvall: < C:(1).

And it is easy to show that
L1l oz + | L2l 2 < C.

These facts will be repeatedly used in the following calculations. For the simplicity of nota-
tions, we denote A = Ay, and H. = HF in what follows.

Step 1. L? energy estimate
Making L?(2 x S?) inner product to (ZI4]) with Ajiol fr, we get

(D fr A7 ) + (Mol fr) = (¥ Y f A )
+(m x (Vvr)' - mfo, RAT fr) + (Fr + L1, A7 fR).
By Lemma and Lemma [[.7] we have
(Fa, A7V fr) < C2|E2vR g |l frll goa | fallre < C'2€22(),
(Fs. A" fr) < Ce||fRll7: < Cte.()P)?,
(Fo, A™'fr) < CellfrllZ2ll®VR]n2 < Ce€. ()2,
and the other terms can be estimated as follows
(V- ViR, A ) + (B, A7 fR) < Clfrll3: < C€.(2),
(Fi, A fr) < Cllveliz|lfrl7: < Ce(1),
(F3, A7 fr) < Ce| Vvl 2l frll 12 < CE(t),

So, we get

<%R= A~ fR) + é(HEfR, fr) < O(1 + €.(t) + /2 €. ()%/?) + 63.(t). (7.19)

Make L%(Q x S?) inner product to (ZI4]) with H. fr to obatin

é<%fRa,HafR> + €%<R,HafRaf0R,HEfR> = —é@ - VIr Helr)

1 1
+g<m x (Vvr)" - mfo, RH-fr) + E<FR + L1, Hefr)-
By Lemma and Lemma [[.7] we have

1 1

E<F4 + Fs,H-fr) < CEl/ZH&Tl/sz”HOJHEZVRHH2HER7'15JCRHL2 < CeVe ()31,
1
E<F57%afR> < CeY | frl32lIRHe frll 2 < Ce™e (t)F.(t)"/2.

Noting that

/ V(fo+ef)dm = 0, Nidm = 0,
s2 s
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we get by Poincaré inequality that

1
(Fi, Hefr) < C”VR”L2HERHafRHL2 < CC.(t) +03:(1),

™= o

1
(N1, He fR) < CHERHafR”m < O+ 038:(t).

We infer from Lemma that

1

~ 1
E<V : VfRa,]-[&fR> < CHVfRHL2 HERHEfRHL2 < &&s(t) + Cea(t) + 5&3@)'

e

Here and what follows Cjy denotes a constant independent of §. The other terms are estimated
as follows

1
(Fo, Hefr) < Ollfrllal ZRH-rllL2 < C€(t) + 03 (0),

M [ =] =

1
<F37H€fR> < CEHVVRHLQHg’R/]'[efRHL2 < Oege(t),

Hence, we obtain

(IR ) Sy JoRHe i RH- )
<O+ € (t)) + Ce25. ()2 (t) + (6 + e + f—c_)ge( )
1
+ §<m x (Vvr)" - mfo, RHe fr). (7.20)

Make L%(Q) inner product to (ZI5) with vz to get

d 1
%<VR7VR> + R_<VVR7 Vvg) + W«DR (mmmm /o)1), Vvg)
-y

?<mm X (ngRHefR),VVR> + (Gr + La, vR).

Obviously, <G6, VR> = 0. We have by Lemma and Lemma [7.7] that

| =

(Gs,vr) < CeV2(|EV2 frll o VRl 2 | V VR L2 < Ce2E(D)F-(8)'?,
(G7,vR) < CeV| frl22||eVvR] L2 < CYie.(t)%/?,
(Gs,vr) < CY|| fr||7: VR L2 < O e ().

While, <DR : (mmmmf0>1,VvR> = <DR : (mmmmf0>1,DR> > 0. The other terms are
estimated as follows

< Clvrllz: < Ce.(1),
ellVvalz. < C€(t) +05(),
fRll2 VRl 2 < CE(t) + 03:(0),

IRMfrllr2llvellLe + Cllfrl 2 VRl 2 < C€(t) + 05-(2).

(G1,vR) <
<G2,VR> < Ce
<G3,VR> <C|f
( )<C

G4, VR

m|}—~—
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Thus, we obtain
%<VR,VR> + %<VVR, VvRg)
< O(1+ € (t) + /e (1)%?) + Ce' e ()F-(1)* + 6F.(t)

DO | =

1
+ <mm X EfORHEfRa VVR>. (7.21)

Step 2. H! energy estimate

Taking the derivative to (ZI4)) with respect to x;, then making L%(Q x S?) inner product
with e A710; fr, we get

B
5<aaifR,A_laifR> + <aifRaHsaifR>
—(0; foRHe fr. RAT'0, fr) — <3 fR,a fr) —(0i(V -V fr), A" 0ifr)
+e{0i(m x (Vvg)' - mfo), RA 1fR> +e{0;Fg + 0;L1, A9, fr).
By Lemma and Lemma [[.7], we get
(0 Fy, A7'0i fr) < CelleVvr| mlle"? frll o ||€%/20: frllmoa < CeFe(t)/2E-(1),
(0 F5, A7 0i fr) < C*|| frll2lle"? frlHon < CP*E (1),
{0 F5, A1 fr) < Cc|eVvrll ||le? frl goaz €%/ %0; fr gon < CeFolt)/?E.(t).
It follows from Lemma that
£(0;(m x (Vvg)" - m fo),RA—la- fr) +e(0iF5, A0, fR)

< Cllevvrllg[0ifrl L2 < =(t) + 08:(t) + C€(1).

\/_

The other terms are estimated as follows
1
(0i foRHfr, RA™'0i fr) + <ai(%)fR7aifR> < Cfrllz2110i frllL2 < CE(t) + 63 (2),
—&(0;(V - Vfr), AT 0ifr) +(0:iFa, A7'0; fr) < Cellfrll300 < CE(L),
(0, A0 fr) < O VRl mill€ 20 frll 2 < 63-(1) + CE.(1).

So, we get
1
<8ta fry A0 fR) + g(’He@ifR, difr)
Co

<O+ € (t) + /€. (1)%?) + CeFo(t)V2€.(t) + (0 + \/—_)ga( ). (7.22)

Taking the derivative to (Z14)) with respect to x;, then making L?(Q2 x S?) inner product
with eH0; fr, we get
0
5<EaifRa,HaaifR> + (foRH=0; fr, RH-0; fRr)
= —(0ifoRU- fr + fRRO;(Uo fo), RH0ifr) — £(0s(V - V fr), H:0ifr)
+ 6<82(m X (VVR)T . mfo), R']-[gaif}z> + 6<8¢FR + 0; L1, HgaifR>.
The first term on the right hand side is bounded by
”fRH%Z ”R,Haasz”%? < Cea(t) + 5&3@)'
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By Lemma [7.6] and Lemma [T.7], we get

e(0;Fy, M0 fr) < CeV?||e®VRl| 2| frll o2 |RH0i frll 2 < Ce?E(8)F.(8)"/2,
e{ 8;F5, RH-0; fr) < C/ ' frll goa || frll 2 /R H=0i frll e < Ce™/ € (8)F-(t)"/2,
(0 Fs, He0i fr) < CeV2| VR w216 frll oz |RH0; frll 2 < Y€ (1)F. ()2,
and by Lemma [T.5]
e(0i(V -V fr), H0;fr)
N 0; | N
=e(0;v -V [g, fJ;R> —e(v- V(%)aifRa Oifr) — (Vv -V [r,0;i(U0ifR))
< CEV2V frl 2|10 frll 2 < CE(t) + 63 (1).

The other terms are estimated as follows

e(0iF1, He0i fr) < ClleVVRll 2| RH0ifrll 2 < CE(t) 4 03:(t),

£(0:Fy, Ho0ifr) < C='/2 e ful|os | RH0: frll} < C€.(t) + 05 (1),
5<aiF3a7'[aaifR> < CH52VR”H2”RH881'JCR”L2 < Cea(t) + 53&@)7

e(m x (Vvg)" -mo; fo, RH:0ifr) < Cllevillm |RH=0:frll 2 < CE(t) + 6F-(t).

Thus, we obtain

(0T n, M) + (JoRH.Ofr, RH.0:fr)
< O(1+ €.(t) + Ce/2€.(1)F=(t)"/? + 65 (t)
+ %(m X (VaiVR)T . mf(),’RngaifR>. (7.23)

Making L?(€2) inner product to (ZI5) with e202vg, we get

e d )
9 dt e © (8;(Dg : (mmmmfy)1), Vo;vp)

- 1};67€<mm x 0 (foRHefr), VOivr) + €*(0,Gr + 9; L2, O;VR).

<8¢VR, aiVR> + %62<V82‘VR, VaiVR> +

First of all, we know that <(8,~DR : <mmmmf0>1),V8,~VR> >0 and
e?((Dg : 0;(mmmmfy)1), VO;vr) < Cllevr| g ||eVOivelp: < CE-(t) + 6F:(t).
By Lemma and Lemma [[.7], we get

< C= 2|2 fll you |2Vl a2 €2V VRl = < Co2 € ()= ()12,
< Ce|| vl Vvrlle < Ce.(6)3-()'?,
< Y2 frlloallfrll 2 € vRllme < O ()2,

< Cellfrllz2lle'? frlloalle®VRl w2 < Ce¥ € ()72,

e2(9,G5,0ivp

2(0,Gg,0ivR
e2(9,G7,0ivp
e2(0;Gs, Oivr

€

S~ ~ ~ ~——
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And the other terms are estimates as
e%(0,G1,0;,vRr) < Cllevg|ip < C€.(t),
e2(8iGa, 0;vr) < Clle®vRll 2 ||eAvR| 2 < Ce€.(t) + 03-(1),,
£2(9,G3,0;vR) < CeY?||e2 fr goa|eVO VR 12 < CE-(t) + 05-(2),
2(9,G4,0,vR) < C|frll2lleAvR|2: < CE.(t) + 63-(1).

So, we get

0 Re
E2<a&~vR,8¢vR> + &2 I

< O(1+ (1) + €. (1)%?) + Ce2 €. (). (1) + 63.(t)

(VO;ivRr,VO;vR)

+ (mm x  foRH:0,fr, Vo).

Step 3. H? energy estimate
Taking A to (ZI4)), then making L?(Q x S?) inner product with e3 A~*A fr, we get

0
€3<aAfR7 ATYAFRY + (A fr, H-AfR)
= X(fRRAUy fo + A foRU: fr + 20; foRU-0; fr + 20; fRRUO; fo, RA™' A fR)
— (AN - VfR), A AfR) + ¥ (A(m x (Vvg)! - mfy), RATAfR)
+*(AFg + AL, A7 Afg).
The first term on the right hand side is bounded by
Ie¥*RAT A frl 72 + [1€V/20: frl 72 + el frlIF2 < CE(t).
By Lemma and Lemma [.7], we have

e3(AFy, AT AfR) < Ce||le® Vv 2|32 A frll 2 €2 frll o2 < Ce€a(t)Fo(t)'/2,
e (AFs, AT A fR) < O frl 2]l frll30e < Ce™1E. ()2,
E(AFs, ATV AfR) < Cel|e?VvR| g2 |32 A frll 12 1€%/ frll o2 < Ce€.(t)Fe ()2

And by Lemma [T the term €3<A(F1 + Iy + Fg),A_lAfR> is bounded by

e |lev Rl 2 AfrllLe + 1% frll302 + 1€V VRl a2 leA frl e
C
< CCE(t) + (\/—g_ SEEAGE
3

So, we get

0

(oA AT AfR) + = (HAAfr, Afi)

< O(1+ (1) + e (1)3?) + CeFe(t) 2 €. (t) + (6 + 5—3—3)&&)-

(7.24)

(7.25)
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Taking A to (ZI4), then making L?(2 x S?) inner product with e3HA fr, we get

0
& (500 fr HeAfr) + & (foRHA fr, RH-Afr)

= e2(fRRAUY fo + A foRU- fr + 20; foRU-0: fr + 20; fRRUD: fo, RH-A fr)
+¥(Am x (Vvg)" -mfo), RH-Afr) + e*(AFg + ALy, Ho0i fr).
The first term on the right hand side is bounded by
|leRHAFrll 22 (€211 20i Rl 2 + €l frll2) < 63:(t) + C€.(1)).
By Lemma and Lemma [[.7], we get

E(AF, H A FR) < C32||E2VvR| 2 1e? frll oz ERHAfR| 12 < C32F.(8) €. (4)2,
3 (AF5, RHAFR) < Ce/| frllp2 €% frll oz |eRHAfR| 2 < Ce™4€.(4)F(1)2,

and for Fg, we have

3<AF6’ H AfR> - €6<AVR ViR, —— > + 256<aiVR -VOifr, %>

Afr
fo
6
&
+e%vR - Vir, AUASR)) — §<VR V(+
< Ce(||e*VvRll 2 1%V frll o €2 A frll 2
+ e vrl €AV frll L2 1€ Afrl L2 + €2V RI 12 ]1E¥ 2 A fR]2:)

< CeF-(t)2E.(t) + Ce€.(1)%/2.

Afr, A
f ) fR7 fR>

And the term 53<A(F1 + Fy + F3), ’HeAfR> is bounded by

I€2VR| g2 |ERHAfr 12 + /2|12 frll oz |ERMAfr| 12
+¢||e?VVR| g2 |ERHA R 2 < CE(t) + (e + 0)Fe (1),

and by Lemma [7.7]

(A(V-Vfr), H-Afr) = (AV -V, ffR>+253<av Vo, fr, AffR>
0
3
+eMT - ViR, AUASR)) — %(v V(f )Afr, Afr)
< C|le"?V frllp2lle¥? Afrlls + Clle¥* Afrl7> < CE(t).
So, we get
DA i oA i) + 2 (RH.Afr, fRH-Afr)

< O(1+ €.(t) + €. (1)3?) + Ce€.()F(1)/? + O (5 + 32 () /)3 (1)
+ ¥ (m x (VAve)" - mfo, RHAfr)). (7.26)
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Making L?(€2) inner product to (ZI5) with e*A%vg, we get

et d Y o4
E£<AVR7 AVR> + EE <VAVR, VAVR>

1—
2Rge4<A(DR : <mmmmf0>1),VAvR>

+ 1;evg3<mm X A(fORHefR),VAVR> +€4<AGR+AL2,AVR>,

Again, <(ADR : (mmmmf0>1),VAvR> > 0. The other part of the first term is bounded by
2Rl m2 | VAVR|| 2 < CE(t) + 0F-(t).
By Lemma [7.6] and Lemma [[7], we get
Y (AGs, Avg) < O3 fr| o2 |2V AVR|| 12 |2V VR g2 < C¥2€.(4)V/?5.(1),
e'(AGg, Avg) < Ce||le® V|32 VAVE| 2 < Cel.(1)F-(t)"/?,
e'(AGr, Avr) < O frl 2 1|e% Rl oz |2V AVR]| 2 < O E(8)F(8)'/2,
g AGg, Avg) < C69/4 61/2fR 01| frl 2 €2VAVR 2 < e (t)Fe(t 1/2.
(AGs, Avg) H L L

And the term E4<A(G1 + Go + G3 + Gy), AVR> is bounded by
2V R} + ele®Vvalfe + €72 )1€% frll goelle? VAVER| 2 < CE(t) + (5 + €)= (t).

Then we get

1,0AvR
6 < 81: bl
< C(1+ €(1) + (0 +2)F=(t) + Ce€. ()5 (1)

+ C2E ()25 (t) + (mm x éfORHEAfRa VAvVR). (7.27)

AVR> + %64<VAVR, VAVR>

Step 4. The closing of the energy estimates
Noting that

1 1

—(mox (Vvp)" - mfo, RH: fr) + —((mm x foRH. fr)1, Vi) =0,

and then summing up (ZI9)-(C.27), and taking C; big enough, and then Cy, C'5 big enough,
and finally taking § small enough, we infer that there exist € > 0 and ¢; > 0 such that for
any € € (0,&q), there holds

Re ,0

0 _ 1,0
<EfR’A 'fR) + E<EfR’HEfR> + <EVR,VR>

T
Re
e

4 Re
L=~
<C(1+€.(t) + eVt ()% + e€.(1)?) + Ce32e (1)V23.(t).

0
<EVVR, VVR>

0
<EAVR7 AVR> + Clgg(t)

) )
+Cla<§v fry ATIV fR) + Cﬂav fryHeV fR) + Coe?

0 0
+53<EAfR, AT Afr) + C3€3<§Af3, H-AfR) + Cse
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Now Proposition implies that

1d 0

o Hefr) < (IR 3 f) 4 05.00) + Ce(0),
S MO ) < (2 0uf Heifr) + 05() + C.(0),
L A A ) < <a§fR HeAf) +05-(1) + CE(),

and we have the trivial inequality
9 -1 —1 292
_ < A + RA .

Thus, we can deduce that
%@(t) +1(t) < O(1 4 €. (1) + V18 (1) + e€.(1)?) + C*2 . () 5. (t).

This completes the proof of Proposition [{.3] O
Now we are ready to prove Theorem Given the initial data ( 15, Vg), we can show by
the energy method [23] that there exists 7. > 0 and a unique solution (f(x, m,t),v*(x,t))
on [0,7;] to (ZJ)-([Z9) such that
) =1eC(0,T]; H*(Q x §%)), (1) € C([0, To); H*()) N L*(0, Te; H?(12)).
While, Proposition [7.3] tells us that
d
T C(t) + aBe(t) < C(1+ €c(t) + e (1)) + e€c(1)?) + Ce¥2€(1) V75 (1),

for any ¢ € [0,7;]. Due to the assumptions of Theorem 23] we know that ¢.(0) < C. Thus,
there exist £9 > 0 depending on T such that for any € € (0,£9) and ¢t € [0, min(7’, T;)], there
holds

t
E.(t) + cl/ Fe(s)ds < C.
0
This in turn implies 7. > T by a continuous argument. Then Theorem follows. O

8. THE DISSIPATION OF THE ERICKSEN-LESLIE ENERGY

Recall that the Ericksen-Leslie equation has the following energy law

§t</ 7(1]%_6 )|v|2dx—|—Ep>

2
= / (—]VVF (o1 7—2)]D :nn* 4+ ayD: D
1— !

2 1
as +ag — 2)D nf + —|n x h|2)dx. (8.1)
71 Y1

Because the relations between six Leslie coefficients are unclear in Physics, whether the
energy is dissipated remains open. In [I2], Lin and Liu present some constrains on the Leslie
coefficients to ensure that the energy is dissipated. We will show that the energy (81 is
dissipated for the Ericksen-Leslie equation derived from the Doi-Onsager equation. More
precisely,
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Theorem 8.1. If the Leslie coefficients are determined by (2.6) and (2-7), then there holds
2 2
(a1 + %)’D : nn]2 +a4D: D+ (045 + ag — %)‘an >0
1 1

for any symmetric matriz D and n € S2.

Remark 8.1. Recall that v1 = S3/\. By taking u = ' in (83), we see that X > 0, thus
v > 0.

Throughout this section, we denote by fo = hyn a critical point of A[f].

8.1. Some useful identities. Recall that Sy = (P>(m-n))y, and Sy = (Py(m-n))y, where
Py(x) is the k-th Legendre polynomial. We define

M = <mm>f07 MW = <mmmm>f0'
Lemma 8.1. It holds that

M® = Sonn + L— 5% I,
Sy —
Mr(x4ﬁ)w = Synangnyng, + 22— (nangd + 1ynudap + Nay 05, + 15100 )
Sy 28 1
+ Nanudsy + 1514 00,) + (% 51 T 1_5) (0apdyn + dayOpp + daudsy)-

The lemma is a direct consequence of Lemma Especially, the lemma implies that

Lemma 8.2. For any symmetric matriz D, there hold

M® .D =Sn(D-n), D -M® = S5,(D n)n;

M@ : D =Snn(D : nn) + 2(5277_54) (D-n)n+n(D-n))
54 252 1 52 - 54 .

Lemma 8.3. For any symmetric constant matriz D, there holds
1 1
(R-(mxD-mfy), f) = 5D /2(mm— DR - (foRf)dm.
S
Proof.It is easy to show that for any vector field v defined on S2,

(mm — %I)R (fv))i1=(mxv)m+m(m x v))s.

Applying it with v =Rg and v =m X (k- m), we deduce that
1
/ (mm — 51)72 (fRg)dm = (m x Rgm + mm X Rg)y.
S2

Thus, we have

(R-(mxD-mfy),f)=D: (m(mxRf))y

1

— 5D (m(m x Rf)) g + (m x Rf)m) )

_Ip: [ mm- 2R (fRf)dm.
207 ., 3

The lemma follows. O
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Lemma 8.4. For any antisymmetric constant matriz €2, we have
R-(mx (2 m)fy) — (nx(2-n)) -Rfp=0,
Proof. The lemma is a direct consequence of the following identities
R-(mx (Q-m)) = Ri(€7*m ;Qpmy) = (I — 3mm) : Q = 0,
(m x (2-m)) Rfop=(mx (-m)) - (mxn)f
— (nx (2-n))- (mx n)f§ = (nx (2-n)) - Rfp.
The proof is finished. O

8.2. Projection operator and properties. We denote by PP;, the projection operator from
Po(S?) to KerGy,, and denote by Py the projection operator from Py(S?) to (Kerg}o)l. Since

KerGy, is orthogonal to (Kerg}o)L under the inner product (-, A;Ol(-)>, we have

(FL AL ) = (Pinf, A7 Pin f) + (Pour f, A7 Pous ).
For any constant matrix x, we define
K(k) =P[R - (m x (5 - m)fo)],  L£(8) = Pout [R - (m x (- m) fo)).
Lemma 8.5. It holds that
K(k)=(nx (AD-n—£-n))-Rfo.
Here D = 1(k +£7),Q = 3(kT — k).
Proof. By Theorem E.1], we may assume that
Pin[R - (m X (k- m)fo)] = w - Rfo
for some vector w with w_ln. Thus for all ® - Rfy € KerGy,,
(R (m x s -mfo), A7 (© - Rfp)) = (W Rfo, AL (© - Rf)).

First we claim that

<W-Rf0,AJ?O1(®-Rf0)> =0 -(nx (5D -n- %Qn)) (8.2)

Let u and u’ be any vectors. By Proposition 4], we may write
ALl ('R fo) = (uf sin ¢ — uh cos ¢)go(6).
Then we get by a direct computation that
(u-Rfo, Ay (0" - R fo))
= /2 21 sin 6 cos 0 fo(u1 sin ¢ — ug cos @) (u] sin ¢ — uh cos ¢)g(6)dm

S

= %(u xn)(u’ x n) /Sz fo%gw)dm = %(u —(u-n)n) -u'. (8.3)

Therefore, w =n x (AD-n — Q- n).
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Now, we prove (82]). By Lemma B3] Lemma B4 and ([B3)), we have
(R-(mx r-mfo), A7(©-Rf))
=(R-(mxD -mfy), A7 (® Rfy)) — (R-(mxQ-mfy), A" (© Rfy))
1
= —5((mm:D),© - Rfo) — ((n x (2-m)) - Rfo, AH(O - Rfo)

= (© (mx (D m)));, ~ 20 (nx (Q-n)

:SQG)-(nx(D'n))—%@'(nx(Q-n)).

The claim follows. 0
Lemma 8.6. L£(2) =0 for any antisymmetric matriz €.

Proof This is equivalent to prove K(2) = R - (m x (€ -m)fy), which is a consequence of
Lemma 84 and Lemma [ O

Lemma 8.7. For any symmetric matriz D, there holds

355 + 45,

L(D)A}'£(D)dm =( —~\S3)D - nf?
S2 7
54 252 1 . 2
_ 2(£ i 15)D D + (AS2 — S4)(D : nn)*~.

Proof. Applying Lemma R3] with f = .,41701 (R-(m xD-mf)) and Lemma B2 we get

(R-(mx (D-m)fy), AR - (m x (D-m)fp))

= —5D: [ (mm— )R- (m x (D m)fo)dm

= ;D (2D : (mmmm);, D (mm], - (mm)y, - D)

=-D: <S4nn(D :nn) + 2(5277_54)((D ‘n)n+n(D - n))
vo(St 2 Lyp B Sip o)) 5,0

- 3527—;454(D . n)2 - 2(% — % + 1—15)D :D—54(D: nn)2,

which along with Lemma gives

(L(D), A L(D)) = (Pouwt (R - (m x (D -m)fo)), A Pout (R - (m x (D - m)fp)))
<R m x (D-m)fy), A 1R-(mx(D-m)fo)>—/\52|n><( :n)?
(352 + 45,

The proof is finished. O

—AS) (D n)? —2( — ==+

35~ 51 15)D D + (ASy — S4)(D : nn)2.
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8.3. Proof of Theorem [8.1] and application. Let us first prove Theorem By (Z4)-
(7)) and Lemma 7], we find that

o2 o2
(a1—|—7—2)|D:nn|2—|—a4D:D+(73—7—2)|D-n|2
1 1
Sy ’Y% 9 Sy 559 4 555 + 25, ’Y% 9
(=22 2y p . 2422 P p . p g (22202 Dy,
3 2D (-5 - 2 pip oy (BRI Byp oy
382 +4Sy 13 2 Sy 2S5 1 73 2
(PRI By D)’ (R 22 DD+ (— S+ 2) (D
—I—f(D-n) +7(D.nn) +(£—7+3)D.D (8.4)
39 +4S4 73 2 Sy 28 1\ 7 2
22T By p o) o222 222 D2y (— S+ 2D :nn)? >0
since all the coefficients in the line ([84)) are positive. Indeed, we have
1 2 3Ay — Ag
= (= . 1)), = 22— 40
B 1 4 9 . 3544 — 3045 + 34,
Sy = <§(35(m-n) —30(m - n) +3)>f0 = A,
1
= ——— (Ag — 246 + Ay) > 0.
8A0(2n)2( 8 6 + A1)
Hence,
Sy — Si= —(6Ag — 54— Ag) = ——(Ag — 244 + A3) > 0
2751 = (6 4 0) = 1649y 4 2 .
Sy 35y 2 1
e T (BAy—6A, + A .
35 7 "5 sdg o0~ 64+ A >0
This complete the proof of Theorem O

As a byproduct, we get the following dissipation law, which has been used in the existence
of the Hilbert expansion.

Lemma 8.8. For any matriz , there holds

((mm — %I)ﬁ(/{)>1 t Kk <0.

Proof. Lemma implies that
1
Az (D : (mm — gI)) = 2R (m x D-mfy) = —2(K(D) + £L(D)).
Here D = 1(k + x7). From Lemma B8] we know that £(x) = £(D). Hence,
((mm — 1I)ﬁ(/£)>1 tK = / (mm — 1I) :DL(D)dm
3 §2 3
= —2(A;'L(D), £(D) + £(D)) = —2(A;'£(D), L£(D)) <0.
The proof is finished. O
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