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Quasicrystals are one kind of space-filling structures. The traditional crystalline

approximant method utilizes periodic structures to approximate quasicrystals. The

errors of this approach come from two parts: the numerical discretization, and the ap-

proximate error of Simultaneous Diophantine Approximation which also determines

the size of the domain necessary for accurate solution. As the approximate error de-

creases, the computational complexity grows rapidly, and moreover, the approximate

error always exits unless the computational region is the full space. In this work we

focus on the development of numerical method to compute quasicrystals with high

accuracy. With the help of higher-dimensional reciprocal space, a new projection

method is developed to compute quasicrystals. The approach enables us to calculate

quasicrystals rather than crystalline approximants. Compared with the crystalline

approximant method, the projection method overcomes the restrictions of the Simul-

taneous Diophantine Approximation, and can also use periodic boundary conditions

conveniently. Meanwhile, the proposed method efficiently reduces the computational

complexity through implementing in a unit cell and using pseudospectral method.

For illustrative purpose we work with the Lifshitz-Petrich model, though our present

algorithm will apply to more general systems including quasicrystals. We find that

the projection method can maintain the rotational symmetry accurately. More sig-

nificantly, the algorithm can calculate the free energy density to high precision.
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I. INTRODUCTION

As early as the 1890s, the periodic structures (crystals) in three dimensions were deter-

mined by 230 space groups based on periodicity, and then the classical crystallography was

completed, in which the allowed rotational symmetry is only 1-, 2-, 3-, 4-, 6-fold symmetry.

Both the structure determination and the study of physical properties are based on the

periodicity which allows the study to be simplified to a unit cell. However, in the 1980s, a

forbidden 5-fold symmetry electron diffraction pattern was discovered by Shechtman et al. 1

in a rapid cooled Al-Mn alloy. Later, the term “quasicrystals” appeared for the first time to

describe the non-conventional ordered structures 2. In an idealized description, quasicrystals

have quasiperiodic, rather than periodic, translational order with non-crystallographic sym-

metry. In the early theory of tilings, the discovery of aperiodic tiling with 5-fold symmetry of

the plane by Penrose 3,4 showed that such well-ordered systems were mathematically possi-

ble. Since the original discovery, hundreds of quasicrystals have been reported and confirmed

in metallic alloys with 5-, 8-, 10-, 12- fold orientational symmetry 5,6. Two decades after the

first discovery of quasicrystals in metallic alloys, several soft quasicrystals have been found

in soft matter systems 7–10. The building blocks of the solid-state quasicrystals are the atoms

or small molecular on the atomic scale, whilst the building blocks of soft quasicrystals are

on a much larger scale of ten to hundreds of nanometers. Therefore the continuous density

distribution are more appropriate for studying soft quasicrystals. Accordingly the coarse-

grained free energy of density functions have been widely applied to treat phases and phase

transitions, especially for soft matter systems 11–13.

Quasicrystals are one kind of space-filling structures. Two kinds of theoretical approaches

have been developed to study quasicrystals, or more generally, aperiodic crystals. The first

method is an approximate approach which studies crystalline approximants rather than qua-

sicrystals. The crystalline approximants are periodic structures in which the arrangements

of lattices closely approximate the local structures in quasicrystals. Many crystalline ap-

proximants related to quasicrystals have also been discovered 14. These approximants may

play an important role in describing the local structures of quasicrystals, their formation,

stability, and physical properties. The second approach is a direct method to study the qua-

sicrystals or aperiodic crystals in the hyperspace, called the higher-dimensional approach.

From this approach, a quasiperiodic structure may be viewed as a periodic structure by ex-
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tending it into a higher-dimensional space. Its symmetries can be expressed in terms of the

conventional point groups and space groups of higher-dimensional periodic crystals 15,16. In

the higher-dimensional description, quasiperiodic structures result from irrational physical-

space cuts of appropriate periodic hypercrystal structures. It is so-called cut-and-project

method. The higher-dimensional approach reveals the hidden structural correlations. To

implement the higher-dimensional approach in the direct space one must know the discrete

lattice arrangements of higher-dimensional periodic structure. The embedded spaces of d-

dimensional quasiperiodic structures are abstract spaces whose dimensions are more than

three. The dimensions of the embedded space are dependent on the symmetry of the qua-

sicrystal (d > 1) 16,17. For example, the quasicrystals with 5-, 8-, 10-, and 12-fold symmetry

need to be embedded into four-dimensional space. While for the quasiperiodic structures

with 7-, 9-, 18-fold symmetry, the dimension of the embedding spaces increases to six. For

other symmetries, embedding spaces with even higher dimension will be needed. Therefore it

makes the method difficult for implementing. Another disadvantage of applying the higher-

dimensional approach in direct space is that in practical problems one is required to compute

the continuous quasiperiodic distribution rather than the discrete quasiperiodic lattice. A

convenient way to describe the quasiperiodic structures is in the higher-dimensional recip-

rocal space 16. By redefining point-group symmetry and space-group symmetry in terms of

gauge functions, a broader Fourier-space crystallography 18–20 has also been developed to

describe quasiperiodic structures.

The traditional idea for treating quasicrystals is using a periodic structure to approx-

imate the quasiperiodic structure. The method has been applied to molecular dynamics

simulations 21–24, Monte Carlo simulations 25, numerical discretization methods 26. In other

words, those methods compute crystalline approximants rather than quasicrystals. A natu-

ral expectation is that the obtained approximants should approximate quasicrystals as the

computational box goes to infinity. The advantage of the approximate method is that us-

ing the periodic boundary conditions is convenient. However, the approach can not obtain

quasicrystals exactly unless the computational box is the full space because of the restric-

tion of the Simultaneous Diophantine Approximation (SDA) 27. We will further explain this

point in Sec. III. In this paper, we focus on the development of numerical methods for gen-

erating quasicrystals to high precision, rather than crystalline approximants. The proposed

approach is based on the observation that the Fourier spectrum of a d-dimensional quasicrys-
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tal, consists of δ peaks on a Z-module, k =
∑n

i=1 hipi ∈ Rd, hi ∈ Z, of rank n (n > d) with

basis vectors pi
15,16. Therefore, an natural idea is directly computing the Fourier spectrum

of quasicrystals instead of using periodic cells to compute crystalline approximants in real

space.

II. LIFSHITZ-PETRICH MODEL

Although our proposed method is applicable to any model including quasicrystals. For

illustrative purpose we utilize the Lifshitz-Petrich model 26 to demonstrate our algorithm.

Before we go further, a short introduction to the Lifshitz-Petrich model is necessary. Lifshitz-

Petrich model is a coarse-grained mean-field theory. It is specially appropriate for studying

the phase behaviour of soft matters involving quasicrystals 12,13,28. In particular, the Lifshitz-

Petrich free free energy density functional is

F [φ(r)] =
1

V

∫
dr
{ c

2
[(∇2 + 1)(∇2 + q2)φ]2 − ε

2
φ2 − α

3
φ3 +

1

4
φ4
}
. (1)

In Eqn. (1), φ(r) is the order parameter. V is the system volume. q is an irrational number

depending on the symmetry. ε is the reduced temperature. c > 0 is an energy penalty to

ensure that the principle reciprocal vectors of structures is located on |k| = 1 and |k| = q.

α > 0 is a phenomenological parameter. For quasicrystals the system volume V should go

to infinity since quasicrystals are the space-filling structures without periodicity. The most

significant feature of the Lifshitz-Petrich model is the existence of two characteristic length

scales, 1 and q, which is a necessary condition to stabilize the quasicrystals 26,29. Therefore

it is a suitable model to demonstrate our proposed approach.

Theoretically, the ordered patterns, including periodic and quasiperiodic, are correspond-

ing to local minima of the free energy functional of the system with respect to order pa-

rameter φ. Accordingly the order parameter φ∗ is the minimum of the free energy density

functional, which means

δF

δφ(r)

∣∣∣∣
φ∗

= 0. (2)

In order to find the equilibrium state, we introduce a relaxational dynamical to minimize

the Lifshitz-Petrich energy functional which yields

∂φ

∂t
= −δF

δφ
= −c(∇2 + 1)2(∇2 + q2)2φ+ εφ+ αφ2 − φ3. (3)
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We choose a semi-implicit scheme to solve the dynamical equation (3):

1

∆t
(φt+∆t − φt) = εφt − c(∇2 + 1)2(∇2 + q2)2φt+∆t + α(φ2)t − (φ3)t. (4)

∆t is the time step size. The specific implementation of the semi-implicit method for different

numerical methods will be discussed in Sec. III. The current paper is devoted to develop a

numerical method to calculate quasicrystals rather than crystalline approximants.

III. NUMERICAL METHODS

A. Crystalline Approximant Method (CAM)

1. Method Description of CAM

Numerical methods designed for periodic structures have been used to study quasicrystals

approximately 26. Here we call this method the “crystalline approximant method (CAM)”.

In order to describe this method, a brief introduction of numerical methods for treating

periodic structures is necessary, more details can be found in 30. For any d-dimensional

periodic function f(r), r ∈ Rd, the repeated structural unit is called a unit cell. A primitive

unit cell, described by d vectors e1, e2, . . . , ed, has the smallest possible volume. The Bravais

lattice vector is then defined by

R = l1e1 + l2e2 + · · ·+ lded, (5)

where l = (l1, l2, . . . , ld) is a d-dimensional vector with components li ∈ Z. For any R in the

Bravais lattice, the structure is invariant under a lattice translation, i.e., f(r + R) = f(r).

Given the primitive vectors (e1, e2, . . . , ed), the primitive reciprocal vectors (e∗1, e
∗
2, . . . , e

∗
d)

satisfy the equation

ei · e∗j = 2πδij. (6)

The reciprocal lattice vector is then specified by

k = k1e
∗
1 + k2e

∗
2 + · · ·+ kde

∗
d, (7)

where ki ∈ Z. One of the most important properties of the reciprocal lattices is that plane

waves {eik·r} form a set of basis functions for any function with periodicity of the lattice.

5



The periodic function f(r) on the Bravais lattice can be expanded as

f(r) =
∑
k

f̂(k)eik·r. (8)

For periodic structures, the reciprocal lattice vectors have two important features: e∗1, e∗2,

. . . , e∗d are linearly independent; and ki ∈ Z, i = 1, 2, . . . , d. In the direct space, the lattice

vectors have the same properties.

The main idea of CAM is to use periodic structures to approximate quasicrystals. For

a d-dimensional quasicrystals, its reciprocal lattice vectors k can be expressed by d linearly

independent reciprocal vectors, e∗1, e
∗
2, . . . , e

∗
d,

k = p1e
∗
1 + p2e

∗
2 + · · ·+ pde

∗
d. (9)

It is important to note that the pi ∈ R, usually including irrational numbers, that is, k can

not be represented by linear combinations of e∗i with integer-valued coefficients. However,

the quasiperiodic function φ(r) can be expanded as in the following form

φ(r) =
∑
k

φ̂(k)ei·(Lk)·r/L, r ∈ [0, 2πL)d. (10)

If there exists a rational number L such that Lpi ∈ Z or Lpi can be made arbitrarily close

to a series of integers, for all i = 1, 2, . . . , d and k, which means

|L · (p1, p2, . . . , pd)− ([Lp1], [Lp2], . . . , [Lpd])|l∞ → 0, for all k, (11)

where [·] rounds the number · to the nearest integer. Then numerical methods designed for

periodic structures can be used to treat quasicrystals. Without loss of generality, we can

always choose (1, 0, . . . , 0) as one of the primitive reciprocal vectors. Therefore, the rational

number L becomes an integer. The problem of determining L is a well-known problem, which

deals with the approximation of real numbers by rational numbers or integers, called the

Simultaneous Diophantine Approximation (SDA) in number theory 27. In view of numerical

computability, the integer L should be as small as possible. For simplicity, we denote the

approximate error of SDA as ESDA.

From the above description, the condition of SDA must be satisfied for the implementation

of CAM. Therefore, there are two sources of errors of the CAM, from the discretization,

and from the Diophantine approximation. The integer L is dependent on these irrational
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numbers pi due to rotational symmetry and the desired precision of the approximation. In

the subsequent numerical examples (in Sec. III C), we will find that L increases very quickly

as the desired precision becomes higher. This greatly increases the computational cost. For

CAM, the computational box should satisfy the condition (11). Therefore, the edge length

Dk of computational box is close to Dk = L× 2π, or D = n · L× 2π, n ∈ N+.

2. An Example of 12-fold Rotational Symmetry

FIG. 1: Sets of reciprocal lattice vectors {k} of 12-fold rotational symmetry in

2-dimensional space.

In order to make the above method clearer, we take an example of 12-fold rotational

symmetry in two-dimensions to demonstrate this point. A schematic plot in the reciprocal

space is shown in Fig. 1. Let two noncollinear vectors e∗1 = (1, 0) and e∗2 = (0, 1) comprise

the primitive reciprocal vectors, other reciprocal vectors of the 12-fold case are represented

as linear combinations of e∗1 and e∗2 with real number coefficients, as shown in Fig. 1. If other

two noncollinear reciprocal vectors are chosen as primitive reciprocal vectors, similar results

will emerge as well. The distinct nonzero coefficients for these 12 vectors are 1, 1/2, and
√

3/2. When applying CAM to this example of 12-fold vectors, we need an integer L such

that

∣∣∣L · (1,

√
3

2
,
1

2

)
−
(
L,
[√3

2
L
]
,
[1

2
L
])∣∣∣

l∞
→ 0. (12)

7



3. Applying CAM to Lifshitz-Petrich Method

In CAM, we indeed use crystalline approximants to approximate quasicrystals. By sub-

stituting Eqn (10) into (1), the Lifshitz-Petrich free energy density functional becomes

F [φ] =
1

2

∑
k1+k2=0

[c(1− |k|2)2(q2 − |k|2)2 − ε]φ̂(k1) φ̂(k2)

− α

3

∑
k1+k2+k3=0

φ̂(k1) φ̂(k2) φ̂(k3) +
1

4

∑
k1+k2+k3+k4=0

φ̂(k1) φ̂(k2) φ̂(k3) φ̂(k4). (13)

Then we use the semi-implicit scheme (4) to minimize the free energy density functional.

For CAM, the semi-implicit method becomes(
1

∆t
+ c(1− k2)2(q2 − k2)2

)
φ̂t+∆t(k) =

(
1

∆t
+ ε

)
φ̂t(k) + α(φ2

t )(k)− (φ3
t )(k), (14)

where (φmt )(k) =
∫
drφm(r)e−ikr, m = 2, 3. The right terms of the dynamics can be

efficiently calculated by the pseudospectral method 30. The Laplacian terms are computed

in d-dimensional reciprocal space easily, while the convolutions can be calculated efficiently

by Fast-Fourier transformation (FFT). Then the computational complexity is O(N logN)

at each time step, N is the number of degrees of freedom.

B. Projection Method (PM)

1. Method Description of PM

As mentioned above, CAM computes the crystalline approximants. However, the ap-

proximation method can not evaluate the free energy density exactly because of the ap-

proximate error of SDA. Therefore it is necessary to design a new numerical method that

improves the calculation of quasicrystals by avoiding the approximate error of SDA. From the

higher-dimensional description 16, there exists an equivalent n-dimensional representation of

a d-dimensional quasicrystal (n > d). The reciprocal vectors k ∈ Rd of a d-dimensional

quasicrystal are

k = h1p
∗
1 + h2p

∗
2 + · · ·+ hnp

∗
n, hi ∈ Z, (15)

with vectors p∗i ∈ Rd of rank n. In order to develop the new numerical method, we firstly

redefine the selected reciprocal vectors p∗i with n components. Then the quasicrystal can
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be represented by these redefined basic reciprocal vectors with integral coefficients in n-

dimensional space. This representation has the advantage, for our purpose, that the d-

dimensional quasicrystal is periodic in n-dimensions. Based on the redefined reciprocal vec-

tors, we introduce the n-dimensional reciprocal lattice. Assume that n-dimensional vectors,

b∗1,b
∗
2, . . . ,b

∗
n, are the primitive reciprocal vectors of a 1st Brillouin zone in n-dimensional

reciprocal space, the reciprocal vector of n-dimensional periodic structure can be expressed

as

H = h1b
∗
1 + h2b

∗
2 + · · ·+ hnb

∗
n, (16)

where the coefficient hi ∈ Z, and H ∈ Rn. The correspondingly primitive vectors of the

direct space bi satisfy the dual relationship (6). We want to use the n-dimensional reciprocal

vector H to represent the d-dimensional quasicrystal. Then we can solve a d-dimensional

quasicrystal as a periodic structure in n-dimensional space. The key point of implementing

the above idea is to provide an operator to project the n-dimensional structure into d-

dimensional space.

In order to solve the problem, we propose a novel Fourier expansion for the d-dimensional

quasiperiodic function

g(r) =
∑
H

ĝ(H)ei[(S·H)T ·r]. (17)

In the expression, r ∈ Rd, H ∈ Rn, and S is the projective matrix which connects the

d-dimensional physical space with the n-dimensional reciprocal space. We note that the two

representations (15) and (16) can be used to describe the same quasicrystal. The recip-

rocal vectors of a d-dimensional quasicrystal can be represented by d-dimensional recipro-

cal vectors p∗i with integral coefficients, and also the integral combinations of extended n-

dimensional primitive reciprocal vectors b∗i . Therefore, we can obtain the projective matrix

S through projecting the n-dimensional reciprocal vectors bi into d-dimensional reciprocal

space, i.e., pi = (S · b)i, i = 1, 2, . . . , n. The j-th component p∗ij of the projected reciprocal

vector p∗i can be expressed by b∗i

p∗ij =
n∑

m=1

sjmb
∗
im, j = 1, 2, . . . , d, (18)

where b∗im is the m-th component of the i-th n-dimensional reciprocal vector b∗i . These

coefficients sjm ∈ R, j = 1, 2, . . . , d, m = 1, 2, . . . , n, form the d×n-order nonzero projective
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matrix S which reflects the symmetry of quasicrystals. For the least computational expense,

the dimension n of the extended space must be the smallest determined by the order of the

elements of the symmetric group 16,17. For example, 5-, 8-, 10-, and 12-fold symmetric qua-

sicrystals, the dimension of embedded space is four. However, 7-, 9-, and 18-fold symmetric

quasicrystals must be restricted to six-dimensional space. The projective matrix S is not

unique, which is determined by the selection of reciprocal vectors b∗i . The represented coef-

ficients of reciprocal vectors are dependent on the selection of primitive reciprocal vectors,

however, the reciprocal vectors of a quasicrystal are unique. Therefore, the selection of ba-

sic reciprocal vectors b∗i as well as the projective matrix S is irrelevant to the quasicrystal.

Considering a periodic structure, the projective matrix S degenerates to a d× d-order unit

matrix.

Furthermore, PM can be extended to calculate one-dimensional quasicrystals even though

the notion of rotational symmetry does not exist in one dimension. If an energy functional

has one-dimensional quasiperiodic structures with different incommensurate scales, for ex-

ample,

g(x) = C0 sin(x) + C1 sin(q1x) + C2 sin(q2x) + · · · , (19)

where the common multiples of 1, q1, q2, . . . , are irrational numbers in pairs, the projective

matrix becomes a vector

S = (1, q1, q2, . . . ). (20)

The present approach can be applied to calculate one-dimensional quasicrystals.

In the following, a lemma is given to indicate which variable should be computed in PM.

Lemma 1. For a d-dimensional quasiperiodic function g(r), under the expansion (17), we

have

lim
V→∞

1

V

∫
dr g(r) = ĝ(H)

∣∣∣
H=0

. (21)

Proof. Firstly, we note that

lim
V→∞

1

V

∫
dr exp

{
(S ·H) · r

}
= δ(S ·H). (22)

Therefore,

lim
V→∞

1

V

∫
dr g(r) = lim

V→∞

1

V

∫
dr
∑
H

ĝ(H)ei[(S·H)T ·r] = ĝ(H)
∣∣∣
S·H=0

. (23)
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Then we just need to prove that the expressions (21) and (23) are equivalent. From the

definition of (16), n-dimensional reciprocal vector H is the integer-valued combinations of

linearly independent primitive reciprocal vectors b∗i , i = 1, 2, . . . , n. Because the projective

matrix S is linear, the d-dimensional projected vector S ·H is also the integer-valued com-

binations of the d-dimensional projected vectors p∗i = S · b∗i . S ·H = 0 is equivalent to the

integral coefficients hi in Eqn. (23) to be zero. It means that the n-dimensional reciprocal

vector H = 0.

Remark 1. From Lemma 1, the Fourier coefficients ĝ(H) rather than ĝ(S · H) should be

computed in PM.

In the PM, a quasicrystal is computed in n-dimensional reciprocal space as a periodic

structure, then the n-dimensional structure is projected into d-dimensional space to obtain

the d-dimensional quasicrystal through projective matrix. Since different periodic phases

have their own periodicity, the appropriate computational box is important to determine

the final morphology of solutions, especially for complex phases. For example, in diblock

copolymer systems 31, the lamellae phase can be obtained easily in any computational region,

however, for complex gyroid pattern, the computational box should be close to its period.

For more complex quasicrystal, the computational box should be estimated carefully before

computing. We also note that a equilibrium periodic structure is not only the minimum

of a free energy density F with respect to order parameters, but also with respect to the

unit cell 30. Therefore, the unit cell in n-dimensional space, B = [b1,b2, . . . ,bn], should

satisfy ∂F/∂B = 0. We will give a estimation formula for the unit cell of quasicrystals in

the Lifshitz-Petrich model (see Sec. III B 3).

With the help of n-dimensional reciprocal space, the PM can calculate the spectrum of

quasicrystals directly. In PM, the physical space variable r always belongs to d-dimensional

space. Therefore an energy functional including d-dimensional quasicrystals should not be

up to describing n-dimensional structures. The PM is able to compute quasicrystals rather

than crystalline approximants. The PM is also using the periodic condition conveniently in

higher-dimensional reciprocal space . Compared with CAM, the most important advantage

of PM is that the method overcomes the restriction of SDA. Therefore PM can compute

the free energy density to high accuracy numerically. Meanwhile, the proposed method can

implement in a n-dimensional reciprocal unit cell to reduce computational cost.
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2. An Example of 12-fold Rotational Symmetry

As an example, we take the 12-fold rotational symmetry in two dimensions to illustrate the

idea of PM. As Sec. III A 2 discussed, the 12 reciprocal lattice vectors can not be represented

FIG. 2: Sets of reciprocal lattice vectors {H} of the 12-fold rotational symmetry with 4

components.

by two noncollinear vectors e∗1 and e∗2 with integral coefficients. However, as Fig. 2 shows,

if the vectors of b∗1, b∗2, b∗3, and b∗4 with 4 components are chosen as primitive reciprocal

vectors, other reciprocal lattice vectors can be represented as integral combinations of these

primitive vectors. The selected 4 vectors make up a basis in 4-dimensional space. The

2-dimensional 12-fold example is related to a periodic structure in 4-dimensional reciprocal

space. The projected vectors p∗i = S · b∗i , i = 1, 2, 3, 4 also can be expressed by e∗1, e∗2 in

2-dimensional space, i.e.,

p∗i1 = cos
(i− 1)π

6
e∗11, p∗i2 = sin

(i− 1)π

6
e∗22. (24)

Therefore, the projective matrix is

S =

 1 cos(π/6) cos(π/3) 0

0 sin(π/6) sin(π/3) 1

 . (25)
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3. Applying PM to Lifshitz-Petrich Method

Applying PM to the Lifshitz-Petrich model in two dimensions, the order parameter φ(x, y)

is expanded as

φ(x, y) =
∑
H

φ̂(H) exp
{
i(S ·H)T · (x, y)T

}
, (26)

where H is a n-dimensional vector, S is a 2× n-order projective matrix. For quasicrystals,

the system volume V should go to infinity. Based on Lemma 1, the Lifshitz-Petrich free

energy density functional becomes

F [φ(x, y)] =
1

2

∑
H1+H2=0

{c[1− (g2
1 + g2

2)]2[q2 − (g2
1 + g2

2)]2 − ε}φ̂(H1) φ̂(H2)

− α

3

∑
H1+H2+H3=0

φ̂(H1) φ̂(H2) φ̂(H3) +
1

4

∑
H1+H2+H3+H4=0

φ̂(H1) φ̂(H2) φ̂(H3) φ̂(H4),

(27)

where g1 and g2 are defined by

S ·H =
( n∑
i=1

s1i

n∑
j=1

hjbji,
n∑
i=1

s2i

n∑
j=1

hjbji

)T ∆
= (g1, g2)T , (28)

hj ∈ Z, s1j and s2j are the components of the projective matrix S, and bji is the i-th

component of the primitive reciprocal vector bj. The n-dimensional Fourier coefficient φ̂(H)

can be solved by the semi-implicit method (4)(
1

∆t
+ c
(
1− g2

1 − g2
2

)2 (
q2 − g2

1 − g2
2

)2
)
φ̂t+∆t(H)

=

(
1

∆t
+ ε

)
φ̂t(H) + α(φ2

t )(H)− (φ3
t )(H), (29)

where the quadratic term and the third term are

(φ2
t )(H) =

∑
H1+H2=H

φ̂t(H1) φ̂t(H2), (φ3
t )(H) =

∑
H1+H2+H3=H

φ̂t(H1) φ̂t(H2) φ̂t(H3). (30)

In Eqn. (29), the linear terms can be solved easily. The nonlinear terms are n-dimensional

convolutions in reciprocal space. Directly computing will result in expansive computational

cost. However these convolutions are local point multiplication in n-dimensional direct space.

Therefore we use the pseudospectral method 30 to treat these terms by FFT. It should be

emphasized that the PM is implemented in n-dimensional reciprocal space instead of in
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d-dimensional physical space. Computing these convolutions in n-dimensional direct space

is to reduce computational complexity.

For PM, we give a method to estimate the n-dimensional unit cell for the Lifshitz-Petrich

model 31. Without loss of generality, we can choose a proper coordinate system such that

bii 6= 0, bij = 0, when j > i. If B = [b1,b2, . . . ,bn] is a n-dimensional unit cell of a d-

dimensional quasicrystal. The first deviations of the free energy functional with respect to

bij should be zero, where i = 1, 2, . . . n, j = 1, 2, . . . , i, i.e.,

∑
H

hj(g1s1i + g2s2i)[1− (g2
1 + g2

2)][q2 − (g2
1 + g2

2)][1 + q2 − 2(g2
1 + g2

2)] · |φ̂(H)|2 = 0. (31)

Then the unit cell can be obtained by solving the Eqn. (31). Since the Fourier coefficients

φH are unknown beforehand. In practice, only primary reciprocal vectors with equal Fourier

coefficients because of symmetries are considered in estimating the unit cell. Therefore the

Fourier coefficients φ̂(H) in (31) will be cancelled and make no impression on evaluating

the size of box.

C. Computational Complexity

In this section, we will give a general analysis on the computational complexity of CAM

and PM in solving the two-dimensional Lifshitz-Petrich model. The computational complex-

ity of CAM is dependent on the approximate accuracy of SDA (11) and the numerical preci-

sion. However, the PM overcomes the restriction of SDA, whose computational complexity is

only dependent on the numerical accuracy. As described in Sec III A 1 and Sec. III B 1, both

CAM and PM can use pseudospectral method in computing the two-dimensional Lifshitz-

Petrich model. The number of basic functions used in the reciprocal space can be equivalent

to the number of discretized points in the direct space. In order to guarantee the same

numerical precision, we assume that the mesh step size is ∆x both for CAM (2 dimensions)

and PM (n dimensions) in the direct space.

In the Lifshitz-Petrich model, the CAM is implemented in two dimensions. At a desired

approximate error ESDA as well as the integer L, the number of the plane waves is Nk×Nk,

Nk =

[
Dk

∆x

]
, Dk = 2π × L, (32)
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where [·] rounds the number · to the nearest integer. The computational complexity of CAM

O
(
Nt,k · 2N2

k logNk

)
, (33)

where Nt,k is the number of time iterations.

In PM, the 2-dimensional quasicrystal is represented in n-dimensional reciprocal space

as a periodic structure. The dimension of n is dependent on the rotational symmetry of a

quasicrystal. Therefore the 2-dimensional quasicrystal can be computed in a n-dimensional

unit cell. We assume that the size of the n-dimensional unit cell is DH in the direct space.

The number of the plane-wave functions is Nn
H, with

NH =

[
DH

∆x

]
. (34)

As discussed in Sec. III B 1, the pseudospectral method in PM is used to solve the dynam-

ical equation (29) in n-dimensional reciprocal space with the help of FFT. Therefore the

computational complexity of PM is

O (Nt,H · nNn
H logNH) , (35)

where Nt,H is the number of time iterations.

From the estimation formulas (33), the computational complexity of CAM is a function

of the integer L, which is dependent upon the approximate error of SDA. In next section,

we will find that Dk � DH as the approximate error of SDA decreases. The computational

complexity of CAM may be larger than that of PM in a situation where higher numerical

accuracy is required. More importantly, PM can compute quasicrystals and their free energy

density to high accuracy without any approximate error of SDA. On the contrary, CAM

always has the approximate error of SDA unless the computational box goes to infinity

which results in unaccepted computational cost.

IV. NUMERICAL RESULTS AND DISCUSSION

We will demonstrate the behavior of the two numerical methods, CAM and PM, based

on the two-dimensional Lifshitz-Petrich model. In previous research 26, the Lifshitz-Petrich

model showed that if q is chosen around 2 cos(π/12) one can obtain a 2-dimensional qua-

sicrystal with dodecagonal (12-fold) symmetry. The earlier work found that no choice of q
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yields globally stable octagonal or decagonal symmetric pattern. However, recent study 29

manifests that the decagonal quasicrystal is stable in the Lifshitz-Petrich model. In this

work we just consider the dodecagonal symmetric structure.

A. Computational Complexity of Dodecagonal Symmetric Structure

For the dodecagonal quasicrystal (DDQC), the initial reciprocal vectors at which the

Fourier coefficients are nonzero, are shown in Fig. 3. They contain two 12-fold stars of wave

vectors, one on |k| = 1 and other on |k| = q = 2 cos(π/12) 26. The specific reciprocal

FIG. 3: Initial reciprocal lattice vectors for DDQC.

TABLE I: Initial reciprocal lattice vectors for DDQC in 2-dimensional space with

q = 2 cos(π/12).

|k| = 1 (cos(jπ/6),sin(jπ/6)), j = 0, 1, . . . , 11

|k| = q (q cos(jπ/6 + π/12), q sin(jπ/6 + π/12)), j = 0, 1, . . . , 11

vectors are given in Tab. I when e∗1 = (1, 0) and e∗2 = (0, 1), as shown in Fig 1, are chosen as

the basic reciprocal vectors in 2 dimensions. The distinct nonzero represented coefficients of

these initial reciprocal vectors for DDQC phase are 1, 1/2,
√

3/2, 2 cos(π/12), cos(π/12) and
√

3 cos(π/12). The condition of SDA (11) must be satisfied when one uses CAM. Fig. 4 shows

the trend of the approximate error of SDA, ESDA, as the integer L increases. The convergence

of ESDA is not uniform. Tab. II gives the minimal integers for desired approximate error
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FIG. 4: The trend of the approximate error of SDA, ESDA, as a function of the integer L.

TABLE II: The minimal integer L for desired approximate error of SDA, ESDA.

ESDA 0.19098 0.17486 0.07042 0.04953 0.03583 0.02961 0.01936

L 30 208 410 3404 6016 32312 82262

The size of computational box used in CAM is Dk = 2πL.

ESDA, and the corresponding size Dk of computational box used in CAM. Then the initial

reciprocal vectors in CAM are [L · k]. From the table, we find that L increases quickly

as the approximate error becomes small. Accordingly, the computational cost will increase

greatly. We also find the ESDA ≈ 0.19098 (L = 30) is the least requirement for computing

dodecagonal symmetric structure, it is consistent with the result in Ref. 26. The initial

reciprocal vectors in 4-dimensional space representation of PM are shown in Tab. III when

the primitive reciprocal vectors are b∗1 = (1, 0, 0, 0), b∗2 = (0, 1, 0, 0), b∗3 = (0, 0, 1, 0), and

b∗4 = (0, 0, 0, 1), as shown in Fig 2. We can use the 24 initial reciprocal vectors in Tab. III to

TABLE III: Initial reciprocal lattice vectors {H} for DDQC in PM with q = 2 cos(π/12).

|S ·H| = 1
(0 1 0 -1) (0 -1 0 1) (1 0 0 0) (-1 0 0 0) (0 1 0 0) (0 -1 0 0)

(0 0 1 0) (0 0 -1 0) (0 0 0 1) (0 0 0 -1) (-1 0 1 0) (1 0 -1 0)

|S ·H| = q
(1 1 0 -1) (-1 -1 0 1) (1 1 0 0) (-1 -1 0 0) (0 1 1 0) (0 -1 -1 0)

(0 0 1 1) (0 0 -1 -1) (-1 0 1 1) (1 0 -1 -1) (-1 -1 1 1) (1 1 -1 -1)

The projective matrix S is given by Eqn. (25).
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estimate the unit cell of DDQC in 4-dimensional space. From the estimation formula (31) and

the dual relationship (6), the size of the unit cell in n-dimensional direct space is DH = 2π.

The projective matrix S of PM is given by Eqn. (25).

In the following, we will compare the computational complexity between CAM of different

unit cell with Dk = 2π · L and PM as discussed in Sec. III C. In each time step, for the

dodecagonal symmetric structure, the computational complexity of CAM is

Ck = O
(
2N2

k logNk

)
= O

(
2

(
2πL

∆x

)2

log

(
2πL

∆x

))
, (36)

and the computational complexity of PM is

CH = O
(
4N4

H logNH

)
= O

(
4

(
2π

∆x

)4

log

(
2π

∆x

))
. (37)

For L = 30 with ESDA ≈ 0.19098 in CAM, the computational complexity Ck < CH when ∆x

is smaller than 0.20943951. However, for L = 208, Ck < CH only if ∆x > 500.6549, which

is much larger than the size of the unit cell DH. It can not be implemented numerically.

The computational complexity CH of PM is always smaller than that of Ck. For higher

approximate accuracy of SDA with larger L, CH < Ck, and total computational complexity

of PM may be less than CAM.

Subsequently we compare the total computational complexity including time iterations

of CAM (with L = 30) and PM through numerical experiments. All the methods considered

here have been implemented in C language. Fourier transforms are computed using the

FFTW 32 package. The codes were run in the same workstation, a Intel(R) Xeon(R) CPU

E5450 @3.00GH memory 16 G under linux. The time step size, ∆t, is always selected as 0.1

for both methods. To measure error we use l∞ norm,

ECAM = max
k

{(
δF

δφ

)
(k)

}
(38)

for CAM, and

EPM = max
H

{(
δF

δφ

)
(H)

}
(39)

for PM.

Fig. 5 shows the total CPU time reaching an error of 10−8 by CAM (L = 30) and PM

at a set of parameters, c = 50, ε = 0.015, α = 1.0, with different discrete resolution. The
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FIG. 5: The total CPU time required by CAM (L = 30) and PM at the error of 10−8, with

different mesh step size ∆x at a set of parameters: c = 50, ε = 0.015, α = 1.0.

number of iterations on different grids is same. For CAM method, Nt,k = 848, while for PM

approach, Nt,k = 472. It may be that the accuracy of spacial discretization is enough for the

calculated structure at the set of parameter. For the same reason, the free energy density

calculated by PM is nearly the same on these grids, FPM = −3.524067379e− 03, while the

CAM obtains the equal free energy density FCAM = −3.457837609e − 03. However, the

iterations of CAM, Nt,k is alway large than that of PM, Nt,H. As discussed in Sec. IV B, it

may be that PM keeps the rotational symmetry, while CAM dose not. Therefore PM can

reach the same accuracy more quickly. The free energy density computed by PM is lower

than the CAM. It may result from the approximate error of SDA in CAM (also see Fig 7(a)).

As Fig 5 demonstrates, the cost of CPU time of PM is lower than that of CAM until the

mesh step size ∆x is less than about 0.15. It is different from the above analysis about the

computational complexity in each time step because of the different iterations between PM

and CAM.

From these results, we find that with relative large mesh step size ∆x, PM can obtain

enough numerical accuracy with less computational cost than CAM (L = 30). CAM always

has approximant error unless Dk → ∞. And as discussed in the section, higher accuracy
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of approximant error will result in heavy computational burder. Therefore, PM has less

computational complexity than CAM to high accuracy in computing these quasicrystals

represented in 4 dimensions, such as dodecagonal symmetric structures.

B. Dodecagonal Symmetric Structure

The initial reciprocal coefficients, as mentioned in Sec. IV A, at which the Fourier coef-

ficients are nonzero are used as initial values to find equilibrium dodecagonal symmetric

structures. The simulations of CAM are performed on a 256 × 256 grids with L = 30, and

the simulations of PM are performed with N4
H = 324 plane waves. The projective matrix S

of PM is given by expression (25). We also find that the morphologies and the free energy

density will not change with denser grids. The morphology of the dodecagonal approximant

computed by CAM in physical space is given in Fig. 6(a). It is a periodic structure. The

DDQC calculated by PM is shown in Fig. 6(b). Both morphologies demonstrate the 12-fold

(a)Dodecagonal crystalline approximant (b)DDQC

FIG. 6: The morphologies of (a). Dodecagonal approximant computed by CAM and (b).

DDQC calculated by PM at ε = 0.015, α = 1, c = 50, q = 2 cos(π/12).

orientational symmetry in the physical space, at least locally. However, further analysis

about the relationship of the Fourier coefficients will come to a different conclusion. From

the rotational symmetry, each 12 reciprocal vectors with dodecagonal rotational symmetry

on the ring |k| = 1 (|S ·H| = 1), or |k| = q (|S ·H| = q), should have equal Fourier co-

efficients. Tab. IV shows the principle Fourier coefficients calculated by CAM. Tab. V gives
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these Fourier coefficients on principle reciprocal vectors calculated by PM. From these re-

sults, we can find the 12 Fourier coefficients calculated by CAM on each characteristic ring

are not equal. In contrast, as Tab. V shown, PM can obtain the 12 equal Fourier coefficients

TABLE IV: The Fourier coefficients of the principle reciprocal vectors for dodecagonal

crystalline approximant computed by CAM with L = 30 at ε = 0.015, α = 1, c = 150,

q = 2 cos(π/12).

|k| = L

(30,0) (-30,0) (0,30) (0,-30)

(26,15) (-26,-15) (15,26) (-15,-26)

(-15,26) (15,-26) (-26,15) (26,-15)

6.106618210e-02

5.928204525e-02

-

|k| = [L · q]

(41,41) (-41,-41) (-41,41) (41,-41)

(56,15) (-56,-15) (15,56) (-15,-56)

(-15,56) (15,-56) (-56,15) (56,-15)

5.458000478e-02

5.683018766e-02

-

on each ring. We also find the same phenomenon at different parameter coordinates. For

TABLE V: The Fourier coefficients of the principle reciprocal vectors for DDQC

computed by PM at ε = 0.015, α = 1, c = 150, q = 2 cos(π/12).

|S ·H| = 1

(0 1 0 -1) (0 -1 0 1) (1 0 0 0) (-1 0 0 0)

(0 1 0 0) (0 -1 0 0) (0 0 1 0) (0 0 -1 0)

(0 0 0 1) (0 0 0 -1) (-1 0 1 0) (1 0 -1 0)

5.856822141e-02

|S ·H| = q

(1 1 0 -1) (-1 -1 0 1) (1 1 0 0) (-1 -1 0 0)

(0 1 1 0) (0 -1 -1 0) (0 0 1 1) (0 0 -1 -1)

(-1 0 1 1) (1 0 -1 -1) (-1 -1 1 1) (1 1 -1 -1)

5.855442187e-02

CAM, we also use higher approximate accuracy ESDA ≈ 0.07042, with the computational

box Dk × Dk, Dk = 820π. The numerical experiments are implemented on a 4096 × 4096

grids. We find that CAM can capture the dodecagonal approximant, however, it still can not

obtain 12 equal Fourier coefficients on each ring as well as the above numerical experiments.

Therefore, we come to a conclusion that PM can keep the non-crystallographic symmetry

to high accuracy, while CAM can not unless Dk →∞.
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C. Free Energy Density

In this section, we compare the free energy density computed by CAM, PM and single-

wave approximation (SWA) approaches. The SWA method uses principal Fourier vectors

to calculate the free energy functional analytically under some constraints 33. It translates

the energy functional into a single-variable or multi-variable function. The minimum of

free energy can be approximately obtained by minimizing the reduced energy function with

respect to these variables. In the Lifshitz-Petrich model, the principal Fourier vectors of

DDQC have been shown in Fig 3. When c→∞, the reduced free energy function of DDQC

pattern computed by SWA 26,29 is

F12 = 99(φ4
1 + φ4

q) + 144(φ3
1 + φ3

1φq) + 360φ2
1φ

2
q − 24(φ2

1φq + φ2
1φq)− 8(φ3

1 + φ3
q)− 6ε(φ2

1 + φ2
q)/α

2,

(40)

φ1, φq ∈ R stand for Fourier coefficients on the |k| = 1 and |k| = q rings, respectively. The

approximated minimum of DDQC can be obtained by minimizing the above equation with

respect to φ1 and φq.

(a)Free energy density (b)Interfacial energy (Laplacian terms)

FIG. 7: (a). Free energy density calculated by PM and CAM, as a function of the penalty

factor c, relative to that of SWA (c→∞), with q = 2 cos(π/12), α = 1.0, ε = 0.015. (b).

Corresponding interfacial energy computed by PM and CAM.

Fig. 7(a) shows the free energy density calculated by PM and CAM (L = 30, 208, 410),

as a function of the penalty factor c, relative to that of SWA (c→∞) with q = 2 cos(π/12),

α = 1.0, ε = 0.015. In numerical simulations, CAM are performed with 720 × 720 plan

waves (∆x = 0.2618) for L = 30; with 2048×2048 plan waves for L = 208; with 4096×4096
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TABLE VI: The CPU time required for minimizing the free energy (1) by the PM and

CAM approaches at error of 10−6 with q = 2 cos(π/12), α = 1.0 ε = 0.015 for different c.

In simulations, ∆t = 0.1; NH = 24 utilized in PM; Nk = 720, 2048, 4096, used in CAM

corresponding to L = 30, 208, 410, respectively.

CPU time (sec)

c 5 20 50 100 150 200 300

PM 45.86 40.91 40.38 39.49 39.69 39.72 39.39

CAM (L = 30) 122.49 136.97 143.10 181.89 189.29 185.33 197.05

CAM (L = 208) 1172.56 1381.57 1567.82 1716.40 1764.55 1896.65 1847.07

CAM (L = 410) 3457.19 3655.40 3397.97 3803.35 4035.10 4471.93 4767.31

plan waves for L = 410. 324 (∆x = 0.2618) plan waves were utilized in PM approach. The

free energy density computed by CAM is heavily dependent on the approximate error of

SDA. As Tab. II shown, when L = 30 and 208, the approximate errors of SDA are 0.19098

and 0.17486. Under the approximate error, the CAM manifests the nearly same behavior.

The free energy density FCAM computed by CAM is less than FSWA obtained by SWA until

the penalty factor c increases to about 10. Then FCAM is larger than FSWA as c increases.

The reason is that the CAM can not control the principal reciprocal vectors located on

|k| = 1 and |k| = q when the penalty factor c increases, as shown in Fig. 7(b). In other

words, CAM can not calculate the interfacial energy (Laplacian terms) accurately when c is

large. However the role of the differential terms in the Lifshitz-Petrich model is to keep the

interactions at two characteristic scales. It is one of the reasons that the Lifshitz-Petrich

model is able to stabilize quasicrystals 26. Correspondingly, the FCAM diverges from the true

free energy density. We have also used L = 410 which improves the approximate accuracy

of SDA to ESDA = 0.07042 in CAM to observe the free energy density. It improves the

accuracy of free energy, however, the same problem appeared when c is larger than 50. In

contrast, the free energy density FPM calculated by PM is always smaller than FSWA for all

c and converges to the FSWA as c → ∞. It is because the more basic functions are used

in simulations by PM than that of SWA. The approximated space of PM is more precise

than that of SWA. The PM can also maintain its principle reciprocal vectors located on

scales 1 and q which is consistent with the model, as shown in Fig. 7(b). The corresponding
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CPU times spent in simulations are shown in Tab. VI. Compared with the CAM method,

the PM can evaluate the free energy density to high numerical accuracy with economical

computational cost in dodecagonal symmetric phase.

V. CONCLUSIONS AND OUTLOOK

In the article, we summary the features of CAM approach, and point out the advantage

of using the periodic condition and the restriction condition of the SDA in this method.

The errors of CAM come from two parts: the approximate error of SDA and numerical

discretization. Subsequently we propose a new numerical method, the PM, with the help

of higher-dimensional reciprocal space. The developed method overcomes the restriction of

SDA and enables us view a quasicrystal as a periodic structure, and uses the periodic con-

dition conveniently. The projection method can reduce the computational effort efficiently

by computed quasicrystals in a higher-dimensional unit cell and using the pseudospectral

method. By applying two methods to the Lifshitz-Petrich model, we analyze the computa-

tional complexity. The computational complexity of CAM is dependent on the approximate

error and the numerical resolution, while that of PM is only dependent upon the numerical

resolution. Specially, in computing dodecagonal symmetric pattern, PM has less computa-

tional complexity than that of CAM. We also find that our approach can keep the rotational

symmetry accurately, and more significantly, the present algorithm can calculate the free

energy density to high accuracy without any approximate error of SDA. However, the dimen-

sions of our computational space are dependent on the rotational symmetry of quasicrystals.

For quasiperiodic structures with 5-, 8-, 10- and 12-fold symmetry, the computational space

dimension is four. PM has accepted computational complexity. For a quasicrystal with of

7-, 9-, and 18-fold quasicrystals, the dimension of computational space is up to six. It is

also emphasized that the recently discovered quasicrystals can be all represented as periodic

structures in less than 6-dimensional space. Our future work will focus on the improvement

of the computational efficiency of the projection method, and make it to 6-dimensional cases.

Finally, we should point out that PM can be also applied to study general d-dimensional

aperiodic structures 15 whose Fourier spectrum consists of δ-peaks, H =
∑n

i=1 hib
∗
i , hi ∈ Z,

of rank n (n > d) with basis vectors b∗i , i = 1, 2, . . . , n.
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