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ABSTRACT: Block copolymers with their rich phase
behavior and ordering transitions have become a paradigm
for the study of structured soft materials. A major challenge in
the study of the phase behavior of block copolymers is to
obtain different stable and metastable phases of the system. A
strategy to discover complex ordered phases of block
copolymers within the self-consistent field theory framework
is developed by a combination of fast algorithms and novel
initialization procedures. This strategy allows the generation of
a large number of candidate structures, which can then be used
to construct phase diagrams. Application of the strategy is
illustrated using ABC star triblock copolymers as an example. A
large number of candidate structures, including many three-dimensionally ordered phases, of the system are obtained and
categorized. A phase diagram is constructed for symmetrically interacting ABC star triblock copolymers.

■ INTRODUCTION

Block copolymers are macromolecules composed of chemically
distinct subchains or blocks. These blocks are covalently linked
together to form block copolymers with various topology and
architectures. The chemically distinct blocks tend to phase
separate, whereas the connectivity of the copolymers prevents a
macroscopic separation. The competition of these two
opposing trends leads to the formation of various ordered
phases.1,2 The formation of ordered phases of block copolymers
and transitions between these phases have been attracting
tremendous attention in the past decades. In particular, the self-
assembly of block copolymers provides an ideal paradigm for
the study of structured soft matter. Furthermore, it has been
proposed that the ordered phases of block copolymers possess
potentials for applications including lithographic templates for
nanowires, photonics crystals, and high-density magnetic
storage media.3

The self-assembled ordered phases from block copolymers
depend sensitively on the chemical compositions, architecture,
and topology of the copolymers. The richness of block
copolymer phase behavior is exemplified by AB diblock
copolymers, which are the simplest block copolymers
composed of two blocks, A and B, covalently linked at their
ends to form one linear chain. Despite their simplicity, diblock
copolymers can self-assemble into various ordered phases,
including lamellae (Lam), hexagonally packed cylinders
(HCyl), spheres on body-centered cubic or closed-packed
lattices (sphere), networked cubic phase (the double-gyroid or
gyroid), and orthorhombic phase (Fddd or O70).4 The phase
behavior of AB diblock copolymers is mainly controlled by the
volume fraction of the A blocks, fA, and the effective interaction

parameter χN, where χ is the Flory−Huggins interaction
parameter between the different blocks and N is total
polymerization of block copolymer. Because of a greatly
enlarged parameter space, block copolymers with more
complex architectures, such as ABC linear or star triblock
copolymers, and blends of different block copolymers offer
opportunities to create a greater diversity of ordered phases.5

As an example, recent studies have revealed more than three
dozen ordered phases in ABC triblock copolymer melts.6

Understanding the phase behavior of block copolymers
demands a combination of experimental and theoretical
approaches. In the past years, a large number of experiments
have been carried out to investigate the phase behavior of block
copolymers, demonstrating numerous complex ordered phases
formed by multiblock copolymers. At the same time, many
theoretical and simulation studies have been devoted to the
study of block copolymers. These studies have led to a good
understanding of the phase behavior of AB diblock copolymers.
Progress in the understanding of the phase behavior of more
complex block copolymers, such as multiblock copolymers with
linear and nonlinear architectures, has been slow, largely due to
the difficulty in precisely synthesizing different block
copolymers experimentally as well as the difficulty in
discovering complex ordered phases theoretically.
Because of the flexibility of adjusting system parameters,

theory and simulation provide an ideal approach to explore the
phase behavior of block copolymers. Theoretically, the major
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challenge here is the discovery of different ordered phases,
corresponding to local minima of the free-energy functional of
the system. This challenge demands the development of
accurate free-energy functional for the system and efficient
methods to obtain different local minima of the free-energy
functional. The current paper presents our continuing efforts to
meet this challenge by developing efficient strategies to obtain
different local minima of the free energy corresponding to
stable and metastable ordered phases of block copolymers. The
starting point of our theoretical program is the specification of
the free-energy functional for block copolymers. Because of the
efforts of a large number of researchers, it has been well-
established that the self-consistent field theory (SCFT) of
polymers provides a powerful theoretical framework for the
study of inhomogeneous polymeric systems in general and the
self-assembly behavior of block copolymers in particular.1,7,8

Our investigation starts with the mean-field free-energy
functional within the SCFT framework and aims at the
development of strategies to obtain different solutions of the
SCFT equations corresponding to possible stable and
metastable phases of the system.
Mathematically, the SCFT free-energy functional for a given

block copolymer, characterized by its architecture, molecular
composition, polydispersity, and block types, is a nonlinear and
nonlocal functional of the monomer densities and their
conjugate fields.8 The local minima of the free-energy
functional are determined by a set of SCFT equations, which
are obtained by minimizing the free-energy functional with
respect to the density profiles and fields. The major task in
exploring the phase behavior of block copolymers is to find
different solutions of the SCFT equations, corresponding to
different ordered phases. Because of the complexity of the
SCFT equations, efficient numerical methods are required to
obtain accurate solutions. The first attempt to solve the SCFT
equations numerically was made by Helfand and coworkers.9

Subsequently, approximate numerical strategies to solve the
SCFT equations were developed by Shull10 and Vavasour and
Whitmore11 to construct phase diagrams of block copolymer
melts and solutions. The first accurate numerical solutions of
the SCFT equations for diblock copolymers were obtained by
Matsen and Schick12 using a spectral method. Within the
spectral method, the spatially varying functions are expanded in
terms of a set of basis functions, where the basis functions can
be with or without specific symmetries.12 For ordered
structures with known symmetries, the basis functions can be
constructed from the given symmetry, leading to accurate and
efficient numerical implementations. This powerful method has
been extended to investigate the phase behavior of linear ABC
triblock copolymer melts13 and block copolymer blends,14

leading to the construction of accurate phase diagrams for
linear and nonlinear AB-type block copolymers15,16 and
nonfrustrated linear ABC triblock copolymers.17,18 Later work
of Guo et al.19 has demonstrated that the basis functions can be
taken as a generalized Fourier series, allowing them to obtain a
number of novel phases for frustrated linear ABC triblock
copolymers. Parallel to the development of the spectral-
method, numerical techniques to solve the SCFT equations
in real space have also been developed, exemplified by Drolet
and Fredrickson20 and Bohbot-Raviv and Wang.21 Both the
real-space method and the generic reciprocal-space method are
capable of predicting new ordered phases. An efficient
numerical method to solve the SCFT equations combines a
split-step method proposed by Rasmussen et al.22 and a fourth-

order formula proposed by Cochran et al.23 In what follows,
this pseudospectral method to solve the modified diffusion
equations will be combined with different initialization
strategies to obtain different ordered phases of block
copolymers.
The challenge of predicting ordered phases of block

copolymers is that, in general, the free-energy functional of a
block copolymer system possesses multiple minima, corre-
sponding to various ordered phases that the systems can form.
Discovering ordered phases from first-principles requires a
method to explore these minima of the free-energy landscape.
Because there are no generic methods to find all of the minima
of a functional, the best strategy is to find as many minima as
possible. From this perspective, we propose a two-step strategy
to explore the phase behavior of block copolymers. In the first
step, fast numerical methods and initialization schemes are
combined to obtain as many solutions of the SCFT equations
as possible, leading to a library of candidate structures. In the
second step, these candidates structures are used as input to
more accurate methods to compute their free energies. Finally,
a comparison of the free energy of the candidate structures is
used to construct phase diagrams of the system. Although the
strategy is developed within the SCFT framework from block
copolymers, the methodology is applicable to any physiochem-
ical systems exhibiting transitions between different stable and
metastable states.
Numerically solutions of the SCFT equations are obtained

using iterative techniques. Because of the iterative nature of the
algorithms, the solutions crucially depend on the initial
configuration at the start of the iteration. In the past years, a
variety of initialization procedures have been proposed,
including using known ordered phases and random config-
urations in real and reciprocal space. To obtain as many
solutions as possible, we have utilized a variety of initialization
procedures in the first step of our calculations. Specifically,
initial conditions are generated using (1) knowledge from
previous experiments and theories; (2) knowledge from related
systems, for example, diblock copolymers; (3) combination and
interpolation of known structures; and (4) random initial
configurations. Using these diverse strategies of initialization, a
large number of candidate ordered phases can be generated as
solutions of the SCFT equations. With the increased
complexity of block copolymer architectures, the number of
candidate phases increases drastically, thus demanding efficient
and accurate algorithms. In our study, we used the
pseudospectral method in combination with adaptive unit
cells to solve the SCFT equations. In the current paper, we will
demonstrate the power of the proposed strategy by applying it
to the phase behavior of ABC star triblock copolymers.
Before we describe the theoretical investigation of ABC star

triblock copolymers, it is appropriate to briefly summarized the
current knowledge of the system. Because of their rich phase
behavior, a large number of experimental and theoretical
studies have been carried out on the phases and phase
transitions of ABC star triblock copolymers in the past decades.
It has been recognized by Okamoto et al.24 and Sioula et al.25

that the ABC miktoarm star terpolymers represent a significant
block copolymer architecture with a junction point joining
three chemically different blocks. The topology of the ABC star
block copolymers generally confines the junction points to 1D
curves as opposed to 2D surfaces, thus resulting in unique self-
assembled morphologies. Subsequently, Abetz and coworkers
have conducted some interesting experiments investigating the
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phase behavior of star triblock copolymers.26 Furthermore,
Matsushita and coworkers have carried out extensive
experimental studies on (polyisoprene−polystyrene−poly(2-
vinylpyridine)) (ISP) star triblock copolymers, and they have
observed numerous ordered tiling patterns (2D ordered
phases).27−31 Besides these two-dimensionally ordered phases,
a number of three-dimensionally ordered phases, termed
hierarchical structures due to the existence of more than one
length scale, have been obtained.32−34 The phase behavior of
ABC star triblock copolymers has also been investigated by
computer simulations, leading to valuable insight into their self-
assembled structures. Gemma and coworkers35 performed
Monte Carlo (MC) simulations on ABC star triblock
copolymers with equal interaction parameters and obtained
several tiling patterns. Huang et al. used dissipative particle
dynamics simulations to investigate the effects of molecular
parameters on self-assembly behavior.36 Several efforts have
also been made to construct phase diagrams of ABC star
triblock copolymers using SCFT.37−39 The stability of the
different lamellar morphologies formed from ABC star triblock
copolymers has been examined by Xu et al.40 Most of these
previous studies focus on the two-dimensionally ordered phases
formed from triblock copolymers near the center of their
triangular phase diagram, where the three arms are of equal
length. A comprehensive understanding of the self-assembly
behavior of ABC star triblock copolymers demands the
extension of the calculations to three dimensions and the
inclusion of more complex ordered phases. Therefore, the
phase behavior of ABC triblock copolymers presents an ideal
testing case of the proposed strategy for the discovery of
complex ordered phases.
The organization of the article is as follows. The theoretical

framework and method of solution are outlined in the SCFT
Model and Numerical Algorithms section, using ABC star
triblock copolymers as an example. The following Phases and
Phase Diagram of ABC Star Triblock Copolymers section is
devoted to the presentation and categorization of the obtained
candidate ordered phases, including Lamellae-based structures,
cylinder-based structures, sphere and gyroid based structures,
helix-based structures, combination of basic structures, and 2D
structures. A phase diagram for the symmetrically interacting
ABC star triblock copolymers is also given in this section, which
extends the phase diagram constructed by Zhang et al.39 by
including a number of 3D phases. The final Conclusion and
Discussion section presents a brief summary and some outlook
on future applications of the strategy as well as a discussion on
the utilization of random initialization.

■ SCFT MODEL AND NUMERICAL ALGORITHMS

We will use an ABC star triblock copolymer melt as a model
system to present the SCFT equations and numerical methods.
Generalization to other block copolymers is straightforward.
Because there is an extensive literature on SCFT of polymers,
only a brief outline of the theory will be given.8,41 Specifically
we consider an incompressible melt of flexible ABC star triblock
copolymers with a degree of polymerization N in a volume V.
The chain lengths of the A, B, and C blocks are fAN, f BN, and
f CN ( fA + f B + f C = 1), respectively. A characteristic length of
the copolymer chain can be defined by R0 = √Nb, which is
used as the unit of length, so that all spatial lengths are
presented in units of R0. Within the mean-field approximation
to the many-chain system at a temperature T,8,41 the free-

energy functional F per chain of the triblock copolymer melt is
given by

∫ ∑
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where α,β ∈ {A, B, C} are the block labels, ϕα is the local
concentration of the α-blocks, and Q is the partition function of
one star block copolymer chain in the mean field, ωα, which in
turn are produced by the surrounding chains. The interactions
between the three chemically distinct monomers are charac-
terized by three Flory−Huggins interaction parameters χBC, χAC,
and χAB. Minimization of the free-energy functional with respect
to the monomer densities and the mean fields subjected to the
incompressible condition leads to the following set of mean-
field equations or SCFT equations41
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In these expressions, the functions qK(r,s) and qK
+(r,s) (K ∈ {A,

B, C}) are the end-integrated segment distribution functions, or
propagators, representing the probability of finding the sth
segment at a particular position r. These propagators satisfy the
modified diffusion equations41
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where (KLM) ∈ {(ABC), (BCA), (CAB)}. Numerically solving
these SCFT equations involves an iterative procedure starting
with an initial guess of the fields ωK(r) (with K ∈ {A, B, C}).
The modified diffusion equations (eq 3) are then solved to
obtain the propagators, which are used to compute the
densities ϕK(r) and then to update the mean fields ωK(r).
The iteration is continued until these mean fields and densities
are self-consistent such that they satisfy the SCFT equations
(eq 2) within a prescribed numeric accuracy.
The search of candidate phases requires efficient and accurate

algorithms to solve the modified diffusion equations eq 3. In
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this work, we have used the improved pseudospectral method
with a fourth-order accuracy as proposed by Rasmussen et al.22

and by Cochran et al.23 The pseudospectral method requires
transitioning between real and reciprocal spaces. We expand all
spatial functions in terms of plane waves. The number of plane-
wave basis functions is 32 × 32 × 32, so there are 32 plane
waves along the x, y, and z directions. In general, unit cells with
arbitrary shape and size can be used to generate the basis
functions. In practice, we use a cubic unit cell in most of our
calculations. It should be noticed that many ordered phases,
such as the 2D morphologies, hexagonally perforated lamellae,
and Fddd-type structures, require noncubic unit cells. The basis
functions with a cubic unit cell are plane waves of the form
exp[2πi(lx + my + nz)/D], where D is the size of the cubic cell
and l,m,n ∈ [−16,15]. The size of the unit cell D is a variable
that is determined by the minimization of the free energy. The
propagators, qK(r,s),qK

+(r,s); s ∈ [0,f K], are functions of the
space and the contour length s. While the spatial variable is
discretized using the Fourier expansion, the contour length s in
the interval [0,f K] is discretized into NK substeps. To ensure the
accuracy, we require that these substeps are smaller than a
prescribed tolerance f K/NK ≤ ε with ε = 0.01.
In our computations, we have utilized several strategies to set

up the initial mean fields, ωK(r) (K ∈ {A, B, C}), which could
lead to solutions with different symmetries. First of all, well-
known block copolymer systems such as the diblock
copolymers provide knowledge about the symmetry of ordered
block copolymer phases, which can be used as guidance to set
up initial mean fields. Second, available experimental data, such
as the scattering patterns, provide important input for the setup
of the initial mean-fields. Finally, the symmetry of ordered
phases can be “designed” by introducing predetermined density
profiles. For example, the combination of lamellae and cylinders

can be used to produce two possible ordered phases, the layers
of parallel oriented cylinders (LPOCs) and the layers of
alternatively oriented cylinders (LAOCs), as shown in Figure 1.
Another example is the Knitting pattern shown in Figure 1,
which can be considered as a variation of the LPOC phase. The
analogous alternative version of the Knitting Pattern, the
AKnitting phase, can then be obtained naturally via
interpolation of the LAOC phase. One way to summarize the
strategies for the discovery of complex ordered phases is that
complex ordered phases can be constructed from simpler
phases that are obtained from existing experimental,
simulations, and theoretical data. These structures can then
be used as initial density profiles. Once converged, the different
solutions from the various initial configurations can lead to
different ordered phases as solutions of the SCFT equations.

■ PHASES AND PHASE DIAGRAM OF ABC STAR
TRIBLOCK COPOLYMERS

For a generic block copolymer melt, the phase behavior is
controlled by a number of parameters including the volume
fractions, fα, of the blocks, the Flory−Huggins interaction
parameters, χαβ, and the Kuhn lengths of the different
monomers. For a given set of these parameters, the SCFT
equations can have a number of solutions, corresponding to the
stable and metastable phases of the system. We will first
enumerate a large number of candidate structures obtained
from our extensive SCFT computations. All of these structures
are solutions of the SCFT equations. Therefore, they
correspond to local minima of the free-energy landscape of
the system, although most of these phases are metastable.
These candidate phases are then used to construct phase
diagrams. To compare with the theoretical phase diagrams
available in the literature,39 we will focus on the phase diagram

Figure 1. Lamellae-based structures obtained in our simulation. Monomers A, B, and C are denoted by red, green, and blue colors. Parameters used
here are denoted as {[χBCN, χACN, χABN];[fA, f B]} below figures of each microphase. Except in AHPL, C monomers in all of these structures form
lamellae structure while A and B monomers form substructure between C layers. In AHPL, A and C monomers form a similar but translated
hexagonal perforate lamellae with B monomer filling the cavity.
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of symmetrically interacting ABC star triblock copolymers with
fixed Flory−Huggins parameters, χBCN = χACN = χABN = 30.
Candidate Structures for ABC Star Triblock Copoly-

mers. Utilizing the different initialization procedures outline
above, we have obtained a large number of solutions of the
SCFT equations for the ABC star triblock copolymers. These
candidate phases range from simple variations of the diblock
copolymer phases to complex hybridization of the different
building domains (lamellae, cylinders, and spheres). These
candidate structures are presented in this subsection, which are
categorized by their basic overall morphologies.
The concept of basic overall structures of ABC star triblock

copolymers is derived from our knowledge of the phase
behavior of A−C diblock copolymers, or more precisely, A2-C
star triblock copolymers.4,45,46 As the volume fraction of one of
the blocks, for example, f C of the C block, is increased or
decreased from 0.5, A−C diblock copolymers self-assemble to
form lamellae, gyroids, cylinders, and spheres. For an ABC star
triblock copolymer, the phase behavior would be similar to the
corresponding diblock copolymers if two of the blocks, for
example, A and B blocks, are miscible. In this case, the phase
behavior of the ABC triblock copolymers is expected to be
similar to a corresponding A2−C star triblock copolymer.
Therefore, we expect that the overall structure of the system
changes from lamellae to gyroids to cylinders and finally to
spheres as the volume fraction of the C blocks increases from
0.6.4,45,46 In the cases where the AB blocks are immiscible, the
AB blocks will separate within the lamellae, cylinders, or
spheres, leading to the formation of complex phases according
to the patterns formed by the AB blocks. Furthermore, different
packing patterns of the spheres, such as the A-15 structure, can
be formed from the A2−C star triblock copolymers.4,45,46 From
this perspective, it is useful to classify these complex phases into

lamella-based phases, cylinder-based phases, sphere-based
structures, gyroid-based structures, helix-based structures, as
well as combinations of the basic structures and 2D tiling
patterns.

Lamella-Based Structures. On the basis of understanding
the phase behavior of diblock copolymers, we expect that the
ABC star triblock copolymers, with the volume of one of its
blocks being ∼50% of the copolymer, for example, f C ≈ 0.5,
tend to form lamellae composed of alternative AB and C layers.
In particular, the self-assembled phase should be lamellae
composed of alternating C layers and mixed AB layers when the
A and B blocks are miscible (χAB ≈ 0). Increasing the AB
repulsion will lead to separation of A and B blocks within the
AB layers. The different patterns formed by the A and B blocks
lead to a variety of lamella-based complex phases of ABC star
triblock copolymers. The Lamella-based phases obtained from
our SCFT computations are shown in Figure 1. Besides the
simple lamellae (Lam) in which the A and B blocks form
disordered AB layers, various Lamella-based phases with
different patterns of AB separations can be formed, leading to
a very rich array of complex candidate phases.
The simplest AB separation pattern is for the A and B blocks

forming alternating cylinders. These cylinders in different layers
can be packed and oriented differently, leading to a number of
cylinders-in-layers structures. Specifically, the AB cylinders in
alternating layers can be parallel or perpendicular to each other,
leading to two types of structures, the LPOCs and the LAOCs.
Furthermore, the cylinder packing in different layers in the
LPOC structure can be the same as displaced, leading to the
LPOC1 and LPOC2 phases shown in Figure 1.
More complex AB separation patterns lead to the formation

of the knitting pattern (Knitting) shown in Figure 1, which can
also be viewed as a structure formed from AB cylinders. These

Figure 2. Cylinders-based structures with diverse hierarchical phase separation and orientation. Two different types of hierarchical phase separation,
inside or outside the cylinders, are shown here. AC2, AC3, and AC4 denote alternative cylinders with two, three, and four different orientations,
respectively. As for AC4 enclosed in a rectangle, we add a schematic illustration that is reconstructed from the Fourier coefficients of A segment
density distribution.
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AB cylinders can orient differently in different layers, forming
the alternating knitting pattern (AKnitting) shown in Figure 1.
It is interesting to noticed that for the parameters [χBCN, χACN,
χABN] = [20, 40, 30] and fA = f B = 0.25, the AKnitting phase
has a slightly lower free energy than Knitting pattern.
Furthermore, the 2D AB separation can be more diverse
within the AB layers, leading to more complex ordered phases
including the layers with alternate spheres (LAS), layers with
zigzag cylinders (LZZ), layers with hexagonal rings (LHR), and
perforated layers with different arrangement of the pores (QPL
and HPL).
Another interesting candidate structure is the alternating

hexagonal perforated layered (AHPL) structure, in which the A
and C blocks form hexagonal perforate lamellae with the B
monomer filling the cavity (Figure 1). Although in AHPL we
use fA = f B = f C = 1/3 (rather than f C ≈ 0.5 for all other
structures listed in Figure 1), it is included here because of the
overall lamellar feature (Figure 1).
Cylinder-Based Structures. The overall morphology of the

self-assembled structure changes from lamellae to cylinders
when the volume of one of its blocks, for example, f C, is
increased or decreased. The basic structure of the ordered
phases in this case will be AB cylinders in a matrix composed of
the majority C blocks or C cylinders in a matrix composed of
the majority AB blocks. The repulsion between the A and B
blocks leads to separation of these two blocks, resulting in
various cylinder-based ordered phase of the system. As shown
in Figure 2, the different separation patterns of the AB blocks
within the cylinders, as well as the possibility of differently
oriented AB-cylinders, leads to the formation of various
hierarchically ordered phases.
The two basic patterns of AB separation within a cylinder are

the concentric rings (parallel layers) or alternative disks
(perpendicular layers). A combination of these two basic AB
patterns and the arrangement of the cylinders results in the
formation of a number of hierarchically structured phases,
including square cylinders (SCylParallel, SCylPendicular) and
hexagonal cylinders (HCylParallel, HCylPendicular), as shown
in Figure 2. It is interesting to notice that the hierarchically
ordered cylindrical phases have been observed in the
experiments of Matsushita et al.32

One possible arrangement of the AB cylinders is for them to
orient at different directions. Examples of these exotic ordering
patterns are the alternative cylinders (ACn), where n = 2, 3, and
4. Specifically, the AC2 has layers of parallel cylinders oriented
perpendicularly to each other (Figure 2), the AC3 has cylinders
oriented perpendicularly to each other along three different
directions, whereas the AC4 has cylinders oriented along four
different directions (along four diagonal lines of a cube).
Another representation of the AC4 structure is obtained by
using the SCFT solution to produce a density plot, as shown in
Figure 2.
Finally, when the volume fraction of the C blocks is smaller

than 0.5, the block copolymers can form C cylinders in the AB
matrix. For block copolymers with immiscible AB blocks, AB
separation occurs in the matrix, leading to the formation of two
additional cylinder-based structures (SCyl2 and HCyl2), as
shown in Figure 2.

Sphere- and Gyroid-Based Structures. Similar to the case of
diblock copolymers, order−order transitions from lamellae to
gyroid, cylinders, and spheres can be induced by increasing the
volume fraction of the C blocks, f C. The separation of the A and
B blocks within the domains can then lead to ordered phases
with overall structures dictated by the diblock copolymer
phases. In particular, ordered phases based on spheres and
gyroids are obtained, as shown in Figures 3 and 4.
The separation pattern of the A and B blocks within spherical

domains is dominated by the simple core−shell structures, as
shown in Figure 3. Different arrangement of the spheres leads
to different ordered phases. In addition to the well-known BCC
and FCC structures, we have obtained the A15 and S+ phases
as metastable solutions of the ABC triblock star copolymers. It
is interesting to notice that the A15 and S+ structure has two
and four additional spheres on the face of the cubic unit cell of
a BCC structure, respectively (Figure 3).
The basic structure of the gyroids is the AB cylinders. The

separation of the A and B blocks within the cylinders follows
the parallel (core−shell) or perpendicular (segmented)
patterns. The combination of the AB separation pattern and
gyroid structure leads to the formation of a number of gyroid-
based structures, including core−shell single gyroids (CS-
SGyroid), core−shell double-gyroids (CS-DGyroid), seg-

Figure 3. Typical spheres-based structures.

Figure 4. Typical gyroid-based phases structures. Both single gyroid (SG) and double gyroid (DG) are shown here, with core−shell and hierarchical
version.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp309862b | J. Phys. Chem. B 2013, 117, 5296−53055301



mented single gyroids (AS-SGyroid), and segmented double
gyroids (AS-DGyroid) (Figure 4).
Helix-Based Structures. Most of the structures described

above can be derived from the ordered phases of diblock
copolymers. There are, however, many other phases that do not
have their diblock copolymer counterparts. One of these exotic
structures is the various helix structures found in triblock
copolymer melts19,42 and diblock copolymers under confine-
ment.43 For the case of cylinder-forming block copolymers, the
formation of helices is due to soft or hard confinement of these
cylinders. For the ABC star triblock copolymers considered
here, the basic structure is composed of AB-cylinders
embedded in the C matrix. Under appropriate conditions,
these AB cylinders tend to form helices due to spatial
constraints. Furthermore, the A and B within the cylinders
can separate into core−shell or segmented patterns. Combina-
tions of these variations lead to a number of different ordered
helix phases shown in Figure 5. It should be pointed out that
the helices formed by the ABC star triblock copolymers are also
clearly different from those recently obtained in ABC linear
copolymers.19,42

Combination of Basic Structures. Besides the various
structures involving helices, another class of possible candidate
structures can be generated by combining different structural
elements. Applying this strategy to the ABC star triblock
copolymers leads to a number of novel ordered phases, which
are combinations of different structural elements, such as
spheres, cylinders, rings, and helices composed of A blocks in a
matrix of the majority BC blocks (Figure 6).
One example of these novel structures is formed by

combining the alternative cylinders AC3 and BCC, leading to
a composed ordered phase labeled as the BCC+AC3 in Figure
6. Another example is provided by combining parallel cylinders
with hexagonally packed stacks of rings or spheres, forming the
Cyl+Ring and Cyl+S phases shown in Figure 6. From our
calculations, we also observe the twisting of parallel cylinders in
the Cyl+S phase, ultimately forming a combination of helices
and spheres (Helix+S). It should be pointed out that all of
these novel order structures are solutions of the SCFT
equations, and thus they are metastable phases of the system.

Two-Dimensional Tiling Patterns. One class of structures
unique to the ABC star triblock copolymers is the 2D tiling

Figure 5. Typical helix phases captured in our simulation. Double helix (DHelix), single helix (SHelix), and hierarchical single helix (HierHelix) are
quadratically pacted. As for alternative helix (AHelix), it is similar to SHelix to some extent but with two different orientation. All figures here are
plotted in cubic, except the bottom illustration of AHelix, which is reconstructed from Fourier coefficients in the well-selected region for a clear
illustration of the whole structure.

Figure 6.Mixed structures captured in our simulation. The possibility of combination among basic structures like spheres, cylinder, rings, and helices
are clearly demonstrated by these Figures.

Figure 7. Selected 2D structures captured in our simulation.
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patterns observed in previous experiments, MC simulations,
and SCFT calculations.30,38 This class of structures is basically
cylindrical in nature, with different cross sections of the blocks
assuming different shapes. Some of the 2D tiling patterns
obtained from our SCFT calculations are shown in Figure 7.
Many of these structures, such as Figure 7a,d, have been
obtained in previous experiments by Hayashida et al.,30 as well
as in SCFT calculations by Li et al.38 It is also interesting to
point out that the structure shown in Figure 7d (also known as
32434 in the literature), is closely related to the 12-fold quasi-
crystal observed in ABC star triblock copolymers.44

Phase Diagram of Symmetrically Interacting ABC Star
Triblock Copolymers. In this section, we present a phase
diagram of symmetrically interacting ABC star triblock
copolymers with fixed Flory−Huggins parameters, χ = [χBC,
χAC, χAB] = [30, 30, 30]. This specific system is chosen due to
numerous previous studies of the same model system so that
the power of the proposed strategy of discovering ordered
phases can be compared with previous results. It is worth
pointing out that most previous experimental and theoretical
studies of ABC star triblock copolymer focus on the 2D tiling
patterns. In particular, a detailed phase diagram containing a
large number of tiling patterns has been constructed for ABC
star triblock copolymers with χ = [30, 30, 30] by Zhang et al.
using a generic spectral method to solve the SCFT equations.39

They conclude that tiling patterns including [6.6.6], [8.8.4],
[12.6.4], [8.6.4;8.6.6], [10.6.4;10.6.4;10.6.6], and
[8.6.4;8.8.4;12.6.4;12.8.4] are stable phases according to their
2D simulation.
We have carried out a large number of SCFT calculations for

the symmetrically interacting ABC star triblock copolymers
with χ = [30, 30, 30]. The calculations result in a large number
of candidate phases including 2D tiling patterns and various 3-
D ordered phases. It is interesting to notice that the tiling
pattern [8.6.4;8.8.4;12.6.4;12.8.4] obtained by Zhang et al. was
not obtained in our 3D simulation. All other tiling patterns
presented by Zhang et al. have been obtained in our SCFT
calculations. It should be pointed out that the tiling pattern

[8.6.4;8.8.4;12.6.4;12.8.4] occupies a small region where 3D
structures are found to be stable phases in the current study.
These SCFT calculations provide an array of candidate
structures, including all 3D ordered phases presented above
and the 2D tiling patterns obtained in our calculations. These
ordered phases are used to construct phase diagram of the
system. It is not surprising that many of the candidate
structures are only metastable phases of the system. For
example , the t i l ing pa t te rns such as [12 .6 .4] ,
[10.6.4;10.6.4;10.6.6], and [8.6.4;8.8.4;12.6.4;12.8.4], which
are stable in the 2D calculations,39 become metastable phases.
For the symmetrically interacting ABC star triblock copolymers,
the number of stable phases is drastically reduced and all of the
stable structures are shown (Figure 8).
Because of the symmetry of the phase diagram, we only need

to consider 1/6 of the phase triangle. Furthermore, we focus on
five typical lines connecting the center ( fA = f B = f C = 1/3) of
the phase diagram to the AB diblock copolymer side ( f C = 0)
located at fA = [0.00,0.17,0.22,0.33,0.5], corresponding to
disordered (D), sphere (S), cylinder (C), gyroid (G), and
lamellae (L) phases (Figure 9). At the center of the phase
diagram, the stable phase is the 2D tiling pattern [6, 6, 6].
Phase-transition sequences from this tiling pattern to the
different diblock copolymer phases (D, S, C, G, and L) are
predicted by our SCFT calculations.
The predicted order−order phase transition sequences along

the five paths in the phase diagram are shown in Figure 9. It is
interesting to notice that although the transition sequences are
all different the transitions exhibit a general trend in that the
overall morphology follows the sequence of spheres to
cylinders to gyroid to lamellae and finally to the tiling patterns.
This trend of overall morphologies is clearly shown for the case
of Line II (Figure 9) connecting the center of the phase
diagram to the BCC phases at fA = 0.17.
Finally, it should be pointed out that the phase diagram

obtained in the current SCFT calculations is consistent with the
2D SCFT calculations carried out by Zhang et al.39 near the
center of the phase triangle (dominated by tiling patterns).

Figure 8. Stable phases, according to our 3D simulations, in the phase diagram with fixed Flory−Huggins interaction parameters χBCN = χACN =
χABN = 30. Monomers A, B, and C are denoted by red, green, and blue colors.
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Furthermore, the predicted phase diagram is consistent with
available experimental results.27−34

■ CONCLUSIONS AND DISCUSSION
In this work, we have developed a strategy to discover ordered
phases of block copolymers within the framework of the SCFT
and applied the proposed strategy to ABC star triblock
copolymers. A two-step strategy is proposed to explore the

phase behavior of multiblock copolymers. The first step
involves an efficient method to obtain as many solutions of
the SCFT equations as possible. This is achieved by a
combination of fast numerical algorithm and various initializa-
tion schemes, leading to a library of candidate structures. In the
second step, these candidates structures are used as input to
more accurate methods to compute their free energies, which
are used to construct phase diagrams of the system. The power
of the proposed strategy is demonstrated by applying it to the
phase behavior of ABC star triblock copolymers. A large
number of previously unknown candidate phases for the system
has been obtained. All of these complex ordered phases are
solutions of the SCFT equations; therefore, they correspond to
metastable phases of the system.
To generate more candidate structures, we have found that it

is fruitful to extend the initialization schemes beyond random
initialization. We have generated initial configurations using (1)
knowledge from previous experiments and theories; (2)
knowledge from related systems, for example, diblock
copolymers; (3) combination and interpolation of known
structures; and (4) random initial configurations. Using these
diverse strategies of initialization, a great number of candidate
ordered phases have been obtained as solutions of the SCFT
equations. The availability of these candidate phases enables the
construction of phase diagrams for block copolymer systems.
The phase behavior of ABC star triblock copolymers has

been examined using the proposed strategy. Our extensive
SCFT calculations with various initial configurations reveal a
large number of solutions of the SCFT equations, which are
stable and metastable ordered phases of the system. These
complex ordered phases can be usefully categorized by their
overall morphologies. In particular, it is observed that the
candidate structures can be classified into lamellae based
structures, cylinder-based structures, sphere- and gyroid-based
structures, helix-based structures, and a combination of basic
structures. The occurrence of these complex ordered phases
can be attributed to the fact that in ABC star triblock
copolymers, the junction points are confined to 1-D curves by
the topology of the copolymers.24,25 These candidate phases
can be used as input to construct phase diagrams of ABC star
triblock copolymers. In particular, a phase diagram for the
symmetrically interacting ABC triblock copolymers has been
obtained, revealing a number of interesting three-dimensionally
ordered phases.
It should be emphasized that using different initial

configurations for the iteration procedure to solve the SCFT
equations is crucial to obtain different solutions of the SCFT
equations. A common practice in the literature is to use random
initial configurations generated in real- or reciprocal-space, as
proposed by Drolet and Fredrickson.20 This approach assumes
that the phase obtained for a given set of parameters is
generally the stable one or the phase with the lowest free
energy. This strategy does reproduce the correct stable phase
for simple systems, such as the lamellae or cylinders of diblock
copolymers. However, utilizing random initial fields alone may
leave many potential morphologies unexplored. To examine the
capability of the random initialization method, we have carried
out a large number of calculations using random fields
generated in real and reciprocal spaces. Specifically for the
case with χAB = 30, χAC = χBC = 40, and fA = f B = 0.2, we have
carried out 1044 calculations with random initial fields in real
space and 1044 calculations with random initial fields in
reciprocal space. We obtained similar results for initial fields in

Figure 9. Phase diagram with equally fixed Flory−Huggins interaction
parameters χBCN = χACN = χABN = 30 and phase transition sequence
along five typical lines, where monomer fraction fA starts with fA0 =
[0.00, 0.17, 0.22, 0.33, 0.5], respectively (equivalently connecting the
typical diblock phases like disorder, sphere, cylinder, gyroid, and
lamellae to the triangle center, where it is dominated by tiling pattern
[6.6.6]). Subfigures (lines I−V) illustrate the phase-transition
sequence, where the numbers under these lines denote the value of
the monomer fraction f B at the point of phase boundaries.
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real and reciprocal space. Among the 2088 simulations, 203 of
them did not converge and 182 of them led to the disordered
phase. The majority (1268) of the 2088 simulations resulted in
the LPOC structure, which is the phase with the lowest free
energy ( f = 0.003066). The second major phase from this set of
simulations was the LZZ ( f = 0.00542), which occurred 421
times. Finally, the LAOC structure, whose free energy ( f =
0.003068) is almost generate with the LPOC phase, was
observed 14 times. The other metastable ordered phases (LHR,
HPL, and Lam) with much higher free energy, which could be
generated using special initializations, were not observed in
these 2088 simulations. Although these calculations were only
carried out for one set of parameters, they explicitly illustrate
the point that using random initialization alone can generate a
number of ordered stable phases, but it may miss many
potential candidate structures.
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