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The possibility of the existence of a gas-liquid third order phase transition for fluids is becoming
a subject of growing interest. Experimental work suggests its existence for specific systems while
recent theoretical models claim its universality. In this work, we employ Molecular Dynamics and
investigate the third-order phase transition beyond the Andrews critical point by treating a system
of Lennard-Jones particles along three isotherms. Two partial derivatives of the Gibbs free energy
are measured, namely the molar constant pressure heat capacity and isothermal compressibility. The
convergence of these simulations with respect to the system size as well as the cut-off radius is
carefully checked. The obtained results show that partial derivatives certainly do not present sharp
cusp singularities at the maxima, and actually suggest that there are no singularities at all. On these
basis we then conclude that a third-order phase transition in the considered temperature region: T*
≥ 1.36 may indeed not exist. © 2011 American Institute of Physics. [doi:10.1063/1.3666848]

I. INTRODUCTION

Phase transitions represent specific signatures of macro-
scopic systems’ behavior generated by the detailed specific
molecular chemistry (see, e.g., the key role of hydrogen bond
into the phase behavior of water). However there is a universal
behavior (independent of the specific molecular chemistry)
for a large class of systems on a P–T phase diagram. The gas-
liquid coexisting line goes from the lower temperature and
pressure side to the higher temperature and pressure side, and
ends at the Andrews critical point. The gas-liquid phase tran-
sition is first order, because the first-order derivatives of the
Gibbs free energy, such as molar volume and internal energy,
are discontinuous at the transition. The Andrews point is a
second-order phase transition point, because the second-order
derivatives of the Gibbs free energy, such as the compressibil-
ity and heat capacity, diverge to infinity. Beyond the Andrews
critical point, all phase transitions lower than the second-order
disappear. The gas and liquid phases are indistinguishable,
and both of them change into the supercritical phase.

The most favorable property of the supercritical fluid is
the fast change of the solubility with respect to the small
change of thermodynamic parameters. K. Nishikawa and her
coworkers extensively studied the density fluctuation of var-
ious fluids in the supercritical region by means of the small-
angle X-ray scattering (SAXS).1–6 They found a “ridge” that
is defined by the maxima of the density fluctuation on isother-
mal lines. This ridge was also confirmed by small angle neu-
tron scattering (SANS) experiments,7 which also investigated
the fluctuation structures of the gas-like and liquid-like su-
percritical CO2. These maxima of the density fluctuation as
well as the maxima and minima of some other quantities, such
as heat capacity and thermal expansion, can be explained as

a)Electronic mail: pzhang@pku.edu.cn.

anomalies of the second-order derivatives of the Gibbs free
energy.8 Despite the experimental evidence a clear interpre-
tation in terms of basic principles of thermodynamics and
statistical mechanics is not yet available. Of course this is
highly needed given the relevance of the subject for a bet-
ter understanding of supercritical fluids. Recently a theoreti-
cal approach was proposed by T. Ma and S. Wang.9 This was
build on the mathematical basis of the dynamics of phase tran-
sitions applied to the Landau mean field model for studying
the gas-liquid phase transition10 of the physical-vapor trans-
port system. Their study successfully reproduced the first-
order phase transition at the gas-liquid co-existing line and the
second-order phase transition at the Andrews critical point,
which were derived from the classical research by van der
Waals. However the innovative and surprising discovery was
the prediction of a third-order phase transition line, which is
a natural extension of the gas-liquid coexisting line, beyond
the Andrews critical point. If this corresponds to physical re-
ality, then it would represent a powerful contribution to the
understanding of the supercritical state in fluids on the basis
of statistical fundamental principles. However, possible limi-
tations of the model and practical approximations employed
could have led to artificial results, of this point one should
be well aware. For example, the fact that they do not consider
the spacial fluctuation of ρ and S because the system is homo-
geneous does not really apply to realistic fluids. In fact local
fluctuations of quantities which are constant in average play
a major role in the thermodynamic behavior of the system.
A constant average temperature does not hinder local thermal
fluctuations which in turn may induce large local density fluc-
tuations. These, for instance, play a major role in the thermo-
dynamics of water solvation (see, e.g., Ref. 11 and references
therein). Despite mean field models can still capture the basic
correct behavior, a crosscheck is needed using an approach
which does not suffer or does not need the approximations
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above. In this context, molecular dynamics (MD) provides
a powerful tool to address the problem. In MD, the specific
chemistry of the single molecule is directly linked to the ther-
modynamic behavior of a large collection of particles. Their
dynamical evolution, according to Newton’s equations of mo-
tion, on long trajectories for statistical large samples allows to
characterize with local details the thermodynamic of the sys-
tem and thus overcome the limitations and the simplifications
of a mean field approach.

In this context, our purpose is to study the existence of
the theoretically predicted third-order phase transition by MD
simulations. A straightforward way is to calculate the third-
order partial derivatives of the Gibbs free energy and to study
their continuity. However, the physical meaning of the third-
order derivatives is not clear, thus we study the second-order
partial derivatives instead. If there were a third-order phase
transition, all second-order derivatives would present obvious
cusps (namely continuous but not differentiable). This is our
criterion. The system we choose is a Lennard-Jones fluid. De-
spite its “chemical” simplicity this would represent a test as a
necessary condition to the existence of a gas-liquid third or-
der phase transition which is universal for fluids. If already
for this system a clear cusp in the second-order derivative is
not detected, then one may safely conclude that a third order
phase transition is not (at least) universal. Actually, one may
conclude that the transition does not exist at all in general. In
fact, one could argue that the gas-liquid transient identity of
the system beyond Andrews point, may suggest that specific
molecular chemistry (structure) does not play a major role.
In fact if it was not so, then the chemistry specific bonding
motif of standards liquids would be too dominant to allow
the system to mutate spontaneously in gas-like behavior and
vice versa. This suggests that, at the thermodynamic condi-
tions at which we work, spherical molecular models, with-
out specific chemical structures, may indeed be sufficient to
model the problem and thus Lennard-Jones models are ideal
general test cases.

II. OBSERVABLES

We consider two partial derivatives of the Gibbs free en-
ergy, namely the molar constant pressure heat capacity cP and
isothermal compressibility κ:

cP = −kBβ2

N

∂2

∂β2
(βG), (1)

κ = − 1

β〈V 〉
∂2

∂P 2
(βG), (2)

where β is the inverse temperature, namely 1/(kBT), G denotes
the Gibbs free energy, P is the external pressure and V is the
instantaneous volume. From (1) and (2), it is not difficult to
prove cP and κ are related to the thermodynamic fluctuation
of the instantaneous properties of the system by

cP = 1

kBT 2N
〈(H − 〈H 〉)2〉, (3)

κ = 1

kBT

〈(V − 〈V 〉)2〉
〈V 〉 , (4)

where H is the instantaneous enthalpy, given by H = H
+ PV . Here H denotes the Hamiltonian. We adopt equations
(3) and (4) to calculate cP and κ in the MD simulations.

III. SIMULATION RESULTS

The MD simulations contain 4000 particles interacting
via the Lennard-Jones 12-6 potential in a periodic simula-
tion box. The conventional dimensionless unit system is em-
ployed: the unit of length, energy, mass and time are denoted
by ε, σ , m and τ (τ = σ

√
m/ε), respectively. All quantities

are written in the unitless form by adding the superscript “*”.
For example, r* = r/σ , T* = kBT/ε and P* = Pσ 3/ε. The MD
time step is 
t* = 0.002. The simulations last for 1 × 108

time steps. The first 2.5 × 107 steps are discarded. The quan-
tities of interest are sampled every 100 time steps. The com-
monly used blocking average method12 is applied to estimate
the statistical uncertainty of the autocorrelated data. The NPT
ensemble is generated by the Nosè-Hoover thermostat13, 14

coupled with the Parrinello-Rahman barostat.15, 16 We use a
cut-off radius of r∗

c = 8. The reliability of this cut-off radius
and the finite size effect are discussed later. The internal en-
ergy and the pressure contributions from the particles falling
out of the cut-off radius are included by the standard long-
range correction.

The Andrews critical point and the gas-liquid coexist-
ing line of the pure untruncated Lennard-Jones fluid have
been well studied in the past 20 years, some examples are
Refs. 17–21. One of the most modern studies of the An-
drews critical point21 reported a critical temperature of
T ∗

c = 1.3123. We plot the simulation measurements of the
mentioned second-order derivatives on three isothermal lines
located at T* = 1.36, 1.38, 1.42 in Fig. 1 and 2, where the
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FIG. 1. The molar constant pressure heat capacity as a function of pressure
on three isotherms. In the main plot, the three peaks from left to right cor-
respond to T* = 1.36, 1.38, and 1.42, respectively. The error bars are not
shown because most of them are smaller than the size of the dots. Two dashed
straight lines are shown with each peak, presenting the linear regression of
data points on the higher and lower pressure branch of each peak, respec-
tively. The pressure of the line intersections are denoted by P ∗

X. The insertion
shows the enlarged maximum of c∗

P at T* = 1.36, with error bars (indicating
the confidence interval with 95% confidence level) plotted on each data point.
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FIG. 2. The isothermal compressibility as a function of pressure on three
isotherms. In the main plots, the three peaks from left to right correspond to
T* = 1.36, 1.38, and 1.42, respectively. The error bars are not shown because
most of them are smaller than the size of the dots. Two dashed straight lines
are shown with each peak, presenting the linear regression of data points on
the higher and lower pressure branch of each peak, respectively. The pressure
of the line intersections are denoted by P ∗

X. The insertion shows the enlarged
maximum of κ* at T* = 1.36, with error bars (indicating the confidence in-
tervals with 95% confidence level) plotted on each data point.

data points are colored by red, blue and pink, respectively.
Only the P* range of special interest, where the derivatives
present a peak, is plotted for clarity. At the Andrews critical
point, second-order derivatives diverge to infinity. It is natural
to consider these peaks as extensions of the critical point di-
vergence, with a much weaker singularity. The peak is sharper
near the critical point (T* = 1.36), while it is comparatively
blunter far from the critical point (T* = 1.42). With each peak,
we present two dashed lines that are linearly regressed from
the MD data points on the higher and lower pressure branches.
If there were a third-order phase transition, the intersection of
the lines would predict the location of the phase transition
on the corresponding isotherm, and all MD simulation results
would overlap with the lines around the intersection. How-
ever, in Fig. 1 and 2, we find obvious deviations of the MD
results from the lines around the intersections. To show the
deviations clearly, we insert in Fig. 1 and 2 two enlarged plots
of the intersection regions at T* = 1.36. Taking into consid-
eration the statistical uncertainty, presented by the error bars
with 95% confidence level in the inserted plots, we conclude
that the deviations are systematic. The deviations at T* = 1.38
and 1.42 are similar, so they are not enlarged.

It is interesting to find that the pressure of intersections,
denoted by P ∗

X in Fig. 1 and 2, are different for different partial
derivatives. When T* = 1.36, it is P ∗

X = 0.1535 for c∗
P versus

P ∗
X = 0.1521 for κ*; when T* = 1.42, it is P ∗

X = 0.1843 for c∗
P

versus P ∗
X = 0.1775 for κ*. The higher the temperature, the

larger the discrepancies are. This observation contradicts the
existence of an ideal third-order phase transition, because the
location of the phase transition should be the same for both c∗

P
and κ*. In other words, the pressure of the intersections P ∗

X
should be the same for different second-order derivatives.

Since the MD simulations deal with much smaller sys-
tems than typical macroscopic experiments (N ∼ 1023), the
finite system size can be a serious artificial effect, particularly
near phase transitions. A number of studies have been de-
voted to the finite-size scaling studies of the first-order phase
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FIG. 3. T* = 1.36, P ∗ = P ∗
X = 0.1535, the convergence of the molar con-

stant pressure heat capacity c∗
P with respect to the cut-off radius r∗

c and system
size N. The c∗

P at the intersection is added to show the discrepancy between
the converged MD simulation results and the intersection of the dashed lines
in the insertion of Fig. 1.

transition and the critical point properties, some of them are
reported in Refs. 22–26. Moreover, the cut-off radius of the
Lennard-Jones potential is another source of the artificial
effect. Therefore, to ensure the reliability of the MD results
in our study, the convergence of the c∗

P and κ* with respect
to the system size and the cut-off radius is carefully checked.
The considered thermodynamic parameters are {T ∗ = 1.36,

P ∗ = P ∗
X = 0.1535} for c∗

P and {T ∗ = 1.36, P ∗ = P ∗
X

= 0.1521} for κ*. Since the singularity at T* = 1.36 is
stronger than T* = 1.38 and T* = 1.42 (see Fig. 1 and 2),
the convergence check at T* = 1.36 is representative. We
are mostly concerned about the fact that MD simulation
results overlap the dashed lines around the intersections,
therefore the convergence check at the intersection pressure
is representative for other values of the pressure.

In Figs. 3 and 4, simulation results of system size N
= 4000, N = 16000 and N = 24000 are compared. The
results show no observable dependence on the size of the sys-
tem which in turns implies that the finite size effects in our
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FIG. 4. T* = 1.36, P ∗ = P ∗
X = 0.1521, the convergence of the isothermal

compressibility κ* with respect to the cut-off radius r∗
c and system size N.

The κ* at the intersection is added to show the discrepancy between the con-
verged MD simulation results and the intersection of the dashed lines in the
insertion of Fig. 2.
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simulations are negligible. When the cut-off radius is smaller
than r∗

c = 6, c∗
P and κ* show obvious dependence on r∗

c . When
the cut-off radius is larger than 7, both the derivatives satisfac-
torily converge, despite the fluctuations that are smaller than
the size of the error bars. Therefore, we use r∗

c = 8 for all of
our MD simulations in order to be in a fully safe simulation
regime.

IV. CONCLUSION AND DISCUSSION

We have addressed the question of the existence of a
third-order phase transition beyond the Andrews critical point
by performing MD simulations on three isotherms (T* = 1.36,
1.38 and 1.42) and calculated two partial derivatives of the
Gibbs free energy, namely c∗

P and κ*. We have shown that
the second order derivatives do not present sharp cusps, thus
we conclude that the theoretically predicted third-order phase
transition10 may not exist on the mentioned isotherms. Since
the higher the temperature, the weaker the singularity, it is
reasonable to extend our conclusion to T* ≥ 1.36. For T*
< 1.36, our simulation is not precise enough to reach any de-
terministic conclusion, due to the statistical uncertainty. This
work contributes to the understanding of thermodynamic be-
havior of fluids in supercritical regime, posing a clear ques-
tion about the existence of anomalies of the second and third
derivatives of thermodynamic potentials recently proposed by
experimental as well as theoretical work.
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