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Nucleation of various ordered phases in block copolymers is studied by examining the free-energy

landscape within the self-consistent field theory. The minimum energy path (MEP) connecting two

ordered phases is computed using a recently developed string method. The shape, size, and free-energy

barrier of critical nuclei are obtained from the MEP, providing information about the emergence of a

stable ordered phase from a metastable phase. In particular, structural evolution of embryonic gyroid

nucleus is predicted to follow two possible MEPs, revealing an interesting transition pathway with an

intermediate perforated layered structure.
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Block copolymers are macromolecules composed of
two or more chemically distinct subchains. The competi-
tion between the block repulsion and chain connectivity
leads to the self-assembly of a rich array of ordered phases
[1]. For simple block copolymers such as linear AB diblock
and ABC triblock copolymers, a good understanding of
their phase behavior has been obtained due to intensive
experimental and theoretical research in the past years
[2,3]. It has been well established that AB diblock copoly-
mers exhibit a number of ordered phases, including lamel-
lae (L), hexagonally packed cylinders (C), spheres on a
body-centered-cubic lattice (S), and the bicontinuous net-
worked gyroids (G). The rich physics contained in block
copolymers makes them a paradigm for the study of the
formation of, and phase transitions between, different or-
dered phases [2].

When an ordered phase becomes unstable, the initial
transition pathway depends on its thermodynamic stability.
When the ordered phase is thermodynamically unstable,
phase transition proceeds via spinodal decomposition. For
block copolymer phases undergoing spinodal decomposi-
tion, theoretical studies have been carried to understand the
most probable kinetic pathways by examining the most
unstable modes of the ordered phases [4–7]. When the
ordered phase is metastable, phase transition proceeds
via nucleation and growth [8]. For block copolymer phases
undergoing nucleation, their kinetic pathways have been
examined by Wickham et al. [9] within the content of
classical nucleation theory, in which the anisotropic inter-
facial free energy is calculated first, the shape of the critical
nucleus is then obtained using the well-known Wulff con-
struction. On the other hand, finding accurate critical nu-
cleus presents a challenging task due to the anisotropic
nature of the problem and the existence of a number of
length scales. These length scales are the interfacial width
between microdomains, the period of the microdomains,

the width of the droplet interface, and the critical droplet
size.
In the context of large deviation theory, it can be shown

that the most probable transition path between two stable
phases is a minimum energy path (MEP) associated with
the free energy (F) of the system [10]. The MEP is a curve
or a string, c , in the configuration space connecting the
two local minima (the two stable phases) of F and satisfies,
ðrFÞ?ðc Þ ¼ 0, where ð�Þ? denotes the component of ð�Þ
normal to the string c [11]. Recently, E et al. [11] have
proposed a string method to compute the MEPs for bistable
systems by evolving a set of strings in the configuration
space. The string method has been successfully applied to
the study of membrane adhesion [12] and capillary con-
densation [13]. Very recently, we have shown that, with
appropriate initialization procedure and methods to en-
force physical constraints, the string method can be used
to obtain MEP connecting two ordered phases undergoing
a first-order phase transition [14]. In this Letter, we apply
the string method to the self-consistent field theory (SCFT)
of block copolymers. We will examine the nucleation of a
variety of ordered phases, and make predictions for the
structure, size, shape, and free energy barrier of the critical
nuclei of the different phases.
The string method starts with a free-energy functional of

the system, F½�ð ~rÞ�, where �ð ~rÞ is an order parameter
differentiating the different phases of the system. F½�ð~rÞ�
has at least two minima,�mð~rÞ and�sð ~rÞ, corresponding to
the metastable and stable phases, respectively. Nucleation
in this theoretical framework corresponds to a transition (a
rare event), driven by stochastic forces such as thermal
fluctuations, from the metastable state to the stable state.
The most probable transition pathway follows the MEP
[c ð�; ~rÞ] connecting these two phases, which is parame-
terized by a variable � (� 2 ½0; 1�) such that c ð� ¼
0; ~rÞ ¼ �mð ~rÞ and c ð� ¼ 1; ~rÞ ¼ �sð~rÞ. The critical nu-
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cleus is the saddle point of the free-energy surface, corre-
sponding to the free-energy maximum along the MEP.
Starting with an initial string in the phase space connecting
the two states, the string on the energy surfaces, c tð�; ~rÞ, is
relaxed according to the evolution equation, _c ¼
�ðrFÞðc Þ þ l ~�, where � is the unit tangent vector of c
and the scalar field l is a Lagrange multiplier determined
by the parameterization of the string. The MEP corre-
sponds to the steady state of this evolution equation,
c ð�; ~rÞ ¼ c t¼þ1ð�; ~rÞ.
Our model system consists of n AB diblock copolymer

chains contained in a volume V. Each chain is character-
ized by a degree of polymerization N and an A-volume
fraction f. The SCFT free energy of the system can be
written as a functional of the conjugate fields w�ð~rÞ [15]

H½w�; wþ� ¼
Z

d~r

�
1

�N
w2� � wþ

�
� V lnQ½w�; wþ�;

where � is the Flory-Huggins parameter and Q is the
single-chain partition function in the w fields. The single-
chain partition function is related to the w fields via the
propagators, Q ¼ 1

V

R
d~rqð~r; 1Þ. The propagators qð ~r; sÞ

and qþð ~r; sÞ satisfy the modified-diffusive equations,
@qð ~r;sÞ
@s ¼ r2

rqð ~r; sÞ � wð~r; sÞqð ~r; sÞ and @qþð ~r;sÞ
@s ¼

�r2
rq

þð~r; sÞ þ wð~r; sÞqþð~r; sÞ, with the initial conditions
qð ~r; 0Þ ¼ 1 and qþð ~r; 1Þ ¼ 1. Here, the ‘‘time’’-dependent
field is defined by wð~r; sÞ ¼ wAð ~rÞ ¼ wþð~rÞ � w�ð ~rÞ for
s 2 ½0; f� and wð ~r; sÞ ¼ wBð ~rÞ ¼ wþð ~rÞ þ w�ð ~rÞ for s 2
½f; 1�. With the definition of the propagators, the functional
derivatives of the free energy are specified by

�H

�w�ð~rÞ ¼
2

�N
w�ð ~rÞ þ ½��Að ~rÞ þ�Bð~rÞ�;

�H

�wþð~rÞ ¼ �1þ�Að~rÞ þ�Bð ~rÞ;
(1)

where the density fields �� are given by �Að ~rÞ ¼ 1
Q �Rf

0 dsqð ~r; sÞqþð ~r; sÞ, �Bð~rÞ ¼ 1
Q

R
1
f dsqð ~r; sÞqþð ~r; sÞ. The

extrema of the free energy functional corresponding to the
solutions of �H

�w�
¼ 0. Requiring �H

�wþ
¼ 0 leads to the in-

compressibility condition�A þ�B ¼ 1 and a relationship
wþ (w�) which can be calculated numerically. With the
incompressibility condition, the free energy functional
becomes F½w�� ¼ H½w�; wþðw�Þ�. The equilibrium
phase behavior of a diblock copolymer melt is obtained
by finding the minima of the free energy functional or
solutions of the Euler-Lagrange equation �H

�w�
¼ 0. This is

a highly nontrivial problem, but by now, we have a wealth
of information regarding the equilibrium phase diagram
[3,15] including the linear stability [5,6] of the different
phases. On the other hand, nucleation of an ordered phase
from a metastable phase in block copolymers has received
less attention, with the exception of the work of Wickham
et al. [9] and the work of Matsen for the epitaxial transi-
tions of C $ S and C $ G [16]. In the current work, we
examine the nucleation process systematically using the

string method applied to the free energy functional
F½w�ð~rÞ� [17].
In what follows, we will focus on the nucleation of

cylinders from lamellae (L ! C) and gyroids (G ! C),
as well as the nucleation of gyroids from cylinders (C !
G) and lamellae (L ! G), leaving the other possible tran-
sitions to a future publication. Given any point c ð�; ~rÞ ¼
�ð~rÞ along the string—corresponding to a state of the
physical system along the transition pathway—the nuclear
structure of the system is examined by defining a pointwise
phase-density function �ð~rÞ [14]

�sð~rÞ � j���mjð~rÞ
j���mjð~rÞ þ j���sjð~rÞ ;

j�1 ��2jð~rÞ �
Z

wð~r0 � ~rÞ½�1ð~r0Þ ��2ð~r0Þ�2d~r0;
(2)

where weight function wð~rÞ is the mollifier, [wð ~rÞ ¼
CeR

2=ðj~rj2�R2Þ, (R> 0)] [18]. The boundary between differ-
ent ordered phases can be specified by, e.g., �s ¼ 0:5.
The nucleation of cylinders from a metastable lamellar

phase is examined at a fixed f ¼ 0:45 and varying �N in
the range between the mean-field spinodal point of the
lamellae and the L-C coexistence point [5,6]. The initial
cylinders were oriented parallel to the lamellar plane, in
agreement with previous studies [9]. The periods of the L

(Dl) and C (Dc) phases are related epitaxially, Dl ¼ffiffiffi
3

p
Dc=2. For all the �N values examined, the critical

nucleus is found to be lenslike. The volume of the critical
nucleus increases as �N is increased. The generic shape of
a critical nucleus can be described by an ellipsoid with
three normal axes a, b and c, which are given in Table I in
unit of Dc. The typical value of the nucleation barrier if
about 10�1nkBT, while the typical size of the critical
nucleus is about ð10–20ÞD3

c, containing 10–20 cylinders.
The nucleation barrier and critical nucleus size increase
slightly as �N is increased. These results are consistent
with the earlier classical nucleation theory calculations of
Wickham et al. [9]. Furthermore, the structure of the L-C
interface is obtained from the critical nucleus solution (not
shown). One important observation is that the thickness of
the L-C interface is comparable to the size of the nuclei.
Therefore, the classical nucleation theory is, in general, not
applicable to the current problem.
We now turn to the more interesting and previously

unexplored nucleation processes involving the bicontinu-
ous gyroid phase. We examine theG ! C transition at f ¼
0:425, �N ¼ 11:20, and the C ! G transition at f ¼
0:425, �N ¼ 12:90. In both cases, the free-energy per
chain, H½c ð�Þ� ¼ F=nkBT, along the final string (MEP)
reaches one maximum at the critical nucleus state. The G
ðCÞ ! C (G) critical nucleus has a volume of
25:753ð27:845ÞD3

c, and the nucleation barrier is obtained
as 0:6278ð6:3829ÞnkBT, respectively. The shape of the
critical nucleus in both cases is a distorted sphere with
fcc-packed bulges (Fig. 1). Similar results of the C $ G
transitions have been found at other values of f and �N.
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The availability of the MEP provides information about
the formation pathway of the critical nucleus. In the case of
G ! C transition, the formation of the cylinders proceeds
via the fracture of the gyroids, as shown in the top panel of
Fig. 2. The fracture and reconnection propagate throughout
the material as the nucleus grows. The bottom panels of
Fig. 2 shows that the emergence of the gyroids from the
cylinders proceeds through the distortion, disconnection,
and reconnection of the cylinders. An intermediate fivefold
junction is observed just before the formation of a cylin-
drical unit cell. These morphological structures involving
gyroid-cylinder transitions are consistent with the SCFT
analysis by Matsen [16], as well as results from dynamic
SCFT simulations by Honda and Kawakatsu [19] and
experiments by Park et al. [20].

In the cases presented above, only one transition state
corresponding to the critical nucleus is observed. A more
interesting behavior is observed in the lamellae-to-gyroids
(L ! G) transition at f ¼ 0:405, �N ¼ 13:05. In this case,
two MEPs have been obtained. The first one correspond to
the usual MEP with one maximum, whereas the second
MEP exhibits two maxima and one intermediate minimum
(Fig. 3). The morphologies of the nuclei corresponding to
these extremal points are shown in Fig. 3. Along the first
MEP, there is one critical nucleus, corresponding to a
gyroidal droplet. On the other hand, the transition along
the second MEP possesses two critical nuclei, correspond-
ing to hexagonally modulated layers (HML) at the first
maximum and a gyroidal structure at the second maximum.
The intermediate minimum can be classified as a structure
corresponding to the hexagonally perforated layers (HPL)
with perforations stacked in an ABCABC . . . sequence. The
L ! HPL and HPL ! G critical nuclei have a relatively
smaller volume of 19:140D3

c and 14:744D3
c, respectively,

while their shapes are distorted spheres (not shown). The
HPL phase has been observed in many experiments [21]
although theoretical studies have shown that the HPL is a
metastable phase for diblock copolymers [3]. Because the
L ! HPL path has a smaller free-energy barrier as com-
pared with the L ! G path along the first MEP, we expect
that the gyroids will most probably take the second path to
a HPL structure. This prediction provides an explanation of
the prevalence of the HPL in gyroid-forming block copoly-
mers observed in experiments [22].
In summary, the nucleation of ordered diblock copoly-

mer phases is investigated by examining the minimum
energy path (MEP), which is computed using the string
method applied to the self-consistent field theory of poly-
mers. The structure, shape, and size of critical nuclei of the
different ordered block copolymer phases are obtained
from the saddle point on the MEP. The interior structure
of the critical nucleus is found to be significantly different
from the corresponding bulk phase; thus, in general, the
classical nucleation theory is not applicable to the phase
transition of ordered phases in block copolymers. The
morphological structures along the MEP provide informa-
tion about the emergence of a stable phase from its em-
bryos. In particular, it is predicted that the emergence of a
gyroidal nucleus from lamellae can be a two-step process,
starting from a nucleus with hexagonally modulated layers
to an intermediate hexagonally perforated layers, then

FIG. 1 (color online). G $ C critical nucleus at f ¼ 0:425,
�N ¼ 11:20 (left) and 12.90 (right). The AB interface is �A ¼
0:5 isosurface. The nucleus boundary is represented by the
�ð~rÞ ¼ 0:5 isosurface.

FIG. 2 (color online). Emergence of C (G) from the G (C)
phase on the G $ C nucleation pathway at f ¼ 0:425, �N ¼
11:20 (top), and �N ¼ 12:90 (bottom). The plots from left to
right correspond to the points with � ¼ 1=33, 3=33, 5=33, 7=33,
9=33 on the string. For each set of plots, the upper panel is in the
[110]-½�1 �1 2� plane, whereas the lower panel is in the [110]-[111]
plane. The dark area is B rich (the dark-light boundary is �A ¼
0:425 isosurface). The lines are the nucleus boundary defined by
�ð~rÞ ¼ 0:5 isosurface. The critical nuclei are at � ¼ 5=33.

TABLE I. Size and shape of the ellipsoidlike L ! C critical nucleus characterized by three major axes a, b, and c in unit of Dc. The
nucleation barrier is in unit of nkBT, and volume of critical nucleus D3

c.

�N a b c b=a c=a Barrier Volume

11.185 1.7392 2.1974 0.6069 1.263 0.349 0.34800 11.227

11.190 1.8913 2.2967 0.7704 1.214 0.407 0.37515 13.512

11.195 2.0517 2.3726 0.7178 1.156 0.350 0.40620 15.914

11.200 1.9849 2.5018 0.9016 1.260 0.454 0.43616 17.695
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from the perforated layers to gyroids with networked cyl-
inders. The results from the current study are consistent
with available experimental and theoretical results. In ad-
dition, the current study provides an explanation of the
propensity of the HPL structures in gyroid-forming block
copolymers. Many of the predictions on the nuclear struc-
tures can be tested in future experiments and simulations.
A combination of the nucleation theory and stability analy-
sis provides a comprehensive picture of the initial phase
transition pathways of ordered block copolymer phases.
Furthermore, it should be emphasized that the knowledge
of initial phase transition pathways and the methodology
from the current study are applicable to any physical sys-
tems undergoing phase transitions involving ordered
phases.
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