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Abstract. A general nonhomogeneous extension of the Doi’s kinetic theory with trans-
lational diffusion and nonlocal potential is proposed to describe the microstructures
and defect dynamics of Liquid Crystal Polymer (LCP) solutions. The long-range elas-
ticity of polymer molecules is depicted by a kernel type potential, from which one
can derive the well-known Marrucci-Greco potential with weak spatial distortion as-
sumption. Applying quasi-equilibrium closure approximation, we get a second-order
moment model for isotropic long-range elasticity, and this reduced moment model
maintains the energy dissipation. Implemented by the invariant-based fitting method,
the moment model is a decent tool for numerical simulations of defect dynamics and
texture evolution in LCP solutions. The numerical results of in-plane rotational case
show that the reduced second-order moment model qualitatively predicts complicated
nonhomogeneous director dynamics under moderate nematic potential strength, and
the translational diffusion plays an important role in defect dynamics.

PACS: 61.30.Cz, 61.30.Dk, 61.30.Vx
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1 Introduction

The kinetic theory of LCPs, started from Hess [16] and developed by Doi etc. [4, 5], has
been a popular topic for three decades. The Doi-Hess theory predicts plenty of direc-
tor dynamics in homogeneous nematic LCP solutions, such as tumbling, wagging, flow-
aligning and log-rolling [9, 10, 26] etc. The interaction between the inner bulk tumbling
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region and boundary anchoring layer introduces defects and complex microstructures in
nonhomogeneous LCP solutions. Meanwhile, these defects and microstructures strongly
influence the rheology of the solutions. Marrucci and Greco [27] first analyzed the long-
range elasticity of LCPs by introducing a nonlocal intermolecular potential based on the
Maier-Saupe potential. Some nonhomogeneous extensions of Doi’s theory, differing in
the intermolecular potential, have been presented. Feng, Sgarlari and Leal [8] adopted
a one-constant Marrucci-Greco potential; Wang, E, Liu and Zhang [31] adopted an in-
tegral form potential; and Wang [30] extended the Marrucci-Greco potential to account
for macromolecules with different shapes. Although these nonhomogeneous kinetic the-
ories have appeared for several years, 2D and 3D numerical studies based on them are
sparse, because of huge computational cost involved. However, reduced equations about
the moments of configuration distribution function (CDF) can be obtained from the ex-
act kinetic models. The problem is that the equations of lower-order moments of CDF
obtained from kinetic theory are coupled with higher-order moments. To close these
equations, one must express higher-order moments in terms of lower-order moments,
which is the so-called closure approximation.

Closure approximations for complex materials have been under investigation for
many years. Various closure approximations have been proposed, such as the Doi’s
quadratic closure [5], the HL closures [17], orthotropic closure [3] and the Bingham clo-
sure [1]. Feng et al. [7] provided detailed numerical comparisons among five commonly
used closures and found that the Bingham closure gives better results than others, al-
though it deviates from the solutions of the exact kinetic theory when both the shear rate
and nematic potential strength are very big. In fact, the Bingham closure is a particular
case of quasi-equilibrium closure approximation (QEA). The systemic depiction of QEA
is given by Gorban and the coworkers [11–14]. Ilg, Karlin and Öttinger [21] applied QEA
to flexible polymers in homogeneous systems, while Ilg, Karlin, Kröger and Öttinger [20]
analyzed rod-like polymers. They proved that QEA maintains the energy dissipation for
homogeneous systems when flow is absent.

In our opinion, there are four criteria to evaluate closure approximations. First of
all, the reconstructed CDF should be positive; secondly, a good closure approximation
should maintain thermodynamic properties, such as mass conservation and energy dissi-
pation; thirdly, it should achieve good accuracy; the last but not the least, a low computa-
tional cost implementation can be established for nonhomogeneous simulations. Energy
dissipation is a basic requirement in the modeling of dissipation systems. However, it
was not considered in the closure approximations of LCP kinetic theory until the work of
Ilg et al. [21] was published. From the thermodynamic point of view, QEA is the proper
closure approximation, but the numerical integration scheme for QEA proposed by Ilg et
al. [19] is too expensive for nonhomogeneous simulation.

We introduce a relatively simple but general nonhomogeneous kinetic model for
LCPs, and develop an efficient reduced moment model by QEA, which maintains energy
dissipation. The invariant-based fitting method [2,22,29] is adopted in the simulations to
reduce the computational costs.
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The paper is organized as follows. First, we present a nonhomogeneous extension
of the Doi kinetic theory. In Section 3, we deduce the reduced second-order moment
model of LCP with isotropic long-range elasticity, and show how the Bingham closure
approximation maintains energy dissipation. The numerical simulation of the in-plane
rotational problem in nonhomogeneous flow will be given in Section 4. We give our
conclusion at the end of the paper.

2 A nonhomogeneous extension of the Doi kinetic theory

We study LCP solutions containing N liquid crystalline polymer molecules in space Ω

with volume V. Then the average number density is ν̄ = N/V. The configuration distri-
bution function f (x,m,t) denotes the number density of LCP molecules located at spatial
position x with orientation m at time t. The conservation of the number of LCP molecules
is given by

∫

Ω

∫

|m|=1
f (x,m,t)dmdx= N. (2.1)

For convenience, we denote the ensemble average with respect to f by angle brackets

〈(·)〉=
∫

|m|=1
(·) f (x,m,t)dm.

The moments of the CDF are given by Mi = 〈mi〉, i = 2,4,6,··· . Here mi stands for the
tensor product of several values of m. Particularly, we denote M2,M4,M6 by M,Q,P and
ν(x,t)= 〈1〉 is the number density of LCP molecules at the spatial position x.

Following the procedure similar to Wang et al. [31], we deduce the hydrodynamic-
kinetic coupled model in this section. The main difference is that we adopt a simpler
mean-field potential. We believe this potential is good enough to some extent, as it can
be reduced to the well-known Marrucci-Greco potential.

2.1 Smoluchowski equation

We assume that the excluded-volume potential for nonhomogeneous LCP solutions takes
the form

U(x,m,t)=
∫

|m′|=1

∫

Ω
G(x−x′,m,m′) f (x′,m′,t)dx′dm′, (2.2)

where G(x−x′,m,m′) denotes the mean-field interaction between two molecules located
at spatial position x with orientation m and at position x′ with orientation m′. We will
discuss the kernel G in detail at the end of this section.

The free energy of the system is given by

A[ f ]=
∫

Ω

∫

|m|=1

(

f ln f − f +
1

2
f U

)

dmdx. (2.3)
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Then the chemical potential is

µ=
δA

δ f
= ln f +U. (2.4)

With free energy, the Smoluchowski equation of f (x,m,t) for LCP solution under shear
(see also [5, 31]) can be specified as

∂ f

∂t
+∇·(u f )=∇·

{

[

D‖mm+D⊥(I−mm)
]

·
(

f∇µ
)

}

+R·
(

Dr(m)
(

fRµ
)

)

−R·
(

m×κ ·m f
)

, (2.5)

where ∇=(∂/∂x,∂/∂y,∂/∂z), R=m×∂/∂m. D‖,D⊥ are coefficients of translational dif-
fusion parallel and perpendicular to the local molecular orientation, and Dr(m) is orien-
tational diffusion coefficient, which depends on the orientation of molecules in nematic
phase:

Dr(m)= Dr0

[ 4

π

∫

|m′|=1
|m×m′| f (x,m′,t)dm′

]−2
.

It is often pre-averaged and approximated by order tensor S= 〈mm− 1
3 〉 as

D̄r ≈Dr0

(

1−
3

2
S : S

)−2
. (2.6)

Usually, the coefficient of spatial translational diffusion is much smaller than the co-
efficient of orientational diffusion, but it should not be omitted in nonhomogeneous sim-
ulations. The numerical simulations by Yu and Zhang [32] showed that the anisotropic
translational diffusion (D‖ 6= D⊥) plays an important role in defect dynamics. We will
also discuss it in numerical results of the reduced model.

2.2 Hydrodynamic equation

The continuity equation of the system is

∂ρ

∂t
+∇·(ρu)=0. (2.7)

Here ρ is the total density of the solution, it may depend on the number density ν,

ρ=ρ(ν(x)). (2.8)

The momentum equation reads

ρ
du

dt
=−∇p+ηs∆u+∇·τp+Fe, (2.9)
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where d
dt = ∂

∂t +(u·∇) is the material derivative, ηs is the solvent viscosity, τp is the poly-
mer stress, and Fe is body force introduced by spatial variation of f (x,m,t). The polymer
stress is given by two parts, the viscous stress τs and the elastic stress τe:

τp =τs+τe.

According to the Doi’s theory,

τs = ξr D : 〈mmmm〉,

where

D=
1

2
(κ+κT)=

1

2
(∇u+(∇u)T)

is the strain rate tensor, ξr is the coefficient of friction for solvent.
The elastic stress and body force can be derived through a generalized virtual work

principle:

τe =−〈mm×Rµ〉, (2.10)

Fe =−
∫

|m|=1
∇U f (x,m,t)dm=−〈∇U〉, (2.11)

see, e.g., [6] for more details.
Eqs. (2.5), (2.7)-(2.9) form a well-posed system. If dρ/dν 6= 0, the solution is not a

standard incompressible fluid. Although the density of solution has no relationship to
pressure, the density is not constant because of the spatial translational diffusion of poly-
mer molecules. One may regard Eqs. (2.7) and (2.9) as incompressible system and the
divergence of velocity is given by

∇·u=−
1

ρ

dρ

dt
=−

1

ρ

dρ

dν

dν

dt
. (2.12)

If dρ/dν =0, the solution becomes standard incompressible fluid: ρ is a constant and the
incompressible condition ∇·u=0 is satisfied. For simplicity, we only discuss the standard
incompressible case in the rest of this paper.

Remark 2.1. The kinetic-Hydrodynamic coupled system has very good thermodynamic
properties, such as mass conservation and energy dissipation. The detailed derivation of
energy dissipation was presented in [31].

2.3 Intermolecular potential

There are many excluded-volume potentials, for example, the Onsager potential, the
Maier-Saupe potential, the Marrucci-Greco potential [27] and some other nonlocal po-
tentials with integral forms given by Wang et al. [31] and E et al. [6]. Here, we present a
kernel type potential with a specific integral kernel

G(x−x′,m,m′)=U0
g(x′−x,m)+g(x′−x,m′)

2
|m×m′|2, (2.13)
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where U0 is nematic potential strength determined by the average number density of
LCP, the size and the shape of LCP molecules; |m×m′|2 accounts for Maier-Saupe ne-
matic interaction, g(x′−x,m) accounts for long range interaction. We assume that the
iso-surface of the long range interaction is spheroidal surface, i.e.,

g(y,m)=
1

ε1ε2
2

g
(

(

y·m
)2

ε2
1

+
|y|2−

(

y·m
)2

ε2
2

)

, (2.14)

where ε1 and ε2 are the characteristic interaction distance parallel and perpendicular to
m, respectively; g(r) is a normalized weight function. For simplicity, we take

g(r)=

{

Cexp{ 1
r2−1

}, |r|≤1,

0, |r|>1,

where C is the normalization constant.

In some special cases, the potential with the integral kernel (2.14) can be reduced to
some well known potentials, such as Maier-Saupe potential, Marrucci-Greco potential
etc.

1. For homogeneous systems, f (x′,m′,t) = f (x,m′,t). Then (2.2) becomes the Maier-
Saupe potential

UMS(x,m,t)=U0

∫

|m′|=1
|m×m′|2 f (x,m′,t)dm′. (2.15)

Alternatively, we can obtain it by taking the limits ε1 = ε2→0 in Eq. (2.14).

2. If the variation of f (x,m,t) along spatial direction x is small, then f (x′,m′,t) can be
approximated by its second-order Taylor series with respect to x′ at x,

f (x,m′,t)+∇ f (x,m′,t)·(x′−x)+
1

2
∇2 f (x,m′,t) : (x′−x)(x′−x).

Putting this series into (2.2) gives

U(x,m,t)=UMS+U0

∫

|m′|=1

∫

Ω

{ g(x′−x,m)+g(x′−x,m′)

4
|m×m′|2

×∇2 f (x,m′,t) : (x′−x)(x′−x)
}

dx′dm

=UMS+U0

∫

|m′|=1

{

|m×m′|2∇2 f (x,m′,t)

:
∫

Ω

g(x′−x,m)+g(x′−x,m′)

4
(x′−x)(x′−x)dx′

}

dm′
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=UMS+U0

∫

|m′|=1

{

(1−mm :m′m′)∇2 f (x,m′,t)

:
(1

5
ε2

2 I+
1

10
(ε2

1−ε2
2)(mm+m′m′)

)}

dm′

=U0

[

(1+c1∆)(νI−M) :mm

+
c2

2

(

∇2(νI−M) ::mmmm+∇2 : (MI−Q) :mm
)

]

, (2.16)

where

c1 =
1

5
ε2

2, c2 =
1

5
(ε2

1−ε2
2).

If we ignore the translational diffusion term in Eq. (2.5), then ν does not depend on x, and
Eq. (2.16) leads to the symmetric form of the Marrucci-Greco potential.

3. If the long-range elasticity is isotropic, i.e. ε1 = ε2 = ε, then

g(x′−x,m)=
1

ε3
g(|x′−x|2/ε2)= gε(x′−x).

Consequently,

U(x,m,t)=U0

∫

Ω

∫

|m′|=1
gε(x′−x)|m×m′|2 f (x′,m′,t)dm′dx′

=U0 gε∗(νI−M) :mm. (2.17)

Using local expansion similar to case 2 above, we can get a slightly simplified form of the
Marrucci-Greco potential, which was used by Klein et al. [24, 25]. Moreover, for the sake
of simplicity, we will assume that the long-range elasticity is isotropic in the rest of our
paper.

As shown above, the intermolecular potential with the integral kernel (2.13) leads to
the Marrucci-Greco potential when the spatial variation of CDF is small. The constants
c1,c2 in the Marrucci-Greco potential only depend on the characteristic interaction dis-
tance ε1,ε2, but do not depend on the special form of g(r). Compared to the differential
type potentials, the emergence of the body force (2.11) is also an advantage of integral
type potentials.

Remark 2.2. For anisotropic long-range intermolecular potential, i.e. ε1 6= ε2, the inter-
molecular potential

U(x,m)=U0

∫ ∫

g(x−x′,m)+g(x−x′,m′)

2
|m×m′|2 f (x′,m′)dx′dm′ (2.18)

cannot be rewritten into the form

U(x,m)= ϕ(M) :mm. (2.19)
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Thus, we need to simplify Eq. (2.18) to some extent. Using the cumulant expansion,
which was used by Ilg et al. [18], we can get an approximation of intermolecular potential,

U1(x,m)=
U0

ε1ε2
2

[

∫ g
(

y2

ε2
2
+cy2 : Mx

)

+g
(

y2

ε2
2
+cy2 : Mx′

)

2
(νx′ I−Mx′

)dx′

]

:mm.

Here c=1/ε2
1−1/ε2

2 and y=x−x′.

The validity of this approximation needs to be verified by numerical simulations.

3 Second-order moment model

Solving Eq. (2.5) in two- and three-dimensional nonhomogeneous cases directly is very
expensive. Fortunately, not all the CDF information is necessary for evaluating macro-
scopic physical properties. As the stress only involves the second-order and fourth-order
moments of f , a straightforward idea is to derive moment equations from kinetic equa-
tion (2.5) to reduce the computational cost.

Multiplying Eq. (2.5) by mm and then integrating both sides of the resulting equa-
tion with respect to m on unit sphere, together with the isotropic long-range elasticity
intermolecular potential (2.17) and pre-averaged approximation of Dr(m) given in (2.6),
we obtain the evolution equation for second moments M, which involve fourth-order
moments Q and sixth-order moments P

dM

dt
=

dMp

dt
+

dMr

dt
+

dMu

dt
, (3.1a)

where

dMp

dt
=∇·〈

(

D‖mm+D⊥(I−mm)
)

·∇µmm〉

=(D‖−D⊥)
[

∇∇ : Q+U0∇·
(

∇ν∗gε ·Q−∇M∗gε
...P

)

]

+D⊥

[

∆M+U0∇·
(

∇ν∗gε M−∇M∗gε : Q
)

]

, (3.1b)

dMr

dt
=−D̄r〈Rµ·R(mm)〉

=−2D̄r

[

(

3M−νI
)

−U0

(

M∗gε·M+M·M∗gε−2M∗gε : Q
)

]

, (3.1c)

dMu

dt
= 〈(m×κ ·m)·R(mm)〉=κ ·M+M ·κT−2κ : Q. (3.1d)

Meanwhile, the stress and body force are expressed by moments as

Fe =−∇gε∗
(

νI−M
)

: M, (3.2a)

τp = ξrD : Q= ξrκ : Q, (3.2b)

τe =(3M−νI)−U0

(

M ·M∗gε+M∗gε ·M−2M∗gε : Q
)

. (3.2c)
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3.1 Bingham closure approximation

The system (3.1) is not closed, because the second-order moment equation includes
higher order moments Q and P, which are also unknown. We must evaluate Q and P
using the value of M to close it. There are various ways to express Q and P as a function
of M, including quadrature closure, Hinch and Leal closures, and the Bingham closure.
Because M does not provide enough information to determine Q and P, any expression
of Q and P is rigorous only in special cases. For example, the quadrature closure approx-
imation is rigorous in perfect nematic phase. Feng et al. [7] examined the performance
of five commonly used closures by numerical simulations and found that the Bingham
closure was better than others.

In the process of Bingham closure approximation, the following function called as
Bingham distribution, is taken as the reference CDF f to evaluate Q and P

fb(m)=
1

z
exp(m·B·m), (3.3)

where B is a symmetric second-order tensor and z is the normalization constant. If M is
given, then there is one and only one B determined by

M=
∫

|m|=1

1

z
exp(m·B·m)mmdm. (3.4)

So, each M determines one unique Bingham distribution, denoted by fM. The fourth-
order moments Q and sixth-order moments P are then evaluated by

Q= 〈m4〉 fM
, (3.5)

and

P= 〈m6〉 fM
. (3.6)

It is easy to check that the distribution fM is the solution of the constrained optimization
problem

−
∫

ψlnψdm→max, 〈mm〉ψ = M, (3.7)

where 〈(·)〉ψ =
∫

(·)ψdm. Similar reference distributions could be obtained by solving

−
∫

ψlnψdm→max, 〈mi〉ψ = Mi, i=2,4,6,··· . (3.8)

This approach for obtaining reference distributions is called the maximum entropy prin-
ciple [28] or the quasi-equilibrium approximation [14, 20, 21].

However, the functions Q(M) and P(M) determined by Eqs. (3.4)-(3.6) are all in im-
plicit forms. Ilg et al. [20] proposed an evolution equation of B by Legendre transfor-
mation which avoids calculating Q and P from M by Newton’s method at every time
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step. However, it still cannot avoid evaluating M, Q and P from B by numerical integra-
tions at every time step. So the computational cost is almost as expensive as Newton’s
method. On the other hand, the functions Q(M) and P(M) can be well approximated
by polynomials or tensor polynomials. Chaubal and Leal [1] transformed Q into a diag-
onal coordinate system and represented its nonzero components as polynomials of the
eigenvalues of M with coefficients determined by the least-square method. Grosso et
al. [15] presented an approximated explicit form of Q(M), which is an application of the
invariant-based fitting method.

3.2 Energy dissipation

The QEA for general dissipative systems is discussed in length by Gorban et al. [11, 13].
One of the most important properties of the QEA is that it maintains the energy dissipa-
tion of the kinetic model.

Here in our model reduction, there is some difference to the systems studied in [11,
13]. We use local QEA to reduce the full kinetic model with nonlocal potential. However,
the energy dissipation is still guaranteed. Now we prove that the energy dissipation of
this reduced system is consistent with the exact kinetic system.

The free energy of the reduced system is defined as

A[M]= A[ fM]=
∫

Ω
(B−lnzI) : M−ν+

U0

2
gε∗(νI−M) : Mdx, (3.9)

and the chemical potential µ at the reference distribution fM is

µ fM
= µ̄M :mm, (3.10)

where

µ̄M =(B−lnzI)+U0gε∗(νI−M).

Taking the time derivative in both sides of (3.4), we get

dM

dt
=

d

dt

(

B−lnzI
)

: Q, (3.11)

and
dν

dt
=

d

dt

(

B−lnzI
)

: M. (3.12)

If we denote Ū =U0gε∗(νI−M), then the time derivative of free energy reads

dA[M]

dt
=

∫

Ω
µ̄M :

dM

dt
+

1

2

(dŪ

dt
: M−Ū :

dM

dt

)

dx.
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Energy dissipation in the isolated isothermal system is

T
dS

dt
=−

d

dt

(

∫

Ω

1

2
ρu·udx+A[M]

)

=−
∫

Ω
u·ρ

du

dt
dx−

∫

Ω
µ̄ fM

:
dM

dt
dx−

1

2

∫

Ω

dŪ

dt
: M−Ū :

dM

dt
dx

=
∫

Ω
ηs∇u :∇u+ξrκ : Q :κdx+

∫

Ω

[

τe :∇u−µ̄M :
dM

dt

]

dx

−
∫

Ω

[

Fe ·u+
1

2

(dŪ

dt
: M−Ū :

dM

dt

)]

dx. (3.13)

Here the hydrodynamic equation (2.9) is used in the last step. The first term on the right
hand side of (3.13) is non-negative provided that the coefficient ηs is non-negative. The
third term is zero; the derivation of which is exactly the same as the microscopic case
(see [31] for detail). For the second term, substituting Eq. (3.1) into the second term of
(3.13), we get

∫

Ω

[

τe :∇u−µ̄M :
dM

dt

]

dx

=
∫

Ω

[

τe :∇u−µ̄M :
dMu

dt
dx−

∫

Ω
µ̄M :

dMp

dt
+µ̄M :

dMr

dt
dx

=
∫

Ω

[

τe :∇u−µ̄M : 〈(m×κ ·m)·R(mm)〉 fM

]

dx

−
∫

Ω
µ̄M :∇·〈

(

D‖mm+D⊥(I−mm)
)

·∇µ fM
mm〉 fM

dx

−
∫

Ω
µ̄M :−D̄r〈Rµ fM

·R(mm)〉 fM
dx

=
∫

Ω

[

τe :∇u−〈(m×κ ·m)·R(µ̄M :mm)〉 fM

]

dx

+
∫

Ω
(∇µ̄M)T...〈

(

D‖mm+D⊥(I−mm)
)

·∇µ fM
mm〉 fM

dx

+D̄r

∫

Ω
〈Rµ fM

·R(µ̄M :mm)〉 fM
dx

=
∫

Ω
〈∇µ fM

·
(

D‖mm+D⊥(I−mm)
)

·∇µ fM
〉 fM

dx

+D̄r

∫

Ω
〈Rµ fM

·Rµ fM
〉 fM

dx.

So the total energy dissipation

T
dS

dt
=

∫

Ω
ηs∇u :∇u+ξrκ : Q :κdx+D̄r

∫

Ω
〈Rµ fM

·Rµ fM
〉 fM

dx

+
∫

Ω
〈∇µ fM

·
(

D‖mm+D⊥(I−mm)
)

·∇µ fM
〉 fM

dx

is non-negative provided that ηs, ξr, D̄r, D⊥ and D‖ are all non-negavie.
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4 Numerical simulations

Several researchers have demonstrated that the Bingham closure quantitatively maintain
the director dynamics of the Doi’s theory in homogeneous flow except the flow-aligning
attractor at high nematic potential. Feng et al. [7] compared the in-plane director dy-
namics of the Doi model and its Bingham closure model. Grosso et al. [15] analyzed the
out-of-plane director dynamics. While these works focused on director dynamics in ho-
mogeneous flow, we are interested in defect dynamics and microstructure that cannot be
described by the homogeneous Doi model.

In our simulation presented here, we restrict the distribution function in the shear
plane, and assume that it is only nonhomogeneous in shear direction, i.e.,

f (x,m)= f (y,cosθ,sinθ), θ∈ [0,2π).

We take the macro velocity V0, the length of the macro domain L0, and the ratio L0/V0

as the units of velocity, length and time, respectively. Based on this choice of scales, the
CDF is scaled by average number density of the LCP molecules ν̄. Then the dimension-
less kinetic equations for LCP solutions in plane shear flow with isotropic long-range
elasticity are given by

ft =
ε2

De
∂y

[(

(D∗
‖−D∗

⊥)sin2θ+D∗
⊥

)

( fy+ f Uy)
]

+
1

De
∂θ( fθ + f Uθ)+uy∂θ(sin2θ f ),

ut =
1−γ

Re
uyy+

γ

ReDe
∂yτ12−C,

τ12 =2〈sinθcosθ〉−〈Uθ sin2θ〉+
De

2
uy〈sin2θcos2 θ〉,

U =
U0

2
(〈1〉∗gε−cos2θ〈cos2θ〉∗gε−sin2θ〈sin2θ〉∗gε),

where De= V0/L0
Dr0

is the Deborah number, ε= l/L0 is the molecular length scaled by char-
acteristic size of flow, Re is the Reynolds number and γ is the ratio of viscosity introduced
by LCPs to the total viscosity of the solution,

Re=ρ
V0L0

ηs +νξr
, γ=

νξr

ηs +νξr
.

Moreover, D∗
‖,D∗

⊥ are nondimensional translational diffusion coefficients, C is the driven

pressure gradient. We assume that the flow is homogeneous in x-direction and nonho-
mogeneous in y-direction (the shear direction).

The corresponding second-order moment model is obtained by letting

Fe =0, κ =

(

0 uy

0 0

)

in Eqs. (3.1)-(3.2) where M is a 2×2 matrix.
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For the full kinetic model, a second-order finite difference scheme was used in y and θ
direction. For the reduced moment model, similar second-order finite difference scheme
was used for spatial discretization. A fourth-order Runge-Kutta scheme was used for
time-stepping for both kinetic and reduced model. In the reduced model, the Bingham
closure is implemented by the invariant-based fitting method.

According to the Cayley-Hamilton theorem, fourth-order moments Q as a function of
M has following form

Qijkl =νβ1S(δijδkl)+β2S(δij Mkl)+β3S(Mij Mkl)/ν, (4.1)

where S is the symmetric operator

S(Xi1i2···in
)=

1

n!

(

Xi1i2···in
+Xi2i1···in

+···
)

.

Parameters β1,β2,β3 depend only on the invariants of M. Since the constrains Qijkk = Mij

leads to two equations of βi, i = 1,2,3, so only one parameter needs to be determined.
We express this parameter as polynomial of invariants of M and fit the coefficients of the
polynomial by using least-square method on (3.4) and (3.5). The results are given below:

β2 =1−β3,

β1 =
( II

2
+

1

8

)

β3−
1

8
,

β3 =−69.8537II4+12.9169II3+10.8627II2−4.4474II+1.0023,

where II = det(M/ν). The fitting error of Q is lower than 5×10−4. Similar techniques
were used to calculate the sixth-order moments P22ijkl in the translational diffusion term.
The details are included in the appendix.

The bifurcation diagram for homogeneous flow (Fig. 1) shows that the Bingham clo-
sure model fails to predict flow-aligning when both the nematic potential and the Deb-
orah number are high. The position of the homoclinic bifurcation line predicted by the
reduced model (U0 < 5.10) is slightly different from that predicted by the exact kinetic
model (U0 < 4.88). This means that the error introduced by the Bingham closure decays
slower than the perturbation introduced by shear when the Deborah number goes to
zero. Except that, the Bingham model agrees with the exact kinetic model well for the
moderate U0, especially in the region (U0,De)∈ [5.2,6.5]×[0,5]. Indeed, this region is the
most interesting part of the parameter region, which can produce rich dynamic pattern
in nonhomogeneous system.

For nonhomogeneous flow, we study the Couette flow and the Poiseuille flow.

In the simulation, we fix ε = 0.02,D∗
⊥ = 0,D∗

‖ = 0.2,Re = 1, and vary U0 and De. The

molecules on the two boundaries are anchored along the flow direction. Similarly, the
reduced model by the Bingham closure agrees with the exact kinetic model qualitatively,
except in the high Deborah number region. For any fixed U0 >5.0 in Couette flow, when
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Figure 1: The bifurcation diagram of the Bingham closure model and the kinetic model in homogeneous flow.
The dotted line is the wagging and flow-aligning bifurcation line of the kinetic model. The dash-dot line is the
tumbling and wagging bifurcation line of the kinetic model. The dashed line is the wagging and flow-aligning
bifurcation line of the Bingham model. The solid line is the tumbling-wagging bifurcation line of the Bingham
model.

the Deborah number increases from zero to a very high value, the exact kinetic model
predicts five dynamic modes of director configuration [32] (a different potential was used
in [32], but similar dynamic modes are predicted): a) ES: elastic-driven steady state; b)
T: tumbling state; c) TWD: tumbling-wagging composite state with inside defects; d) W:
wagging state; e) VS: viscous-driven steady state. For moderate U0, the reduced model
predicts all these five modes (Fig. 2).

The reduced model does not quantitatively agree with the exact kinetic model (Figs. 3
and 4). The two main differences in tumbling periods and defect positions results from
Bingham closure’s failure to describe the skewed distribution function. The tumbling
rate predicted by the Bingham closure model is slower; the defect positions are differ-
ent (Fig. 3). Fig. 5 shows the errors between the true CDF and the corresponding refer-
ence Bingham distribution in an exact kinetic simulation. It is observed that errors near
the boundaries are much larger than those in the inner bulk region, and the maximum is
reached near the boundary defects because boundary anchoring skews the distribution
function.

5 Conclusion and comments

We have proposed a general kinetic-hydrodynamic coupled model with translational
diffusion and an integral nonlocal intermolecular potential. The integral potential con-
cerned in this model can derive the well-known Marrucci-Greco potential in some special
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Figure 2: The director configurations of five modes in Couette flow predicted by Bingham closure model at
U0 =6.0. (a) ES: elastic-driven steady state, De =0.01; (b) T: tumbling state, De =1.0; (c) TWD: tumbling-
wagging composite state with inside defects, De =2.0; (d) W: wagging state, De =4.0; (e) VS: viscous-driven
steady state, De = 6.0. Colors represent the director angle. The horizontal axis is dimensionless time and the
vertical axis is the distance to lower slab.
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Figure 3: The typical TWD modes in Couette flow at U0 =5.5, De=1.5. (a) the exact kinetic model, (b) the
Bingham closure model. Colors represent the director angle. The horizontal axis is dimensionless time and the
vertical axis is the distance to lower slab.
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Figure 4: The typical orientational configuration in Poiseuille flow. U0 = 5.5, De = 1.0. (a) the exact kinetic
model, (b) the Bingham closure model. Colors represent the director angle. The horizontal axis is dimensionless
time and the vertical axis is the distance to lower slab.
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Figure 5: The error of the Bingham closure in every time step of exact kinetic simulation. U0 =5.5, De =1.5.
The horizontal axis is dimensionless time and the vertical axis is the distance to lower slab.
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cases. We deduced a moment model by using the quasi-equilibrium closure approxima-
tion, which happens to be Bingham closure in second-order moment case. We also proved
that the energy dissipation is maintained for the reduced moment model.

In the numerical simulation, the invariant-based fitting method is implemented. Nu-
merical results of the in-plane rotational case show that the second-order moment model
can qualitatively predict the dynamics of defects and microstructure when the nematic
potential strength is not very high. But when the nematic potential strength is high, the
second-order model fails to predict flow-aligning at high shear rate, due to the Bing-
ham closure’s failure to describe skewed distribution functions. Our nonhomogeneous
simulations also show that the CDF is always skewed near the boundary defects. The nu-
merical results also show that the translational diffusion term, which is often discarded
plays an important role in defect dynamics, e.g., the generation of TWD mode.

The kinetic model for the LCP solutions is such a complex nonlinear system. So far,
no second-order moment model was reported that can predicts quantitatively the bifur-
cation phase diagram of the full kinetic model. To be more accurate, one needs to put
more moments in the reduced model. This is actually a trade off between accuracy and
numerical effort.

Nevertheless, the second-order moment model is the simplest one for systems with
isotropic long-range elasticity; for systems with anisotropic long-range elasticity, the
fourth-order moment model is needed to guarantee energy dissipation if one uses the
natural QEA closure. Implementing such a model by the invariant-based fitting method
involves fitting higher moments up to tenth-order. Although it is very complicated, one
can extend invariant-based fitting method to higher-order tensors approximation [23] to
build a relatively accurate higher-order moment model.
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Appendix

Here we describe how to estimate sixth-order moment tensor P in terms of second-order
moment tensor M by invariant-based fitting method for the Bingham closure. For sim-
plicity, we assume ν=1. By the Cayley-Hamilton theorem, we can write P as

Pijklmn = β1S(δijδklδmn)+β2S(Mijδijδmn)+β3S(Mij Mklδmn)+β4S(Mij Mkl Mmn),
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where βi, i = 1,2,3,4 are functions of the invariants of M, i.e., II = det(M), as the first
invariant of M is 1. The constraint Pijkkmm = Mij leads to the following relationships of
βi,i=1,2,3,4

β2 =
15

16
−β3−

1

16
(15−12II)β4,

β1 =−
5

32
+(

1

8
+

1

9
II)β3+(

5

32
−

3

8
II)β4.

Then we assume β3,β4 are polynomials of II

β3 =
n

∑
i=0

ci II
i, β4 =

n

∑
i=0

c′i II
i .

To estimate the coefficients ci,c
′
i, i=1,··· ,n, we take N samples of Bingham distributions,

and the corresponding values of M11,P111111,P111122 are obtained by direct numerical in-
tegration. Then we determine the values of the coefficients ci,c

′
i, i = 1,··· ,n by the least-

square method. In our procedure, we take n = 2,N = 600. The polynomials of β3,β4 are
then given by

β3 =−64.334II2+61.570II−0.1082,

β4 =36.362II2−36.694II+1.0601.
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