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LOCAL EXISTENCE AND UNIQUENESS OF THE DYNAMICAL

EQUATIONS OF AN INCOMPRESSIBLE MEMBRANE IN

TWO-DIMENSIONAL SPACE∗

DAN HU† , PENG SONG‡ , AND PINGWEN ZHANG§

Abstract. The dynamics of a membrane is a coupled system of a moving elastic surface and an
incompressible membrane fluid. The difficulties in analyzing such a system include the nonlinearity of
the curved space (geometric nonlinearity), the nonlinearity of the fluid dynamics (fluid nonlinearity),
and the coupling to the surface incompressibility. In the two-dimensional case, the fluid vanishes
and the system reduces to a coupling of a wave equation and an elliptic equation. Here we prove
the local existence and uniqueness of the solution to the system by constructing a suitable discrete
scheme and proving the compactness of the discrete solutions. The risk of blowing up due to the
geometric nonlinearity is overcome by the bending elasticity.
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1. Introduction

The lipid membrane is an important component in cells, which surrounds all
living animal cells and their organelles. It helps the cell to maintain the shape and
regulate the transport in and out of the cell or subcellular domains. By changing its
own shape, the membrane also plays important roles in many vital actions, such as
cell division. A membrane consists of lipids, proteins, and carbohydrates [1]. The
structures and properties of such a membrane are very complex and refined. In
general, the membrane is a surface fluid because the lipids and associated proteins
are not allowed to escape from the membrane but are allowed to move freely on it;
the fluid can be viewed incompressible since the tensile elastic modulus is very large,
and the membrane is bending resistent [7]. In a word, the membrane is basically a
two-dimensional incompressible fluid defined on a moving elastic surface.

The equations of the surface’s evolution was first considered by Scriven [15] and
Waxman [19]. Waxman [19, 20] and Steigmann [18] also derived the dynamic equa-
tions of fluid membranes with curvature elasticity [4, 7]. Seifert [16], Pozrikidis [14],
and Cai and Lubensky [3] considered the coupled system of elastic membranes and
bulk fluids. Recently, Miao, Lomholt, and Hansen [11, 12] took more effects, such as
the viscous effect, into account and obtained the membrane-fluid coupled system. Hu,
Zhang, and E [9] derived the director model in which a director is endowed to every
material point on the membrane and the elastic energy is induced by the directors.
They also obtained an elastic surface model, in which the director is constrained to
be the normal of the surface. Their elastic surface model is a synthesis of the previous
works. In the elastic surface model, the dynamics of the membrane involves the evo-
lution equations of the moving surface, the dynamic equations of the two-dimensional
fluid, and the incompressible equation. The difficulties in the analysis of such a system
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include the nonlinearity of the curved space (geometric nonlinearity), the nonlinear-
ity of the fluid dynamics (fluid nonlinearity), and the coupling to the incompressible
equation.

The aim of this work is to take the first step toward the analysis of these equations
and to get a deep understanding of the behavior of the membrane. As the first step,
we consider the two dimensional case in this paper, where the membrane can be
viewed as a cylinder which is translation invariant along the generatrix. In this case,
the membrane fluid vanishes and the behavior of such a membrane is similar to an
incompressible elastic string. Therefore, we can focus our attention on the geometrical
nonlinearity and the incompressibility. We prove the local existence and uniqueness
of such a system and show that the difficulty due to the geometrical nonlinearity
is overcome by the bending elasticity. This gives us insights to treat the geometric
nonlinearity of the general system.

In the next section, we introduce the elastic surface model. In the latter sections,
we prove the local existence and uniqueness of this simple case by introducing a
suitable discrete scheme and prove the compactness of the discrete solutions.

2. The elastic surface model and the reduced form in two-dimensional

space

For a integrate understanding of the background and the properties of the prob-
lem, we provide a short derivation of the equations in general case. After that, we
reduce the equations to the two dimensional case. Readers who are familiar to the
background may directly start from the equation set (2.7) – (2.9), which is the set we
consider in this paper.

There are two alternative ways to treat the dynamics of membrane fluid [9]. In
one way, the membrane is regarded as an immersed interface in the bulk fluid. It
moves along with the bulk fluid and provides surface stresses which cause jumps of
the bulk stresses. In the other, the membrane is regarded as a separate surface. The
interaction between the membrane and the bulk fluid is taken into account by an
external force. In this paper, we consider the membrane using the latter approach.
First, we introduce the elastic surface model of a moving membrane. Our tensor
notation can be found in classic materials [2, 9, 19].

On a moving surface Γ, we introduce a Lagrangian coordinate uα (α=1,2). Let
~R(uα,t) be the position vector in Euclidean space of the material points on the surface.
The Frenet coordinate system of the surface–the tangent vectors ~aα and the unit
normal vector ~n are given by

~aα =
∂ ~R

∂uα
,~n ·~aα =0, ~n ·~n=1.

The metric tensor aαβ and the covariant alternating tensor εαβ are calculated as

aαβ =~aα ·~aβ ,εαβ =~aα×~aβ ·~n.

The metric tensor aαβ , along with its inverse aαβ , is used to lower or raise the indices
of vectors and tensors. For example: bγ

β =aαγbαβ . The alternating tensor εαβ takes

the values ε12 =−ε21 =
√

a,ε11 =ε22 =0, where a=det(aαβ). The surface Christoffel
symbols Γγ

αβ =Γγ
βα and curvature tensor bαβ = bβα are given by the Gauss-Weingarten-
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Codazzi equation,

∂~aα

∂uβ
=Γγ

αβ~aγ +bαβ~n,

∂~n

∂uβ
=−bγ

β~aγ =−aαγbαβ~aγ ,

bαβ,γ = bαγ,β ,

where we have used a comma followed by a lowercase Greek subscript to denote
covariant derivatives based on the metric tensor aαβ :

Q·α··
··β·,γ =

∂Q·α··
··β·

∂uγ
+
∑

Q·µ··
··β·Γ

α
µγ −

∑

Q·α··
··µ·Γ

µ
βγ .

For example, we have

bαβ,γ =
∂bαβ

∂uγ
−bαµΓµ

βγ −bµβΓµ
αγ.

We may also write the Gauss-Weingarten-Codazzi equation as

~aα,β = bαβ~n,~n,β =−bγ
β~aγ ,bαβ,γ = bαγ,β .

The velocity of the surface is

~v(uα,t)=
∂ ~R

∂t
,

which can be decomposed as

~v =vα~aα +v(n)~n.

Here, the superscript α and (n) mean the component of ~v along the tangent vector
~aα and normal vector ~n respectively.

The Helfrich free energy [4, 7] is

EH =

∫

Γ

Cαβµδ
1 (Bαβ −bαβ)(Bµδ −bµδ) dS,

where Bαβ =B (uγ)aαβ is the spontaneous curvature tensor and the fourth order
tensor is given by

Cαβµδ
1 =(k1−ε1)a

αβaγδ +ε1

(

aαµaβδ +aαδaβµ
)

,

where k1and ε1 are positive elastic coefficient and k1≥ε1. By applying the principle
of virtual work, we obtain elastic stresses. For isotropic Newtonian membrane fluids,
the dynamical equation set of the membrane is

γ
∂2 ~R

∂t2
= ~f +

(

Tαβ~aβ

)

,α
+(qα~n),α ,

vα
,α−2Hv(n) =0,
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where the first equation is the momentum equation and the second one is the incom-
pressible equation. In the above equations, H is the mean curvature, and the in-plane
stress tensor Tαβ and transverse shear stress qα are given by

Tαβ =−Πaαβ +Jαβ +Mαµbβ
µ,

qα =Mαβ
,β

Jαβ =CαβγδSγδ,

Mαβ =Cαβµδ
1 (Bµδ −bµδ) ,

Cαβµδ =(k0−ε0)a
αβaγδ +ε0

(

aαµaβδ +aαδaβµ
)

,

where Π is the surface pressure (tension), and Sαβ = 1
2 (vα,β +vβ,α)−v(n)bαβ is the

rate of surface strain. The energy dissipation relation of the above equations is

d

dt

∫
(

1

2
Cαβµδ

1 (Bαβ −bαβ)(Bµδ −bµδ)+
γ

2
|~v|2
)

dS =−
∫

CαβγδSαβSγδdS.

For a cylindrical membrane with translation invariance along the generatrix, the
dynamics of the membrane is simplified to the dynamics of the transversal curve. Since
the velocity component along the direction of the generatrix can be simply described
by a diffuse equation and is decoupled to the dynamics in the transversal profile, we
only consider the dynamics of a closed elastic curve in a plane and call it “the two
dimensional case”. Since the curve is incompressible, the Lagrangian coordinate s is
an arc length parameter if it is initially set to be. All tensors reduce to a scalar, and
particularly, Sαβ vanishes due to the incompressibility. The model equations in the
two-dimensional space are

γ
∂2 ~R

∂t2
= ~f +

∂ (T~a)

∂s
+

∂ (q~n)

∂s
, (2.1)

∂v1

∂s
−κv(n) =0, (2.2)

where κ is the curvature and q =µ(B−κ),s, µ=k1 +ε1, and B is the spontaneous
curvature. Since the surface pressure Π in the in-plane stresses T can be regarded
as a Lagrangian multiplier and is determined by the incompressibility equation, the
other components in T can be absorbed by Π in the two dimensional case. Thus we
simply regard T as the Lagrangian multiplier. Since the curve is closed, ~R(s,t), ~v(s,t),
T (s,t) as well as their derivatives satisfy the periodic boundary condition. The initial
condition is

~R(0,t)=R0(s), ~v(0,t)=~v0(s).

Note that, due to the incompressibility, the fluid vanishes in the two dimensional case.
Therefore, the energy of the system preserves

d

dt

∫

Γ

(γ

2
|~v|2 +µ(B−κ)

2
)

ds=0.

Let L be the total arc length. We take the rescaling on the equations

s→ 1

L
s, t→ t

√

µ

L4γ
, ~R→ 1

L
~R,

T → L2

µ
T, B→LB, ~f → L3

µ
~f.
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Using the subscript t,s to express the time and spatial derivative, the model equations
are

~Rtt = ~f +(T~a)s +((B−κ)s~n)s , (2.3)

v1
s −κv(n) =0,s∈ [0,1). (2.4)

Equation (2.3) is a nonlinear wave equation, which involves the second order time-

derivative and the fourth-order spatial derivative of ~R. Equation (2.4) is the constraint
equation of the membrane incompressibility.

In [8, 10, 13], the arc length parameter and the tangent angle of the curve was
introduced to remove the stiffness from interfacial flows. In [17], based on a simi-
lar idea, equations (2.3)–(2.4) are changed into the equations of tangent angle and
simulated by the tangent angle equations. In this description, the vector equation
in equation (2.4) reduces to a single scalar equation, and the incompressible equa-
tion is replaced by a second order elliptic equation of the in-plane stress T . We set
~a= ~Rs =(cosα(s,t),sinα(s,t)) and ~n=(sinα(s,t),−cosα(s,t)), where α is the angle
between the curve’s tangent vector and the positive direction of the x-axis. The
tangent angle equation is

αtt =g1 +2Tsαs +Tαss−(B+αs)sss +α2
s (B+αs)s , (2.5)

−Tss +α2
sT =g2 +α2

t +2(B+αs)ssαs +(B+αs)sαss, (2.6)

where g1 =−~fs ·~n and g2 = ~fs ·~a are the normal and tangent components of the ex-
ternal force. In return, the position of the curve ~R(s,t) can be determined by the
tangent angle and the center of gravity

∂ ~R

∂s
=~a,

∫

Γ

~R(s,t)ds=

∫ t

0

∫ t′

0

∫

Γ

~f(s,τ)dsdτdt′+ t

∫

Γ

~v0ds+

∫

Γ

~R0(s)ds.

This suggests that the equation set (2.5)–(2.6) is equivalent to the equation set (2.3)–

(2.4). Let P =T +(αs)
2

and u=αt, then (2.5–2.6) can be written as

αt =u, (2.7)

ut =2Psαs +Pαss−4(αs)
2
αss−αssss +h1, (2.8)

−Pss +α2
sP =α4

s −α2
ss +u2 +h2, (2.9)

where h1 =g1−Bsss +Bs (αs)
2

and h2 =g2 +2Bssαs +Bsαss. The boundary condi-
tion is α(1,t)=α(0,t)+2π, and P,αs are periodic. The initial condition is

α(s,0)=α0(s),u(s,0)=u0(s).

Equation (2.8) is a nonlinear wave equation for the angle α and equation (2.9) is an
elliptic equation for P .

Next, we prove the local existence and uniqueness of the equation set (2.7)–(2.9).
First, we design an implicit numerical scheme for these equations. Then we prove
that, as the time step tends to zero, the numerical solution converges and the limit
is the solution of the equations. In this paper, Lp(Ω), Wα,p(Ω), and Hα(Ω) are the
usual Sobolev Spaces, and ‖·‖Lp , ‖·‖W α,p and ‖·‖Hα are the corresponding norms.



788 WELLPOSEDNESS OF 2D INCOMPRESSIBLE MEMBRANE

3. Basic lemmas

Before we begin to introduce the discrete numerical scheme, we introduce two
lemmas, which are the base of the discrete scheme. Lemma 3.1 is an L1 theory of a
linear elliptic equation. This may not be included in classic results, so we give a short
proof here. For simplicity, we use C to denote the constants which depend only on
the spaces but not on the functions. These constants may be different.

Lemma 3.1. If α(s)∈W 2,1[0,1], f(s)∈L1[0,1], and α(1)=α(0)+2π, the equation

−Qss +(αs)
2
Q=f,

with the boundary condition

Q(0)=Q(1),

Qs(0)=Qs(1),

has an unique solution Q∈W 2,1[0,1]. Moreover, there exists a constant C, such that

‖Q‖W 2,1 ≤C
(

1+‖α‖2
W 2,1

)

‖f‖L1 .

If α(s)∈Cl+1(0,1), l>0, α(1)=α(0)+2π, and f ∈W l,1(0,1), we have ‖Q‖W 2+l,1 ≤
C
(

1+‖αs‖2
C1+l

)

‖f‖W l,1 .

Proof. First, we consider the equation

−Uss =f −
∫ 1

0

f(τ)dτ,

U(0)=U(1),

Us(0)=Us(1).

It has a solution

U(s)=−
∫ s

0

∫ s′

0

f(τ)dτds′+s

∫ 1

0

∫ s′

0

f(τ)dτds′+
1

2
s(s−1)

∫ 1

0

f(τ)dτ

which satisfies U(0)=U(1)=0. We have the inequality

‖U(s)‖W 2,1 ≤C ‖f(s)‖L1 .

Let V =Q−U ; the equation of V is

−Vss +(αs)
2
V =−(αs)

2
U +

∫ 1

0

f(τ)dτ, (3.1)

V (0)=V (1),

Vs(0)=Vs(1).

By applying the embedding theorem W 2,1(0,1) →֒W 1,4(0,1) →֒L∞(0,1), we have
∥

∥

∥

∥

−(αs)
2
U +

∫ 1

0

f(τ)dτ

∥

∥

∥

∥

L2

≤C
(∥

∥

∥
(αs)

2
∥

∥

∥

L2
‖U‖L∞ +‖f‖L1

)

≤C
(

‖α‖2
W 1,4 ‖U‖W 2,1 +‖f‖L1

)

≤C
(

‖α‖2
W 2,1 ‖U‖W 2,1 +‖f‖L1

)

≤C
(

1+‖α‖2
W 2,1

)

‖f‖L1 .
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If the first (smallest) eigenvalue λ of equation (3.1) is positive, we can find an unique
solution of equation (3.1) by the theory of second order elliptic equations and the
embedding theorem H2(0,1) →֒W 2,1(0,1) with the following estimation

‖V ‖W 2,1 ≤C ‖V ‖H2 ≤C

∥

∥

∥

∥

−(αs)
2
U +

∫ 1

0

f(τ)dτ

∥

∥

∥

∥

L2

≤C
(

1+‖α‖2
W 2,1

)

‖f‖L1 .

Thus there exists an unique solution of Q which satisfies

‖Q‖W 2,1 ≤‖V ‖W 2,1 +‖U‖W 2,1 ≤C
(

1+‖α‖2
W 2,1

)

‖f‖L1 .

Next we make and estimate the first eigenvalue λ of equation (3.1). λ is given by

λ= inf
‖V ‖

L2=1

∫ 1

0

(

(Vs)
2
+(αs)

2
V 2
)

ds.

For V ∈C0(0,1) and ‖V ‖L2 =1, we define M = max
s∈[0,1]

V (s), m= min
s∈[0,1]

V (s). If M ≥
0≥m, there exists an s0∈ [0,1] such that V (s0)=0. Note that the first eigenvalue of
the following problem is π2

−Vss =λV,

V (s0)=V (s0 +1) = 0.

Therefore, we have

∫ 1

0

(

(Vs)
2
+(αs)

2
V 2
)

ds≥
∫ 1

0

(Vs)
2

ds≥π2.

If M ≥m>0, there exists s0∈ [0,1] such that V (s0)−m=0. Similarly, we estimate

∫ 1

0

(Vs)
2

ds≥π2

∫ 1

0

(V −m)
2

ds.

At the same time, the boundary condition α(1)=α(0)+2π leads us to the estimation
∫ 1

0
(αs)

2
ds≥4π2. Thus we have

∫ 1

0

(αs)
2
V 2 ds≥m2

∫ 1

0

(αs)
2

ds≥4π2

∫ 1

0

m2 ds,

and

∫ 1

0

(

(Vs)
2
+(αs)

2
V 2
)

ds≥π2

∫ 1

0

(

(V −m)
2
+4m2

)

ds

=
π2

2

∫ 1

0

(

V 2 +(V −2m)
2
+6m2

)

ds

≥ π2

2
.

Therefore the first (smallest) eigenvalue λ of equation (3.1) is always bigger than π2

2 .
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Lemma 3.2 is an L2 result of a constant-coefficient linear elliptic equation. Since
it can be easily obtained by the Fourier transform, we list it without proof.

Lemma 3.2. If f ∈H−2+l(0,1), there exists an unique solution α∈H2+l of the equa-
tion

α+µ2αssss =f

with periodic boundary condition (or the boundary condition α(1)=α(0)+2π, and αs

is periodic).

4. Discrete scheme and discrete solution

In this section, we construct an implicit discrete scheme for (2.7)–(2.9) and show
the energy properties of the discrete solution.

Let ∆t>0 be the time step, tn =n∆t, n=0,1,2,... . The superscript n means the
value of the function on time tn, i.e., αn(s)=α(s,tn). At each time step tn, if αn and
un are known, we have the value of hn

1 , hn
2 and solve Pn by equation (2.9). Using

αn,un, and Pn to take the place of the nonlinear terms in equation (2.8), we discretize
the time derivatives and obtain αn+1 and un+1 as the following:

−Pn
ss +(αn

s )
2
Pn =(αn

s )
4−(αn

ss)
2
+(un)

2
+hn

2 , (4.1)

αn+1 =αn +un+1∆t, (4.2)

un+1 =un +
(

2Pn
s αn

s +Pnαn
ss−4(αn

s )
2
αn

ss−αn+1
ssss +hn

1

)

∆t. (4.3)

Equations (4.2) and (4.3) are equivalent to a decoupled form

αn+1 +αn+1
ssss∆t2 =αn +un∆t+

(

2Pn
s αn

s +Pnαn
ss−4(αn

s )
2
αn

ss +hn
1

)

∆t2, (4.4)

un+1 +un+1
ssss∆t2 =un +

(

2Pn
s αn

s +Pnαn
ss−4(αn

s )
2
αn

ss−αn
ssss +hn

1

)

∆t. (4.5)

Therefore, at each time step, we need only to solve three linear equations (4.1),
(4.4)–(4.5). The existence and uniqueness of their solutions can be obtained by Lemma
3.1 and Lemma 3.2. Next, we give the energy estimate of the discrete system.

Lemma 4.1. If the spontaneous curvature B(s)∈W 2,1(0,1), Bsss ∈H−2(0,1), the

external force ~fn(s)∈W 1,1(0,1), and αn ∈H2(0,1), un ∈L2(0,1), then the functions
at the next time step tn+1 obtained from (4.1), (4.4)–(4.5) satisfy αn+1∈H2(0,1),
un+1∈L2(0,1), Pn ∈W 2,1(0,1). More accurately, there exists a polynomial p(·) with

non-negative coefficients which depend only on the norms of B(s) and ~fn(s), such
that

En+1
2 ≤En

2 +∆tp(En
2 ) , (4.6)

where

En
2 =

∫ 1

0

(

(αn
ss)

2
+(un)

2
)

ds. (4.7)

Proof. From the given conditions, we have αn
s ∈C0(0,1), gn

1 ,gn
2 ∈L1(0,1)⊂

H−1(0,1). hn
1 and hn

2 are given as

hn
1 =gn

1 −Bsss +Bs (αn
s )

2
,

hn
2 =gn

2 +2Bssα
n
s +Bsα

n
ss,



DAN HU, PENG SONG AND PINGWEN ZHANG 791

thus we have hn
1 ∈H−2(0,1), hn

2 ∈L1(0,1), and ‖hn
1‖H−2 ≤ c1 +c2‖αn‖2

H2 , ‖hn
2‖L1 ≤

c3 +c4‖αn‖H2 , where ci depend on the norms of B and ~fn. Therefore, the right hand
side of equation (4.1) belongs to L1(0,1). From Lemma 3.1, we obtain Pn ∈W 2,1(0,1)
which satisfies

‖Pn‖W 2,1 ≤C
(

1+‖αn‖2
W 2,1

)(

1+‖αn‖4
W 1,4 +‖αn‖2

H2 +‖un‖2
L2

)

≤p(3) (En
2 ),

where p(3)(·) is a 3-order polynomial with non-negative coefficient. The embedding
theory indicates that ‖Pn‖L∞ ≤C ‖Pn‖W 2,1 and ‖Pn

s ‖L∞ ≤C ‖Pn‖W 2,1 . Thus the
right hand side of equation (4.4) and (4.5) are H−2(0,1) functions. By Lemma 3.2,
there exist solutions αn+1∈H4(0,1) and un+1∈H2(0,1). Moreover, we have the
inequality

En+1
2 =

∫ 1

0

(

(

αn+1
ss

)2
+
(

un+1
)2
)

ds

≤
∫ 1

0

[

(

αn+1
ss

)2
+
(

un+1
)2

+∆t2
(

(

un+1
ss

)2
+
(

αn+1
ssss

)2
)]

ds

=

∫ 1

0

(

(

αn+1
ss −un+1

ss ∆t
)2

+
(

un+1 +αn+1
ssss∆t

)2
)

ds

=

∫ 1

0

[

(αn
ss)

2
+
(

un +
(

2Pn
s αn

s +Pnαn
ss−4(αn

s )
2
αn

ss +hn
1

)

∆t
)2
]

ds

≤En
2 +2∆t

∫ 1

0

∣

∣

∣
un
(

2Pn
s αn

s +Pnαn
ss−4(αn

s )
2
αn

ss +hn
1

)
∣

∣

∣
ds

+∆t2
∫ 1

0

∣

∣

∣

(

2Pn
s αn

s +Pnαss−4(αn
s )

2
αn

ss +hn
1

)∣

∣

∣

2

ds

≤En
2 +C∆tp(En

2 ) ,

where p(·) is a polynomial with non-negative coefficient.

From the proof, we can see that the nonlinear terms are controlled by the fourth-
order spatial derivatives, which comes from the bending resistance. We will see that
this is sufficient to make the system well-posed locally.

Lemma 4.2. {an}∞n=0 is a non-negative sequence, which satisfies

an ≤an−1 +∆tp(an−1), (4.8)

where ∆t>0 and p(·) is a polynomial with non-negative coefficients. Then there exists
a constant T ∗ which is independent of ∆t such that an has a uniform bound for all
n∆t<T ∗.

Proof. We prove this lemma by mathematical induction. Assume p(x)=xq(x)+
c, where q(x) is also a polynomial with non-negative coefficient and c≥0 is a constant.
By the inequality (4.8), we have

an ≤an−1(1+∆tq(an−1))+c∆t.

Let M >a0. Assume ak ≤M for all k <n (n∆t<T ∗), where

T ∗ =
1

q(M)
log

(

M +c/q(M)

a0 +c/q(M)

)

,
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then we have

an ≤an−1(1+∆tq(M))+c∆t,

which is equivalent to

an +
c

q(M)
≤
(

an−1 +
c

q(M)

)

(1+∆tq(M)).

Thus we obtain

an +
c

q(M)
≤
(

a0 +
c

q(M)

)

(1+∆tq(M))n

≤
(

a0 +
c

q(M)

)

(1+∆tq(M))
T∗

∆t

≤
(

a0 +
c

q(M)

)

exp{T ∗q(M)},

and

an ≤
(

a0 +
c

q(M)

)

exp{T ∗q(M)}− c

q(M)
=M.

Therefore, an has a uniform bound for all n∆t<T ∗.

Based on Lemma 4.1 and Lemma 4.2, we obtain the following lemma.

Lemma 4.3. If the conditions of Lemma 4.1 are satisfied, the initial data α0∈H2(0,1)
and u0∈L2(0,1), then there exists a constant T ∗ which is independent on ∆t, such
that En

2 has a uniform bound for all n∆t<T ∗.

Using the discrete solutions at tn, we define the functions α∆t(s,t), u∆t(s,t), and
P∆t(s,t) in [0,1]× [0,T ∗] as

α∆t(s,t)=λαn(s)+(1−λ)αn+1(s), t∈ [n∆t,(n+1)∆t) ,

u∆t(s,t)=λun(s)+(1−λ)un+1(s), t∈ [n∆t,(n+1)∆t) ,

P∆t(s,t)=λPn(s)+(1−λ)Pn+1(s), t∈ [n∆t,(n+1)∆t) ,

λ=
(n+1)∆t− t

∆t
.

Obviously, we have α∆t ∈L∞
(

[0,T ∗],H2(0,1)
)

, u∆t ∈L∞
(

[0,T ∗],L2(0,1)
)

, and P∆t ∈
L∞

(

[0,T ∗],W 2,1(0,1)
)

.
Similar to Lemma 4.3, if there are higher-order regularities for the conditions we

have the following lemma.

Lemma 4.4. Define En
k as

En
k =

∫ 1

0

[

(

(αn)
(k)
)2

+
(

(un)
(k)
)2
]

ds. (4.9)

Supposing the spontaneous curvature B(s)∈W k,1(0,1), Bsss ∈Hk−4(0,1), the external

force ~fn(s)∈W k−1,1(0,1), and αn ∈Hk(0,1), un ∈Hk−2(0,1), for k≥2, then there
exists a polynomial pk(·) with non-negative coefficients such that

En+1
k ≤En

k +∆tpk(En
k ). (4.10)
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Moreover, if the initial data α0∈Hk(0,1) and u0∈Hk−2(0,1), there exists a constant
T ∗k such that α∆t(s,t)∈L∞

(

[0,T ∗k],Hk(0,1)
)

, u∆t ∈L∞
(

[0,T ∗k],Hk−2(0,1)
)

, and

P∆t ∈L∞
(

[0,T ∗k],W k,1(0,1)
)

.

To sum up, we have gotten the energy estimates for a series of energies En
k . All

the energy can be uniformly bounded for small t. These properties are intrinsically
based on the bending resistance which controls the nonlinear terms in the equation.

5. Local existence and uniqueness of the solution

Based on the above Lemmas, we are able to prove the local existence of the
solution of (2.7)–(2.9).

Theorem 5.1. If B(s)∈W k,1(0,1), Bsss ∈Hk−4(0,1), ~f(s,t)∈
L∞

(

[0,T ],W k−1,1(0,1)
)

, α0∈Hk(0,1), and u0∈Hk−2(0,1) (k≥2), there ex-
ists a constant T ∗k, 0<T ∗k <T , such that (2.7)–(2.9) has a set of solu-
tions (α∗,u∗,P ∗), and α∗∈L∞

(

[0,T ∗k],Hk(0,1)
)

, u∗∈L∞
(

[0,T ∗k],Hk−2(0,1)
)

,

P ∗∈L∞
(

[0,T ∗k],W k,1(0,1)
)

.

Proof. Since the conditions of Lemma 4.4 are satisfied, there exists a constant
T ∗k independent on ∆t and 0<T ∗k <T , such that α∆t(s,t)∈L∞

(

[0,T ∗k],Hk(0,1)
)

and u∆t ∈L∞
(

[0,T ∗k],Hk−2(0,1)
)

.

On the other hand, we also have

(

αn+1−αn
)

=
(

αn−αn−1
)

+
(

un+1−un
)

∆t, (5.1)
(

un+1−un
)

=
(

un−un−1
)

−
(

αn+1
ssss−αn

ssss

)

∆t+4∆t
(

(αn
s )

2
αn

ss−
(

αn−1
s

)2
αn−1

ss

)

+∆t
(

2Pn
s αn

s +Pnαn
ss−2Pn−1

s αn−1
s −Pn−1αn−1

ss

)

, (5.2)

−
(

Pn−Pn−1
)

ss
+(αn

s )
2(

Pn−Pn−1
)

= −Pn−1
(

(αn
s )

2−
(

αn−1
s

)2
)

+
(

(αn
s )

4−
(

αn−1
s

)4
)

−
(

(αn
ss)

2−
(

αn−1
ss

)2
)

+
(

(un)
2−
(

un−1
)2
)

. (5.3)

It is a set of linear equation
(

αn+1−αn
)

,
(

un+1−un
)

, and
(

Pn−Pn−1
)

. Similar to
the above analysis, we can obtain the inequality

Dn
k ≤Dn−1

k +C∆tDn−1
k ,

where C depends on B(s), ~fn(s), and En
k , and

Dn
k =

∫ 1

0





(

(

αn+1
)(k)−(αn)

(k)

∆t

)2

+

(

(

un+1
)(k−2)−(un)

(k−2)

∆t

)2


 ds

=

∫ 1

0





(

∂α
(k)
∆t

∂t

)2

+

(

∂u
(k−2)
∆t

∂t

)2


 ds.

Thus there is a uniform bound of Dn
k for all n∆t<T ∗k, this indicates that α∆t ∈

W 1,∞
(

[0,T ∗k],Hk(0,1)
)

, u∆t ∈W 1,∞
(

[0,T ∗k],Hk−2(0,1)
)

and the norms of α∆t and
u∆t depend on B(s), f(s), and the initial conditions continuously.
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By the compactness theory, there exists a subsequence {∆ti}i and
the functions α∗(s,t)∈L∞

(

[0,T ∗k],Hk(0,1)
)

, u∗∈L∞
(

[0,T ∗k],Hk−2(0,1)
)

, P ∗∈
L∞

(

[0,T ∗k],W k,1(0,1)
)

such that

lim
i→∞

∆ti =0+, lim
i→∞

α∆ti
=α∗,

lim
i→∞

u∆ti
=u∗, lim

i→∞
P∆ti

=P ∗,

and (α∗,u∗,P ∗) satisfies (2.7)–(2.9).

Theorem 5.2. If the conditions in Theorem 5.1 are satisfied, the solution to (2.7)–
(2.9) is unique.

Proof. Suppose there are two solutions (α1,u1,P1) and (α2,u2,P2) of (2.7)–(2.9).
Define β =α1−α2, w=u1−u2, and R=P1−P2. The equations of (β,w,R) are

βt =w, (5.4)

wt =2P1sβs +2α2sRs +P1βss +α2ssR−4(α1sβss +α2ss (α1s +α2s)βs)

−βssss−Bs (α1s +α2s)βs +f1β, (5.5)

−Rss +α2
1sR=−P2 (α1s +α2s)βs +

(

α3
1s +α2

1sα2s +α1sα
2
2s +α3

2s

)

βs

− (α1ss +α2ss)βss−(u1 +u2)w−2Bssβs−Bsβss +f2β, (5.6)

where

f1 =

{

~f · 1
β
(sinα1−sinα2,cosα2−cosα1), β 6=0,

~f ·(cosα1,sinα1), β =0,

f2 =

{

~f · 1
β
(cosα1−cosα2,sinα1−sinα2), β 6=0,

~f ·(−sinα1,cosα1), β =0,

with the periodic boundary condition and the initial condition

β(s,0)=0, w(s,0)=0.

These equations are linear for (β,w,R). From equation (5.6) and Lemma 3.2, we have
the estimation of R

‖R‖H2 ≤C (‖β‖H2 +‖w‖L2) ,

where C depends on (α1,u1,P1) and (α2,u2,P2). Since equations (5.4) and (5.5) are
also linear for (β,w,R), we obtain

d

dt
E(t)≤CE(t), where E =‖β‖H2 +‖w‖L2 .

By the Gronwall Inequality, we obtain

E(t)≤E(0)eCt.

Since initially we have E(0)=0, E(t) is always zero, which means β(s,t)≡0 and
w≡0. Since the right hand side of equation (5.6) also vanishes, we have R(s,t)≡0.
Therefore, we have (α1,u1,P1)=(α2,u2,P2).
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6. Conclusions

A detailed well-posedness analysis for the elastic surface model of the incompress-
ible fluid membrane in a two-dimensional space is carried out in this paper. In general,
the model equations contain three parts: the evolution of the geometric quantities,
the fluid on the membrane, and the constraint of the incompressibility. In a two-
dimensional space, the membrane fluid vanishes and the coordinate system can be
simply selected to be the arc length parameter. Using the tangent angle, we reduce
the dynamic equations to a wave equation and an elliptic equation. By constructing
a suitable discrete scheme for the two equations, we proved the local existence and
uniqueness of the solutions.

Generally, nonlinearities may result in blow-up of dynamical systems. For a gen-
eral fluid membrane, the nonlinearity includes the geometric nonlinearity due to the
bending of the surface and the fluid nonlinearity due to the convection of the mem-
brane fluid. In a two dimensional space, the dependence of the geometry on the
membrane fluid vanishes, which allows us to consider the geometric nonlinearity sep-
arately. From the proof, we can see that the risk of blowing up due to the geometric
nonlinearity is overcome by the bending elasticity. This should also be the case in
a three-dimensional space. If the fluid nonlinearity can be treated similar to the
2-dimensional Navier-Stokes equation, we may obtain the well-posedness for the dy-
namic equations of a general fluid membrane. For such a system, there are still more
difficulties: 1. the two nonlinearities is coupled; 2. we don’t have an efficient coordi-
nate system; 3. we have to treat more equations.
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