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Abstract This paper presents a second-order accurate adaptive Godunov method for two-
dimensional (2D) compressible multicomponent flows, which is an extension of the pre-
vious adaptive moving mesh method of Tang et al. (SIAM J. Numer. Anal. 41:487–515,
2003) to unstructured triangular meshes in place of the structured quadrangular meshes.
The current algorithm solves the governing equations of 2D multicomponent flows and the
finite-volume approximations of the mesh equations by a fully conservative, second-order
accurate Godunov scheme and a relaxed Jacobi-type iteration, respectively. The geometry-
based conservative interpolation is employed to remap the solutions from the old mesh to
the newly resulting mesh, and a simple slope limiter and a new monitor function are chosen
to obtain oscillation-free solutions, and track and resolve both small, local, and large solu-
tion gradients automatically. Several numerical experiments are conducted to demonstrate
robustness and efficiency of the proposed method. They are a quasi-2D Riemann problem,
the double-Mach reflection problem, the forward facing step problem, and two shock wave
and bubble interaction problems.

Keywords Adaptive moving mesh method · Finite volume method · Godunov scheme ·
Multi-component flows · Unstructured mesh

1 Introduction

The hydrodynamics of the mixture of different fluids is of great interest in a wide range of
physical flows. Among them some fundamental issues are the dynamics and stability of bub-
bles and interfaces, mixing processes, bubbly flows, and liquid suspensions, etc. Such fluid

G. Chen · H. Tang (�) · P. Zhang
LMAM and CCSE, School of Mathematical Sciences, Peking University,
Beijing 100871, People’s Republic of China
e-mail: hztang@math.pku.edu.cn

G. Chen
e-mail: gxchen@math.pku.edu.cn

P. Zhang
e-mail: pzhang@math.pku.edu.cn



J Sci Comput (2008) 34: 64–86 65

flows give rise to challenging problems in both theory and numerical simulation. Recent
two decades have seen a growing interest in developing numerical methods for compress-
ible multicomponent flows and the investigation of the physical phenomena in complex fluid
flows, see e.g. [1, 3, 21, 23–25, 29, 33, 35]. It is well-known that conservative computations
of such flows run into unexpected difficulties commonly due to oscillations generated at ma-
terial interfaces. To overcome those difficulties, many authors studied various models (the
γ -model, the mass fraction model, and the level-set model etc.) and proposed some (locally)
nonconservative schemes, see [2] and references therein. Recently, Abgrall and Karni in [2]
reviewed some of the recent models and numerical algorithms that had been proposed and
pointed key ideas that they had in common. Although it has been proved that the noncon-
servative schemes are very successful in simulating compressible multi-component flows,
they will take a risk of producing incorrect results due to non-conservation, see [16]. Up to
now, there also exists some work on conservative schemes for compressible multicomponent
flows, see e.g. [22, 28, 46].

The main objective of this paper is to extend the adaptive moving mesh method developed
in [39] to two-dimensional compressible multimaterial flows. The governing equations will
be solved by a fully conservative second-order Godunov scheme with exact Riemann solver
on unstructured triangular meshes. Although higher-order accurate Godunov-type schemes
on triangular meshes have been studied in many literatures, see e.g. [4, 17, 20, 43], it would
be more interesting to see them in simulating multicomponent flows on adaptive moving
meshes. Locally clustering mesh points in the regions of the material interface will effec-
tively reduce possible errors (or oscillations) produced by a fully conservative Godunov-type
scheme at the material interface. Adaptive moving mesh methods have important applica-
tions for a variety of scientific and engineering areas such as solid and fluid dynamics etc.,
where singular or nearly singular solutions are developed dynamically in fairly localized re-
gions of shock waves, boundary layers, and detonation waves etc. Numerically investigating
these phenomena requires extremely fine meshes over a small portion of the physical domain
to resolve the large solution variations. Successful implementation of an adaptive strategy
can increase accuracy of the numerical approximations and decrease the computational cost.
Up to now, there have been many important progresses in adaptive moving mesh methods
for partial differential equations, including grid redistribution approach based on the varia-
tional principle of Winslow [44] and Brackbill [6], and Ren and Wang [32]; moving finite
element methods of Millers [30], and Davis and Flaherty [10]; moving mesh PDEs methods
of Russell et al. [5, 7, 19]; and moving mesh methods based on the harmonic mapping of
Dvinsky [12], Li et al. [11, 26, 27, 38, 47], and Ceniceros and Hou [8]. Computational costs
of moving mesh methods can be possibly saved with locally varying time steps [36], but
at the cost of increasing the algorithm complexity. Recently, Chertock and Kurganov in [9]
proposed a conservative locally moving mesh method for one-dimensional multifluid flows.
It will be more challenging to conduct research in adaptive moving mesh methods for two-
and three-dimensional multicomponent flows.

The paper is organized as follows. The governing equations for multicomponent fluid
flows are introduced in Sect. 2, and approximated in Sect. 3 by a second-order accurate
Godunov scheme on a fixed and unstructured triangular mesh, where a simple slope-limiter
is used to avoid numerical oscillations. Section 4 discusses the iterative mesh redistribu-
tion. The conservative variables are remapped onto the newly resulting meshes by using a
high-resolution geometry-based conservative interpolation. Full solution procedure will be
outlined in Sect. 5. Section 6 gives numerical experiments to validate the robustness and
efficiency of the proposed adaptive algorithm. Finally, we conclude this work in Sect. 7.
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2 Governing Equations

Multicomponent flows we consider are a subset of multiphase flows where the different
fluid components, characterized by their respective (constants) ratio of specific heats, are
immiscible. Moreover, we neglect diffusive effects, surface tension and cavitation, and as-
sume that the fluid consists of two components. The governing equations for such multi-
component flows may be written by using a single velocity and a single pressure function as
follows

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0,

∂(ρu)

∂t
+ ∂(ρu2 + p)

∂x
+ ∂(ρuv)

∂y
= 0,

∂(ρv)

∂t
+ ∂(ρuv)

∂x
+ ∂(ρv2 + p)

∂y
= 0,

∂E

∂t
+ ∂(u(E + p))

∂x
+ ∂(v(E + p))

∂y
= 0,

(2.1)

where ρ, u = (u, v), p, and E = ρe + 1
2ρ(u2 + v2) are the density, the velocity vec-

tor, the pressure, and the total energy, respectively, e denotes the internal energy. Four
equations in (2.1) express conservation of mass, momentum, and energy of the fluid
mixture. Besides specifying the equation of state (EOS) for the effective thermodynam-
ics

p = p(ρ, e),

the multicomponent flow description is completed by providing an additional equation that
describes the dynamics of the fluid composition.

For the rest of the paper, the variable φ is used to describe the fluid composition. Various
choices of φ have been considered in the literatures, depending on the model assumptions.
For example, it is taken to be the ratio of specific heats, the mass fraction, or the level-set
function. For all these models, the governing equation for the variables φ may be written in
a conservative form of

∂(ρφ)

∂t
+ ∂(ρφu)

∂x
+ ∂(ρφu)

∂y
= 0. (2.2)

This work is restricted to the perfect gases and the γ -model. Thus the thermodynamic
properties of the fluid mixture is described by the ideal EOS

p = (γ − 1)ρe,

and the interface between two fluids is represented by φ = 1
γ−1 , where γ denotes the effec-

tive ratio of specific heats of the fluid mixture and depends on the fluid composition for two
fluid flows. It turns out that this particular choice of φ offers clear advantages.
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We will use the Godunov scheme [14] with the initial data reconstruction [42] to solve
(2.1) and (2.2), i.e.

U t + F (U)x + G(U)y = 0, (2.3)

with

U =

⎛
⎜⎜⎜⎝

ρ

ρu

ρv

E

ρφ

⎞
⎟⎟⎟⎠ , F (U) =

⎛
⎜⎜⎜⎝

ρu

ρu2 + p

ρuv

u(E + p)

ρuφ

⎞
⎟⎟⎟⎠ , G(U) =

⎛
⎜⎜⎜⎝

ρv

ρuv

ρv2 + p

v(E + p)

ρvφ

⎞
⎟⎟⎟⎠ .

The detailed procedure for the exact Riemann solver of (2.3) is completely similar to that
for the one-component flows given in the literature, see e.g. [41].

3 Second-Order Accurate Godunov Scheme on Triangular Meshes

Our adaptive multicomponent flow calculation is formed by two independent parts: the evo-
lution of the governing equation and the iterative mesh redistribution. The first part is dis-
cussed in this section, while the second part will be introduced in Sect. 4.

In the following, we begin to introduce second-order accurate Godunov scheme of (2.3)
on a fixed, unstructured triangular mesh.

Give a triangulation of the physical domain �p , denoted by T = {E0,E1, . . . ,Ene},
where Ei is the ith triangle of the triangulation. For the triangle Ei , we denote xij = (xij , yij )

its j th vertex, Eij its j th neighboring element, lij its j th edge, j = 1,2,3, and nij the out-
ward unit normal vector on lij , see Fig. 1 for a detailed schematic diagram. We also assume
that a partition of the time interval [0, T ] is given as {tn = tn−1 +�tn|�tn > 0, n ∈ N}, where
the time step size �tn should be determined by the stability condition in practice.

Fig. 1 Schematic diagram of the
triangle element Ei
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Integrating (2.3) over the triangle Ei ∈ T , we have

|Ei | d

dt
UEi

(t) = −
∮

∂Ei

F ni
(U)ds = −

3∑
j=1

∫
lij

F nij
(U)dsj , (3.1)

where |Ei | is the area of the element Ei , ds and dsj stand for the surface element measure,
and F nij

= F (U)nx
ij + G(U)n

y

ij is the flux function in the nij = (nx
ij , n

y

ij ) direction, ni is

the outward unit normal vector of the triangle boundary ∂Ei := li1 ∪ li2 ∪ li3. Here UEi
(t)

denotes the cell average of the conservative variable U on the triangle Ei , defined by

UEi
(t) = 1

|Ei |
∫

Ei

U(x, t)dx. (3.2)

We use the midpoint integration formula to approximate the integration in (3.1), and
replace the exact solution U at the middle point of the edge lij by the approximate solution
(i.e. the piecewise polynomial reconstructed by using the cell averages in the finite volume
method) and the flux F nij

(U) by any two-point Lipschitz numerical flux F̂ nij
(UL

lij
,UR

lij
),

respectively. Based on those, (2.3) can be approximated as

d

dt
UEi

(t) = − 1

|Ei |
3∑

j=1

F̂ nij
(UL

lij
,UR

lij
)|lij |, (3.3)

where |lij | denotes the length of edge lij .
This work employs the Godunov flux with the exact Riemann solver [14] in (3.3):

F̂ nij
(UL

lij
,UR

lij
) = F nij

(ω∗(0;UL
lij

,UR
lij

)), (3.4)

where ω∗(x/t;UL
lij

,UR
lij

) denotes the exact solution of the one-dimensional Riemann prob-
lem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂U

∂t
+ ∂F nij

(U)

∂x
= 0,

U(x,0) =
{

UL
lij

, x < 0,

UR
lij

, x > 0.

(3.5)

We refer the readers to the literatures, e.g. [41], for its detailed derivation.
If set

UL
lij

:= UEi
, UR

lij
:= UEij

,

then (3.3) is only a first-order accurate semi-discrete scheme of (2.3). To get a second-order
accurate spatial discretization, the initial reconstruction technique [42] is used to reset UL

lij

and UR
lij

on the edge lij , see Fig. 2, where Ei and Ej are neighboring each other and have
a common edge lij . To do those, we first compute the cell vertex approximate values of the
solution by using its cell averages as follows

U i3 := 1

nei3

∑
U triangle surrounding xi3 ,

U j2 := 1

nej2

∑
U triangle surrounding xj2 ,
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Fig. 2 Schematic diagram of the initial data reconstruction

where nei3 (or nej2) denotes the number of triangles surrounding xi3 (or xj2). Next, we
define UL

lij
and UR

lij
on the j th edge of the triangle Ei by

UL
lij

= UEi
+ 1

2
�(UEi

− U i3,UEj
− UEi

), (3.6)

UR
lij

= UEj
− 1

2
�(UEj

− UEi
,U j2 − UEj

), (3.7)

where �(· , ·) is a nonlinear limiter function which is used to suppress the possible pseudo-
oscillation. If �(· , ·) ≡ 0, then the edge values UL

lij
and UR

lij
become corresponding cell

averages and the semi-discrete scheme (3.3) degenerates to first order accurate spatial ap-
proximation. In our computations, we use van Leer’s slope limiter [42]

ψi = ψi(a, b) = (sign(a) + sign(b))
|ab|

|a| + |b| + ε
,

where ψi is the ith component of � = (ψ1, . . . ,ψ5)
T , ε is a small positive positive number,

0 < ε � 1, which is used to avoid that the denominator becomes zero.
System (3.3) may be approximated by any stable time discretization. For example, we

use an explicit second-order accurate TVD Runge-Kutta method [34] to evolve solutions of
the governing equations (2.3) from tn to tn+1:

U
∗ = U

n + �tL(U
n
), (3.8)

U
n+1 = 1

2
U

n + 1

2
(U

∗ + �tL(U
∗
)), (3.9)

where L(U) denotes the term at the right hand side of (3.3). Here we have used U
n

Ei
to stand

for an approximation of UEi
(tn) at time tn.
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Remark 3.1 When we evolve the solution within Ej , see Fig. 2, the edge values UL
lji

and

UR
lji

on the ith edge of the triangle Ej are set as

UR
lji

= UEi
− 1

2
�(U i3 − UEi

,UEi
− UEj

),

UL
lji

= UEj
+ 1

2
�(UEi

− UEj
,UEj

− U j2).

If the limiter function � satisfies the property of that �(−V ,−W ) = −�(V ,W ), then
we have

UL
lij

= UR
lji

, UR
lij

= UL
lji

.

4 Adaptive Mesh Redistribution

This section extends the adaptive mesh redistribution of Tang et al. [39, 40] to unstructured
triangular meshes. It is an iterative procedure: redistribute or move triangular mesh points
by iteratively solving Euler-Lagrange equations in the logical domain �l and at the same
time remap the physical variables onto the resulting new mesh.

4.1 Mesh-Redistribution Based on Variational Methods

Let �l be the logical domain with the orthogonal coordinates ξ = (ξ, η) and a Delau-
nay triangulation, denoted by Tl , whose data structure is same as that of the triangula-
tion T of the physical domain �p . Let Vi denote the dual cell associated with the ver-
tex ξ i in �l , which is delimited in joining the barycenter of all the triangles surrounding
ξ i , see the left plot in Fig. 3. Since Tl is assumed to be a Delaunay triangulation of �l ,
the Voronoi diagram or Dirichlet tessellation is a natural choice of the dual partitioning
of �l .

Fig. 3 Schematic diagram of the dual cell Vi and the triangle elements of �l (left) and �p (right)
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We denote ℵ(i) the number of triangles surrounding ξ i , for example, ℵ(i) = 6 in the
schematic in Fig. 3, and ζ ij the midpoint of the edge lij connecting nodes ξ i and ξ ij .

Let l̂ij be a linear segment connecting centroids of two neighboring triangles surrounding ξ i

and ξ ij .
A one-to-one coordinate transformation from the logical or computational domain �l to

the physical domain �p is denoted by

x = x(ξ), ξ ∈ �l. (4.1)

We limit our attention to the case of that the physical domain �p is convex and the map
(4.1) is to find the minimizer of the following functional [8, 39, 40]

Ẽ(x) = 1

2

2∑
i=1

∫
�l

(∇̃xi )
T Gi∇̃xi dξ , (4.2)

where ∇̃ = (∂ξ , ∂η)
T , and Gi (i = 1,2) are given symmetric positive definite matrices called

monitor functions. In general, the monitor functions depend on the solution or its deriva-
tives of the underlying governing equations. The simplest choice of the monitor functions is
Gi = ωI , i = 1,2, see [44], where I denotes the identity matrix and ω is a positive weight
function. More terms can be added to the above functional to control other aspects of the
mesh such as orthogonality and alignment with a given vector field, see e.g. [6, 18].

Using the choice of Winslow, we deduce the Euler-Lagrange equations of the functional
(4.2) to

∇̃ · (ω∇̃x) = 0. (4.3)

In this study, ω = ω(∇̃ξU) =: ω(U), which will be defined in Sect. 6.
We begin to give a finite volume approximation of (4.3) subject to boundary conditions

x ∈ ∂�p, if ξ ∈ ∂�l.

Integrating (4.3) over the dual cell Vi as shown in Fig. 3 and using the divergence theorem
gives

0 =
∮

∂Vi

w
∂x

∂n
ds =

ℵ(i)∑
j=1

∫
l̂ij

w(U)
∂x

∂n
ds, (4.4)

where n = (nξ , nη) is the unit outward normal vector of ∂Vi . Using the numerical integration
formula and approximating the term ∂x

∂n
(ζ ij ) by

∂x

∂n
(ζ ij ) ≈ xij − xi

|ξ iξ ij |
,

gives the following discrete mesh equation

ℵ(i)∑
j=1

wij |l̂ij |xij − xi

|ξ ij ξ i |
= 0, (4.5)

where wij = w(U(ζ ij )). Here we have used the assumption that l̂ij lies on the perpendicular
bisector of the edge lij connecting ξ i and ξ ij . In practical computation, this assumption may
be relaxed.
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Generally, (4.5) is a nonlinear algebraic system, due to dependence of wij on the solution.
To avoid this difficulty, we linearize (4.5) and then use a relaxed iteration method to solve it
as follows:

x̂i =
ℵ(i)∑
j=1

Wijx
[ν]
ij /

ℵ(i)∑
j=1

Wij , (4.6)

x[ν+1]
i = μi x̂i + (1 − μi)x

[ν]
i , (4.7)

for ν = 0,1, . . . , where

Wij = �τ

|Vi |wij |l̂ij |/|ξ ij ξ i |, and μi = max

{ℵ(i)∑
j=1

Wij , σ

}
.

Here �τ and σ are two artificial parameters that control the quality of the mesh movement.
Obviously, if 0 ≤ maxi{∑ℵ(i)

j=1 Wij }, σ ≤ 1, then the iteration (4.6, 4.7) is positive-preserving.
But if μi is too big, e.g. near 1, then it is easy that the mesh may be badly distorted; con-
versely, if μi is near 0, the mesh points move too slow. In this work, the mesh iteration
is continued until ‖x[ν] − x[ν+1]‖ < 10−6 or ν < 5, and we take maxi{∑ℵ(i)

j=1 Wij } = 1
2 and

σ = 0.3, which ensure basically that x[ν+1]
i will be within the convex hull of the midpoints

of the edge xixij , j = 1,2, . . . ,ℵ(i), see the shaded region in the right plot of Fig. 3.

Remark 4.1 (Boundary mesh redistribution) The boundary mesh points should be redistrib-
uted simultaneously along with the inner mesh movement because the discontinuities may
interact with the boundary of the physical domain �p at some finite time. For convenience,
we assume that lx := {y = 0, xa ≤ x ≤ xb} is part of ∂�p , and mapped to part of ∂�l , de-
noted by lξ := {η = 0, ξa ≤ ξ ≤ ξb}. The mesh points on lx are redistributed by solving a
one-dimensional mesh equation

∂

∂ξ

(
wlξ

∂x

∂ξ

)
= 0, ξ ∈ lξ , (4.8)

subject to the Dirichlet boundary conditions

x(ξa) = xa and x(ξb) = xb. (4.9)

Here, the monitor wlξ is specified as value of the monitor over its adjacent inner element.

4.2 Conservative Interpolation on New Meshes

After each iterative step of (4.6) and (4.7), we need to remap the approximate solutions
onto the newly resulting mesh {x[ν+1]

i } or {E[ν+1]
i } from the old mesh {x[ν]

i } or {E[ν]
i }. Tang

and Tang [39] proposed a conservative and upwind interpolation formula on the structured
quadrangular mesh. Recently, Han and Tang [15] gave a simplified geometrical interpolation
approach on the same mesh which also preserves conservation property of the conservative
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Fig. 4 Movement of the control

volume E
[ν]
i

to E
[ν+1]
i

variables U in the sense of that

∑
i

|E[ν]
i |U [ν]

Ei
=

∑
i

|E[ν+1]
i |U [ν+1]

Ẽi
,

where we have redefined Ẽi := E
[ν+1]
i and Ei := E

[ν]
i in the subscript.

In this work, we extend the geometrical approach of Han and Tang [15] to the unstruc-
tured triangular mesh. Let Dij denote the region scanned by the edge l

[ν]
ij after one iterative

step of (4.6) and (4.7), j = 1,2,3, see Fig. 4. We remap the conservative variables as

|Ẽi |U [ν+1]
Ẽi

= |Ei |U [ν]
Ei

+
3∑

j=1

Sij , (4.10)

where Sij is the integral of the approximate solution U over the domain Dij . Following
the idea in [15], we may simplifies the calculation of Sij . Take Di1 shown in Fig. 4 as an
example, we first compute |Di1| by

|Di1| := 1

2
((x

[ν+1]
i3 − x

[ν]
i2 )(y

[ν]
i3 − y

[ν+1]
i2 ) − (y

[ν+1]
i3 − y

[ν]
i2 )(x

[ν]
i3 − x

[ν+1]
i2 )).

It is obvious that |Di1| is the signed area function which means that |Di1| is the area of
Di1 if x[ν]

i2 ,x[ν+1]
i2 ,x[ν+1]

i3 , and x[ν]
i3 are located by counter-clockwise order, and is the inverse

of area of Di1 if the above four points are located by clockwise order. Then Si1 can be
approximately calculated as

Si1 = max{|Di1|,0}UR
li1

+ min{|Di1|,0}UL
li1

, (4.11)

where UL
li1

and UR
li1

are the reconstructed left and right states on the edge li1 by {U [ν]
Ei

}, see
(3.6) and (3.7).
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5 Solution Procedure

Our solution procedure is formed by two independent parts: evolution of the governing equa-
tions and an iterative mesh redistribution. The first part is a second-order accurate Godunov
method on fixed unstructured triangular meshes, see Sect. 3. In each iteration of the sec-
ond part, the triangular mesh points are first redistributed by the relaxed iteration method
(4.6) and (4.7) in Sect. 4.1, and then the conservative variables U are updated on the re-
sulting new meshes by the conservative-interpolation formula (4.10) and (4.11) as well as
(3.6) and (3.7), see Sect. 4.2. The solution procedure can be illustrated by the following
flowchart:

Algorithm 1

Step 1 Give initial quasi-uniform triangulations of the physical domain �p and the logi-
cal domain �l , denoted by {x0

i } and {ξ i} respectively. Compute the cell average of the
conservative variables U denoted by U 0

Ei
.

Step 2 For n = 0,1, . . . , set x[0]
i := xn

i , U [0]
Ei

:= Un
Ei

, and do the following steps.

Step 3 For ν = 0,1,2, . . . ,μ − 1, do the following:

(1) Move mesh points x[ν] to x[ν+1] by solving (4.6) and (4.7).
(2) Update the conservative variables U [ν+1]

Ei
on the new mesh {x[ν+1]

i } according to (4.10)
and (4.11).

Step 4 Set xn
i := x

[μ]
i , Un

Ei
:= U

[μ]
Ei

, and evolve the governing equations (2.3) on the adap-
tive mesh {xn

i } by using the second-order accurate finite volume Godunov method, given
in Sect. 3, to obtain the numerical approximation Un+1

Ei
at the time level t = tn+1.

Step 5 If tn+1 < T , then go to Step 2; otherwise output the computed results and stop run.

6 Numerical Experiments

In this section, we apply the proposed adaptive mesh algorithm to several two-dimensional
problems to validate its efficiency and performance. Throughout our computations, the CFL
number is taken 0.25 unless stated otherwise, the initial mesh is generated by the free soft-
ware EASYMESH [31], and the monitor function is taken as

wEi
=

√
1 + αρw̃

2
Ei

(βρ, ρ) + αsw̃
2
Ei

(βs, s) + αγ w̃2
Ei

(βγ , γ )2, (6.1)

where s = p/ργ , αq and βq ∈ (0,1] (q = ρ, or s, or γ ) are some problem-dependent positive
parameters, and will be ascertained in each example. Here w̃Ei

is defined by

w̃Ei
(βq, q) =: min{1, |∇ξ q|Ei

/�},
� = βq max

Ei

{|∇ξ q|Ei
}.

Example 6.1 (The double-mach reflection problem) This problem was studied extensively
by Woodward and Colella in [45] and later by many others, e.g. [39]. We use exactly the
same setup as in [39, 45], i.e., the same initial and boundary conditions and same solution
domain �p = [0,4]×[0,1]. The CFL number is 0.4. Initially a right-moving Mach 10 shock
in air is positioned at x = 1

6 , y = 0 and makes a 60◦ angle with a horizontal wall from x = 1
6
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Fig. 5 Example 6.1: Adaptive
mesh and contour plots of the
density at t = 0.2

to 4. The gas density ahead of the shock is 1.4, and the pressure is 1; the density behind the
shock is 8. More precisely, the initial data are

U =
{

(8,57.1597,−33.0012,563.544)T , for y ≤ h(x,0),

(1.4,0,0,2.5)T , otherwise,

where

h(x, t) = √
3

(
x − 1

6

)
− 20t

is the position of the right-moving shock, the output time t = 0.2 . The reflective boundary
condition is specified on the wall. The fluid variables are specified as the left state of the
initial shock on the rest of the bottom boundary, while the left and right states of the right-
moving shock at ( 1

6 + (1 + 20t)/
√

3,1) on the whole top boundary, respectively. The inflow
and outflow boundary conditions are used on the left and right boundaries, respectively.

In this example, we take αρ = 50, βρ = 0.1, αs = αγ = βs = βγ = 0, and an initial quasi-
uniform triangulation of the physical domain �p as well as the logical domain �l is gen-
erated with the horizontal (and vertical) boundary partition of 134 (and 34) segments. Such
quasi-uniform triangulation is formed by 5417 nodes, 15912 edges, and 10495 elements,
whose edge length and element area are approximately equal to 3 × 10−2 and 3.811 × 10−4,
respectively.

Figure 5 shows the adaptive mesh and the density contours at t = 0.2, which are obtained
by using the proposed method. Note that the density contours are only shown with 30 equally
spaced contour lines in a part of the physical domain: 0 < x < 3. At the output time t = 0.2,
the smallest and largest element areas are respectively 4.074 × 10−5 and 1.8742 × 10−3,
and the smallest and largest edge lengths are 4.488 × 10−3 and 1.395 × 10−1, respectively.
Comparing them with the initial quasi-unform mesh, we see obviously that the mesh points
are well-redistributed, and efficiently clustered in fairly localized regions of shock waves and
a small portion of the physical domain containing the large solution variations. The dense
jet along the wall has been resolved which is generally sensitive to the numerical dissipation
and one of the critical components in this problem.
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Fig. 6 Example 6.2: Adaptive
mesh and contour plots of the
density at t = 4

Example 6.2 (The forward facing step problem) This problem was first studied by Emery
in [13], and then considered extensively by many other researchers, e.g. [37, 45]. The prob-
lem begins with uniform Mach 3 flow in a wind tunnel containing a step. The wind tunnel
is 1 length unit wide and 3 length units long. The step is 0.2 length units high and is located
0.6 length units from the left-hand end of the tunnel. Initially the wind tunnel is filled with
a gamma-law gas, with γ = 1.4, which everywhere has density 1.4, pressure 1, and veloc-
ity 3. Along the walls of the tunnel reflecting boundary conditions are applied. The in-flow
and out-flow boundary conditions are specified at the left- and right-hand ends of the tunnel.

Figure 6 shows the adaptive mesh and the density contours at t = 4. The smallest and
largest element areas and edge lengths of the final mesh are 2.9946 × 10−5, 8.7830 × 10−4,
5.9591×10−3 and 5.7834×10−2, respectively. This example takes αρ = 50, βρ = 0.1, αs =
αγ = βs = βγ = 0, and an initial quasi-uniform triangulation of the physical domain �p as
well as the logical domain �l is generated by 3424 nodes, 10001 edges, and 6578 elements,
whose edge length and element area are approximately equal to 2×10−2 and 3.6485×10−4,
respectively. The sonic glitch phenomenon is almost invisible, Those results are comparable
results in [37] obtained on the uniform structure mesh with �x = �y = 1/200.

Example 6.3 (The quasi-2D Riemann problem) It is a genuine multimaterial flow calcula-
tion, but a simple two-dimensional extension of the Riemann problem of Abgrall [1]. We
take the computational domain �p as [0,1] × [0,0.0335] and specify the initial fluid vari-
ables as

U =
{

(14.54903,0,0,2.9 × 107,1.67)T , for x ≤ 0.5,

(1.16355,0,0,2.5 × 105,1.4)T , otherwise,

because of the difficulty in preventing the numerical oscillation of the pressure and velocity,
even in one dimensional case, this Riemann problem is very interesting and are attracting
many researchers’ attention. In this example, we take αρ = αγ = 60, αs = 0, βs = βγ =
2βρ = 1, and an initial quasi-uniform triangulation of the physical domain �p as well as
the logical domain �l is generated by the horizontal (and vertical) boundary partition of
150 (and 6) segments. Such quasi-uniform triangulation is formed by 1078 nodes, 2915
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Fig. 7 Example 6.3: The 2D adaptive mesh at t = 2 × 10−4, and the edge length and the computed solutions
(ρ, u, p, γ ) at the same time along the line y = 0

edges and 1838 elements, whose edge length and element area are approximately equal to
6.6 × 10−3 and 1.8226 × 10−5, respectively.

Figure 7 shows the two-dimensional adaptive mesh at t = 2 × 10−4, and the edge length
and the solutions at the same time along the line y = 0, where the solid lines in the solution
plots denote the exact solutions. We see that the left-moving rarefaction wave, the material
interface, and the right-moving shock wave are well resolved; the mesh points are distributed
in fairly localized regions of three waves; and the pressure and velocity are oscillatory-free
and constant around the material interface. At the output time t = 2 × 10−4, the smallest
and largest element area are respectively 4.348 × 10−6 and 4.7733 × 10−5, the smallest and
largest side length are 1.55 × 10−3 and 1.6021 × 10−2, respectively.
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Fig. 8 Example 6.4: The
adaptive meshes at t = 25, 50,
75, 100, 125

Example 6.4 (The shock wave and a Helium cylindrical bubble interaction) This problem
has been extensively studied by many authors, see e.g. [28]. We examine the interaction of
a Ms = 1.22 planar shock wave, moving in the air, with a Helium cylindrical bubble in the
physical domain �p = [0,325] × [−45,45] with the top and bottom reflective boundaries,
the left inflow and right outflow boundaries. Here Ms denotes the shock Mach number. The
initial flow is determined from the shock condition with the given shock Mach number. The
bubble is assumed to be in both thermal and mechanical equilibrium with the surrounding
air. More precisely, the initial dimensionless data are

W =

⎧⎪⎨
⎪⎩

(1,0,0,1,1.4), if 0 ≤ x ≤ 225, −44.5 ≤ y ≤ 44.5,

(1.3764,−0.394,0,1.5698,1.4), if 225 < x ≤ 325, −44.5 ≤ y ≤ 44.5,

(0.1358,0,0,1,1.67), if
√

(x − 175)2 + y2 ≤ 25,

where W = (ρ,u, v,p, γ ).
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Fig. 9 Same as Fig. 8 except for
the schlieren images of the
density ρ

In this example, we take αρ = 30, αs = 0, αγ = 20, βρ = 0.02, βs = 0, βγ = 0.5, and
an initial quasi-uniform triangulation of the physical domain �p as well as the logical do-
main �l is generated by the horizontal (and vertical) boundary partition of 328 (and 90)
segments. Such quasi-uniform triangulation is formed by 34023 nodes, 101238 edges and
67216 elements, whose edge length and element area are approximately equal to 1 and
0.4352, respectively.

Figures 8 and 9 show the adaptive meshes and the schlieren images of the density ρ at
t = 25, 50, 75, 100, 125, respectively, where we have chosen a scalar function ψ as

ψ = exp

(
−k · |∇ρ|

|∇ρ|max

)
, (6.2)

with k = 10 in the bubble and 60 otherwise, here

|∇ρ| =
√(

∂ρ

∂x

)2

+
(

∂ρ

∂y

)2

.
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Fig. 10 Same as Fig. 8 except
for densities along y = 0
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Fig. 11 Example 6.5: The
adaptive meshes at t = 30, 60,
90, 120, 150

We see that the adaptive redistribution of the computational mesh improves the quan-
tity of the solution successfully; the material interface is captured very well; at the same
time, some small wave structures are also resolved clearly. At the final output time t = 125,
the smallest and largest element area are 5.3992 × 10−2 and 2.1018 respectively, and the
smallest and largest side length are 0.19735 and 4.6151, respectively. In Fig. 10, we give a
comparison of densities at several output times projected onto a uniform mesh for {x|y = 0}
obtained by using the second order accurate Godunov scheme with adaptive moving mesh
(‘◦’) and with fixed mesh of 68672 × 4 triangular elements (solid line). The results show
that the discontinuities are resolved well and accurately.

Example 6.5 (The shock wave and a R22 cylindrical bubble interaction) This problem is
similar to the above example, but the present gas R22 in bubble is heavier than the ambient
air, whereas Helium is an inert gas that is lighter than air. The differences between Helium
and R22 will yield different flow patterns around the material interface after its interaction
with the shock. In this example, we take the physical domain �p and its initial quasi-uniform
triangulation and boundary conditions same as those in the shock wave and the Helium
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Fig. 12 Same as Fig. 11 except
for the schlieren images of the
density ρ

bubble problem. The initial data are specified as

W =

⎧⎪⎨
⎪⎩

(1,0,0,1,1.4)T , if 0 ≤ x ≤ 225, −44.5 ≤ y ≤ 44.5,

(1.3764,−0.394,0,1.5698,1.4)T , if 225 < x ≤ 325, −44.5 ≤ y ≤ 44.5,

(3.1538,0,0,1,1.249), if
√

(x − 175)2 + y2 ≤ 25.

Figures 11 and 12 show the adaptive meshes and the schlieren images of the density ρ at
t = 30, 60, 90, 120, 150, respectively, where we have chosen a scalar function ψ defined in
(6.2) with k = 4 in the bubble and 80 outside the bubble.

Here we have taken we take αρ = 30, αs = 0, αγ = 30, βρ = 0.02, βs = 0, βγ = 0.5. The
results show that the mesh points are well distributed and improve the quantity of the solu-
tion effectively; the wave patterns and the material interface are resolved very well. At the
final output time t = 150, the smallest and largest element area are 1.807×10−1 and 1.1705,
respectively, and the smallest and largest side length are 0.47909 and 2.3324, respectively.
We also give a similar comparison of densities to Example 6.4 is given in Fig. 13. The com-
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Fig. 13 Same as Fig. 11 except
for densities along y = 0
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Table 1 Example 6.5: estimated
CPU times (minutes) from t = 0
to 150

Algorithm Element number CPU time (minutes)

Moving mesh 67216 37

Fixed mesh 268864 62

putational efficiency comparison between the moving and fixed meshes is shown in Table 1,
where the recorded CPU times on the Lenovo PC (Pentium IV, 3 GHz) under the Windows
environment.

7 Conclusions

This paper extended successfully the previous adaptive moving mesh method developed by
Tang and Tang [39] to two-dimensional (2D) compressible multicomponent flows and un-
structured triangular meshes. The proposed method solved the equations governing 2D flows
and the finite-volume approximations of the mesh equations by a fully conservative, second-
order accurate Godunov scheme and a relaxed Jacobi-type iteration, respectively, and im-
plemented a simple and low-dissipative slope limiter in each initial reconstruction stage in
order to get oscillation-free solutions. In the mesh iterative redistribution, the geometry-
based conservative interpolation was employed to remap the solutions from the old mesh
to the newly resulting mesh, and a new monitor function was carefully chosen to track
and resolve both small, local, and large solution gradients automatically. As a result, the
current adaptive mesh method is fully conservative and non-oscillatory. Its robustness and
efficiency were demonstrated by several numerical experiments. Our future work is to ex-
tend the current method to three-dimensional multicomponent flow problems and nontrivial
domains.
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