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Abstract. We consider the extended Doi model for nematic liquid crystalline polymers
in-planar shear flow, which is inhomogeneous in shear direction. We study the forma-
tion of microstructure and the dynamics of defects. We discretize the Fokker-Plank
equation using the spherical harmonic spectral method. Five in-plane flow modes and
eight out-of-plane flow modes are replicated in our simulations. In order to demon-
strate the validity of our method in simulating liquid crystal dynamics, we replicated
weak shear limit results and detected defects. We also demonstrate numerically that
the Bingham closure model, which maintains energy dissipation, is a reliable closure
model.

PACS: 61.30.Dk, 61.30.Jf, 64.70.mf

Key words: Non-local potential, anchoring condition, spherical harmonic, kinetic-hydrodynamic,
defects, Bingham closure.

1 Introduction

The nematic phase is one of the ”simplest” liquid crystal phases known, for which an
orientational order exists [1]. Most of the hydrodynamic theories formulated for liquid
crystalline polymers(LCPs) are based on rod-like molecules, including the well known
Leslie-Eriksen (LE) theory [2], developed to describe low molecular weight nematic liq-
uid crystals, the Doi kinetic theory [3] and a variety of tensor-based theories, such as
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Hand’s theory [4], Beris and Edwards’ theory formulated through Poisson brackets [5],
and Tsuji and Rey’s phenomenological theory [6]. The LE theory was popular in sim-
ulations of LCPs for its simplicity. However, the LE theory predicts flow aligning and
tumbling, but fails to catch defects, where the director cannot be defined. The Doi kinetic
theory for spatially homogeneous flows of rod-like molecules has been successfully used
to describe the rheological behavior of liquid crystalline polymers [3]. Abundant phe-
nomena, such as tumbling, wagging, flow-aligning and logrolling, were predicted using
the Doi model (Marrucci and Maffettone [7], Larson [8], Larson and Öttinger [9] and
Nayak [10]). Faraoni [11], Forest et al. [12, 13] and others studied the Doi model in detail
using spherical harmonic analysis, and generated the detailed phase diagram. Wang [14]

extended the model to disc-shaped molecules by introducing a shape parameter α= r2−1
r2+1

,
with the molecular aspect ratio r.

Liquid crystalline flows are characterized by the presence of three important effects:
(1) short range order elasticity, (2) long range order elasticity, and (3) viscous flow. The
LE theory addresses the long range order elasticity and viscous flow effects, while the
Doi theory focuses on the short range order elasticity and the flow effect. Marrucci and
Greco [15] extended the classical Maier-Saupe potential to the spatial inhomogeneous
case, which accounts for spatial distortional elasticity. Wang [14] extended the Kuzuu
and Doi theory to flowing systems of nonhomogeneous LCPs using an estimate of the
Marrucci-Greco potential, and the shape parameter α. Fend et al. [16] adopted a one-
constant Marrucci-Greco potential. Wang et al. [17] introduced a kernel type potential to
describe the molecular interaction, and introduced an extra term in the form of an elastic
body force. The Marrucci-Greco potential can be derived by local expansion, and the
classical Ericksen-Leslie equations can be derived in the small Deborah number limit [18].
Rey and Tsuji [19] studied the complete tensor model [5] in detail, and showed the sketch
of rheological phase diagram as a function of the ratio of short to long rang elasticity
and the ratio of viscous flow to long rang elasticity effects, which is known as Ericksen
number.

We apply the extended model to planar shear flow including kernel type potential
and spatial diffusion term, which plays an important role in defect dynamics [20]. The pa-
per is organized as follows. First, we present the extended kinetic-hydrodynamic model.
In Section 3, we introduce the numerical scheme of LCPs imposed under shear flow.
In Section 4, we show our numerical results including flow modes, dynamics of defects,
weak shear limit results. A comparison among complete closure model, Bingham closure
model, 1+1 kinetic model and our 1+2 kinetic model is given at the end of this section.
Finally, we discuss the validity of this work.

2 The extended model

The extended Doi kinetic theory for inhomogeneous flow of rod-like LCPs can be speci-
fied by the following Smoluchowski equation:
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∂ f

∂t
+v·∇ f =∇·

{

[D‖mm+D⊥(I−mm)]·(∇ f +
1

kB T
f∇U)

}

+DrR·
(

R f +
1

kBT
fRU

)

−R·(m×κ ·m f ), (2.1)

where D‖≥0 and D⊥≥0 are the translational diffusion coefficients parallel and normal
to the orientation of the LCP molecule and Dr is the rotational diffusivity for an isotropic

solution. R= m× ∂
∂m

is the gradient operator on the unit sphere S2, κ = (∇v)T is the

transpose of the velocity gradient, kB is the Boltzman constant, and T is the absolute
temperature. Here, the nonlocal intermolecular potential:

U(x,m,t)= kBT
∫

Ω

∫

‖m′‖=1
B(x,m;x′,m′) f (x′ ,m′,t)dmdt, (2.2)

introduces the long-range order elasticity, arising from spatial gradients of the orienta-
tional order. The Marrucci-Greco potential can be derived by local expansion of f (x′,m′,t)
at x.

The Navier-Stokes type equations for macro incompressible flow are

ρ
dv

dt
+∇·p=ηs∆v+∇·τp+Fe, (2.3)

∇·v=0, (2.4)

where Fe = 〈∇U〉 is the body force induced by the long-range molecular interaction [17],
p is the static pressure and τp is the LCP viscoelastic stress,

τp =2kBTνξrD : 〈mmmm〉−〈mm×(kBT
R f

f
+RU)〉. (2.5)

Here, D=(κ+κT)/2 and

〈(·)〉=
∫

|m|=1
(·) f (m,x,t)dm.

The micro and macro equations coupled with each other by τp, Fe and κ. We refer the
reader to [17, 18] for more detail.

2.1 Dimensionless equations

We take the macro velocity V to be the characteristic velocity, and the length of the macro
domain L to be the characteristic length. Then the approximate characteristic time is
L/V. Based on this choice of scales, the dimensionless equations for the coupled model
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(2.1)-(2.5) can be written as

∂ f

∂t
+∇·(v f )=

ε2

De
∇·{[D⊥(I−mm)+D‖mm]·(∇ f + f∇U)}

+
1

De
R·(R f + fRU)−R(m×κ ·m f ), (2.6)

∂v

∂t
+(v·∇)v=

1−γ

Re
∆v−∇p+

γ

ReDe
(∇·τp+Fe), (2.7)

∇·v=0, (2.8)

τ
(p)
αβ =3Sαβ−〈(m×RU)αmβ〉+

De

2
κkl〈mαmβmkml〉, (2.9)

Sij = 〈mimj−
1

3
δij〉.

The Deborah number De is defined as De= V/L
Dr

, which is the ratio of relaxation time and
macro scale time, and ε=l/L is the ratio between the persistence length of the distortional
elasticity interaction and L,

Re=ρ
VL

ηs +νξr
, γ=

νξr

ηs+νξr
.

We choose the nonlocal interaction function B as

B(x,m,x′,m′,t)=U0
1

εd
g(

x−x′

ε
)|m×m′|2, ∀x,x′∈Ω. (2.10)

Here d is the spatial dimension, and g(x) is the smoothing of the delta function, which
satisfies

g(x)≥0, g(x)=0, when ‖x‖≥1 and
∫

‖x‖<1
g(x)dx=1.

2.2 Boundary condition

The orientation of the director on the boundaries, the so-called anchoring condition can
be controlled by chemical treatment, or rubbing the surface of the containers [1]. To
ensure the anchoring condition, we add a boundary potential to the system,

Ũ(x,m,t)= kBT
∫

∂Ω

∫

|m′|=1
B̃(x,m;x′,m′) f̃ (x′,m′,t)dm′dx′, (2.11)

where f̃ (x′,m′,t) is the pdf of the boundary molecules, which were anchored at the
boundary surface, B̃(x,m;x′,m′) is the interaction potential function between LCP
molecules and boundary molecules. Similar to potential function B, we choose

B̃(x,m;x′,m,t)= Ũ0
1

ε̃d−1
g̃(

x−x′

ε̃
)|m×m′|, ∀x∈Ω, x′∈∂Ω, (2.12)
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where the function g̃ is the smoothing function in the d−1 dimensional space. Assume
the direction of anchoring at the boundary point x′ is mb(x′), and f̃ is the delta function
of mb,

∫

‖m′‖=1
|m×m′|2 f̃ (x′,m′,t)dm′ = |m×mb|2,

so the boundary potential can be specified as

Ũ(x,m,t)= Ũ0

∫

∂Ω

1

ε̃d−1
g̃(

x−x′

ε̃
)|m×mb|2dx′. (2.13)

We can alter the strength of the anchoring and the anchoring angles by modifying Ũ0 and
mb. We replace the potential U(x,m,t) in the Smoluchowski equation by

Ut =U+Ũ.

For the mass conservation of the molecules (i.e.
∫

Ω

∫

|m|=1 f (x,m,t)dmdx=1), we integrate

both sides of the Smoluchowski equation, and obtain:

ε2

De

∫

|m|=1

∫

∂Ω

{

[D‖mm+D⊥(I−mm)]·(∇ f + f∇Ut)
}

·ndxdm

=
d

dt

∫

Ω

∫

|m|=1
f dmdx=0.

We take the boundary condition of the Smoluchowski equation as

{

[D‖mm+D⊥(I−mm)]·(∇ f + f∇Ut)
}

·n=0, x∈∂Ω. (2.14)

3 LCPs under plane shear flow

3.1 1+2 dimensional model

We study the LCPs under plane shear flows, such as Couette flow and Poiseuille flow,
which are shown in Fig. 1.

Here we consider the plane shear flow with the velocity oriented along the x axis, the
gradient of the velocity oriented along the y axis and the vorticity along the z axis. The
LCP molecules can rotate on the unit sphere S2 ∈R3, and the system is homogeneous in
the direction of x and z axis. So we have

x=(x,y,z)T , v=(u(y),0,0)T , m=(sinθcosφ,sinθsinφ,cosθ),

∇=(0,∂y,0)T, ∇p=(C,py,0)T, κ =





0 uy 0
0 0 0
0 0 0



.
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The coupled problem (2.6)−(2.9) can be simplified as follows:

∂ f

∂t
=

ε2

De
∂y{[D⊥(1−sin2θsin2 φ)+D‖sin2θsin2 φ]( fy+ f Ut

y)}

+
1

De
R·(R f + fRUt)−R(m×κ ·m f ), (3.1)

ut+C=
1−γ

Re
uyy+

γ

ReDe
∂yτ12, (3.2)

τ12 =3〈m1m2〉−〈m2
2RzUt−m2m3RyUt〉+ De

2
uy〈m2

1m2
2〉. (3.3)

For Couette flow, the constant C =0, and the boundary conditions of Navier-Stokes type
equations (3.2), (3.3) are u(0)=0, u(1)=1. For Poseuille flow, the constant C 6=0, with the
fixed boundary conditions u(0)=u(1)=0.

Z

O X

Y

V

Z

O X

Y

Figure 1: Plane shear flow: flow velocity ~v = (u(y),0,0) along the x axis, flow gradient along the y axis and
vorticity along the z axis. Left is the Couette flow, no pressure gradient, upper plate moving; right is the
Poiseuille flow, pressure gradient ∂p/∂t with both plates fixed.

3.2 Numerical scheme

In the Smoluchowski equation (3.1), the probability density function (pdf) f depends on
the orientational variable m and the spatial variable y. So it is a three-dimensional prob-
lem. For smooth pdf f , the spectral method is a good choice to discretize the problem.
We expand f (y,m,t) in a series of spherical harmonic functions Ym

l as

f (y,m,t)=
ρ(y,t)

4π
+

∞

∑
l=2, even

l

∑
m=−l

blm(y,t)Ym
l (θ,φ), (3.4)

where blm’s are complex functions of time and location and ρ(y,t) is the density of
molecules at the location y. Since the orientational distribution function is real, the fol-
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lowing property is true:

bl−m =(−1)mb∗lm,

where the asterisk represents the conjugation operation. In the expansion equation (3.4),
the subscript l takes only even values since a reflection of the space (θ,φ)→ (π−θ,φ+π)
leaves f unchanged (i.e. the molecules don’t distinguish head and tail).

With Eq. (3.4), we have

m2
1 =C1(Y2

2 +Y−2
2 )−C0Y0

2 +
1

3
,

m2
2 =−C1(Y2

2 +Y−2
2 )−C0Y0

2 +
1

3
,

m2
3 =2C0Y0

2 +
1

3
, m1m2 = iC1(Y−2

2 −Y2
2 ),

m1m3 =C1(Y−1
2 −Y1

2 ), m2m3 = iC1(Y−1
2 +Y1

2 ),

with coefficients C1 =
√

2π/15 and C0 = 2
3

√
π/5. The second moment tensor 〈mm〉 can

be specified by spherical harmonic coefficients {b2s(y,t)}s=−2,···,2 as

〈m2
1〉=2C1ℜ(b22(y,t))−C0b20(y,t)+ρ(y,t)/3,

〈m2
2〉=−2C1ℜ(b22(y,t))−C0b20(y,t)+ρ(y,t)/3,

〈m1m2〉=2C1ℑ(b2−2(y,t)),

〈m1m3〉=2C1ℜ(b2−1(y,t)),

〈m2m3〉=2C1ℑ(b2−1(y,t)).

Here, ℜ(bαβ) and ℑ(bαβ) are the real and imaginary parts of bαβ respectively.

If we define the operator L=R/i=(Lx ,Ly,Lz) and L±=Lx±iLy, then the spherical
harmonic functions Ym

l (θ,φ) have the following properties:

R·RYm
l =−l(l+1)Ym

l ,

LzYm
l =mYm

l ,

L±Ym
l =

√

(l∓m)(l±m+1)Y
(m+1)
l .

We choose the smoothing functions g and g̃ as

g(y)=

{ 1

Z
e

1
y2−1 , |y|<1,

0, otherwise,
g̃(y)=

{

e
y2

y2−1 , |y|<1,
0, otherwise,

where Z is the normalization constant. Then the excluded volume potential and the
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boundary potential can be expanded as

U(y,m,t)=
2U0

3
gε∗ρ(y,t)− 8πU0

15

2

∑
s=−2

gε∗b2s(y,t)Ys
2(θ,φ),

Ũ(y,m,t)= Ũ0g̃ε(y)ρ(y,t)|m×m0 |2

=
2Ũ0

3
g̃ε(y−yb)ρ(y,t)−Ũ0 g̃ε(y−yb)ρ(y,t)

2

∑
s=−2

C2s(m0)Ys
2(θ,φ),

where gε(y)= 1
ε g( y

ε ), g̃ε̃(y)= g̃( y
ε̃ ), g∗ f denote the convolution of the functions g and f ,

and C2s’s are given by

C2−2(m)=

√

2π

15
(m1+im2)

2, C2−1(m)=2

√

2π

15
m3(m1+im2),

C20(m)=
2

3

√

π

5
(3m2

3−1), C21(m)=−2

√

2π

15
m3(m1−im2),

C22(m)=

√

2π

15
(m1−im2)

2.

The stress tensor of polymers can be specified,

τ
(p)
12 =−6

√

2π

15
ℑ(b22(y,t))−

〈

i

[

−
√

2π

15
(Y−2

2 +Y2
2 )− 2

3

√

π

5
Y0

2 +
1

3

]

LzUt

− i

2

√

2π

15
(Y−1

2 +Y1
2 )(L+−L−)Ut

〉

+
Deuy

2

(

ρ(y,t)

15
− 2

3

√

2π

35
ℜ(b44(y,t))+

2
√

π

105
b40(y,t)− 4

21

√

π

5
b20(y,t)

)

, (3.5)

and the following relationship is used to calculate the average term 〈(·)〉 above:

Y
p
2 Ym

l =

√

15

2π
(b

p,m
l− Y

p+m
l−2 +b

p,m
l Y

m+p
l +b

p,m
l+ Y

m+p
l+2 ), p=−2,−1,0,1,2. (3.6)

This relationship was reported in Zhou et al. [21], and the constants b
p,m
l− ,b

p,m
l ,b

p,m
l+ were

defined there. We use the second-order finite difference to discretize the derivative of the
spacial variable. Then the Smoluchowski equation is translated to a system of ODEs. We
use the fourth-order Runge-Kutta method to solve the ODEs. To discretize the Navier-
Stokes type equation, the second-order finite difference is used for the spatial derivatives,
and for the time derivative, the backward Euler method is used.
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4 Numerical results

Our kinetic-hydrodynamic model includes nine parameters: the Deborah number De,
ε, the dimensionless translation diffusion coefficient perpendicular and parallel to the
molecular orientation D⊥ and D‖, the proportion of the polymer viscosity to total vis-
cosity γ, the strength of the excluded volume potential U0 and the boundary potential
Ũ0, the Reynolds number Re and the direction of anchoring mb. Here we vary the pa-
rameters De and ε, and fix the others as follows. We specify Re =1.0 to produce laminar
flow. Because the isotropic to nematic phase transition was predicted for homogeneous
flow at U0≈6.731393 and U0 =7.5 [22], we choose U0 =8.0 to assure nematic phase, and
γ = 0.9,D⊥ = 0.1,D‖ = 0.2 for dilute solution. The tangential anchoring condition (i.e.,

mb =(1,0,0)) was chosen, and Ũ0 = 2U0 to ensure anchoring. We use the uniform mesh
to discretize the spatial variable y∈ [0,1] and choose the mesh, which satisfies ε/h≥5, to
ensure the precision of the convolution.

4.1 Flow modes

We classify our results into two categories, in-plane phase and out-of-plane phase, ac-
cording to the dynamics of the directors.

In-plane phases: All the directors remain in the shear plane, so they can be simplified
as n = (n1,n2,0). For the normalization of n, we only show the dynamics of the second
component n2 in Fig. 2. We get five types of in-plane flow modes, in-plane elastic driven
steady state (IE), in-plane viscous driven steady state (IV), in-plane tumbling-wagging
composite state (IT), in-plane discrete tumbling-wagging composite state (IDT) and in-
plane wagging state (IV). Four flow modes, IE, IV, IT and IW, were reported by Rey et al.
[19] using the complete closure model. Using 1+1 kinetic model, Yu et al. [20] simulated
all five flow modes. By incorporating a spacial diffusion term in our 1+2 model, we also
get all five flow modes:

• In-plane elastic driven steady state (IE): This planar steady state arises due to the
long range order elasticity stored in the spatial deformed pdf field. There is no orientation
boundary layer for the absence of flow-alignment in the bulk region (see Fig. 2(a)).

• In-plane viscous driven steady state (IV): In this steady mode, the director profile
shows a flow aligning bulk region and two boundary layers. The director rotates from
the aligning angle to the anchoring angle on traversing the boundaries (see Fig. 2(e)).

• In-plane tumbling-wagging composite state (IT): In this periodic planar mode
the directors rotate in the bulk region or oscillate in the boundary layers periodic (see
Fig. 2(b)). The boundary between the tumbling region and each boundary layer is char-
acterized by the periodically emergence of the abnormal nematic state (also c.f. [19, 23]),
where the order parameters are negative. Because of the spacial transportation and long-
term order interaction, the configurations are biaxial.

• In-plane discrete tumbling-wagging composite state (IDT): In this periodical in-
plane mode, tumbling-wagging phase in the bulk region are separated by flow aligning
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Figure 2: The dynamics of the second component of director n2, the x axis is the evolution of time, and the
y axis is spacial location. From top to bottom, parameters are (a) De=0.1,ε=0.08; (b) De=0.1,ε=0.04; (c)
De=2.5,ε=0.04; (d) De=2.25,ε=0.08; (e) De=4.5,ε=0.08 respectively.
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Figure 3: Out-of-plane kayaking. The color describes the values of the first (a, c) and third (b, d) component
of directors, the x axis is the evolution of time and the y axis is the spatial location y∈ [0,1]. The parameters
are De=5.0,ε=0.04.

phase. The director dynamics behave like IT in each local area (see Fig. 2(c)).

• In plane wagging state (IW): In this mode, the director dynamics over the entire flow
geometry is wagging with an amplitude that decreases from a maximum at the centerline
to the two boundaries (see Fig. 2(d)).

Out-of-plane phase: In addition to the five in-plane flow modes, we also simulated eight
out-of-plane flow modes. In this category, parts of directors came out of the shear plane
occasionally (e.g. OTP, OTC) or stayed out of the shear plane permanently (e.g. OEA,
OEC1, OEC2).

• Out-of-plane kayaking (OK): In this mode, the directors oscillate out of the shear
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Figure 4: Out-of-plane elastic driven steady state (OEA). The parameters are De=2.0,ε=0.02. The top figure
is the first component of the director n1 and the bottom is the third component of the director n3.

plane periodically, which is called kayaking. Similar to IDT mode, the bulk region can
be divided into several independent kayaking domains, and the directors of two adja-
cent kayaking domains are axisymmetric about the their interface. If the value of ε is
decreased, the number of individual kayaking regions will increase. The dynamics of the
first and third components of the directors are shown in Fig. 3.

• Out-of-plane elastic-driven steady state with achiral structure (OEA): In this mode,
the director shows steady twist structures and the twist angles are symmetric with respect
to the centerline. The steady state arises due to the long range order elasticity, which is
predicted by the Leslie-Ericksen theory. We can see in the Fig. 4, the net director twist
rotation is nil from the top boundary to bottom.

• Out of plane elastic-driven steady state with chiral structure (OEC1): In this out-of-
plane mode, the director shows steady twist structures, with π radian difference between
the anchoring angles at the top and button boundary, but present no defects or disclina-
tions (see Fig. 5(a,b)).

• Out-of-plane elastic-driven steady state with chiral structure (OEC2): In this out-
of-plane mode, the director shows steady twist structures, with 2π radian difference be-
tween the anchoring angels at the top and button boundary, but present no defects or
disclinations (see Fig. 5(c,d)).

• In-plane tumbling-wagging coupled with out-of-plane steady state (ITOE1, ITOE2):
In these two modes, three in plane tumbling-wagging states were separated by two out
of plane steady state. For ITOE1 (see Fig. 6(a, b)), the directors leave the shear plane in
the same direction, and they mirror symmetry about the normal face on the centerline.
For ITOE2 (see Fig. 6(c, d)), the directors leave the shear plane in the opposite direction,
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Figure 5: Out-of-plane elastic driven steady state. The parameters are De=2.0,ε=0.01. (a, b)/(c, d) describe
OEC1/OEC2 respectively. The figures denote the first (a, c) and the third (b, d) components of the director.

and they are axisymmetric about the centerline.

• Out-of-plane tumbling-wagging composite state with periodic chirality (OTP): In
the bulk region, the directors rotate periodically (tumbling), and in the boundary layer,
the directors present out-of-plane oscillation (see Fig. 7(a, b)). The directors at both
boundary layers oscillates on the same side of the shear plane.

• Out-of-plane tumbling-wagging composite state with π chiral structure (OTC): In
the bulk region, the directors rotate periodically(tumbling), and in the boundary lay-
ers, the directors present out of plane oscillation (see Fig. 7(c, d)). The directors at both
boundary layers oscillates at the opposite side of shear plane.

We simulated all eight out-of-plane flow modes: OEA, OEC1, OEC2, OTC, OTP, OK,
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Figure 6: In-plane tumbling-wagging composite out-of-plane steady state. The x axis is the evolution of time
and the y axis is the location of spatial in [0,1], the parameters are De=2.0,ε=0.02. (a)-(b) show the ITOE1
flow mode and (c)-(d) show the ITOE2 flow mode.

ITOE1, ITOE2. The first five have been reported by Rey et al. [19], and the last three are
new modes.

4.2 Dynamics of defects

Defects are a very important aspect of the microstructure in the LCPs flow. Defects arise
in the region where the director dynamics conflict with their neighbors, and connect two
conflicting phases like a bearing. For example, if the tumbling rates of neighboring LCPs
are different, or a tumbling region is connected with wagging region, defects will arise.
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Figure 7: The director dynamics of OTP and OTC. The axis is the evolution of time, the y axis is the spatial
location. (a) and (b) show the dynamics of OTP ; (c) and (d) show the dynamics of OTC; The parameters are
De =3.0,ε=0.04, (a),(c) show the evolution of second component of directors and (b),(d) show the evolution
of third component of directors.

The order parameter is about zero at the defects (see Fig. 8(c)), and the minimum of the
excluded volume potential is larger than that in the normal nematic state. This causes
a decrease in density in the defect core (see Fig. 8(b)). Defects also introduce big stress
variation (see Fig. 8(d)), which causes the shear rate to increase (see Fig. 8(e)).

4.3 Weak shear results

For weak shear and low Ericksen number conditions, Forest et al. [12] studied the tensor
model using asymptotic analysis, and got the scaling properties of order parameters and
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Figure 8: The dynamics of defects. From top to buttom, the graphs show the second component of director,
density, order parameter, velocity and shear rate respectively. The parameters are De=1.0,ε=0.04.
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Figure 9: Tangential anchoring condition. The parameters are U=8.0,ε=0.08. From left to right top to buttom,
the graphs show order parameters, shear rate, LE angle and density respectively.

Leslie angles as s= s0+De2s2+O(De3), β=β0+De2β2+O(De3), ψ=ψ0+Deψ1+O(De2)
for tangential (ψ0=0) and homeotropic (ψ0= π

2 ) anchoring. Zhou et al. [21] verified it nu-
merically, and Yu et al. [20] replicated those results using 1+1 kinetic model for tangential
anchoring condition, but not for homeotropic anchoring condition.

In our simulations, we let De = 0 to get s0,β0,ψ0 and initial pdf for weak shear con-
dition. Our results are consistent with those of [12] except for the order parameters for
tangential anchoring condition. For tangential anchoring condition, the order parameter
only has the property like s= s0+O(De), and β is almost zero.

4.4 Some results of pressure driven flow

For completeness, we also simulate some results under pressure driven flow. Here let
the dimensionless driven pressure gradient C =−4(1−γ)/Re. In Fig. 11, we show the
dynamics of the second component of the directors n under the parameters ε=0.08,De=
0.1 and De=5.0 and ε=0.02,De=1.0.
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Figure 10: Perpendicular anchoring condition. The parameters are U = 8.0,ε = 0.08. From left to right top to
buttom, the graphs show oder parameter s, β, LE angle and shear rate respectively.

4.5 Compare with Bingham closure

In high-dimensional cases, the simulation of the kinetic model becomes time consuming.
Reduced equations with respect to the moments of probability distribution function (pdf)
can be obtained from kinetic models. However, the equations of lower-order moments
of pdf involved higher-order moments. To close these equations, higher-order moments
must be evaluated by lower-order moments, which is called closure approximation.

Closure approximations for complex fluids have been investigated for many years.
Various closure approximations have been proposed, including Doi’s quadratic closure
[24], the HL closure [25], the orthotropic closure [26], and the Bingham closure [27]. Feng
et al. [28] compared five commonly used closures methods numerically and found that
the Bingham closure behaves better than others, although it deviates from the solutions
of original kinetic theory when shear rate and nematic potential strength are both very
large. The Bingham closure is a particular case of quasi-equilibrium closure approxima-
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Figure 11: The second component of the directors. The x axis denote the time evolution and y axis is the spatial
location in interval [0,1]. And the parameters are (a) De=0.1,ε=0.08; (b) De=1.0,ε=0.02; (c) De=5.0,ε=0.08.

tion (QEA) in rod-like polymers. The systemic depiction of QEA are given by Gorban
and coworkers [29, 30]. Ilg et al. [31] applied QEA to flexible polymers in homogeneous
system, while Ilg et al. [32] analyzed rod-like polymers, and proved validity of energy
dissipation for homogeneous systems when flow is absent. Yu et al. [33] applied the
Bingham closure to LCPs in nonhomogeneous systems and developed a relatively sim-
ple but general nonhomogeneous kinetic model for LCPs as well as efficient reduced
moment models that maintain energy dissipation.

In Table 1, we compare our simulation results using the 1+2 dimensional kinetic
model with Rey’s results [19], the results of 1+1 dimensional kinetic model [20] and the
Bingham closure model [33]. All the in-plane flow modes can be simulated by all four
models, with the exception that the complete closure model does not find IDT because
of the absence of spatial transportation. The out-of-plane flow modes are more complex.
The two closure models failed to simulate all the out-of-plane results, such as ITOE1
and ITOE2 were not simulated by both closure models and OK was not simulated by
the complete closure model. However, for the strong nonlinearity, the solutions are tied
up to initial data and the parameters. Perhaps new combinations of initial data and the
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Table 1: Comparison of the results of four different models: 1+2 and 1+1 dimensional kinetic model, Bingham
closure model and the complete closure model used by Rey et al. [19]. The first column list the flow modes,
defined in Section 4.1, and Y means this type of flow mode can be simulated by the model, and N means the
flow mode was not simulated by the model or the simulation was not reported in [19].

Flow Mode 1+2 1+1 Bingham Complete

IE Y Y Y Y

IT Y Y Y Y

IDT Y Y Y N

IW Y Y Y Y

IV Y Y Y Y

OEA Y N Y Y

OEC1 Y N Y Y

OEC2 Y N Y Y

OTP Y N Y Y

OTC Y N Y Y

OK Y N Y N

ITOE1 Y N N N

ITOE2 Y N N N

parameters in the simulations of closure models would generate them. On the other
hand, in the complete closure model, the spatial transportation is absent, and the poten-
tial (Marrucci Greco potential) is a special case of the kernel type potential used in the
Bingham closure model. So it is reasonable that the Bingham closure model performed
better. In summary, numerical results show that Bingham closure is reliable in simulating
the dynamics of LCPs.

5 Conclusion

We introduced a kinetic-hydrodynamic coupled model for dilute LCPs solution for in-
homogeneous systems by using a kernal type potential and a boundary potential, and
we applied it to 1+2 dimensional case. Using the spherical harmonic expansion to re-
duce computational complexity, we replicated results of five in-plane flow modes: in-
plane elastic driven steady state, in-plane tumbling and wagging composite state, in-
plane wagging, in-plane discrete tumbling and wagging and in-plane viscous driven
steady state. We also simulated many more out of plane flow modes, including out of
plane tumbling-wagging composite state with periodic chirality, out of plane tumbling-
wagging composite state with π and 2π chiral structure, out of plane elastic-driven
steady state with achiral structure, out of plane elastic-driven steady state with chiral
structure, out of plane kayaking and in plane tumbling-wagging coupled with out of
plane steady state. In addition to demonstrating the ability of our model to simulate
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the dynamics of LCPs, we showed that it successfully describes the dynamics of defects
and replicates some of weak shear limit results. Finally, we compare two kinetic models
with two closure models, and the result shows that the Bingham closure model, which
maintains energy dissipation, is a reliable approximation to the kinetic model.
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