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Abstract

Using the Landau–Brazovskii model, a new numerical implementation is developed to investigate the phase behavior of
the diblock copolymer system. Though the method is based on the Fourier expansion of order parameter, a priori sym-
metric information is not required, and more significantly, the period structure can be adjusted automatically during
the iteration as well. The method enables us to calculate the phase diagram, discover new meta-stable phases, validate
the epitaxial relation in the phase transition process, and find the inefficiency of the Landau–Brazovskii model for some
situations.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

During the last decades, diblock copolymers have attracted a lot of attention of many polymer specialists
because of their various and abundant microstructures. A typical molecule of a diblock copolymer consists of
two incompatible blocks, and each block is a long chain composed of a lot of the same monomers. As the
result of the incompatibility between the two blocks, the blocks tend to separate when the temperature is
low, but they cannot be separated at a macroscopic scale because they remain connected at one point. This
kind of separation can not be observed in the macroscale, but can form microstructures at the molecular level.
At different temperatures, different microstructures form because of the competition between the system’s
internal energy and the entropy. Lamellar, cylinder, sphere and gyroid phases are usually observed, and per-
forated-lamellar, double-diamond phases are occasionally observed in the experiments since they are meta-
stable.

Theoretically, the phase behavior of a diblock copolymer system is studied through mean-field theory. A
good review on this is given by Matsen [1]. Mean-field theory has been a powerful tool for studying phase
behavior since van der Waals developed the revised equation of state though he did not realize it is a kind
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of mean-field approximation. A well-known example is the Ising model, which explains the ferromagnetic
phase transition very well. Using the Gaussian molecular model invented by Doi and Edwards [2], Helfand
developed self-consistent mean-field theory (SCFT) for diblock copolymer systems [4,5]. Taking a different
approach, Leibler [6] expanded the free energy near the disordered phase, and found a Landau expansion
in weakly-segregated melts, and predicted the lamellar, hexagonal and body-centered cubic phases. By approx-
imating the second and higher order vertex functions of Leibler’s model, Landau–Brazovskii model [7] could
be derived. This model provides a framework for systems that are undergoing a phase transition driven by a
short-wave length instability between the disordered phases and the ordered phases. Besides the major contri-
bution on the fluctuation effects in the theory of microphase separation in block copolymers, Fredrickson and
Helfand [8] also found the relationship between Leibler weak-segregation theory and the Landau–Brazovskii
model by mapping the former onto the latter.

Numerically, the mean-field methods can be classified into two categories. The first is calculated in Fourier
space by expanding the order parameter in a finite set of basis functions under an assumption of symmetry.
The symmetry itself determines the morphology of the solutions. Using such a method, Matsen and Schick [9]
first calculated a predicted phase diagram for diblock copolymer systems under SCFT, and their results are
consistent with the work of Leibler [6]. The second type is calculated in real space. A typical implementation
was developed by Drolet and Fredrickson [10] and was later improved by Tzeremes et al. [11]. The advantage
of real space methods is that they do not require a priori assumption of symmetry, but this lack of the sym-
metry information significantly increases the computational complexity.

Research on the phase diagram of the equilibrium states and the stability of the possible microstruc-
tures are both important. Shi et al. [12] developed a general theoretical framework for the study of aniso-
tropic composition fluctuations about an ordered block copolymer phase by expanding the free energy
around the ordered phase and investigating the band structure of the system. An application on the lamel-
lar phase was proved to be successful. Under the same framework, Shi [13] investigated the spinodal phe-
nomenon from the hexagonal phase to lamellar phase and the hexagonal phase to sphere phase using the
Landau–Brazovskii model.

Though the numerical methods in both Fourier space and real space have been successfully applied to cal-
culate the structure of the phases, both have disadvantages. Since the Fourier space methods assume both
information about the period structure and the symmetry, the structure of the solution must be known ini-
tially. As a result, these methods can be used to generate phase diagrams, but cannot be used to discover
new stable or meta-stable phases. For the real space methods, the calculation area must be set initially. While
the calculation area is normally set as a cube in 3-D problems and a square in 2-D problems, the period of one
ordered phase is not likely to be a cube or a square. To dilute the influence of this mismatch, the calculation
area has to be set as large as possible. This, however, dramatically increases the computational complexity. By
applying the Landau–Brazovskii model, this research tries to plant the advantages of the real space methods
into the Fourier space ones to create a method that does not need a priori information about symmetry.
Another important contribution of the method is that the period vectors are treated as variables just like
the order parameter, so they will be automatically adjusted during iterations.

Before we can go further, a short introduction of the Landau–Brazovskii model is necessary. In general, a
system undergoing the phase transition can be described by a free energy functional f ðf/gÞ which depends on
a set of order parameters f/g. In the Landau–Brazovskii model, the free energy density functional is given by

f ð/ðrÞÞ ¼ 1

V

Z
dr

n2
0

8q2
0

ðr2 þ q2
0Þ/ðrÞ

� �2 þ s
2

/ðrÞ½ �2 � c
3!
½/ðrÞ�3 þ k

4!
½/ðrÞ�4

� �
: ð1:1Þ

In Eq. (1.1), /ðrÞ is the order parameter, which is the density deviation of a kind of monomer from the dis-
ordered phase; V is the system volume; n0 is the bare correlation length; q0 is the critical wave length; s is the
reduced temperature; and c and k > 0 are phenomenological constants. For simplification, we rescale the
length and the energy unit to 1=q0 and k, respectively, and define the rescaled qualities as

~f ¼ f
k
; ~n ¼ q0n

2
0

4k
; ~s ¼ s

k
; ~c ¼ c

k
; ~/ð~rÞ ¼ /ðq0rÞ; eV ¼ q3

0V :
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The free energy density function then becomes

f ð~/ð~rÞÞ ¼ 1eV
Z

dr
~n2

2
½ðr2 þ 1Þ~/ð~rÞ�2 þ ~s

2
½~/ð~rÞ�2 � ~c

3!
½~/ð~rÞ�3 þ 1

4!
½~/ð~rÞ�4

( )
: ð1:2Þ

Because all the discussion what follows focuses on the rescaled qualities, we will neglect the tilde. For ordered
phases, the order parameters /ð0Þ are periodic functions which minimize the free energy density functional,
which means

df
d/ðrÞ

����
/ð0Þ
¼ 0: ð1:3Þ

Our goal is to identify as many periodic functions /ðrÞ that satisfy Eq. (1.3) as possible, thereby revealing the
phase behavior of this polymer system.

2. Numerical method description

As mentioned above, the period vectors are also treated as variables in the method, we need to add them to
the free energy density function. Before we do this, a brief introduction to the Bravais lattice and reciprocal
lattice is necessary. For any d-dimensional period structure F ðrÞ; r 2 Rd , the repeated structural unit is called a
unit cell. A primitive unit cell, described by d vectors a1; a2; . . . ; ad , has the smallest possible volume. The Brav-
ais lattice is then defined by

Rl ¼ l1a1 þ l2a2 þ � � � þ ldad ;

where l ¼ ðl1; . . . ; ldÞ is a d-dimensional vector with components li 2 Z. For any Rl in the Bravais lattice, the
structure is invariant under a lattice translation, which means F ðrþ RlÞ ¼ F ðrÞ.

Given the primitive vectors ða1; a2; . . . ; adÞ, the primitive reciprocal vectors ðb1; b2; . . . ; bdÞ satisfy the equa-
tion ai � bj ¼ 2pdij. The reciprocal lattice is then specified by

Gl ¼ l1b1 þ l2b2 þ � � � þ ldbd ;

where l ¼ ðl1; . . . ; ldÞ is a d-dimensional vector with components li 2 Z. One of the most important applica-
tions of the reciprocal lattice is that plane waves feiG�rg are a set of basis functions for any function with period
a1; a2; . . . ; ad .

Without loss of generality, we will discuss the three-dimensional problem thereafter. The primitive vectors
are denoted by a1 ¼ ða11; a12; a13Þ, a2 ¼ ða21; a22; a23Þ, a3 ¼ ða31; a32; a33Þ, and the primitive reciprocal vectors
are denoted by b1 ¼ ðb11; b12; b13Þ, b2 ¼ ðb21; b22; b23Þ, b3 ¼ ðb31; b32; b33Þ; and fGg ¼ fGmnkjGmnk ¼
mb1 þ nb2 þ kb3g, where m; n; k 2 Z, are the reciprocal lattice. For convenience, element of fGg is sometimes
written as Gi; i 2 Z instead of Gmnk .

Because the equilibrium phases are periodic, the free energy density function depends not only on /ðrÞ but
also on the primitive lattice. It can be calculated by dividing the free energy in a primitive unit cell X by its
volume.

f ð/ðrÞ; a1; a2; a3Þ ¼
1

V

Z
X

dr
n2

2
½ðr2 þ 1Þ/ðrÞ�2 þ s

2
½/ðrÞ�2 � c

3!
½/ðrÞ�3 þ 1

4!
½/ðrÞ�4

� �
; ð2:1Þ

where V is the volume of the primitive unit cell.
Because the order parameter /ðrÞ is periodic on the Bravais lattice, and the functions feiGmnk �rg, where

Gmnk 2 fGg, form a basis for the function space fhðrÞjhðrþ RlÞ ¼ hðrÞg, it can be specified as

/ðrÞ ¼
X
fGg

/ðGÞeiG�r: ð2:2Þ

The fact that /ðrÞ is a real function and that
R

dr/ðrÞ ¼ 0 implies that the Fourier coefficients satisfy
/ð�GÞ ¼ /�ðGÞ and /ð0Þ ¼ 0.

Since for any G1 þG2 þ � � � þGm 6¼ 0;m 2 N ,
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Z
X

eiðG1þG2þ���þGmÞ�rdr ¼ 0;

when substituting Eq. (2.2) into Eq. (2.1), the free energy density function becomes

f ð/ðrÞ; a1; a2; a3Þ ¼ f ðf/ðGÞg; b1; b2; b3Þ

¼
X

G

1

2
½n2ð1�G2Þ2 þ s�/ðGÞ/ð�GÞ � c

3!

X
G1þG2þG3¼0

/ðG1Þ/ðG2Þ/ðG3Þ þ
1

4!

�
X

G1þG2þG3þG4¼0

/ðG1Þ/ðG2Þ/ðG3Þ/ðG4Þ: ð2:3Þ

In order to reach the equilibrium state, the problem requires a set of Fourier coefficients f/ðGÞg and a prim-
itive reciprocal vectors b1; b2; b3 that can minimize the free energy density. This can be separated into two
problems.

1. Given b1; b2; b3, minimize the free energy density to generate f/ðGÞg.
2. Given a set of f/ðGÞg, find the vectors b1; b2; b3 to minimize the free energy density.

Both of the problems have to be satisfied simultaneously if f/ðGÞg and b1; b2; b3 are solutions. Sections 2.1 and
2.2 will discuss the method to solve the above two problems, respectively.

In theory, the set of basis functions is infinite. In practice, however, the number of basis functions has to be
finite, and we expand the order parameter /ðrÞ into N modes, which means

/ðrÞ � /ðNÞðrÞ ¼
X
m;n;k

/ðGmnkÞeiGmnk r; ð2:4Þ

where jmj 6 N ; jnj 6 N ; jkj 6 N , and m; n; k 2 Z. In this expansion, the number of Fourier components is
ð2N þ 1Þ3. The discussion in Sections 2.1 and 2.2 is based on the N modes expansion.

2.1. Given b1; b2; b3, generate f/ðGÞg

When given b1; b2; b3, the free energy density is just a function of f/ðGÞg. We can use optimization meth-
ods, like the conjugate gradient (CG) method, to generate f/ðGÞg, or we can use some non-linear equation
system methods, like the Newton method, to solve the equation system generated from the necessary condition
that the gradient vector is zero. The gradient vector is calculated by the following equation:

oF
o/ðGÞ ¼ ½n

2ð1�G2Þ2 þ s�/ðGÞ � c
2

X
G1þG2¼G

/ðG1Þ/ðG2Þ þ
1

6

X
G1þG2þG3¼G

/ðG1Þ/ðG2Þ/ðG3Þ: ð2:5Þ

No matter which method is selected to obtain f/ðGÞg, the gradient vector and the free energy must be calcu-
lated repeatedly. Note that calculating the gradient vector requires a lot of summations. These terms introduce
great computational complexity if the method is not well designed. The main difficulty comes from valuating
the term

P
G1þG2þG3¼G/ðG1Þ/ðG2Þ/ðG3Þ. Given G, if a simple cycle statement is used on G1;G2, the compu-

tational complexity is Oðð2N þ 1Þ6Þ, because G1;G2 iterate through all the ð2N þ 1Þ3 Fourier components. In
order to generate the gradient vector, G iterates all the ð2N þ 1Þ3 Fourier components as well. Using this ap-
proach, the computational complexity reaches Oðð2N þ 1Þ9Þ. We need to find another approach.

2.1.1. Calculating
P

G1þG2þG3¼G/ðG1Þ/ðG2Þ/ðG3Þ by FFT

Fortunately, the sum
P

G1þG2þG3¼G/ðG1Þ/ðG2Þ/ðG3Þ is actually a convolution sum, and calculating convo-
lution sum is a well-known practice in spectral methods. The idea of the techniques is based on the fact that if
f/ðGÞg are Fourier coefficients of function hðrÞ, then

P
G1þG2þG3¼G/ðG1Þ/ðG2Þ/ðG3Þ are the Fourier coeffi-

cients of function h3ðrÞ. The key point in the techniques is how to avoiding the aliasing error. Two types of
methods are developed to solve this problem. One is by padding or truncation, and another is by phase shifts.
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In our code, we use the latter one. The detail of the techniques could be found on many books about spectral
methods, see for example [3].

2.1.2. Optimization methods or non-linear equation system methods?
Either optimization methods or non-linear equation system methods can be used to solve f/ðGÞg. A dis-

advantage of non-linear equation system methods is that they need to calculate the Hessian matrix or an
approximation of it, which increases the computational complexity to at least Oðð2N þ 1Þ6Þ. Advantages
include that they have quadratic convergence and they are easy to produce multiple solutions because they
are sensitive to the initial value.

For optimization methods, disadvantages include slow speed of convergence and insensitivity to the initial
value, so that they do not produce many solutions. An advantage is that some of them do not need the infor-
mation of the Hessian matrix, an important example is the CG method, and this decreases the computational
complexity.

No single method is best. when N is small, non-linear equation system methods are better; when N is large,
optimization methods that don’t need to calculate the Hessian matrix are better. This satisfies our goal of find-
ing as many solutions as possible within manageable computational complexity.

2.2. Given f/ðGÞg to get b1; b2; b3

If b1; b2; b3 are one of the solutions, the first derivatives of the free energy function with respect to bij, where
i; j ¼ 1; 2; 3, should be zero. We can choose a proper coordinate system such that
b12 ¼ 0; b13 ¼ 0; b23 ¼ 0; b11 6¼ 0; b22 6¼ 0; b33 6¼ 0. We getX

m;n;k

/2
mnkðjGmnk j2 � 1Þm2 ¼ 0;

X
m;n;k

/2
mnkðjGmnkj2 � 1Þmn ¼ 0; ð2:6ÞX

m;n;k

/2
mnkðjGmnk j2 � 1Þmk ¼ 0;

X
m;n;k

/2
mnkðjGmnkj2 � 1Þn2 ¼ 0; ð2:7ÞX

m;n;k

/2
mnkðjGmnk j2 � 1Þnk ¼ 0;

X
m;n;k

/2
mnkðjGmnkj2 � 1Þk2 ¼ 0: ð2:8Þ

Expanding these expressions, the equations for the primitive reciprocal vectors are

b2
1

X
/2

mnkm4 þ 2b1b2

X
/2

mnkm3nþ 2b1b3

X
/2

mnkm3k þ b2
2

X
/2

mnkm2n2

þ 2b2b3

X
/2

mnkm2nk þ b2
3

X
/2

mnkm2k2 ¼
X

/2
mnkm2; ð2:9Þ

b2
1

X
/2

mnkm3nþ 2b1b2

X
/2

mnkm2n2 þ 2b1b3

X
/2

mnkm2nk þ b2
2

X
/2

mnkmn3

þ 2b2b3

X
/2

mnkmn2k þ b2
3

X
/2

mnkmnk2 ¼
X

/2
mnkmn; ð2:10Þ

b2
1

X
/2

mnkm3k þ 2b1b2

X
/2

mnkm3nk þ 2b1b3

X
/2

mnkm2k2 þ b2
2

X
/2

mnkmn2k

þ 2b2b3

X
/2

mnkmnk2 þ b2
3

X
/2

mnkmk3 ¼
X

/2
mnkmk; ð2:11Þ

b2
1

X
/2

mnkm2n2 þ 2b1b2

X
/2

mnkmn3 þ 2b1b3

X
/2

mnkmn2k þ b2
2

X
/2

mnkn4

þ 2b2b3

X
/2

mnkn3k þ b2
3

X
/2

mnkn2k2 ¼
X

/2
mnkn2; ð2:12Þ

b2
1

X
/2

mnkm2nk þ 2b1b2

X
/mnkmn2k þ 2b1b3

X
/mnkmnk2 þ b2

2

X
/2

mnkn3k

þ 2b2b3

X
/2

mnkn2k2 þ b2
3

X
/2

mnknk3 ¼
X

/2
mnknk; ð2:13Þ

b2
1

X
/2

mnkm2k2 þ 2b1b2

X
/2

mnkmnk2 þ 2b1b3

X
/2

mnkmk3 þ b2
2

X
/2

mnkn2k2

þ 2b2b3

X
/2

mnknk3 þ b2
3

X
/2

mnkk4 ¼
X

/2
mnkk2: ð2:14Þ

Though the above six equations are non-linear with respect to b1; b2; b3, they are linear equations for
b2

1; b
2
2; b

2
3; b1b2; b1b3; b2b3. Once b2

1, b2
2, b2

3, b1b2, b1b3, b2b3 are solved, b1; b2; b3 can also be determined.
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Now, for a given N, we can obtain /ðNÞðrÞ and b1; b2; b3 according to the iteration process, hereafter referred
to as Procedure I, which is specified in the following four steps.

Step 1. Given an initial value f/ðGÞg, b1; b2; b3 and set m ¼ 1, then calculate the free energy density fm.
Step 2. Fixed b1; b2; b3, calculate f/ðGÞg by the method described in Section 2.1.
Step 3. Adjust b1; b2; b3 by the method described in Section 2.2.
Step 4. Calculate the free energy density fmþ1, if jfmþ1 � fmj > �, then set fm ¼ fmþ1, m ¼ mþ 1, go back to

step 2.

2.3. The way to find appropriate N and good initial estimate of {/ðGÞ}

Now, Procedure I can be applied to calculate /ðNÞðrÞ for given N. However, new problems arise. Because
/ðNÞðrÞ is just an estimate of /ðrÞ, the first problem is, how large is enough for N to make /ðNÞðrÞ a good esti-
mate of /ðrÞ? If N is too large, the computational complexity may go beyond the computer’s capacity; if N is
too small, /ðNÞðrÞ may be far away from /ðrÞ. Since both the optimization methods and the non-linear equa-
tion system methods are sensitive to the initial value, bad initial estimate will slow down the convergence speed
of Process I. The second problem is how to give a good initial value of f/ðGÞg and b1; b2; b3 in step 1 of Pro-
cess I for a given N. The following process, referred to as Procedure II, is used to overcome the two problems.

Step 1. Starting from N ¼ 1, generate an initial estimate of /ðGmnkÞ and b1; b2; b3 randomly, where
fm; n; kg 2 f�1; 0; 1g, and apply Procedure I to generate /ð1ÞðrÞ and b1; b2; b3, and the free energy den-
sity value f ð/ð1ÞðrÞ; b1; b2; b3Þ.

Step 2. Use /ð1ÞðrÞ and b1; b2; b3 as the initial estimate of 2 modes problem, and then apply Procedure I to
generate /ð2ÞðrÞ, the corresponding b1; b2; b3, and the free energy density f ð/ð2ÞðrÞ; b1; b2; b3Þ.

Step 3. Repeat the above two steps till

jf ð/ðNÞðrÞ; b1; b2; b3Þ � f ð/ðN�1ÞðrÞ; b1; b2; b3Þj < �:

By executing Procedure II hundreds of times, different equilibrium phases can be discovered. For the first
problem, a clear constraint is defined: the N, which makes the difference of the free energy density between
N modes and ðN � 1Þ modes less than an given small number �, is the appropriate one. For the second prob-
lem, the solutions of ðN � 1Þ modes are used as the initial estimate of N modes; while for the situation N ¼ 1,
because the computational complexity is small, a lot of randomly chosen initial estimates are allowed.

Though all the above discussion is based on the three-dimensional problem, the whole process can be
adapted directly to two-dimensional and 1-dimensional problems.

3. Numerical results

3.1. Efficiency

We are going to depict the efficiency of the method from two points of view. First we will consider the time
and the number of modes to convergence for one set of n; s and c, then we will compare the phase diagram
with the former results.

3.1.1. For one set of n; s and c

In this test, the Newton method for non-linear systems was used to calculate the /ðNÞðrÞ when N 6 2; the
CG method was used for the other cases. The � in Procedure II was set to 10�6, and n ¼ 1:0; s ¼ �1:0; c ¼ 0:6.
Procedure II was run 100 times on a Pentium(R) 4 3.00 GHz CPU with memory 1 G. Each time the initial
value of /ðGÞ and b1; b2; b3 was randomly chosen for N ¼ 1. Because the speed of convergence depends on
the initial value, the time and the modes to convergence are different for different initial value. Fig. 1 shows
that, in these 100 runs, the average time to convergence was 38.4249 s, while the maximum was 490 s; the aver-
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age modes to convergence was 7, while the maximum was 14. Even in the worst case, where Procedure II con-
verged on 14 modes, which required the calculation of ð2� 14þ 1Þ3 � 1 ¼ 24389 variables, the time to con-
vergence remained a manageable 490 s.

3.1.2. Phase diagram when n ¼ 1:0
Using the Landau–Brazovskii model, Podneksa and Hamley [15] calculated the phase diagram using a lim-

ited number of basis functions. Shi [13] plotted a more accurate phase diagram by expanding the order param-
eter into more basis functions. Fig. 2 shows the phase diagram generated by our method, which is consistent
with both Podneksa and Hamley’s and Shi’s results.

3.2. Some meta-stable phases

Because our method does not need any a priori information about symmetry, and different initial estimates
may converge to different solutions, both stable and meta-stable phases can be captured.

To illustrate this point, we will select some points in the phase diagram as examples. Fig. 3 shows three
phases when n ¼ 1:0, s ¼ �1:0, c ¼ 0:6. The stable phase is gyroid phase as shown at the left, and perfo-
rated-lamellar and double diamond phases are the meta-stable phases shown at the right.

Some new morphologies are also generated by our method, but, unfortunately, they are all meta-stable
phases. The left image in Fig. 4 shows a new phase when n ¼ 1:0; s ¼ �1:0; c ¼ 0:6. The element of the struc-
ture is a piece of ‘‘snow” with six arms. Three of them bend up while the other three bend down. A new phase
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Fig. 1. The time to convergence and the modes to converge in 100 runs. The flat line shows the average.
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is shown in the middle of Fig. 4 when n ¼ 1:0; s ¼ �1:0; c ¼ 0:78. The structure is constructed by pillars
going across layers. The right diagram in Fig. 4 shows a new phase when n ¼ 1:0; s ¼ �0:32; c ¼ 0:34. This
phase is similar to the perforated-lamellar phase, but the layers are interconnected.

The existence of the new phases remains to be observed in experiments. Since they are meta-stable phases,
they are probably difficult to observe.

3.3. The epitaxial relationship between cylinder and lamellar, and between cylinder and sphere

Masten [14] studied the mechanism of the phase transition from cylinder phase to sphere phase. If Dc

denotes the period of the cylinder phase, and Ds denotes the distance between two adjacent spheres along
the direction ½1; 1; 1�, Masten assumed that Dc ¼

ffiffiffi
8
p

=3Ds. Because the period vectors are adjusted during
the iteration in our method, we tried to confirm the epitaxial relationship numerically. We selected samples
along the line c ¼ 1:0, and calculated the relative error between Dc and

ffiffiffi
8
p

=3Ds. The relative error is at most
0.63% as shown in Table 1, so it is reasonable to believe the relationship Dc ¼

ffiffiffi
8
p

=3Ds is correct.

Fig. 4. From left to right, three new phases generated by the method when n ¼ 1:0; s ¼ �1:0; c ¼ 0:6; n ¼ 1:0; s ¼ �1:0; c ¼ 0:78; and
n ¼ 1:0; s ¼ �0:32; c ¼ 0:34, respectively.

Fig. 3. The gyroid, the perforated-lamellar and double-diamond phase when n ¼ 1:0; s ¼ �1:0; c ¼ 0:60. In this case, the gyroid is stable
phase; the other two are meta-stable phases.

Table 1
The relationship between Ds and Dc at some samples along line c ¼ 1:0

c s Ds

ffiffiffi
8
p

=3Ds Dc Error(ðjDc �
ffiffiffi
8
p

=3Dsj=Dc) (%)

1.00 0.00 7.811968 7.365194 7.318730 0.63
1.00 �0.20 7.808210 7.361651 7.318544 0.59
1.00 �0.40 7.805536 7.359130 7.318098 0.56
1.00 �0.60 7.803437 7.357151 7.317472 0.54
1.00 �0.80 7.800685 7.354556 7.316719 0.52
1.00 �1.00 7.797738 7.351778 7.315881 0.49
1.00 �1.20 7.797050 7.351129 7.314991 0.49
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Wickham et al. [16] did some work on the nucleation from the meta-stable lamellar phase to the stable cyl-
inder phase. They assumed an epitaxial relation of Dc ¼ 2=

ffiffiffi
3
p

Dl, where Dl is the distance between two adja-
cent layers, Dc is the period of the cylinder phase. Again, our numerical method can examine their assumption.
Table 2 shows the results of several samples along the line s ¼ �0:80. The relative error between Dc and
2=

ffiffiffi
3
p

Dl is at most 1.75%, which is at a reasonable level.

3.4. The situation when n is small

The above numerical results are based on the condition n ¼ 1:0, and the Procedure II always converges.
This means there always exists period vectors a1; a2; a3 such that the free energy density function reaches its
minimum point. What is the situation when n is small?

As shown in Section 3.2, when n ¼ 1:0, s ¼ �1:0, and c ¼ 0:6, the gyroid phase is the stable phase, the per-
forated-lamellar phase, double-diamond phase, and one new phase are meta-stable. Keeping s and c the same,
and changing the n to 0:2, Procedure II could not converge even the number of modes reaches 30. As the num-
ber of the modes increases, the length of the period also increases, and gives no evidence of convergence. Fig. 5
shows the relationship between the number of modes and the length of a1; a2 and a3.

Table 2
The relationship between Dl and Dc at samples along line s ¼ �0:8

c s Dl 2=
ffiffiffi
3
p

Dl Dc Error( jDc � 2=
ffiffiffi
3
p

Dlj=Dc

� 	
(%)

0.30 �0.80 6.301395 7.276224 7.332815 0.77
0.32 �0.80 6.303428 7.278572 7.325534 0.64
0.34 �0.80 6.305607 7.281088 7.410549 1.75
0.36 �0.80 6.307937 7.283778 7.315266 0.43
0.38 �0.80 6.310421 7.286647 7.311638 0.34
0.40 �0.80 6.313063 7.289697 7.308740 0.26
0.42 �0.80 6.315868 7.292936 7.328141 0.48
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Fig. 5. From left to right, the relationship between the number of modes and the length of a1; a2 and a3 when n ¼ 0:2; s ¼ �1:0; c ¼ 0:6.
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Because of the complexity of the 3-D problem, we reduce the problem to the 1-D case. Choosing the same
parameters n ¼ 0:2, s ¼ �1:0 and c ¼ 0:6, we calculated up to 200 modes. The same phenomenon appears,
Procedure II could not converge and the period increases as the number of modes moves up. Fig. 6 shows
the relationship between the energy and the number of modes, the period and the number of modes, and
the profile of /ð200ÞðrÞ.

Now keep s and c as the same, same calculation was executed to the situations n ¼ 0:02, and n ¼ 0:002
respectively. Because the results are almost the same, only the result for the case n ¼ 0:002 is shown in Fig. 7.

As the number of modes increases, the free energy density has the tendency to converge, but the period
shows no evidence to converge, and it is approximate a linear function with respect to the number of modes.
As n decreases, the profile of the order parameter converges to a step function.

We conclude that, under the framework of the Landau–Brazovskii model, when n is small, the diblock
copolymer system would rather have a macro separation instead of a micro separation. This is not reasonable
because only microstructures can form for the diblock copolymer system. Therefore, Landau–Brazovskii
model does not explain the physical phenomena when n is small.

We will try to find the limit of the order parameter /ðrÞ as n tends to zero. It is appropriate to assume that
the order parameter is going to converge to the solution of the case n ¼ 0. When n ¼ 0, the free energy density
functional becomes

f ð/ðrÞÞjn¼0 ¼
1

V

Z
X

dr
s
2
½/ðrÞ�2 � c

3!
½/ðrÞ�3 þ 1

4!
½/ðrÞ�4

� �
: ð3:1Þ

For this case, we will find the minimum point in another way. Our goal is to find /ðrÞ such that the free energy
density reaches its minimum under the constraint

R
dr/ðrÞ ¼ 0. For fixed period, we introduce auxiliary

functional

Lð/ðrÞ; kÞ ¼ f ð/ðrÞÞjn¼0 �
k
V

Z
X

dr/ðrÞ: ð3:2Þ

The solution satisfies

oLð/ðrÞ; kÞÞ
ok

¼ 0; ð3:3Þ

dLð/ðrÞ; kÞÞ
d/ðrÞ ¼ 0: ð3:4Þ

Eq. (3.3) is the constraint, while Eq. (3.4) is

s/ðrÞ � c
2
/ðrÞ2 þ 1

6
/ðrÞ3 � k ¼ 0: ð3:5Þ

For every r0, /ðr0Þ is a root of the polynomial Eq. (3.5). As the result of the constraint
R

dr/ðrÞ ¼ 0, /ðrÞ has
to be a step function with the following form:
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Fig. 7. From left to right, the relationship between the free energy density and the number of modes, between the period and the number
of modes, the profile of /ð200ÞðrÞ, when n ¼ 0:002; s ¼ �1:0; c ¼ 0:6.
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/ðrÞ ¼
x1 > 0; in a block with length �x2

x1�x2
V

x2 < 0; in a block with length x1

x1�x2
V

(
; ð3:6Þ

where x1; x2 are the roots of Eq. (3.5), and they are essentially functions of k. By substituting (3.6) into the free
energy density function, and using the fact that

sxi �
c
2

x2
i þ

1

6
x3

i � k ¼ 0; where i 2 f1; 2g; ð3:7Þ

the free energy density becomes a function of k,

f ðkÞ ¼ �x1x2

s
4
� c2

8


 �
� ck

4
: ð3:8Þ

We need to find k to minimize f ðkÞ, then calculate the corresponding /ðrÞ. We give a specific example when
n ¼ 0:0, s ¼ �1:0, c ¼ 0:6. Fig. 8 shows the relationship between k and f ðkÞ.

The free energy density hits its minimum point �1:8816 when k ¼ �0:6720. At this point, the positive part
of /ðrÞ equals 3.2608, and the negative part of /ðrÞ equals �2:0608. Because the whole deduction is not related
to the period, this /ðrÞ is the solution for any period when n ¼ 0:0, s ¼ �1:0, c ¼ 0:6.

Fig. 9 shows the profile of /ðrÞ when the period equals 680. We conclude that when n converges to zero,
/ðrÞ is going to be a step function with positive part tends to 3.2608 and negative part tends to �2:0608 for the
case n ¼ 0:0, s ¼ �1:0, c ¼ 0:6.
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Fig. 8. The relationship between k and the free energy density.
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Fig. 9. The profile of /ðrÞ, when n ¼ 0:0; s ¼ �1:0; c ¼ 0:6.
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4. Conclusion

Based on the Landau–Brazovskii model, a new efficient numerical method which does not need a priori
symmetric information and, more significantly, can adjust the period structure automatically has been devel-
oped. The way to generate good initial estimates is well defined as well. The phase diagram generated by the
method proved the correctness of the method. Using this method, we can calculate not only the stable phase,
but also the meta-stable phases. Without the assumption of symmetry, the method can discover new phases as
well as the typical sphere, cylinder, lamellar, gyroid, perforated-lamellar and double-diamond phases. Three
new meta-stable phases have been investigated, but the existence need to be proved by experiments. The epi-
taxial relation in the phase transition can also be numerically validated using the method. We found the Lan-
dau–Brazovskii model could not explain the physical phenomena when n is small, because the diblock
copolymer system would rather have a macro separation instead of a micro separation under the framework
of Landau–Brazovskii model. Our future work will focus on SCFT, and we will try to add the period structure
into SCFT to develop a method which can adjust them automatically as what we have done on the platform
based on Landau–Brazovskii model.
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