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bstract

We investigate four crucial properties for testing and evaluating a moment closure approximation of the FENE dumbbell model for dilute
olymer solutions: non-negative configuration distribution function, energy dissipation, accuracy of approximation and computational expense.
hrough mathematical analysis, numerical experiments and comparisons with closure model FENE-P and FENE-YDL, we prove that the FENE-QE
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pproximation has non-negative configuration distribution function, approximates the energy dissipation behavior of original kinetic theory and
rovides good accuracy. To improve the efficiency of this closure approximation, we introduce a piecewise linear approximation technique that
reatly reduces the computational cost. This extension of FENE-QE, FENE-QE-PLA, is the closure model we recommend for simulating dilute
olymer solutions.
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. Introduction

The dynamics of dilute polymer fluids is an interesting issue
ecause its rheological behavior is significantly different from
ewtonian fluids. The continuum fluid mechanics coupled with

he kinetic approach can be viewed as a complementary way to
escribe the flow of dilute polymer solutions. The continuum
uid mechanics concerns the dynamics of macroscopic physi-
al variables such as velocity, pressure and energy of the fluid.
inetic theory provides microscopic configuration information

bout polymer solutes which cause the non-Newtonian rheolog-
cal behavior of dilute polymer fluids. The simplest and most
idely used non-linear kinetic model is known as the Warner
nite extensible non-linear elastic (FENE) dumbbell model. In

his paper, we only consider polymer fluids that can be modeled
s FENE dumbbell.

Kinetic theory can be viewed from two points of view. In the
rst way, kinetic theory is written as the Fokker–Planck (FP)
quation, a partial differential equation (PDE) about the con-
guration distribution function (CDF). Directly solving FP can
ecome very computationally expensive because of the large
umber of degrees of freedom. Even though some fast solvers

∗ Corresponding author. Tel.: +86 10 6275 9851; fax: +86 10 6276 7146.
E-mail addresses: han wang@math.pku.edu.cn (H. Wang),

li@math.pku.edu.cn (K. Li), pzhang@pku.edu.cn (P. Zhang).

for FP equation have been designed recently [2,17,18], FP is 22

mostly used in simple cases to simulate the rheological behav- 23

ior and conformation of dilute polymer fluids. Kinetic theory can 24

also be considered from a stochastic view point. CONNFFES- 25

SIT, the representative technique for managing kinetic theory 26

was developed by Laso and Öttinger [13]. This method uses 27

Brownian dynamics simulations that provide micro-information 28

of polymer configuration based on Monte Carlo sampling. In 29

1997, Hulsen et al. [10] developed a Brownian configuration 30

fields (BCF) method that is widely used as an efficient vari- 31

ant of the original CONNFFESSIT. Öttinger et al. [19] pointed 32

out that BCF can be regarded as an extremely powerful exten- 33

sion of variance reduction techniques based on parallel process 34

simulation. The main advantage of these stochastic simulation 35

techniques is the computational cost grows mildly when adding 36

degrees of freedom to the system. Since the statistical error is 37

proportional toO(1/
√

N), where N is the number of independent 38

samples, we need a large number of samples to improve accu- 39

racy. Therefore, limited computational capacity can be viewed 40

as the main barrier to achieve high accuracy using stochastic 41

simulation methods. 42

In addition, researchers have been revising original kinetic 43

theory and searching for simpler and faster approaches to poly- 44

mer fluid simulation. This set of approximations are usually 45

referred as closure approximations or closure models. The sim- 46

plest closure model usually referred as FENE-P is obtained 47

from self-consistent, pre-averaging approximation due to Peter- 48

377-0257/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
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lin [1]. Generally speaking, how the closure approximations49

influence the behavior of the kinetic model is an issue hard50

to predict theoretically, so that careful numerical experiments51

are necessary to study the properties of closure approximations.52

Keunings [12] pointed out that FENE-P gives unphysical results53

under certain flow conditions. Later, Keunings and his cowork-54

ers [15,16] developed FENE-L and FENE-LS approximations55

that give accurate simulations while avoiding such unphysi-56

cal phenomena. Various kinds of closure methods have been57

developed in the last 20 years, for example, FENE-CR (1988)58

[3], FENE-CD (1999) [21], FENE-DT (2000) [26], FENE-QE59

(2002) [11] and a closure approximation developed by Yu et60

al. [28,5]. For convenience and simplicity, we will denote this61

last model by FENE-YDL. FENE-P and FENE-CR are the most62

widely used models. They are applied in various practical prob-63

lems [7,14,23,25] and are compared with experimental data [22].64

One can find numerical comparisons of different closure models65

in [8,15,16,24,26]. Some of these papers develop new closure66

models and demonstrate the improvements achieved. In the lit-67

erature, comparisons mainly focus on accuracy. New closure68

models are developed primarily to achieve better accuracy.69

In the present paper, we demonstrate that four properties can70

be used to evaluate existing closure models and, moreover, are71

crucial to designing high quality closure models. They are72

• non-negative CDF;73

• energy dissipation;74

• accuracy of approximation;75

• computational expense.76

It is clear that non-negative is a natural requirement to a prob-77

ability distribution function. In kinetic theory, we can prove the78

energy dissipation property, so the closure model that preserves79

this property will be more reliable in this respect. The accuracy80

of approximation can be divided into two aspects. Microscop-81

ically, we will investigate the approximation quality of CDF82

that describes the direction and extension of dumbbell-shaped83

molecules in the flow. Macroscopically, we will investigate84

the accuracy of the stress tensor calculated by closure models.85

Sometimes, the two aspects can produce inconsistent results, that86

is some closure models that give poor approximation to micro-87

scopic CDF can calculate stress tensor accurately. A closure88

approximation of high quality is supposed to reduce deviation89

in both aspects. The original FENE model is the most accurate,90

but the computational cost is unacceptable in most cases. Most91

closure models can reduce the computational cost in a dramatic92

way. This is achieved by concentrating on macroscopic vari-93

ables (moments in most cases) that can reflect the configuration94

of FENE dumbbells rather than calculating configuration dis-95

tribution directly. Even if applying closure approximations can96

save a lot of time, some closure models can also be very com-97

putationally expensive, for example FENE-QE. A high quality98

closure model should be computationally cheap.99

In this paper, we pay close attention to closure model FENE-100

QE [11] where QE stands for quasi-equilibrium approximation.101

Numerical experiments for FENE-P and FENE-YDL are used102

for comparison. The four properties mentioned above are inves-103

tigated in both analytical and numerical ways. We find that 104

FENE-QE is a model of non-negative CDF, correct energy dis- 105

sipation and high accuracy. To reduce the computational cost of 106

FENE-QE, we design a piecewise linear approximation (PLA) 107

technique that can improve the efficiency of FENE-QE greatly 108

and have little effect on its accuracy. 109

This paper is arranged as follows, In Section 2, we will intro- 110

duce kinetic theory for dilute polymer solutions and prove the 111

energy dissipation of it. In Section 3, we will introduce the 112

FENE-QE model and the PLA technique and prove the correct- 113

ness of its energy dissipation. In Section 4, FENE-QE as well as 114

FENE-P and FENE-YDL are used to calculate steady shear flow 115

and elongational flow. In Section 5, the lid-driven cavity serves 116

as a example of a coupled system with a complex fluid field. 117

In Section 6, we conclude that FENE-QE with PLA technique 118

satisfies the four crucial properties and can be viewed as a high 119

quality closure model. 120

2. Kinetic model of dilute polymer solutions 121

The flexible solute polymer can be abstracted as a series of 122

beads connected by springs. In this paper we only consider the 123

dumbbell model; a simplified case in which two beads are con- 124

nected by one spring. If the position of the two beads are r1 and 125

r2, respectively, then the connector vector of them is defined 126

by Q = r1 − r2. Q reflects the configuration of the dumbbell- 127

shaped polymer. The CDF as a function of connector vector and 128

time is denoted by f (Q, t). Let S be the entropy of the isolated 129

isothermal solution system. We assume kT = 1, so it will not be 130

taken into account through our paper: 131

S[f ] = n

(
−

∫
f ln f − f dQ

)
(1) 132

From it, we define the free energy by 133

A[f ] = −S[f ] + n

∫
Uf dQ (2) 134

where n is the polymer number density and U is the elastic spring 135

potential. The widely used FENE dumbbell spring potential is 136

U = −HQ2
0

2
log

[
1 −

(
Q

Q0

)2
]

(3) 137

The equilibrium state is formed when the free energy reaches its 138

minimum value. One necessary condition is 139

δA

δf

∣∣∣∣
f=feq

= 0 (4) 140

Starting from (4), one can easily reach 141

feq ∝ e−U =
[

1 −
(

Q

Q0

)2
]HQ2

0/2

(5) 142

dx.doi.org/10.1016/j.jnnfm.2007.10.013
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For convenience, we introduce the chemical potential μ defined143

by144

μ = δA

δf
= n(ln f + U) (6)145

The dynamics of CDF is given by the famous FP equation:146

∂f

∂t
= ∇Q ·

(
2

nζ
f∇Qμ

)
(7)147

∂f

∂t
= 2

ζ
∇Q · (F cf ) + 2

ζ
�Qf (8)148

where F c is the connector force which can be expressed as the149

gradient of the elastic spring potential F c = ∇QU. Now we150

consider the dynamics of free energy (the methodology we used151

here is actually the same as that developed by Yu et al. [27]):152

dA

dt
=

(
δA

δf
,
∂f

∂t

)
=

(
μ, ∇Q ·

(
2

nζ
f∇Qμ

))
153

= −
(

∇Qμ
2

nζ
f∇Qμ

)
(9)154

That the derivative of free energy over time is negative definite155

implies the energy dissipation properties of kinetic theory.156

A general dumbbell model for dilute polymer solutions in the157

background of macroscopic flow field can be described by a cou-158

pled system of divergence free (incompressible) Navier–Stokes159

equations:160

∂u

∂t
+ u · ∇u + ∇p = ∇ · τp + ν�u (10)161

∇ · u = 0 (11)162

and a FP equation of CDF163

∂f

∂t
+ u · ∇xf + ∇Q · (κ · Qf ) = 2

ζ
∇Q · (F cf ) + 2

ζ
�Qf164

(12)165

Here we denote x as spacial point. In Eqs. (10)–(12), u = u(x, t)166

and f = f (x, Q, t) are the macroscopic velocity field and CDF,167

respectively. The variable p is the hydrostatic pressure, ν is the168

solvent fluid viscosity, κ = (∇xu)T is the velocity gradient and169

τp is a polymer stress whose relationship with the configuration170

distribution is described by Kramers’ expression:171

τp = 〈Q∇Qμ〉 = −nI + n 〈QF c〉 (13)172

Here 〈·〉 is an average over CDF. Similarly, one can prove the173

energy dissipation of the coupled system by defining174

A[f ] = n

(∫
1

2
u · u dx +

∫∫
f ln f − f + fU dQ dx

)
175

(14)176

3. Quasi-equilibrium approximation and PLA 177

technique 178

3.1. Quasi-equilibrium approximation 179

The quasi-equilibrium approximation is based on the mini- 180

mum energy principle under certain constraints: 181

min A[f ] (15) 182

s.t.
∫

m(Q)f dQ = M (16) 183

Here M are values of some macroscopic variables and m are 184

corresponding functions of connector vector Q. The solution 185

to (15) and (16) is called the quasi-equilibrium (QE) state. The 186

solution to the constrained optimization problem is given by 187

δ

δf

{∫
f ln f − f + fU dQ − Λ 188

·
[∫

m(Q)f dQ − M

]}
= 0 (17) 189

where Λ are Lagrangian multipliers. The solution of (17) is 190

fM = exp{−U + Λ · m} (18) 191

According the definition of M (16) and the dynamics of f (7), 192

we can deduce the dynamics of the macroscopic variables: 193

∂M

∂t
=

(
m,

∂f

∂t

)∣∣∣∣
f=fM

=
∫

m∇Q ·
(

2

nζ
fM∇Qμ

)
dQ 194

(19) 195

We can prove that the energy dissipation behavior of QE state 196

mimics kinetic theory by the following argument. (We also share 197

the same methodology developed by [27].) 198

dA(M)

dt
= ∂A

∂M
· ∂M

∂t
= ∂A

∂M
·
(

m,
∂f

∂t

)∣∣∣∣
f=fM

(20) 199

Here, A(M) = A[fM] is the free energy of the closure model. 200

As a lemma, we can prove the following relation: 201

∂A

∂M
= lim

t→0

A(M + t�M) − A(M)

t�M
202

= lim
t→0

A[fM + t�f ] − A[fM]

t(m, �f )
203

= (δA/δf, tδf )|f=fM

t(m, �f )
= nΛ (21) 204

Therefore 205

dA(M)

dt
=

(
δA

δf
,
∂f

∂t

)∣∣∣∣
f=fM

= dA[f ]

dt

∣∣∣∣
f=fM

≤ 0 (22) 206

This relation not only tells us that the QE model preserves the 207

energy dissipation property, but also shows that the energy dis- 208

sipation approximates the original dissipation process. 209

Actually the quasi-equilibrium approximation itself and the 210

result of energy dissipation are more general. They can be 211

dx.doi.org/10.1016/j.jnnfm.2007.10.013
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applied not only to FENE dumbbell but also to other kinetic212

models.213

Usually, the macroscopic variables M are chosen as moments214

of the connector vector. In this paper, we will only employ215

the second moment given by M = 〈QQ〉 and the correspond-216

ing m(Q) = QQ. In addition, we will apply the constraint217 ∫
f dQ = 1, which is equal to a constraint on the zeroth218

moment. From general QE theory, we can reach219

f (Q) = 1

Z(R)

[
1 −

(
Q

Q0

)2
]HQ2

0/2

exp {R : QQ} (23)220

where Z(R) is defined by221

Z(R) =
∫ [

1 −
(

Q

Q0

)2
]HQ2

0/2

exp {R : QQ} dQ (24)222

R is the Lagrangian multiplier in matrix form and can be deter-223

mined from the constraint.224

M = 1

Z(R)

∫
QQ

[
1 −

(
Q

Q0

)2
]HQ2

0/2

exp {R : QQ} dQ225

(25)226

Further, we can write the dynamics of the second moment as227

∂M

∂t
+ u · ∇M − κ · M − M · κT = −4

ζ
(R · M + M · R)228

(26)229

Finally, the polymer stress tensor can be expressed as230

τp = n(R · M + M · R) (27)231

3.2. PLA technique232

When solving Eq. (26), one has to calculate the Lagrangian233

multiplierR from momentM at each time level. This is a difficult234

job because the mapping from M to R is given implicitly by235

(25). For convenience, we denote the right hand side of (25)236

by G(R). The mapping G(R) only depends on the parameter237

HQ2
0/2 and has no relationship with neither temporal variable t238

nor spacial variable x. Calculating R from a given M is equal to239

solving a system of non-linear equations G(R) = M. Generally240

speaking, it is impossible to work out the analytical expression241

of R = G−1(M), so we have to turn to numerical methods for242

help. Fortunately, according to the symmetry of the domain of243

G (D = {Q : Q · Q ≤ Q2
0}), we can prove that M and R can be244

diagonalized by the same orthogonal matrix. Therefore, we can245

only consider the case when both R and M are both diagonal246

matrices. Further, we can view them as two-dimensional vectors.247

A group of direct methods to calculate G−1 are numerical248

methods solving non-linear systems and one of the most popular249

methods is Newtonian iteration. Another method that avoids250

evaluating G−1 is proposed by Öttinger et al. [11] and is based251

on the dynamics of Lagrangian multiplier R, which can be easily252

obtained from a Legendre transform. However, both of the two253

methods are computationally expensive, especially for coupled254

systems, because they have to calculate G(R) and ∇G(R) at each255

time level. Here we want to point out the fact that the calculation 256

of G(R) and ∇G(R) is a difficult and time consuming part of 257

the computational. Because they are actually integrations of dc 258

(the dimensional of configuration space) dimensional variables 259

and if the index HQ2
0/2 is small or R is big, the function to 260

be integrated will become ill-posed with some very sharp peaks 261

introducing numerical difficulties. 262

Approximate functions to G−1 serve as a group of alternative 263

numerical ways to calculate G−1. Since G−1 is independent of 264

temporal and spacial variable, the same approximate function 265

can be used for evaluating G−1 at any time and physical position. 266

The expression of the approximate function should be given 267

explicitly and easy to evaluate, so that we can calculate the value 268

of the approximation function at little computational cost. 269

Till now the problem left is how to approximate G−1, the 270

snapshot of which is shown in Fig. 1. Obviously, one cannot 271

precisely approximate G−1 by a polynomial. The shape is some- 272

thing like a logarithm function. So maybe one can construct a 273

good approximation based on logarithm functions, but we have 274

not tested this idea. Our method is the piecewise linear approx- 275

imation (PLA). To explain it clearly, we only need to describe 276

the main processes in the two-dimensional case: 277

(1) Generate a grid on the range of G. Since the matrix M = 278

G(R) is diagonal, the range of G can be viewed as a subset 279

of the two-dimensional plane. Further, since matrix M is 280

positive definite, the range is a subset of the first quadrant. 281

Usually, the grid is generated on a bounded subset of the 282

first quadrant, for example, a uniform grid on [0.001, 0.5] × 283

[0.001, 0.5]. In practice, the grid can be non-uniform. 284

(2) Calculate the value of G−1 at each grid point by Newtonian 285

iteration. To accelerate the iteration, the initial estimate can 286

be chosen as the value of G−1 on a neighboring grid point. 287

(3) Given any value of M, calculate G−1(M) by linear approx- 288

imation. We first have to determine in which grid cell the M 289

is, and then with the known value of G−1 on neighboring 290

grid vertices, we can obtain the value of G−1(M) by the 291

linear interpolation. 292

Although it takes time to calculate the value of G−1 for each 293

grid point, these values only depend on the parameter HQ2
0/2. 294

Therefore, once the values of G−1 on grid points are calculated, 295

they can be stored for different problems with the same HQ2
0/2. 296

Numerical experiments shown in Sections 4 and 5 will illustrate 297

that applying the PLA technique improves the efficiency greatly 298

while retaining accuracy. 299

At last, we want to make some remarks on the grid genera- 300

tion that is the first step of the PLA technique. First of all, we 301

would like to emphasize that the rectangular grid (not necessar- 302

ily uniform) is usually better than non-rectangular ones. That is 303

because we have to determine in which grid cell a certain M is 304

at the third step of the PLA and the computational cost of such 305

searching on a non-rectangular grid is O(N) in general, where 306

N is the total number of grid cells. Even though this cost can be 307

reduced to O(log N), it requires more complex techniques and 308

data structures. Whereas the cost of searching on a rectangular 309

dx.doi.org/10.1016/j.jnnfm.2007.10.013
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Fig. 1. Snapshot of G−1, the first component (left) and the second component (right).

grid can be easily reduced to O(log N) with the application of310

the bisect method.311

We can generate the grid in a straightforward way: first, form312

a grid on the domain of G, and then map it onto the range of G.313

The advantage of this way is we can calculate G instead of G−1
314

to reform the inverse mapping of G at the second step of the PLA.315

The disadvantage is that in two- or three-dimensional cases, we316

cannot expect the resulting grid is rectangular, when the grid317

on the domain of G is generally chosen, for example, a uni-318

form rectangular grid. So we generate the grid in an alternative319

way. We first generate a grid for the one-dimensional case (with320

the same parameter HQ2
0/2 as the two-dimensional case) in the321

straightforward way. Then tensor product the one-dimensional322

grid and a two-dimensional grid is obtained as a result.323

3.3. Other closure approximations324

In this paper, we will compare FENE-QE to two additional325

closure models that also use only second moment, FENE-P [1]326

and FENE-YDL [28] (N = 1 model in [5]). This subsection327

provides a concise introduction of these additional models.328

The FENE-P model is a self-consistent pre-averaging approx-329

imation of connector force due to Peterlin. In this model, the330

connector force is approximated as331

F c ≈ HQ

1 − 〈Q2〉/Q2
0

(28)332

It is easy to derive from the FP equations (12) and (28) an333

equation for second moment M = 〈QQ〉:334

∂M

∂t
+ u · ∇M − κ · M − M · κT

335

= 4

ζ
I − 4H

ζ(1 − Tr(M)/Q2
0)

M (29)336

337

In fact, under the Gaussian initial condition, the solution of338

FP with the Peterlin approximation remains Gaussian [20] and339

can be written as340

f (Q) = 1

JG
exp

{
−1

2
Q · M−1 · Q

}
(30)341

where JG is the scalar such that
∫

f dQ = 1.342

Clearly, the CDF is positive definite. Up to now we cannot 343

prove the energy dissipation of this model. However, Hu and 344

Lelièvre [9] have proved the energy dissipation of the FENE-P 345

model by defining a different kind of entropy. FENE-P model 346

is very simple and the computational cost is small compared to 347

other closure models. 348

The FENE-YDL model introduces a class of CDFs with the 349

form: 350

f (Q) = 1

Jb

[
1 −

(
Q

Q0

)2
]b/2

(1 + β Q1Q2 + γ(Q2
1 − Q2

2)) 351

(31) 352

where Jb is the scalar such that
∫

f dQ = 1. When b, β and 353

γ take the value HQ2
0, 0, and 0, respectively, the configuration 354

distribution reduces to the equilibrium state. One can obtain the 355

evolution of 〈Q2〉, 〈Q2
1 − Q2

2〉 and 〈Q1Q2〉 from FP equations 356

(12) and (31). We refer readers to [28] for more details. 357

In fact, under certain conditions, numerical experiments show 358

that the CDF of FENE-YDL can be negative in some regions. 359

The energy dissipation property of kinetic theory is not pre- 360

served by this model, even though the leading terms of free 361

energy are the same as those of kinetic theory [28]. It is fur- 362

ther shown by [28] that when the state is close to equilibrium, 363

this model is a good approximation of the kinetic model from 364

the view point of energy dissipation. Since only the second 365

moment is concerned, the computational cost of this model is 366

very small and programs of high efficiency can be developed 367

easily. 368

4. Example: steady shear flow and elongational flow 369

In this section, the numerical results of three different closure 370

models, FENE-P [1], FENE-YDL [28] and FENE-QE [11], are 371

compared with those of solving FP directly. The effectiveness 372

of the PLA technique is also demonstrated. In both of the two 373

examples, the background flow fields are static and known, so 374

that the dimension of physical space vanishes or is decoupled 375

from FP. Further, we only consider the two-dimensional con- 376

figuration space for simplicity. Under these assumptions, it is 377

feasible to solve FP directly and the computation of closure 378

models is simplified. 379

dx.doi.org/10.1016/j.jnnfm.2007.10.013
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Fig. 2. Shear flow: comparison of the contour plots of CDFs solved fr

4.1. Steady shear flow380

The static flow field is u = (κy, 0) where κ is the constant381

shear rate. In this case the FP reduces to a PDE in the configu-382

ration space {Q ∈R2 : |Q| < Q0}:383

∂f (Q, t)

∂t
+ ∂

∂Q1
(κQ2f ) = 2

ζ
∇Q · (F cf ) + 2

ζ
�Qf (32)384

The configuration space is discretized on an N × N regular385

grid covering the square domain {Q : |Q1| < Q0, |Q2| < Q0}386

with mesh size h = 2Q0/N. In the computation, we discretize387

∂/∂Q2(κQ2f ) and ∇Q · (F cf ) by central difference scheme.388

We update the value on all points in the circle |Q| < Q0 whose389

neighboring points also lie in that circle. This method is equiv-390

alent to that described in [5].391

In our computations, we use the fourth order explicit392

Runge–Kutta scheme for time stepping. Physical parameters393

are chosen as ζ = 40, H = 100 and Q0 = 1. The FENE-QE-394

PLA uses a 203 × 203 non-uniform rectangular grid. It takes395

about four hours on a 3 GHz Intel Pentium IV CPU to cal-396

culate all values of G−1 on the grid points. The same grid397

and values are stored for all experiments in this paper. For398

each choice of κ, Fig. 2 displays CDFs from all models and399

Table 1 shows the L1 errors of CDFs. The polymeric normal400

s 401

F 402

403

Q 404

t 405

t 406

a 407

n 408

v
e
o
a

T
S

κ

1
3
6
9
1
1
2

om the FP and different closure models for κ = 1, 6, 12 and 20.

tress difference τ11
p − τ22

p and shear stress τ12
p are presented in

igs. 3 and 4.
From Fig. 2, we can see that the CDFs of the FENE-P, FENE-

E and FENE-QE-PLA are similar to the results of FP. All of
hem are non-negative. The results of FENE-YDL are similar
o the FP when κ is small, but the deviation becomes very big
s κincreases. Moreover, the CDFs of FENE-YDL are not non-
egative. Outside the unclosed curves, the CDFs have negative
e moment closure model FENE-QE, J. Non-Newtonian Fluid Mech.

alues. From Table 1, we can draw the conclusion that the CDF 409

rrors of FENE-QE and FENE-QE-PLA are smaller than those 410

f other closure models. When κ is small, the results of FENE-P 411

re worse than the other closure models. But as κincreases, its 412

able 1
hear flow: L1 error of the CDFs

FENE-P FENE-YDL FENE-QE FENE-QE-PLA

1.10 × 10−2 4.02 × 10−3 4.07 × 10−4 4.17 × 10−4

1.37 × 10−2 3.68 × 10−2 9.45 × 10−4 9.07 × 10−4

2.21 × 10−2 1.38 × 10−1 4.43 × 10−3 4.24 × 10−3

3.49 × 10−2 2.72 × 10−1 1.34 × 10−2 1.29 × 10−2

2 5.13 × 10−2 4.13 × 10−1 3.03 × 10−2 2.95 × 10−2

5 6.99 × 10−2 5.45 × 10−1 5.73 × 10−2 5.65 × 10−2

0 9.97 × 10−2 7.40 × 10−1 1.20 × 10−1 1.19 × 10−1

dx.doi.org/10.1016/j.jnnfm.2007.10.013
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Fig. 3. Shear flow: normal stress difference (left) and the error plot (right) of different methods.

Fig. 4. Shear flow: shear stress (left) and the error plot (right) of different methods.

CDF errors do not increase quickly. When κ is equal to 20, it413

does as well as FENE-QE and FENE-QE-PLA. In addition, the414

precision of FENE-QE-PLA matches that of FENE-QE. So the415

PLA technique has little effect on the calculation of CDF.416

Now we compare the stresses tensor obtained from the FP and417

other methods. When κ is not very big (κ = 3–9), FENE-YDL418

gives a worse approximation to CDF than FENE-P, but it approx-419

imates stress tensor more precisely (Table 1 and Figs. 3 and 4).420

We can observe the same phenomena with FENE-QE and FENE-421

P, when κ = 20. These facts support our argument that the422

precision of CDFs and the precision of the stress tensor some-423

times varies independently. As the shear rate κ grows bigger, the424

errors of all closure models increase correspondingly. The results425

of FENE-QE and FENE-QE-PLA are better than other models;426

their differences are negligible. This allows us to use FENE- 427

QE-PLA in more complex flow fields. In Fig. 5, we compare the 428

elastic energy 〈U〉 = ∫
Uf dQ resulting from different methods. 429

We observe phenomena similar to previous comparisons. 430

We compare the CPU time of the FENE-QE that uses New- 431

tonian iteration at each time level to obtain G−1 and the 432

FENE-QE-PLA that uses PLA technique. The dramatic differ- 433

ence of computational costs presented by Table 2 gives evidence 434

to that the PLA technique can help reducing computational cost 435

greatly. We should attribute the low efficiency of FENE-QE to 436

the evaluation of G(R) and ∇G(R) rather than the Newtonian 437

iteration, because typically the Newtonian iteration can converge 438

to required precision (1 × 10−8) in no more than five steps. 439

Fig. 5. Shear flow: elastic energy (left) and the error plot (right) of different methods.

dx.doi.org/10.1016/j.jnnfm.2007.10.013
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Table 2
Comparison of CPU time consumed by FENE-QE and FENE-QE-PLA

Case FENE-QE (s) FENE-QE-PLA (×10−2 s)

κ = 1 124 2.3
κ = 20 285 3.4

The experiments were run on a 3 GHz Intel Pentium IV CPU. Note: for PLA
m −1

i

440

c441

s442

d443

d444

m445

u446

s447

τ448

The result here is actually time averaged to reduce variance. 449

The normal stress difference is τ11
p − τ22

p = 1.8104 × 10−2 and 450

shear stress is τ12
p = 9.5928 × 10−2. These are very close to 451

the two-dimensional results: τ11
p − τ22

p = 1.8127 × 10−2 and 452

τ12
p = 9.6124 × 10−2. 453

4.2. Elongation flow 454

Suppose u = (κx, −κy), where κ is the constant elongational 455

rate. Divergence free condition ∇ · u = 0 is satisfied. We use the 456

same set of physical parameters as in shear flow. FP is solved 457

by the same finite difference method. 458

In Fig. 6, we give the snapshots of CDFs of FP and differ- 459

ent closure models. When κ is small, the results of FENE-P, 460

FENE-QE and FENE-QE-PLA are similar to those of FP, and 461

the results of FENE-YDL are also good, except that they are 462

not non-negative. When κ > 5, the CDFs of FP form two peaks. 463

Only CDFs of FENE-QE and FENE-QE-PLA reflect this phe- 464

nomenon. In order to show this clearly, Fig. 7 plots CDFs on the 465

Q1 = 0 line and Q2 = 0 line. When κ is large, only the CDFs 466
ethod, the computational cost of evaluating G on grid points is not taken
nto account.

In this example, we only consider the two-dimensional
onfiguration space. There are some three-dimensional results
howing that such a simplification will not lose generality. A
irect extension of two-dimensional shear flow to the three-
imensional case is to let velocity field u = (κy, 0, 0). The BCF
ethod is used here, with physical parameters the same as those

sed in the two-dimensional case. The number of independent
amples is N = 105. For κ = 1, the resulting stress tensor is

⎛
1.0182 × 100 9.5928 × 10−2 −1.9491 × 10−4

⎞
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p = ⎜⎝ 9.5928 × 10−2 1.0001 × 100 −1.6261 × 10−5

−1.9491 × 10−4 −1.6261 × 10−5 9.9986 × 10−1

⎟⎠ (33) of FENE-QE and FENE-QE-PLA match those of FP. More- 467

over, FENE-P loses the double peaks when κ ≥ 6. The CDFs of 468

FENE-YDL can be negative in some regions, so that the shape 469

Fig. 6. Elongation flow: comparison of the contour plots of CDFs solved from the FP and different closure models for κ = 1, 5, 6 and 8.

dx.doi.org/10.1016/j.jnnfm.2007.10.013
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Fig. 7. Elongation flow: comparison of f (Q1, 0) (left) and f (0, Q2) (right) for κ = 1, 5, 6 and 8 (from top to bottom).

of CDFs differ from the CDFs of FP greatly. In fact, we can470

attribute the deteriorated performance of FENE-P for large κ471

to the fact that the CDFs of FENE-P belong to the canonical472

distribution subspaces every element of which has one peak. By473

contrast, it is not surprising that CDFs of FENE-QE are similar to474

the correct ones, because there exist double peak elements in its475

distribution function space. The L1 errors of CDFs of different476

models are given in Table 3. 477

We also compare the stresses and elastic energy. Because 478

the shear stress is equal to zero in this case, we only give the 479

normal stress difference and elastic energy in Figs. 8 and 9. We 480

can see that the normal stress difference and the elastic energy 481

of FENE-QE and FENE-QE-PLA are overlapped with those 482

of FP in the left plots of Figs. 8 and 9. When the double peak 483

dx.doi.org/10.1016/j.jnnfm.2007.10.013
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Table 3
Elongation flow: L1 error of the CDFs

κ FENE-P FENE-YDL FENE-QE FENE-QE-PLA

1 1.21 × 10−2 1.64 × 10−2 8.35 × 10−4 8.55 × 10−4

2 1.75 × 10−2 7.39 × 10−2 8.50 × 10−4 9.00 × 10−4

3 3.22 × 10−2 1.88 × 10−1 9.26 × 10−4 9.83 × 10−4

4 7.55 × 10−2 3.83 × 10−1 1.03 × 10−3 1.09 × 10−3

5 1.99 × 10−1 6.62 × 10−1 1.23 × 10−3 1.23 × 10−3

6 5.25 × 10−1 9.93 × 10−1 1.42 × 10−3 1.42 × 10−3

7
8

o484

d485

s486

5487

488

p489

i490

u491

o492

(493

494

N495

t496

o497

equation (10) is solved for an intermediate velocity which is 498

not necessarily divergence free. In the second stage, that veloc- 499

ity is revised by the pressure gradient, which is calculated by 500

solving a Poissonian equation with a Neumann boundary condi- 501

tion. The revised intermediate velocity is just the velocity on the 502

next time level, which should be divergence free. Since solving 503

the Poissonian equation consumes a substantial portion of the 504

total computing time in the projection method, the efficiency of 505

the Poissonian equation solver is crucial. Our program uses the 506

discrete cosine transform (DCT) to develop a fast solver. 507

The simulation area is a two-dimensional square cavity 508

[0, 1] × [0, 1] whose top wall moves with a velocity distribu- 509

tion of u(x, y = 1, t) = 16κa(t) x2(1 − x)2 as suggested by [6]. 510

Here κ is a constant and to start up the flow smoothly, a(t) is 511

chosen as a time-dependent factor: 512

a(t) =
{

0.1t 0 ≤ t < 10

1 t ≥ 10
(34) 513

A non-penetration boundary condition is adopted on the other 514

walls. The physical variables are discretized on a staggered grid 515

(also known as a MAC grid). This method poses the pressure 516

and second moment in the center of a grid cell and velocities 517

on the surfaces of a grid cell. Compared with the collocation 518

method that poses all physical variables on the vertices of a grid 519
1.01 × 100 1.46 × 100 1.65 × 10−3 1.73 × 10−3

1.32 × 100 1.74 × 100 2.43 × 10−3 2.44 × 10−3

f CDF forms (κ ≥ 6), results of FENE-P and FENE-YDL
eviate from FP greatly, while FENE-QE and FENE-QE-PLA
till give accurate values.

. Example: lid-driven cavity

The lid-driven cavity serves over and over again as a model
roblem for testing and evaluating numerical techniques in
ncompressible computational fluid dynamics. Here we will
se it to test the numerical performance of FENE-QE-PLA and
ther closure approximations in a coupled system (10), (11),
26) and (27).
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The method we used to discretize the incompressible
avier–Stokes equations (10) and (11) is the standard projec-

ion method [4]. Generally speaking, the solution is advanced
ne time step in two stages. In the first stage, the momentum

cell, this kind of discretization can avoid the loss of accuracy 520

and oscillation in pressure equations. Because of the lack of 521

diffusion terms in the dynamics of second moment (26), we have 522

to discretize u · ∇M using the upwind scheme. So the numerical 523

Fig. 8. Elongation flow: normal stress difference of different methods (left) and the error plot (right).

Fig. 9. Elongation flow: elastic energy of different methods (left) and the error plot (right).
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Fig. 10. Stream line of lid-driven cavity, κ = 1 at t = 40. BCF method (left) and FENE-QE-PLA method (right).

Fig. 11. Horizontal velocity distribution on line x = 1/2 (left) and its error plot (right), κ = 1 at t = 40.

flux on a vertical surface of a grid cell is524

Fvert =

⎧⎪⎨
⎪⎩

u
Ml

�x
u ≥ 0

u
Mr

�x
u < 0

(35)525

where Ml and Mr are the moments defined in the left and right526

cell on the surface, respectively. We choose the explicit Euler527

scheme to discretize the temporal term. The original FENE-528

QE closure approximation is too computationally expensive to529

simulate a lid-driven cavity, so we are evaluating only FENE- 530

QE-PLA. 531

We will consider the case κ = 1 and choose the physi- 532

cal parameters as Q0 = 1, n = 0.05, ν = 10−3, ζ = 40 and 533

H = 100. The results of the BCF method serve as an “exact” 534

solution to the problem. Since BCF is computationally expen- 535

sive, we only use a uniform 50 × 50 grid on the physical domain. 536

The number of independent samples is N = 4000. To reduce the 537

variance, the results of BCF are time averaged. The streamline 538

generated by the BCF method at time t = 40 is shown in Fig. 10 539

Fig. 12. Vertical velocity distribution on line y = 1/2 (left) and its error plot (right), κ = 1 at t = 40.

dx.doi.org/10.1016/j.jnnfm.2007.10.013
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Fig. 13. Contour plot of normal stress difference. From left to right are BCF, FENE-QE-PLA, FENE-P and FENE-YDL, respectively.

Fig. 14. Contour plot of shear stress. From left to right are BCF, FENE-QE-PLA, FENE-P and FENE-YDL, respectively.

(left). The streamline plots of the closure approximations show540

no significant differences from that of BCF, so we only show that541

of FENE-QE in Fig. 10 (right). A more detailed comparison of542

velocity fields is given in Figs. 11 and 12, which present the hor-543

izontal velocity distribution on x = 0.5 and the vertical velocity544

distribution on y = 0.5. From the velocity distribution shown in545

the left-hand plots in these figures, we can see that there does not546

exist any notable difference between the different closure meth-547

ods. The error plots of the velocity distributions are shown in548

the right-hand plots of Figs. 11 and 12. As to FENE-QE-PLA,549

FENE-P and FENE-YDL, the L2 errors of horizontal veloc-550

ity distribution on x = 0.5 are 4.84 × 10−4, 1.79 × 10−3 and551

3.20 × 10−3, respectively. While the errors of vertical veloc-552

ity distribution on y = 0.5 are 3.83 × 10−4, 1.76 × 10−3 and553

9.16 × 10−4. Therefore, we conclude that the FENE-QE-PLA554

is more precise than the other two closure approximations. This555

is the same conclusion we reached in the decoupled examples556

of shear flow and elongational flow. The stress tensor of these557

methods are presented in Figs. 13 and 14, and, again, there is no558

significant difference.559

The CPU time consumed by FENE-QE-PLA, FENE-P and560

FENE-YDL are 716, 96 and 102 s, respectively. The calculation561

of G−1 on grid points in the PLA algorithm is not taken into562

account here. While these experiments are carried out on a 3 GHz563

Intel Pentium IV CPU, the BCF consumed 1.7 × 104 × 10 s on564

ten 3.2 GHz Intel Xeon CPUs running in parallel. It is obvious565

that closure models can dramatically reduce the computational566

cost of simulating dilute polymer solutions. The FENE-QE-PLA567

takes more time than FENE-P and FENE-YDL, because it has568

to transform M into a diagonal form, to retransform M · R back569

to a full matrix and to execute the PLA process.

6. Conclusion 570

In this paper, we investigate four crucial properties for test- 571

ing and evaluating moment closure approximations of the FENE 572

dumbbell model for dilute polymer solutions. They are non- 573

negative CDF, energy dissipation, accuracy of approximation 574

and computational expense. The non-negativity of CDF is rela- 575

tively easy to discuss because the CDF of FENE-QE, FENE-P 576

and FENE-YDL can be written down explicitly. FENE-QE and 577

FENE-P have non-negative CDFs, while FENE-YDL does not. 578

Regardless of the background flow field, we have proved that 579

the energy dissipation behavior FENE-QE approximates that 580

of original kinetic theory. This result can be easily extended to 581

coupled systems that take the background flow field into account. 582

Although the energy dissipation property is not preserved by 583

FENE-YDL, it remains a good approximation when the state 584

is close to equilibrium [28]. For FENE-P, we cannot yet prove 585

the energy dissipation, but Hu and Lelièver [9] prove energy 586

dissipation by defining a different type of entropy. 587

We employ examples of shear flow and elongational flow 588

as simple tests for decoupled systems. FENE-QE provides good 589

precision to both CDF and stress tensor compared with the other 590

closure models. When the shear/elongational rate grows big, 591

the deviation of FENE-QE also increases, so it is not a good 592

approximation in the extreme cases. The classical test problem 593

in incompressible computational fluid dynamics, a lid-driven 594

cavity, is used in this paper as a test for coupled systems. Careful 595

comparisons of the resulting fluid field show that FENE-QE- 596

PLA has the best accuracy. 597

One important disadvantage of the original FENE-QE is its 598

high computational cost. The PLA technique we have introduced 599

dx.doi.org/10.1016/j.jnnfm.2007.10.013
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can reduces this cost by four orders of magnitude. Meanwhile,600

numerical results of shear flow and elongational flow show that601

introducing the PLA technique to FENE-QE does not reduce602

its accuracy. The computational cost of FENE-QE-PLA is still603

seven to eight times over that of FENE-P and FENE-YDL. This604

cost can be further reduced by a detailed analysis of G−1.605

Generally speaking, the FENE-QE-PLA model is a high606

quality closure approximation method recommend for com-607

puter simulation of dilute polymer solutions. Further research608

will focus on the relationship between the number of moments609

introduced and accuracy, and on a chain-shaped model as an610

extension to the dumbbell model.611
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[13] M. Laso, H.C. Öttinger, Calculation of viscoelastic flow using molecular 653

models: the CONNFFESSIT approach, J. Non-Newton. Fluid Mech. 47 654

(1993) 1–20. 655

[14] A.G. Lee, E.S.G. Shaqfeh, B. Khomami, A study of viscoelastic free surface 656

flows by the finite element method: Hele–Shaw and slot coating flows, J. 657

Non-Newton. Fluid Mech. 108 (2002) 327–362. 658

[15] G. Lielens, P. Halin, I. Jaumain, R. Keunings, V. Legat, New closure 659

approximations for the kinetic theory of finitely extensible dumbbells, J. 660

Non-Newton. Fluid Mech. 76 (1998) 249–279. 661

[16] G. Lielens, R. Keunings, V. Legat, The FENE-L and FENE-LS closure 662

approximations to the kinetic theory of finitely extensible dumbbells, J. 663

Non-Newton. Fluid Mech. 87 (1999) 179–196. 664

[17] A. Lozinski, C. Chauviere, A fast solver for Fokker–Planck equation 665

applied to viscoelastic flows calculations: 2D FENE model, J. Comput. 666

Phys. 189 (2003) 607–625. 667

[18] A. Lozinski, R.G. Owensa, J. Fangb, A Fokker–Planck-based numerical 668

method for modelling non-homogeneous flows of dilute polymeric solu- 669

tions, J. Non-Newton. Fluid Mech. 122 (2004) 273–286. 670
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