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Abstract

Non-equilibrium Green’s function (NEGF) is a general method for modeling non-equilibrium quantum transport in
open mesoscopic systems with many body scattering effects. In this paper, we present a unified treatment of quantum
device boundaries in the framework of NEGF with both finite difference and finite element discretizations. Boundary treat-
ments for both types of numerical methods, and the resulting self-energy R for the NEGF formulism, representing the dis-
sipative effects of device contacts on the transport, are derived using auxiliary Green’s functions for the exterior of the
quantum devices. Numerical results with both discretization schemes for an one-dimensional nano-device and a 29 nm
double gated MOSFET are provided to demonstrate the accuracy and flexibility of the proposed boundary treatments.
� 2008 Published by Elsevier Inc.
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1. Introduction

Numerical modeling of open quantum devices has become an indispensable tool to understand transport
physics of devices scaled down to nano-meters. Non-equilibrium Green’s function (NEGF) method is a com-
prehensive approach to address the quantum transport under biased external potential with many body and
impurity scattering and device boundary effects [1–3]. In the limit of quasi-particle approximations (weak
interaction between electrons and phonons and dilute impurities) and gradient approximations (slowly vary-
ing spatial and time external fields) [3], classical Boltzmann kinetic and drift diffusion formulations can be
both derived from the NEGF. Electron density matrix and current can be expressed easily in terms of Green’s
functions in a simple form [2,4]. Using NEGF, ballistic transport and scattering transport have been studied in
0021-9991/$ - see front matter � 2008 Published by Elsevier Inc.
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[5]. The simulation tool nanoMOS [6] is a two-dimensional simulator using finite difference method (FDM)
with NEGF. Mode-space method and real-space method are applied to double gate MOSFET simulation also
within the NEGF framework [7].

As the quantum devices are usually integrated into a larger system, treatments for device boundaries are
needed to limit the simulation size to reduce the cost of modeling using quantum mechanics. Therefore, it
is of critical importance to pose boundary conditions at the boundaries between the contacts and the device.
The effect of contacts on a device is usually described by a self-energy quantity R, which can be viewed as an
effective potential or effective Hamiltonian. Self-energy can be derived by restricting the infinite domain
Green’s function into a finite region [2]. In fact, self-energy R is closely related to the artificial boundary con-
ditions in the numerical solutions of NEGF [8,9]. For different numerical discretization of the Hamiltonian of
the quantum device, such as FDM or finite element method (FEM), self-energy takes on different forms [10]. It
is our objective in this paper to derive the explicit forms of the self-energies for both types of numerical dis-
cretizations in a unified manner.

In the numerical solutions of PDEs in a unbounded domain, artificial boundary conditions have been stud-
ied extensively in the application of FEM for stationary elliptic problems [11,12]. Also non-reflecting bound-
ary conditions for time dependent Schrödinger equations have received much attentions for applications such
as quantum physics [13,14], optic waveguide [15], and acoustics [16,17]. As those boundary conditions involve
time convolution type integral operators at the boundaries, various fast algorithms have been proposed
[13,18,19].

For electron transport in an open quantum system, traditional zero boundary condition and period bound-
ary condition are not appropriate for describing non-equilibrium states under biased external voltage. To ter-
minate the infinite exterior domain outside the device, several type of boundary treatments have been studied,
including the popular quantum transmitting boundary method (QTBM) [20,21] and, the recent application of
perfectly matched layer (PML) method [22]. In this paper, we will give a unified boundary treatment of open
quantum devices appropriate for different numerical discretization techniques of NEGF for quantum trans-
port. The QTBM will be a special case of our treatment for the finite element method of the NEGF. Exterior
auxiliary Green’s functions will be used to define the key quantity self-energy R, thus giving the proper bound-
ary treatments in the NEGF formulation with both finite difference and finite element discretizations. The
approach based on the exterior Green’s functions allows boundary treatments for quantum devices of general
shapes once the exterior Green’s functions are obtained analytically or numerically [23], and yields boundary
treatments suitable for FDM and FEM computations of NEGF.

The rest of the paper is organized as follows. In Section 2, we review some fundamental concepts of the
NEGF formalism and introduce the self-consistent iteration of coupled NEGF and Poisson equation to
address the space charge effects. The boundary treatments of NEGF with FDM and FEM discretizations,
using auxiliary exterior Green’s functions, are derived in Section 3 in one and two dimensions. The key step
is the calculation of the self-energy R which embodies the influence of the exterior geometry of the quantum
devices on the transport inside the devices. Finally, in Section 4, we will apply NEGF discretized by FDM and
FEM equipped with the derived boundary treatments to simulate nano-devices, and analyze the performance
of both methods. Section 5 contains the conclusions.

2. Non-equilibrium Green’s function (NEGF) formalism and self-consistent solution

In the frame of NEGF, the Green’s function for quantum transport in open systems is defined on the
domain X ¼ XD [

P
aXa

� �
which consists of the device and contacts, C ¼ oX, see Fig. 1. Here XD is the device

region, Xa is the region of contact a which extends to infinity, Ca ¼ CD \ oXa with CD ¼ oXD. For a given
energy E, the Green’s function is defined by
Plea
(200
ðE � HÞGðr; r0Þ ¼ dðr� r0Þ; r; r0 2 X; ð1Þ

where
H ¼ � �h2

2
r � 1

mðrÞr
� �

þ V ðrÞ ð2Þ
se cite this article in press as: H. Jiang et al., Boundary treatments in non-equilibrium Green’s ..., J. Comput. Phys.
8), doi:10.1016/j.jcp.2008.03.018
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Fig. 1. Sketch of device and contacts. XD is the device region enclosed by the bold curve, and Xa is the area of contact a with a ¼ 1; 2; . . ..
The boundary between XD and Xa is denoted by Ca, while the rest of oXa is Ca;0. CD ¼ oXD, and X is the whole region of the devices and the
contacts.
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E
Dis the Hamiltonian of the infinite system with an effective mass mðrÞ and the Planck’s constant 2p�h; V ðrÞ is the

potential energy. Here we assume that the Green’s function Gðr; r0Þ vanishes on the boundary C and satisfies
Sommerfeld radiation conditions at infinite [23]. In practice, only Green’s function of the device XD is neces-
sary, without the need for the details of the Green’s functions in the remaining infinite exterior domain. To
describe the coupling between the device and the contacts, a self-energy R quantity is introduced such that
(1) is reformulated as
Plea
(200
T

ðE � H 0 � RÞGðr; r0Þ ¼ dðr� r0Þ; r; r0 2 XD; ð3Þ
C
O

R
R

E
Cwhere H 0 is the Hamiltonian of the isolated device region XD, on which the actual computation will be done.

The concept of self-energy R is far more general: R ¼
P

aR
a þ Rs (in this paper, decoupling of the self-energies

from different contacts and scattering events is assumed). And, the summation is with respect to all contacts,
Ra accounts for the coupling between the device and contact a. The spatially distributed self-energy Rs de-
scribes the scattering inside the device (for example electrons–phonons or/and electrons–impurities) [1]. The
correct modeling of the bodily self-energy Rs has to be done in the framework of second quantization to in-
clude many body scattering effects. The governing equation of the Green’s function for the many body system
will be either given by the Kadanoff–Baym differential equations or Dyson integral equations [3]. Despite of
the complication from the modeling of the bodily self-energy Rs, the main differential equation for NEGF is
basically of the form in Eq. (3). This is the reason why we focus our study of quantum transport in this work
on Eq. (3), however, with the assumption Rs ¼ 0, i.e., ballistic transport regime.

The Green’s function and the self-energies are calculated with numerical methods for a given energy E. The
resulting approximate solutions are then in a matrix form denoted by a mathematical boldface style, such as
GðEÞ and RaðEÞ. Since the discretization of dðr� r0Þ gives an identity matrix I, we have
NGðEÞ ¼ EðEÞ �H0ðEÞ �
X

a

RaðEÞ
 !�1

: ð4Þ
UDenoting la the Fermi level associated to contact a, the non-equilibrium density matrix is then given by [2]
q ¼ 1

2p

Z þ1

�1

X
a

fFDðE � laÞAaðEÞdE; ð5Þ
where fFD is the Fermi–Dirac distribution function
fFDðE � laÞ ¼ 1þ exp
E � la

kBT

� �� ��1

ð6Þ
se cite this article in press as: H. Jiang et al., Boundary treatments in non-equilibrium Green’s ..., J. Comput. Phys.
8), doi:10.1016/j.jcp.2008.03.018
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with the Boltzmann constant kB and the temperature T. And, the spectral function AaðEÞ is given as
Plea
(200
AaðEÞ ¼ GðEÞCaðEÞGyðEÞ ð7Þ
with a broadening function CaðEÞ reflecting the dissipative effects on the transport from contact a, defined by
the imaginary part of the corresponding self-energy, i.e.
 FCaðEÞ ¼ iðRaðEÞ � ðRaðEÞÞyÞ: ð8Þ
OThe electron density nðrÞ is given by the diagonal elements of the density matrix and depends on the potential
V ðrÞ in the device. To account for the space charge effect, we have to use a self-consistent procedure with a
Poisson equation for the potential. The potential distribution is then determined by coupling NEGF and
the Poisson equation
 O�r � ðeðrÞrV ðrÞÞ ¼ eð�nðrÞ þ NdðrÞÞ; ð9Þ
TE
D

P
Rwhere NdðrÞ is the doping density, eðrÞ is the dielectric constant, and e is the electron charge. Appropriate

boundary conditions for V ðrÞ will be specified in Section 4 for the simulated devices.
The self-consistent iteration solution is obtained as follows:

Step I: Start with an initial potential distribution V ðrÞ ¼ V 0, let V j be the resulting potential of the jth
iteration, and we set to compute V jþ1.

Step II: For a given energy E, solve Green’s function GðEÞ and self-energies RaðEÞ based on V j, and then the
spectral function AaðEÞ.

Step III: Calculate the electron density nðrÞ by integrating the density matrix q with respect to the energy E. It
is noted that we need to repeat Step II for different sampling values of E for such an integration.

Step IV: Insert the electron density nðrÞ into the Poisson equation (9), and obtain a new potential, namely,
V jþ1.

Step V: Check kV j � V jþ1k < � (the given stop accuracy): if yes, stop; otherwise go to Step II.
R
E
C

Remark 1. In actual computation, there is no need to obtain the whole Green’s function, only some blocks of
the matrix G will be needed. This will be elaborated in Section 4.

Remark 2. Direct use of Eq. (9) leads to slow convergence. Instead, we will solve a nonlinear Poisson equation
by a Newton’s method [6].

Finally, the electron current between contacts 1 and 2, is given for a ballistic transport by [2]
R

I ¼ e

p�h

Z þ1

�1
T ðEÞðfFDðE � l1Þ � fFDðE � l2ÞÞdE; ð10Þ
O

where T ðEÞ is the transmission coefficient defined by
CT ðEÞ ¼ TraceðC1ðEÞGðEÞC2ðEÞGyðEÞÞ: ð11Þ
NWe can see that the most important quantities are the Green’s function GðEÞ and the dissipative broadening
function CaðEÞ (the imaginary part of the self-energy RaðEÞ), from which we will be able to compute experi-
mental observables such as current.
U

3. Computations with NEGF Methods and boundary treatments of open quantum devices

As we have seen in the last section, we need to evaluate G and Ra numerically. Different numerical discret-
ization will give different forms for the Green’s functions and the self-energies. Taking one-dimensional case as
an example, FDM and FEM will be considered in a uniform mesh � � � < x0 < x1 < x2 < � � � < xN < xNþ1 < � � �
with a grid spacing a (see Fig. 2). We need to know the values of the Green’s function Gðx; x0Þ at the nodes
x1 < x2 < � � � < xN inside the device XD ¼ ½x1; xN �, which means we will solve Eq. (3) instead of Eq. (1). Denote
se cite this article in press as: H. Jiang et al., Boundary treatments in non-equilibrium Green’s ..., J. Comput. Phys.
8), doi:10.1016/j.jcp.2008.03.018
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Fig. 2. One-dimensional discretization with a uniform mesh. a is the grid spacing. The computational domain XD (the device area) is
½x1; xN �. The unknowns are at the grid points xi with i ¼ 1; . . . ;N .
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O
OG ¼ ½Gi;j�N�N ¼ ½Gðxi; xjÞ�N�N the matrix of the unknown nodal values of the Green’s function corresponding

to the given mesh.

� NEGF with FDM For illustration, we will use a second-order central difference scheme to solve Eq. (1) in
XD by using the following difference formulas
Plea
(200
Ro

ox
1

m
ou
ox

� �
x¼xi

� 1

a2

uiþ1 � ui

miþ1=2

� ui � ui�1

mi�1=2

� �
; ð12Þ
where ui ¼ uðxiÞ and mi�1=2 ¼ m xiþxi�1

2

� �
; i ¼ 1; 2; � � � ;N . When i ¼ 1, the scheme becomes
P

o

ox
1

m
ou
ox

� �
x¼x1

� 1

a2

u2 � u1

m3=2

� u1 � u0

m1=2

� �
; ð13Þ
Dwhich means that we need to specify the nodal values u0 	 G0;j ¼ Gðx0; xjÞ in terms of Gi;jði ¼ 1; 2; � � � ;NÞ for
any given j 2 f1; 2; � � � ;Ng. If a relation is given as
 EG0;j ¼

XN

i¼1

x1
i Gi;j; ð14Þ
T

then, the self-energy R1 corresponding to the coupling between contact 1 and the device is
CR1
p;q ¼ �

�h2

2m1=2a2
x1

qdp;1; ð15Þ
Ewhere di;j is the Kroneckor notation. Similarly, the self-energy R2 coupling contact 2 and the device is
RR2
p;q ¼ �

�h2

2mNþ1=2a2
x2

qdp;N : ð16Þ
Meanwhile, the matrix H0 for the isolated device Hamiltonian H 0 is
U
N

C
O

R

H0 ¼ Vþ �h2

2a2

� 1
m1=2
� 1

m3=2

1
m3=2

0 � � � � � � 0

1
m3=2

� 1
m3=2
� 1

m5=2

1
m5=2

. .
. . .

. ..
.

0 1
m5=2

� 1
m5=2
� 1

m7=2

. .
. . .

. ..
.

..

. . .
. . .

. . .
. . .

.
0

..

. . .
. . .

. . .
.

� 1
mN�3=2

� 1
mN�1=2

1
mN�1=2

0 � � � � � � 0 1
mN�1=2

� 1
mN�1=2

� 1
mNþ1=2

266666666666666664

377777777777777775
ð17Þ
with V ¼ diagðV 1; V 2; . . . ; V NÞ.
Therefore, the device Green’s function GðEÞ is given by Eq. (4) with Eqs. (15)–(17), E ¼ EI.

� NEGF with FEM Denoting uiðxÞ as the shape function of FEM, we have
uiðxjÞ ¼ di;j; ð18Þ
se cite this article in press as: H. Jiang et al., Boundary treatments in non-equilibrium Green’s ..., J. Comput. Phys.
8), doi:10.1016/j.jcp.2008.03.018
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and the approximation of the Green’s function is then given as
Plea
(200
Ghðx; xjÞ ¼
XN

i¼1

Gi;juiðxÞ: ð19Þ
The weak form of Eq. (1) in XD with a test function uðxÞ implies
 F

OE

Z
XD

Ghudx� �h2

2

Z
XD

1

m
oGh

ox
ou
ox

dx�
Z

XD

VGhudx� �h2

2

1

m
oGh

ox
u

� �
x¼x1

� �h2

2
� 1

m
oGh

ox
u

� �
x¼xN

¼ uðxjÞ; ð20Þ
Owhere we have inserted the approximate function, and set the source x0 ¼ xj. If the following relations
hold
P
R

oGhðx1; xjÞ
ox

¼
XN

i¼1

-1
i Gi;j;

oGhðxN ; xjÞ
ox

¼
XN

i¼1

-2
i Gi;j; ð21Þ
then, the self-energies R1 and R2 will be just
E
DR1

p;q ¼
�h2

2m1

-1
qdp;1; ð22Þ

R2
p;q ¼ �

�h2

2mN
-2

qdp;N : ð23Þ
T

From the weak form (20), we also get the matrix form of H 0 as
C

H 0
p;q ¼

�h2

2

Z
XD

1

m

ouq

ox

oup

ox
dxþ

Z
XD

V uqup dx; ð24Þ
E

and
 R

E ¼ ES with Sp;q ¼
Z

XD

uqup dx: ð25Þ
U
N

C
O

R

Again, the device Green’s function GðEÞ in Eq. (4) is completely defined with Eqs. (22)–(25).
From the discussions above, we can see that the boundary relations (14) in FDM and (21) in FEM are nec-

essary for evaluating the self-energies and the Green’s functions. These relations actually are the boundary
conditions for the numerical methods to be used. In the following, we will utilize the auxiliary Green’s func-
tion gðr; r0Þ to derive such boundary conditions for both FDM and FEM discretization of the NEGF in a uni-
fied treatment.

First, we will make the following assumption about the contacts.

Assumption 1. In the contact, the potential V ðrÞ is invariant by translation along the transport direction and
the effective mass mðrÞ is independent of position.

In order to find suitable boundary conditions for Gðr; r0Þ on Ca, an auxiliary Green’s function gðr; r0eÞ is
defined by
ðE � HÞgðr; r0eÞ ¼ dðr� r0eÞ; r; r0e 2 Xa; ð26Þ
which can be viewed as the restriction of Eq. (1) onto the semi-infinite region Xa plus a yet to be determined
boundary condition on Ca. Here, the subscript ‘e’ denotes the exterior of the computational domain XD.
se cite this article in press as: H. Jiang et al., Boundary treatments in non-equilibrium Green’s ..., J. Comput. Phys.
8), doi:10.1016/j.jcp.2008.03.018
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Subtracting the product of Eq. (1) and gðr; r0eÞ from the product of Eq. (26) and Gðr; r0Þ with r0 2 XD, integrat-
ing with respect to r on Xa, and using the Green’s formula, we have
Plea
(200
O
O

F

Gðr0e; r0Þ ¼
Z

Xa

Gðr; r0Þdðr� r0eÞdr�
Z

Xa

gðr; r0eÞdðr� r0Þdr

¼
Z

Xa

�h2

2ma
ðr2gðr; r0eÞGðr; r0Þ � r2Gðr; r0Þgðr; r0eÞÞdr

¼
Z

oXa

�h2

2ma

ogðr; r0eÞ
on

Gðr; r0Þ � oGðr; r0Þ
on

gðr; r0eÞ
� �

ds

¼
Z

Ca

�h2

2ma

ogðr; r0eÞ
on

Gðr; r0Þ � oGðr; r0Þ
on

gðr; r0eÞ
� �

ds; ð27Þ
P
Rwhere ma is the effective mass in contact a and n is the normal vector exterior to the boundary oXa. Here we

have used the fact that ma is independent of position and both Gðr; r0Þ and gðr; r0eÞ satisfy Sommerfeld radiation
conditions at infinite and homogeneous Dirichlet conditions on Ca;0.

According to Eq. (27), by assuming different boundary conditions for the auxiliary Green’s function, we
find

(1) If gðr; r0eÞ ¼ 0 for r 2 Ca, i.e. homogeneous Dirichlet condition, then
D
Gðr0e; r0Þ ¼

Z
Ca

�h2

2ma

ogðr; r0eÞ
on

Gðr; r0Þds; r0e 2 Xa; r
0 2 XD; ð28Þ
E

(2) If ogðr;r0eÞ
on
¼ 0 for r 2 Ca, i.e. homogeneous Neumann condition, then
TGðr0e; r0Þ ¼ �

Z
Ca

�h2

2ma

oGðr; r0Þ
on

gðr; r0eÞds; r0e 2 Xa; r
0 2 XD: ð29Þ
C

Noting that the Green’s function satisfies the following continuity conditions [23] for r 2 Ca; r
0 2 XD,
EGðr�; r0Þ ¼ Gðrþ; r0Þ

1
mðr�Þ

oGðr�;r0Þ
on
¼ 1

mðrþÞ
oGðrþ;r0Þ

on
;

(
ð30Þ
U
N

C
O

R
R

where � (+) denotes the limit from the exterior (interior) of XD.

Remark 3. The continuity equation (30) needs some careful interpretation when both the source point r0 and
the field point r are on the device boundary Ca in deriving the device Green’s function of Eq. (4). For this case,
we will consider the source point r0 by a limiting process from inside the device toward the device boundary,
and in this way the continuity conditions (30) for the device Green’s function can be used on the device
boundary. This continuity is necessary to connect the values of the device Green’s function from both sides of
the device boundary, and obtain the self-energies Ra for the contacts in the rest of this paper.

Eqs. (28) and (29) yield boundary conditions for Gðr; r0Þ provided gðr; r0eÞ is known. These boundary con-
ditions will define the self-energy Ra corresponding to the contact Xa. Eq. (28) can be used in FDM to elim-
inate the unknowns at ‘‘ghost” points r0e in Xa outside the computational domain XD in terms of the solutions
at the boundary points r. Eq. (29) is the so-called Neumann-to-Dirichlet (NtD) mapping on Ca by letting
r0e ! ra with ra 2 Ca, and can be used in FEM to connect the solution and its normal derivative. In practice,
it is more convenient to use a Dirichlet-to-Neumann (DtN) mapping which is the inverse of Eq. (29). We could
get the DtN mapping as in [8] from Eq. (28). Differentiating Eq. (28) with respect to r0e, letting r0e ! ra and
taking the normal derivative at ra, we obtain
oGðra�; r0Þ
ona

¼ �h2

2ma

Z
Ca

o2gðr; ra�Þ
onaon

Gðr; r0Þds; ð31Þ
where na denotes the outward normal of XD at ra.
se cite this article in press as: H. Jiang et al., Boundary treatments in non-equilibrium Green’s ..., J. Comput. Phys.
8), doi:10.1016/j.jcp.2008.03.018
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F

We will use Eqs. (28), (29) and (31) to derive the self-energies Ra for each contact and then calculate the
Green’s function in Eq. (4). To illustrate the idea, we use a strip shape contact although the method is for more
general shape contact shown in Fig. 1. The analytical expressions for the auxiliary Green’s function in a strip
or a wedge shape can be found in the Appendix.

3.1. One-dimensional NEGF

For an ultra-small device with two large contacts (Fig. 2), the potential is given as
Plea
(200
O
O

V ðxÞ ¼
v1 �1 < x < x1

vðxÞ x1 6 x 6 xN

v2 xN < x < þ1;

8><>: ð32Þ
where va is the constant potential in contact aða ¼ 1; 2Þ. The corresponding Green’s function is defined by
R

E � V ðxÞ þ �h2

2

o

ox
1

m
o

ox

� �� �
Gðx; x0Þ ¼ dðx� x0Þ; x; x0 2 ð�1;þ1Þ: ð33Þ
D
P

As mentioned before, it is not necessary to compute the Green’s function in the infinite domain but only the
Green’s function inside the device. However, boundary conditions at x ¼ x1 and x ¼ xN are needed to compute
G and Raða ¼ 1; 2Þ, numerically. We will consider x ¼ x1, and the case of x ¼ xN can be handled in a similar
way. The auxiliary Green’s function gðx; x0eÞ is defined in the domain X1 ¼ ð�1; x1Þ (the contact 1 area) as
EE � v1 þ �h2

2m1

o2

ox2

� �
gðx; x0eÞ ¼ dðx� x0eÞ; x; x0e 2 X1: ð34Þ
C
T

� Boundary treatment for NEGF with FDM

Rewrite Eq. (28) as
 EGðx0e; x0Þ ¼
�h2

2m1

ogðx1; x0eÞ
ox

Gðx1; x0Þ; ð35Þ
Rwhich implies that
x1
i ¼

�h2

2m1

ogðx1; x0Þ
ox

di;1: ð36Þ
R
From the analytical expression (A.3) in the Appendix for gðx; x0eÞ in a strip shape contact, we have
Ox1
i ¼ expðik1aÞdi;1; x2

i ¼ expðik2aÞdi;N ; ð37Þ

where ka ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maðE�vaÞ

�h2

q
ða ¼ 1; 2Þ. According to Eqs. (15), (16) and (37), we obtain the self-energies
N
C

R1
p;q ¼ �

�h2

2m1a2
expðik1aÞdq;1dp;1; ð38Þ

R2
p;q ¼ �

�h2

2m2a2
expðik2aÞdq;Ndp;N ; ð39Þ
Uwhich agree with those given in [2].

� Boundary treatment for NEGF with FEM

Rewriting Eq. (29), we have
Gðx0e; x0Þ ¼ �
�h2

2m1

oGðx1; x0Þ
ox

gðx1; x0eÞ: ð40Þ
se cite this article in press as: H. Jiang et al., Boundary treatments in non-equilibrium Green’s ..., J. Comput. Phys.
8), doi:10.1016/j.jcp.2008.03.018
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Letting x0e ! x1 and noting Eq. (30), it becomes
Fig. 3.
The co
Dirich
q ¼ ði
unkno

Plea
(200
Gðx1; x0Þ ¼ �
�h2

2m1

oGðx1�; x0Þ
ox

gðx1; x1�Þ ¼ �
�h2

2m1

m1

m1

oGðx1þ; x0Þ
ox

gðx1; x1�Þ; ð41Þ
Fwhere m1 is the constant effective mass in contact 1 and m1 ¼ mðx1Þ. Using the analytical expression (A.4) of
gðx; x0eÞ in the Appendix, we can get
-1
i ¼ �ik1 m1

m1
di;1; ð42Þ
O

from which, the self-energy R1 for contact 1 is
OR1
p;q ¼ �

�h2

2m1
ik1dq;1dp;1: ð43Þ
Similarly, we can find the self-energy R2 for contact 2 as
 R

R2
p;q ¼ �

�h2

2m2
ik2dq;Ndp;N : ð44Þ
P
E
D3.2. Two-dimensional NEGF

If a two-dimensional quantum device is wide in y-direction, we can assume that Gðr; r0Þ is independent of y,
i.e. a function of ðx; zÞ only. We consider the ultra-small MOSFET simulation in the strip region X (see Fig. 3),
which consists of three sub-domains: the contact 1 area X1, the device area XD, and the contact 2 area X2. The
following notations and specifications will be used for the two-dimensional problem,
E
C

T
X ¼ X1 [ XD [ X2

X1 ¼ fðx; zÞjx 2 ð�1; x1Þ; z 2 ½0; L�g
XD ¼ fðx; zÞjx 2 ½x1; xNx �; z 2 ½0; L�g
X2 ¼ fðx; zÞjx 2 ðxNx ;þ1Þ; z 2 ½0; L�g
C1 ¼ oX1 \ oXD ¼ fðx; zÞjx ¼ x1; z 2 ½0; L�g
C2 ¼ oX2 \ oXD ¼ fðx; zÞjx ¼ xNx ; z 2 ½0; L�g
Ct ¼ fðx; zÞjx 2 ½�1;þ1�; z ¼ Lg
Cb ¼ fðx; zÞjj 2 ½�1;þ1�; z ¼ 0g
 R
U
N

C
O

R

Two-dimensional discretization with a uniform mesh (the gray lines). a is the grid spacing in x-direction, while b for y-direction.
mputational domain XD is the central area surrounded by the bold black lines. The width in z-direction is L. The homogeneous

let conditions on the top and bottom boundaries are used. The unknowns are at the grid points rq ¼ ri;j ¼ ðxi; zjÞ with
� 1ÞNz þ j; i ¼ 1; . . . ;Nx, j ¼ 1; . . . ;Nz, and q ¼ 1; 2; . . . ;N . N ¼ NxN z is the number of unknowns. We can see here the order of
wns is z-direction first.

se cite this article in press as: H. Jiang et al., Boundary treatments in non-equilibrium Green’s ..., J. Comput. Phys.
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As in the one-dimensional case, the computational domain is denoted as XD. Let L be the thickness of the
silicon layer, or the combined thickness of the silicon layer and the oxide layer if tunneling effects are to be
included. When electron tunneling into the oxide regions is neglected, the homogeneous Dirichlet conditions
can be used on the top and bottom boundaries. Assumption 1 for the contact means that the band structure is
independent of x in the contact area, thus, we have
Plea
(200
O
F

V ðrÞ ¼
v1ðzÞ r 2 X1

vðx; zÞ r 2 XD

v2ðzÞ r 2 X2;

8><>: ð45Þ
where r ¼ ðx; zÞ 2 X. The relevant Green’s function is defined by
 O

E � V ðrÞ þ �h2

2
r � 1

m
r

� �� �
Gðr; r0Þ ¼ dðr� r0Þ; r; r0 2 X; ð46Þ
P
Rwhere r ¼ ð o

ox ;
o
ozÞ. In order to get a finite discrete system, we need to give suitable boundary conditions on Ca,

to obtain the self-energies Raða ¼ 1; 2Þ as in the one-dimensional case. Let us only deal with C1 as an example,
i.e., the computation of R1. The calculation of R2 is similar. Again, we define an auxiliary Green’s function
gðr; r0eÞ, which satisfies in X1
DE � v1ðzÞ þ �h2

2m1
r2

� �
gðr; r0eÞ ¼ dðr� r0eÞ; r; r0e 2 X1: ð47Þ
E
C

TE
We will compute the self-energy R1 and the Green’s function G with both FDM and FEM. The unknowns are
at the nodes rq ¼ ri;j (see Fig. 3). For a given source r0 ¼ rq0 ¼ ri0 ;j0 , denoting Gq;q0 ¼ Gðrq; rq0 Þ and
G ¼ ½Gq;q0 �N�N , the unknown vector is the q0th column of G, with N ¼ N xNz the number of unknowns. We need
to solve one matrix system for each given source location. The notations Gi;j;i0;j0 ;Gi;j;q0 , and Gq;q0 will be used,
interchangeably.

� NEGF with FDM While using the second-order central difference scheme, we need boundary conditions
when computing the unknowns at C1. To compute G1;j;q0 (q0 is fixed), we should express G0;j;q0 using
Gq;q0 ; q ¼ 1; . . . ;N , j ¼ 1; . . . ;Nz. Suppose that we have a relationship as follows
RG0;j;q0 ¼
XN

q¼1

x1;j
q Gq;q0 ; ð48Þ
and, then
 R

R1
p;q ¼

� �h2

2m1=2;pa2 x1;p
q ; if p 2 f1; . . . ;Nzg

0; otherwise;

(
ð49Þ
C
O

where m1=2;p ¼ mðx0þx1

2
; zpÞ.

� NEGF with FEM The shape function uqðrÞ, corresponding to the node rq, satisfies
uqðrq0 Þ ¼ dq;q0 : ð50Þ
N

The approximate solution, for a given source point rq0 , can be written as
UGhðr; rq0 Þ ¼
XN

q¼1

Gq;q0uqðrÞ: ð51Þ
The weak form of Eq. (46) in the computational domain XD for any test function uðrÞ is then
E
Z

XD

Ghudr�
Z

XD

VGhudr� �h2

2

Z
XD

1

m
rGh � rudrþ �h2

2

Z
CD

1

m
oGh

on
uds ¼ uðrq0 Þ; ð52Þ
se cite this article in press as: H. Jiang et al., Boundary treatments in non-equilibrium Green’s ..., J. Comput. Phys.
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where Gh is the approximate solution, n is the outward unit normal of XD, and the source is located at rq0 .
Noting that XD is the rectangle region shown in Fig. 3, the surface integral in Eq. (52) can be rewritten as
Plea
(200
�h2

2

Z L

0

1

m
oGh

ox
u

� �����x¼xNx

x¼x1

dzþ �h2

2

Z xNx

x1

1

m
oGh

oz
u

� �����z¼L

z¼0

dx: ð53Þ
FThe second integral in Eq. (53) is zero due to the homogeneous Dirichlet conditions on Ct and Cb, while the
first one reads
 O� �h2

2

Z L

0

1

mðx1; zÞ
oGhðx1; z; rq0 Þ

ox
uðx1; zÞdzþ �h2

2

Z L

0

1

mðxNx ; zÞ
oGhðxNx ; z; rq0 Þ

ox
uðxNx ; zÞdz: ð54Þ
OWe will identify the self-energies with the above surface integrals. To compute R1ðR2Þ, we consider the first
(second) integral in (54). If we have a relation in the form of
RoGhðx1; z; rq0 Þ
ox

¼ bR1 � Ghðx1;~z; rq0 Þ; ð55Þ
Pnamely, the operator bR1 is exactly the DtN mapping on ~z 2 C1. Then, we can rewrite the first integral in (54) as
TE
D

�h2

2

Z L

0

1

mðx1; zÞ
oGhðx1; z; rq0 Þ

ox
uðx1; zÞdz ¼ �h2

2

Z L

0

1

mðx1; zÞ
ðbR1 � Ghðx1;~z; rq0 ÞÞuðx1; zÞdz

¼ �h2

2

Z L

0

1

mðx1; zÞ
R̂1 �

XN

q¼1

Gq;q0uqðx1;~zÞ
 ! !

uðx1; zÞdz

¼
XN

q¼1

Gq;q0
�h2

2

Z L

0

1

mðx1; zÞ
ðbR1 � uqðx1;~zÞÞuðx1; zÞdz; ð56Þ
from which, we can define the self-energy R1 as
 C

R1
p;q ¼

�h2

2

Z L

0

1

mðx1; zÞ
ðbR1 � uqðx1;~zÞÞupðx1; zÞdz: ð57Þ
R
E

� Boundary treatment for NEGF with FDM

Inserting the analytical expression of gðr; r0eÞ of Eq. (A.8) in the Appendix into Eq. (28), we obtain,
R

Gðx0e; z0e; x0; z0Þ ¼
Z L

0

Gðx1; z; x0; z0Þ
X

l

v1
l ðzÞv1

l ðz0eÞ expð�ik1
l ðx0e � x1ÞÞdz ð58Þ
Owith va
l ðzÞ and ka

l defined in the Appendix. From Eq. (58) with a Nz-point trapezoid rule for the integration
along C1, we have
U
N

CGðx0; zj; x0; z0Þ ¼
X

l

Z L

0

Gðx1; z; x0; z0Þv1
l ðzÞv1

l ðzjÞ expðik1
l aÞdz

�
X

l

XNz

~j¼1

bGðx1; z~j; x
0; z0Þv1

l ðz~jÞv1
l ðzjÞ expðik1

l aÞ

¼
XNz

~j¼1

X
l

bGðx1; z~j; x
0; z0Þv1

l ðz~jÞv1
l ðzjÞ expðik1

l aÞ; ð59Þ
from which we can see that
x1;j
q ¼

P
l

bv1
l ðzqÞv1

l ðzjÞ expðik1
l aÞ if q 2 f1; . . . ;Nzg

0 otherwise:

(
ð60Þ
se cite this article in press as: H. Jiang et al., Boundary treatments in non-equilibrium Green’s ..., J. Comput. Phys.
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Therefore, the self-energy R1 for the NEGF with FDM is
Plea
(200
R1
p;q ¼

� �h2

2m1a2

P
l

bv1
l ðzqÞv1

l ðzpÞ expðik1
l aÞ; if p; q 2 f1; . . . ;N zg

0; otherwise:

8<: ð61Þ
FTruncating the infinite series to a finite order M, we get the self-energy as
R1 ¼ QKQT; ð62Þ
Owhere
P
R

O

Q ¼

v1
1ðz1Þ v1

2ðz1Þ � � � v1
Mðz1Þ

v1
1ðz2Þ v1

2ðz2Þ � � � v1
Mðz2Þ

..

. ..
. ..

. ..
.

v1
1ðzNzÞ v1

2ðzNzÞ � � � v1
MðzNzÞ

0 0 � � � 0

..

. ..
. ..

. ..
.

0 0 � � � 0

2666666666666664

3777777777777775
N�M

ð63Þ
D
and
 EK ¼ � �h2b

2m1a2
diagðexpðik1

1aÞ; expðik1
2aÞ; . . . ; expðik1

M aÞÞM�M : ð64Þ
C
T

� Boundary treatment for NEGF with FEM

Using the analytical expression of gðr; r0eÞ from Eq. (A.8) in the Appendix into Eq. (31), we have
EoGðx1�; z0e; x0; z0Þ
ox

¼
Z L

0

Gðx1; z; x0; z0Þ
X

l

v1
l ðzÞv1

l ðz0eÞð�ik1
l Þdz: ð65Þ
RAccording to Eqs. (30) and (55), we arrive
RbR1 � uqðx1;~zÞ ¼
mðx1; zÞ

m1

Z L

0

uqðx1;~zÞ
X

l

v1
l ð~zÞv1

l ðzÞð�ik1
l Þd~z; ð66Þ
and then, the self-energy R1 for the NEGF with FEM is
C
O

R1
p;q ¼

�h2

2

Z L

0

1

mðx1; zÞ
mðx1; zÞ

m1

Z L

0

uqðx1;~zÞ
X

l

v1
l ð~zÞv1

l ðzÞð�ik1
l Þd~z

 !
upðx1; zÞdz

¼ �h2

2

X
l

�ik1
l

m1

Z L

0

v1
l ðzÞupðx1; zÞdz

� � Z L

0

v1
l ð~zÞuqðx1;~zÞd~z

� �
: ð67Þ
N
UTruncating the infinite series to a finite order M, we have the self-energy with FEM in the same matrix form as
Eq. (62). However, different expressions for Q ¼ ðQp;lÞN�M and K are given as follows,
Qp;l ¼
Z L

0

v1
l ðzÞupðx1; zÞdz; ð68Þ
and
K ¼ � i�h2

2m1
diag k1

1; k
1
2; . . . ; k1

M

� �
M�M :

ð69Þ
se cite this article in press as: H. Jiang et al., Boundary treatments in non-equilibrium Green’s ..., J. Comput. Phys.
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Remark 4. According to Eqs. (8) and (62), and using the fact that matrix Q is real, we can show that
Plea
(200
C1 ¼ QNQT; ð70Þ

where
N ¼ iðK� KyÞ: ð71Þ
F
Using Eqs. (64) or (69), we get the following decomposition
 OC1 ¼ !þð!þÞy � !�ð!�Þy: ð72Þ
For example, using (69), we rewrite Eq. (71) as
 O

N ¼ �h2

m1
diagðReðk1

1Þ;Reðk1
2Þ; . . . ;Reðk1

MÞÞ; ð73Þ
R

where ReðxÞ denotes the real part of x. Let Nþ ¼ ðNþi;jÞM�M and N� ¼ ðN�i;jÞM�M with
P

Nþi;j ¼
Ni;j if Ni;j P 0

0 otherwise

�
and N�i;j ¼

0 if Ni;j P 0

�Ni;j otherwise;

�
ð74Þ
we have N ¼ Nþ � N�, and then
 D

C1 ¼ Q

ffiffiffiffiffiffi
Nþ
p ffiffiffiffiffiffi

Nþ
p

QT �Q
ffiffiffiffiffiffi
N�
p ffiffiffiffiffiffi

N�
p

QT; ð75Þ
E
i.e. !� ¼ Q

ffiffiffiffiffiffi
N�
p

.

C
O

R
R

E
C

T

4. Simulation of one- and two-dimensional devices

The NEGF calculated in Section 3, will be coupled with a Poisson equation solved for a self-consistent solu-
tion in this section. Both FDM and FEM are applied to one- and two-dimensional coupled Poisson equation
and NEGF. The meshes are shown in Figs. 2 and 3, respectively. The second-order central difference scheme
and P1 finite element [8] will be used in FDM and FEM, respectively.

We need to compute the spectral function AaðEÞ which is expressed in terms of the Green’s function GðEÞ
and the broadening function CaðEÞ in Eq. (7). After computing self-energies in Section 3, we can easily get the
broadening function by Eq. (8). However, we only need to calculate part of the Green’s function matrix. Take
A1ðEÞ as an example.

� In one dimensional cases, noting that C1 is zero except C1
1;1 6¼ 0, therefore only the first column of G will be

used in calculating A1.
� In two dimensional cases, from the Remark 4 in Section 3, we know the decomposition C1 ¼ !!y (suppose

here N is non-negative for simplicity, i.e. ! ¼ !þ, for general case just repeat once for ! ¼ !� as in Eq.
(72)), and then A1 ¼ G!!yGy ¼ YYy with Y ¼ G! which means that
NðE�H0 �

X
a

RaÞY ¼ !: ð76Þ
UThe column number of ! is the truncation order M in z-direction. Only a few lowest sub-energy bands are
important, so only a few columns of ! are needed to obtain A1 by solving Eq. (76), instead of calculating
the whole Green’s function matrix G.

Due to the jump discontinuity of the doping function, the accuracy of regular central finite difference
scheme will degenerate at the interface between the high doping area and the low doping one. To improve
the precision, we smooth the doping function at the interface with a linear interpolation. The numerical results
show the effectiveness of this technique. The error at the interface of the doping function is less than elsewhere.
se cite this article in press as: H. Jiang et al., Boundary treatments in non-equilibrium Green’s ..., J. Comput. Phys.
8), doi:10.1016/j.jcp.2008.03.018
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4.1. One-dimensional device

Noting the space charge neutrality at the source (drain), the homogeneous Neumann boundary condition
will be used at x ¼ x1ðx ¼ xNÞ for the Poisson equation.

We consider the nþþ � nþ � nþþ device (Fig. 4) used in [4]. The parameters are: m ¼ 0:25m0;m0 ¼ 9:1�
1031 kg; e ¼ 10e0; e0 ¼ 8:85� 1012 Fm�1;N d ¼ 1020 cm�3 in the nþþ regions, each of which is 4.5 nm long,
and Nd ¼ 5� 1019 cm�3 in the 21 nm nþ region.

Let the bias be V ds ¼ 0:25 V. Fig. 5 is the density function of electron, and Fig. 6 is the potential distribu-
tion with both FDM and FEM. We can see here that the density and potential functions show no difference of
performance for FDM and FEM. To analyze these two methods further, numerical solution with fine enough
mesh, for example N ¼ 1600, is taken as a reference solution. For simplicity, equilibrium state i.e. the bias
V ds ¼ 0:0 V is considered. Fig. 7 is the potential distribution at equilibrium. As the mesh is refined, the poten-
tial error decreases. Figs. 8 and 9 indicate that the two numerical methods are convergent. Fig. 10 shows that
the FEM is more accurate than FDM, especially at the boundaries as expected.

To compute the convergence order numerically, let Ea be the L2 error corresponding to the cell size a. The

numerical convergence order is defined as log2
Ea

Ea=2

	 

. Table 2 lists the numerical convergence order of the two

numerical methods at the second order.

4.2. A 29 nm double gate MOSFET

The geometry of a double gate MOSFET is shown in Fig. 11 [6]. The width of the device is assumed to be
large, and the potential is invariant along y-direction. The silicon layer is sandwiched by two symmetric oxide
layers. Source and drain are doped heavily.
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Fig. 4. A one-dimensional device in [4]. We only consider the transport in x-direction.
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Fig. 5. One-dimensional device: the density function at bias V ds ¼ 0:25 V.
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Fig. 6. One-dimensional device: the potential distribution at bias V ds ¼ 0:25 V.
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Fig. 7. One-dimensional device: the potential distribution at bias V ds ¼ 0 V.
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Fig. 8. One-dimensional device: the convergence history of FDM.
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Fig. 9. One-dimensional device: the convergence history of FEM.
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Fig. 10. One-dimensional device: comparison between FDM and FEM.

Table 1
Double gate MOSFET: numerical convergence order for two-dimensional case

Method Convergence order

FDM 1.9018
FEM 1.9072

Table 2
One-dimensional device: numerical convergence order for one-dimensional case

N = 100 N = 200 N = 400 N = 800

FDM 3.3091 2.0174 2.0527 2.2939
FEM 1.9670 2.0013 2.0651 2.3193
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The Poisson equation is solved in the rectangle region ABCD including the silicon layer and the oxide layer
with the boundary condition
Plea
(200
V ðrÞ ¼ V g r 2 EF; GH
oV ðrÞ

on
¼ 0 r 2 AB; BG; HC; CD; DF; EA;

(
ð77Þ
P
R

O
O

Fwhere n is the outward normal of the rectangle region, and V g is the gate voltage. Here, electron penetration
into the oxide regions is neglected, so transport equation is considered only in the silicon layer, and the gate
voltage V g is imposed on gates EF and GH. The floating boundary condition, i.e. a homogeneous Neumann
condition, maintains macroscopic space charge neutrality at the source (drain) end despite of the biasing con-
dition. The rectangle region is taken as the computational domain for the Green’s function.

The bias voltage is set as V ds ¼ 0:4 eV. We analyze the numerical convergence order of FDM and FEM, by
taking the numerical result with a ¼ 0:15; b ¼ 0:05 as the reference solution. Table 1 gives the numerical con-
verge order of the two methods by comparing the results with a ¼ 0:9; b ¼ 0:2 and the results with
a ¼ 0:45; b ¼ 0:1. We obtain a second-order convergence.

Fig. 12 is the potential distribution under the gate bias V g ¼ 0:4 eV and drain bias V ds ¼ 0:4 eV, and Fig. 13
is the density distribution. Fig. 14 is the potential distribution at the center of the silicon layer with the two
numerical methods. To compare the precision of the two numerical methods, we also plot the absolute error
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Fig. 11. A ultra-thin double gate MOSFET structure. The computational region is the rectangle ABCD.
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Fig. 12. Double gate MOSFET: the potential distribution in the silicon layer. V g ¼ 0:4 eV;V ds ¼ 0:4 eV.
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Fig. 13. Double gate MOSFET: the density distribution in the silicon layer. V g ¼ 0:4 eV;V ds ¼ 0:4 eV.
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Fig. 14. Double gate MOSFET: the potential at the center of the silicon layer with FDM and FEM.
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Fig. 15. Double gate MOSFET: the absolute error of the potential at the center of the silicon layer with FDM and FEM.
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of the potential at the center of the silicon layer in Fig. 15. Numerical results show that FEM performs better
than FDM for the double gate MOSFET simulation.
O
O

F5. Conclusions

In this paper, we provide a unified treatment of the quantum device boundaries in the formalism of non-
equilibrium Green’s functions for quantum transport under biased external potentials. The boundary treat-
ments, namely, the device boundary self-energies R representing the influence of the quantum device geometry
on the transport, are obtained by using exterior auxiliary Green’s functions. Second-order FDM and FEM
discretizations of the NEGF are solved with a Poisson equation in a self-consistent iteration. Numerical
results demonstrated the accuracy and flexibility of the proposed boundary treatment of the quantum devices.
An improved computation for spectral function is applied to simulate a 29 nm double gate MOSFET.
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Appendix. Green’s function in contacts

The analytical expressions of gðr; r0Þ used in this paper are listed below. The interested readers can find some
similar derivations in [2,23] for more details.

One-dimensional contact

The retard Green’s function in the infinite one-dimensional wire satisfies
Plea
(200
C

E � va þ �h2

2ma

o2

ox2

� �
~gðx; x0Þ ¼ dðx� x0Þ; ðA:1Þ
E

the solution of which reads
 R~gðx; x0Þ ¼ ma

ika�h2
expðikajx� x0jÞ; ðA:2Þ
O
Rwhere va is a constant potential and ka ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maðE�vaÞ

�h2

q
. Then, the Green’s function defined in semi-infinite one-

dimensional wire with the end x ¼ d is

(1) if gðd; x0Þ ¼ 0, then
gðx; x0Þ ¼ ~gðx; x0Þ � egð2d � x; x0Þ; ðA:3Þ
C(2) if ogðd ;x0Þ
ox ¼ 0, then
gðx; x0Þ ¼ ~gðx; x0Þ þ ~gð2d � x; x0Þ: ðA:4Þ
U
N

Two-dimensional semi-infinite strip-shaped contact

The retard Green’s function in an infinite strip wire satisfies
E � vaðzÞ þ �h2

2ma
r2

� �
~gðr; r0Þ ¼ dðr� r0Þ; ðA:5Þ
the solution of which reads, for r ¼ ðx; zÞ and r0 ¼ ðx0; z0Þ
~gðr; r0Þ ¼
X

l

ma

ika
l �h

2
va

l ðzÞva
l ðz0Þ expðika

l jx� x0jÞ; ðA:6Þ
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where va
l ðzÞ satisfies
Fig. 16
0 < h <

Plea
(200
� �h2

2ma

o2

oz2
þ vaðzÞ

� �
va

l ðzÞ ¼ ka
l v

a
l ðzÞ; ðA:7Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
Fand ka
l ¼

2maðE�ka
l Þ

�h2 . It is noted that the normalized eigenfunctions are used here. Then, the Green’s function in
a semi-infinite strip wire with a straight line boundary x ¼ d is

(1) if gðd; z; r0Þ ¼ 0, then
 Ogðr; r0Þ ¼ ~gðx; z; r0Þ � ~gð2d � x; z; r0Þ; ðA:8Þ

(2) if ogðd;z;r0Þ

ox ¼ 0, then
 Ogðr; r0Þ ¼ ~gðx; z; r0Þ þ ~gð2d � x; z; r0Þ: ðA:9Þ
P
RTwo-dimensional semi-infinite wedge-shaped contact

The semi-infinite contact wedge-shaped area is shown in Fig. 16. The whole wedge is denoted byeXa ¼ fðr; hÞj0 < r < þ1; 0 < h < bg. The retard Green’s function in the infinite wedge area eXa satisfies
E � va þ �h2

2ma

1

r
o

or
r

o

or

� �
þ 1

r2

o2

oh2

� �� �
~gðr; h; r0; h0Þ ¼ dðr � r0Þdðh� h0Þ; ðA:10Þ
Dwith a homogeneous Dirichlet boundary condition on oeXa, the solution of which can be obtained by an image

approach proposed in [24]. Then, the Green’s function defined in the semi-infinite wedge contact Xa is given as
Egðr; h; r0; h0Þ ¼ ~gðr; h; r0; h0Þ � ehðr; hÞ; ðA:11Þ
Twhere ehðr; hÞ satisfies the same Eq. (A.10) but with zero RHS term and a homogeneous Dirichlet condition on
Ca;0. And,
ehðr; hÞ ¼ ~gðr; h; r0; h0Þ; ðr; hÞ 2 Ca; ðA:12Þ
C

for gðr; h; r0; h0Þ satisfying homogeneous Dirichlet condition on Ca, or
Eoehðr; hÞ
or

¼ o~gðr; h; r0; h0Þ
or

; ðr; hÞ 2 Ca; ðA:13Þ
Rfor gðr; h; r0; h0Þ satisfying homogeneous Neumann condition on Ca. The general solution of ehðr; hÞ is in the
form of
Rehðr; hÞ ¼X
l

clF lðkarÞ sin
lhp
b
; ðA:14Þ
where cl are undetermined coefficients,
O

ka ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2majE � vaj

�h2

s
; and F lðxÞ ¼

H ð2Þl ðxÞ E P va

KlðxÞ otherwise

(
ðA:15Þ
N
Cwith the Hankel function of the second kind H ð2Þl ðxÞ and the modified Bessel function of the second kind KlðxÞ.

For the small contact area in most applications, Ca can be assumed (or approximated) as an arc rðhÞ ¼ r0, and
using Eqs. (A.12) and (A.13), we have
U

. Semi-infinite wedge-shaped contact in the polar coordinates ðr; hÞ. Ca ¼ fðr; hÞjr ¼ rðhÞ; 0 6 h 6 bg;Xa ¼ fðr; hÞjrðhÞ < r < þ1;
bg, and Ca;0 ¼ fðr; hÞjrð0Þ 6 r < þ1; h ¼ 0; rðbÞ 6 r < þ1; h ¼ bg.
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(1) if gðr0; h; r0; h
0Þ ¼ 0, then
Plea
(200
cl ¼
2

bF lðkar0Þ

Z b

0

egðr0; h; r0; h
0Þ sin

lhp
b

dh; ðA:16Þ
(2) if ogðr0;h;r0 ;h
0Þ

or ¼ 0, then
 F

cl ¼
2

bkaðF lðkar0ÞÞ0
Z b

0

o~gðr0; h; r0; h
0Þ

or
sin

lhp
b

dh: ðA:17Þ
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

If Ca is a general curve shown in Fig. 16, a numerical approximation by a collocation method along Ca may
be used to find approximations for cl.
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