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Abstract. In this paper we develop a Stochastic Collocation Method (SCM) for flow
in randomly heterogeneous porous media. At first, the Karhunen-Loève expansion is
taken to decompose the log transformed hydraulic conductivity field, which leads to
a stochastic PDE that only depends on a finite number of i.i.d. Gaussian random vari-
ables. Based on the eigenvalue decay property and a rough error estimate of Stroud
cubature in SCM, we propose to subdivide the leading dimensions in the integration
space for random variables to increase the accuracy. We refer to this approach as adap-
tive Stroud SCM. One- and two-dimensional steady-state single phase flow examples
are simulated with the new method, and comparisons are made with other stochastic
methods, namely, the Monte Carlo method, the tensor product SCM, and the quasi-
Monte Carlo SCM. The results indicate that the adaptive Stroud SCM is more efficient
and the statistical moments of the hydraulic head can be more accurately estimated.
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1 Introduction

Geological formation material properties are ordinarily observed at a few locations al-
though they exhibit a high degree of spatial variability. This leads to uncertainty about
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the prediction of subsurface flow. In order to quantify the uncertainty, a stochastic de-
scription of the medium properties is needed. This brings the traditional porous medium
equations into stochastic partial differential equations (SPDE) [8, 23, 37], which possess
more interesting and challenging computational problems.

Monte Carlo (MC) simulation is one of the most natural approaches to solve SPDE. It
is a statistical method and the basic idea is to sample a large amount of realizations for the
random process and approximate the moments of interest with ensemble average. Thus
the number of realizations, which one chooses, controls the accuracy of MC simulation.
To ensure the convergence of the moments, typically a few thousand samples or more are
required, which is the main disadvantage of the direct sampling MC simulation.

An alternative approach is based on moment equations [10, 13, 20, 37]. This method
usually leads to a system of deterministic differential equations which govern the prop-
agation of the statistical moments of the random variables (fields). For deriving these
equations, the method of perturbation or some type of closure approximation is needed.
However, the computational effort is still high. To compute the hydraulic head covari-
ance to first order in the variability of the log hydraulic conductivity, one needs to solve
the deterministic equations for the cross-covariance between the hydraulic head and
the log hydraulic conductivity and those for the hydraulic head covariance. If higher-
order terms are included, the computational effort will increase dramatically. Zhang et
al. recently developed a Karhunen-Loève expansion based moment equation approach
(KLME) and applied this method to flows in porous media [5, 6, 17, 35, 38]. With this ap-
proach, the equations for the coefficients are uncoupled. One can obtain the high-order
terms of the mean and variance of hydraulic head with relatively small computational
efforts. The approach can be easily implemented with existing simulators. By these ad-
vantages, the KLME approach is generally more efficient than the traditional moment
equation approach.

A mathematically unified numerical approach for SPDE — Stochastic Finite Element
Method (SFEM) — is also under study and has been rapidly developed in recent years
[1, 2, 9, 12, 15]. This method employs the polynomial chaos expansion (PCE) for ran-
dom processes. After truncation in probability space, its formulation fits into the tradi-
tional spectral methods framework, which ensures exponential convergence in probabil-
ity space [1, 12, 31–33]. However, as the deterministic spectral methods, one must solve
a set of coupled equations for the deterministic coefficients of the PCE. This increases
the computational effort when the number of coefficients is large. In the original form
of PCE, it is based on the Hermite polynomial expansions in terms of Gaussian random
variables. Xiu et al. generalized the formulation into Wiener-Askey polynomial basis for
other types of random variables, which they called generalized polynomial chaos expan-
sion (gPC) [31–33].

To overcome the difficulty for solving the coupled system, the stochastic collocation
method (SCM) was first proposed by Tatang et al. [26]. It is successfully applied and
made more practical in [18, 29, 30, 34]. In this approach, the random variables are repre-
sented by Lagrange interpolation polynomials and one can derive an uncoupled system
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for the expansion coefficients at selected positions. The solution process is highly par-
allelizable and it is quite promising. For the current construction of SCM, the selected
points for the expansion coefficients are either tensor products of one dimensional Gaus-
sian quadrature points, which is computationally too expensive; or Stroud 2 or 3 quadra-
ture points, which is computationally inexpensive but not accurate enough; or Smolyak
sparse grids which is accurate enough and computationally acceptable but it is still de-
sirable to find more easily implementable methods. In this paper, we propose an efficient
and accurate candidate, to which we refer as adaptive Stroud SCM.

We combined the Karhunen-Loève expansion (KLE) with the Stroud SCM to present
a new method — the adaptive Stroud SCM — for uncertainty analysis of flow in random
porous media in this paper. Through the analysis for the one-dimensional problem, we
observe that the solution is smoother for high modes in probability space. A rough error
analysis of Stroud SCM suggests that the main error comes from the first-order derivative
with respect to the low modes in probability space. This motivates us to subdivide the
leading dimensions in KLE, and we apply Stroud SCM in these subdivided elements. It
can be viewed as a kind of mixture of the h-version FEM and the collocation method. This
approach is appealing because it results in independent deterministic differential equa-
tions, which can be easily implemented with existing codes, and it is accurate enough.
We applied the adaptive Stroud SCM to several cases of one- and two-dimensional flows
in random porous media, with different spatial variabilities and correlation lengths. The
comparisons with the MC, the tensor products SCM and the quasi-MC SCM are also per-
formed. The numerical results show the efficiency and accuracy of our proposed method.
Similar adaptive idea for SPDEs is also proposed in [27, 28] independently.

The rest of the paper is organized as follows. In Section 2, we first review the govern-
ing equations for random porous medium flow and the basics of the standard framework
for SCM. In Section 3, we review the KLE applied to the SPDE and how to transform it
into the standard SCM framework. Then we present our adaptive Stroud SCM in Section
4. In Section 5, we apply our method to one- and two-dimensional porous medium flow
and make comparisons to other methods. Finally we draw some conclusions.

2 Governing equations and standard SCM

2.1 Stochastic differential equations

The steady-state flow in saturated porous media with uncertainty satisfies the continuity
equation and Darcy’s law:

∇·q(ω,x)= g(ω,x), ω∈Ω, x∈D, (2.1)

q(ω,x)=−Ks(ω,x)∇h(ω,x), (2.2)
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subject to boundary conditions

h(ω,x)= H(ω,x), x∈ΓD, (2.3)

q(ω,x)·n(x)=Q(ω,x), x∈ΓN , (2.4)

where q(ω,x) is the specific discharge (flux), g(ω,x) is the source (or sink) term, Ks(ω,x)
is the hydraulic conductivity, and h(ω,x) is hydraulic head. H(ω,x) is the prescribed
head on Dirichlet boundary segments ΓD, and Q(ω,x) is the prescribed flux across Neu-
mann boundary segments ΓN. Here n(x) = (n1,··· ,nd)

T is the unit outer normal vector
on the boundary Γ = ΓD∪ΓN . All of the functions depending on ω∈Ω means that they
are random variables. In this case, the above system forms stochastic partial differential
equations (SPDE), which possess many challenging computational problems [37]. For
simplicity, we will in this paper only consider the uncertainty coming from Ks.

2.2 Review of standard SCM formulation

Suppose a SPDE only depends on random variables ξ=(ξ1,ξ2,··· ,ξN)T which take values
in the space P after suitable discretization of the probability space Ω. In an abstract form
we denote it as

L(u;ξ,x)= f (ξ,x), ξ∈P,x∈D, (2.5)

where L is an operator acting on u and depending on the spatial coordinates x and the
random vector ξ, and f is a known function. Here we omit the boundary conditions
for simplicity. Suppose ξ has probability density ρ(θ), where θi is the dummy variable
corresponding to ξi (1≤ i≤N). In the numerical solution, Eq. (2.5) is usually represented
in a weak form: To seek u(θ,x)∈V such that

∫

P
ρ(θ)L(u;θ,x)v(θ)dθ=

∫

P
ρ(θ) f (θ,x)v(θ)dθ, ∀v(θ)∈W, (2.6)

where V is called the trial function space, and W is called the test function space. The
specification of V and W forms different choices of stochastic finite element or collocation
methods for SPDE in probability space [12,15]. The obtained system depends on x, which
can be further discretized in the space D to get the final numerical solution.

The construction of standard SCM is based on polynomial approximation in the space
P. For simplicity of exposition we suppose P=[−1,1]N and Θ={θi}M

i=0⊂P be a set of pre-
scribed interpolation nodes. Denote by {Li(θ)}M

i=0 the corresponding Lagrange interpo-
lation basis functions. For any function u(θ)∈C(P), define the polynomial interpolation
I(u) as

I(u)(θ)=
M

∑
i=0

u(θi)Li(θ). (2.7)

Now we define

V =span{Li(θ)}M
i=0, W =span{δ(θ−θi)}M

i=0, (2.8)
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we obtain the SCM discretization of Eq. (2.6),

L(ui(x);θi,x)= f (θi,x), (2.9)

where ui(x)=u(θi,x). Note that this system is decoupled and formally does not depend on the
choice of the basis functions. Furthermore, we can approximate the mean and variance of
the function u through (2.7),

〈u(ξ)〉 =
∫

P
u(θ)ρ(θ)dθ≃

M

∑
i=0

u(θi)
∫

P
Li(θ)ρ(θ)dθ=

M

∑
i=0

uiwi, (2.10)

Var(u(ξ)) =
∫

P
u2(θ)ρ(θ)dθ−

(

∫

P
u(θ)ρ(θ)dθ

)2

≃
M

∑
i=0

u2(θi)
∫

P
Li(θ)ρ(θ)dθ−

( M

∑
i=0

u(θi)
∫

P
Li(θ)ρ(θ)dθ

)2

=
M

∑
i=0

u2
i wi−

( M

∑
i=0

uiwi

)2
, (2.11)

where {wi}M
i=0 are the corresponding quadrature weights.

In summary, the numerical solution of a SPDE is transformed into a high-dimensional
quadrature problem with SCM. And the construction of a concrete SCM is composed of
two sets of parameters: the interpolation nodes and the quadrature weights. In the next
subsections, we will discuss some existing choices and develop a new method in Section
4.

2.2.1 Tensor product of one-dimensional nodal sets

The tensor product of one-dimensional quadrature points is a natural choice of the nodal
set. When N = 1, there are many good interpolation formulas for smooth functions
u : [−1,1] → R, i.e., for each direction i = 1,··· ,N, we can construct a one-dimensional
interpolation

Ii(u)=
mi

∑
k=1

u(θk
i )·ak

i (2.12)

based on nodal sets
Θi =(θ1

i ,··· ,θmi
i )⊂ [−1,1], (2.13)

where ak
i = ak(θi) is the 1D interpolation basis polynomial at θk

i . The quadrature weights
can be easily found from standard numerical analysis book [22]. For the multivariate
case, the nodal set is taken as the tensor product Θ1⊗···⊗ΘN , and the interpolation
polynomial

I(u)≡ (I1⊗···⊗IN)(u)=
m1

∑
k1=1

···
mN

∑
kN=1

u(θk1
1 ,··· ,θkN

N )·(ak1
1 ⊗···⊗akN

N ). (2.14)
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It is easy to extend the Lagrange formulas to this case, as can be found in [3, 14].
However, if we use the same interpolating function (2.12) for each dimension with the
same number of points, i.e., m1 = ···=mN≡m, the total number of points is M=mN. This
number grows quickly in high dimensions with N ≫ 1. This property makes the tensor
product nodal set difficult to be implemented practically.

2.2.2 Quasi-Monte Carlo method

Another natural choice of the nodal set for high-dimensional integration in a cube is
quasi-Monte Carlo method (QMC) [21,22]. After generating deterministic quasi-random
numbers, for example the Sobol, Halton or Faure sequence, QMC approximates the in-
tegration through a sample average with equal weight for each node. Mathematically,
suppose Θ = {θi}M

i=0 ⊂ [0,1]N be a prescribed quasi-random sequence, we can approxi-
mate the integration of the function u as

∫

[0,1]N
u(θ)dθ≃ 1

M+1

M

∑
i=0

u(θi). (2.15)

For the Gaussian random variables or the random variables taking values in [−1,1]N , we
can make a straightforward change of variable to the case considered above. This will be
discussed later in detail.

2.2.3 Stroud-2 cubature method

For P = [−1,1]N , Stroud constructed a set of cubature points with (N+1)-point that is
accurate for multiple integrals of polynomials of degree 2 [25]. The degree 2 formula,
termed the Stroud-2 method hereafter, consists of points {θi}N

i=0 such that

θ2r−1
i =

√

2

3
cos

2riπ

N+1
, θ2r

i =

√

2

3
sin

2riπ

N+1
, r=1,2,··· ,[N/2], (2.16)

where [N/2] is the greatest integer not exceeding N/2, and if N is odd θN
i =(−1)i/

√
3.

The quadrature weight is wi =1/(N+1), i=0,1,··· ,N.
The Stroud-2 method employs the minimal number of points for its corresponding

algebraic accuracy [19]. The method is quite simple and easy to implement, but once N
is prescribed, there is no way to decrease the error by adding more collocation points,
which is a drawback of this method. One basic motivation of our work is to improve the
Stroud method with relative simple strategy.

3 KL based SCM for porous media flow

3.1 Karhunen-Loève expansion

Let Y(ω,x)= ln[Ks(ω,x)] be a random field. One may write Y(ω,x)=〈Y(ω,x)〉+Y′(ω,x),
where 〈Y(ω,x)〉 is the mean and Y′(ω,x) is the fluctuation. In practice, Y′(ω,x) is usually
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approximated as a Gaussian random field. Its spatial structure may be described by
the covariance function CY(x1,x2)= 〈Y′(ω,x1)Y′(ω,x2)〉. Since the covariance function is
bounded, symmetric and positive-definite, it may be decomposed as [7]

CY(x1,x2)=
∞

∑
n=1

λn fn(x1) fn(x2), (3.1)

where λn and fn(x) are called eigenvalues and eigenfunctions, respectively, and fn(x) are
orthogonal and deterministic functions that form a complete set [16],

∫

D
fn(x) fm(x)dx=δnm, n,m≥1. (3.2)

Eigenvalues and eigenfunctions can be solved from the following Fredholm equation:

∫

D
CY(x1,x2) f (x2)dx2 =λ f (x1). (3.3)

Then the random process Y(ω,x) can be expressed as

Y(ω,x)= 〈Y(ω,x)〉+
∞

∑
n=1

αn

√

λn fn(x), (3.4)

where αn are independently, and identically distributed (i.i.d.) Gaussian random vari-
ables with mean zero and variance one. The expansion in Eq. (3.4) is called the Karhunen-
Loève expansion. This expansion, which is a spectral expansion, is optimal in the sense
of mean square convergence [12].

Although, in general, the eigenvalue problem (3.3) has to be solved numerically, λn

and fn(x) can be found analytically for some special types of covariance functions. If a
one-dimensional stochastic process with a covariance function,

CY(x1,x2)=σ2
Y exp(−|x1−x2|/η), (3.5)

where σ2
Y and η are the variance and the correlation length of the process, respectively,

the eigenvalues and their corresponding eigenfunctions can be expressed as in [12, 38],

λn =
2ησ2

Y

η2ω2
n+1

, (3.6)

and

fn(x)=
1

√

(η2ω2
n+1)L/2+η

[ηωn cos(ωnx)+sin(ωnx)], (3.7)

where ωn are positive roots of the characteristic equation

(η2ω2−1)sin(ωL)=2ηωcos(ωL). (3.8)
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So we have the derivative of the eigenfunction with respect to x as

f ′n(x)=
1

√

(η2ω2
n+1)L/2+η

[−ηω2
n sin(ωnx)+ωncos(ωnx)]. (3.9)

Eq. (3.8) has an infinite number of positive roots. Sorting these roots ωn in an increasing
order, the related eigenvalues λn are monotonically decreasing. The decay rate of λn de-
termines the number of terms that are retained in the Karhunen-Loève expansion, which
equals the random dimensionality of our problem.

For problems in two dimensions, we suppose that the covariance function is

CY(x,y)=σ2
Y exp(−|x1−y1|/η1−|x2−y2|/η2)

for a rectangular domain D={(x1,x2):0≤x1≤L1,0≤x2≤L2}. Eq. (3.3) can be solved inde-

pendently for x1 and x2 directions to obtain the eigenvalues λ
(1)
n and λ

(2)
n , and the eigen-

functions f
(1)
n (x1) and f

(2)
n (x2). These eigenvalues and eigenfunctions are then combined

to form the eigenvalues and eigenfunctions of CY:

λn =
4η1η2σ2

Y

[η2
1(ω

(1)
i )2+1][η2

2(ω
(2)
j )2+1]

, (3.10)

fn(x)= fn(x1,x2)= f
(1)
i (x1) f

(2)
j (x2), (3.11)

where ω
(1)
i and ω

(2)
j are two series of positive roots of (3.8) using parameters (L1,η1) and

(L2,η2), respectively. Here we assume that the indices i and j are mapping to the index n
in such a way that the λn form a nonincreasing series.

3.2 Transforming to SCM framework

Truncating Eq. (3.4) with N+1 terms, we reduce the original system into a SPDE only
depending on α1,··· ,αN . Denote the cumulative distribution function (CDF) of αi by F(α)
and suppose that

F(α)=2F(α)−1. (3.12)

It is straightforward to see ξi = F(αi) is uniformly distributed in [−1,1]. Then Y(ω,x) can
be approximated as

Y(ξ,x)= 〈Y(ω,x)〉+
N

∑
i=1

F−1(ξi)
√

λi fi(x). (3.13)

This transforms to the standard setup for SCM. With chosen quadrature nodes {θi}M
i=0,

we have the following SCM form,

∇·q(θi,x)= g(x), x∈D, (3.14)

q(θi,x)=−exp(Y(θi,x))∇h(θi,x), (3.15)
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subject to the boundary conditions

h(θi,x)= H(x), x∈ΓD, (3.16)

q(θi,x)·n(x)=Q(x), x∈ΓN . (3.17)

We will apply the numerical discretization to the 1D and 2D cases for this system in
Section 5.

4 Adaptive Stroud SCM

4.1 Exact solution for 1D case

Let us first consider one-dimensional flow and assume the forcing term g(x) to be zero.
Hence the governing equation of the flow can be expressed as

d

dx

[

exp(Y(ω,x))
d

dx
h(ω,x)

]

=0, (4.1)

with the boundary conditions,

h(ω,x)= H0, x=0; h(ω,x)= HL, x= L, (4.2)

where Y(ω,x)= lnKs(ω,x). It is not difficult to get the analytic solution of Eqs. (4.1) and
(4.2),

h(ω,x)=(HL−H0)

∫ x
0 exp(−Y(ω,y))dy

∫ L
0

exp(−Y(ω,y))dy
+H0, x∈ [0,L]. (4.3)

If Y(ω,x) is approximated with KL expansion (3.13), then we take differentiation with
respect to ξi to obtain

∂h(ξ,x)

∂ξi
=−

√

λi(HL−H0)
dF−1(ξi)

dξi
· (Gi(ξ,x)H(ξ,L)−Gi(ξ,L)H(ξ,x))

(H(ξ,L))2
, (4.4)

where

Gi(ξ,x)=
∫ x

0
exp(−Y(ξ,y)) fi(y)dy, (4.5)

H(ξ,x)=
∫ x

0
exp(−Y(ξ,y))dy. (4.6)

On the other hand, from Eq. (3.8) one can find the solutions ωn∼nπ/L for large n, which
means that λn defined by (3.6) decreases at a rate of 1/n2. The definition of eigenfunc-
tions, (3.7), shows | fn(x)| are bounded. So formally we get the smoothness information
of h in the space for random variables

∣

∣

∣

∂h(ξ,x)

∂ξi

∣

∣

∣
∼O

(1

i

)

, i=1,2,··· ,N, (4.7)
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after ignoring some common factors for different i. One can see from (4.7) that h(ξ,x) is
smoother in the ξi-direction when i is large. Similar estimates can also be obtained for
second-order derivatives to ξ,

∣

∣

∣

∂2h(ξ,x)

∂ξi∂ξ j

∣

∣

∣
∼O

( 1

ij

)

, i, j=1,2,··· ,N. (4.8)

This information is our basic motivation for a modified Stroud method. A more rigorous
analysis on the eigenvalue decay of KL expansion can be found in [24].

4.2 Adaptive Stroud collocation method

A rough analysis [11] shows that the Stroud cubature error depends on the first and
second derivatives of the integrand. The analysis in the last subsection suggests that
the leading error terms come from the first derivative with respect to ξi when i is small.
This heuristic estimate is quite instructive for constructing new methods. Recalling the
drawback of the direct Stroud method is that there is no way to decrease the error by
adding more collocation points if the dimension N is prescribed, we propose to improve
the Stroud method as follows. To get a more accurate result, we need to subdivide the
space [−1,1]N into some small parts and take the integral in each part. But the crux of the
matter is to just subdivide the leading dimensions of h in the θ space since the variation in the
remaining dimensions is relatively smooth on the basis of the analysis (4.7). This technique is
only applicable to cases where the spatial structure of the underlying random fields (like
the hydraulic conductivity in our example) is known a priori, such as with the KL-type
expansion. We call this modified algorithm — adaptive Stroud collocation method.

Mathematically, let {Pj}K
j=1 express the partitions of P. By affine transformation, using

the collocation points of the Stroud-2 method, one can get the points in Pj, {θ
j
i}N

i=0. So the
approximations about the mean and variance of h(ξ) are

〈h(ξ)〉=
∫

[0,1]N
h(θ)ρ(θ)dθ≃ 2N

K(N+1)

N

∑
i=0

K

∑
j=1

h(θ
j
i)ρ(θ

j
i), (4.9)

Var(h(ξ))

=
∫

[0,1]N
h2(θ)ρ(θ)dθ−

(

∫

[0,1]N
h(θ)ρ(θ)dθ

)2

≃ 2N

K(N+1)

N

∑
i=0

K

∑
j=1

h2(θ
j
i)ρ(θ

j
i)−

( 2N

K(N+1)

N

∑
i=0

K

∑
j=1

h(θ
j
i)ρ(θ

j
i)

)2
. (4.10)

We will apply this method to the steady-state porous media flow in Section 5. The
results will be presented in detail there.
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4.3 Summary

From the previous analysis we conclude:

1. The Stroud-2 SCM presents the best choice of collocation points to get the degree
of exactness 2. However, there is no way to improve the accuracy for the standard
Stroud method. In order to get a better result, we propose the adaptive Stroud
collocation method to divide the leading dimensions of h in the θ space.

2. Assume M′, the number of dimensions, to be divided and I the partition number
for each dimension, we often take I and M′ small in practice, which does not in-
crease the computational effort very much. And it is enough to decrease the error
in evidence, as is shown in Section 5. For the concrete choice of I and M′, we get
them by the energy ratios. The details will be shown in Section 5.

5 Results and discussions

5.1 Illustrative examples in 1D

In this and the following subsections we present numerical examples to illustrate the KL
based adaptive Stroud SCM and examine its validity and applicability to flow in porous
media.

At first, we consider a one-dimensional domain of length L = 10.0[L] (where [L] de-
notes any consistent length unit). The boundary conditions are prescribed heads at the
two ends, H0=7.0[L] and HL=5.0[L]. The mean of the log hydraulic conductivity is given
as 〈Y〉=0.0. In the first example, the variance is σ2

Y=1.0 and the correlation length η=4.0.
The eigenvalues and eigenfunctions, λn and fn(x) (n = 1,2,···), can be determined

analytically by solving Eqs. (3.6) and (3.7). The eigenvalues are monotonically decreasing
as illustrated in Fig. 1(a) for cases with different correlation lengths (η=2 and 4). Fig. 1(b)
shows the sum of eigenvalues as a function of the number of included terms. From
Eq. (3.1) we have

σ2
Y =

∞

∑
n=1

λn f 2
n (x).

Since { fn(x)} forms a complete basis, we have

meas(D)σ2
Y =

∞

∑
n=1

λn

by integration, where meas(D) is the measure of the domain size (length, area, or vol-
ume for 1D, 2D, or 3D domains, respectively). On the other hand, λn expresses the en-
ergy and input information of random for each term. Usually, to assure that enough
random information is included, we suppose the ratio of input energy to total energy,

∑
N
n=1λn/(meas(D)σ2

Y), is larger than a constant β1. Owing to the rapid decay, we take
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Figure 1: Series of eigenvalues (a) and their finite sums (b), for η = 4.0 and η = 2.0, σ2
Y =1.0.
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Figure 2: Comparisons of the mean and variance of hydraulic head derived from MC, and SCMs, for η = 4.0

and σ2
Y =1.0.

β1 = 0.8 in the computation, which means only the first 3 terms are retained in the KL
expansion for η =4.0. So we have a three-dimensional space for the random variables ξ.

In the computations, we apply the finite difference method to solve Eq. (4.1) and 41
physical nodes are chosen for all SCMs. For the adaptive Stroud SCM, in order to ensure
the subdivided leading dimensions cover enough input random information, we suppose

the energy ratio of ∑
M′
n=1λn/∑

N
n=1λn is larger than a constant β2. Like β1, we take β2 =0.8

in the computation. This means only the first 2 dimensions are needed to be subdivided
when η =4.0 and we choose to halve these dimensions.

Figs. 2(a) and 2(b) show the mean and variance of hydraulic head, respectively, ob-
tained from SCM with Stroud, adaptive Stroud, tensor products of 4 Gauss points, tensor
products of 8 Gauss points, QMC as well as the direct sampling Monte Carlo method.
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Figure 3: The mean and variance of hydraulic head derived from 4 sets of Monte Carlo simulations, corresponding
to 16, 100, 1000, and 10,000 realizations, for η = 4.0 and σ2

Y =1.0.

There is a solution of the ′2∗2′ adaptive Stroud SCM, where ′2 means the first two dimen-
sions of the random variable ξ are subdivided, and 2′ means each dimension is divided
into 2 parts. Correspondingly, ′2∗3′ means that each dimension is divided into 3 parts
for the first 2 dimensions of ξ, etc.

Since only 3 terms are retained in the KL expansion in this case, the Stroud SCM
needs 4 collocation points. For the ′2∗2′ adaptive Stroud SCM, the number of collocation
points needed is 16. The SCMs with tensor products and QMC use 64 and 100 collocation
points, respectively. To obtain an accurate solution for comparison, we solve the same
problem with the direct sampling Monte Carlo method. We truncate the KL expansion to
3 terms as before to generate the random field of the log hydraulic conductivity based on
Eq. (3.4) and make 10,000 realizations in the Monte Carlo simulation to ensure statistical
convergence and thus accurate results, which are used as the benchmarks in our study.

Comparisons on computational efforts and the accuracy are made among SCMs and
Monte Carlo method. Since the computational efforts for solving Eq. (4.1) for each collo-
cation point in SCMs is the same, the computational complexity is decided by the number
of collocation points, i.e., the number of simulations.

Fig. 3 illustrates 6 sets of Monte Carlo simulations, corresponding to 16, 100, 1000,
10000, 20000 and 50000 realizations. It can be found that Monte Carlo simulations with 16
or 100 realizations can not obtain statistically accurate results and that even 1000 realiza-
tions are not enough compared to the Monte Carlo results with 10,000 realizations. More
realizations improve little which is indistinguishable with eyes. We will take 10,000 re-
alizations for the latter computations. As we have mentioned, only 16 collocation points
simulations are needed in the ′2∗2′ adaptive Stroud SCM, it is much less than the number
of realizations needed in Monte Carlo method. Obviously, the adaptive Stroud SCM is far
more efficient than Monte Carlo method. Both the Monte Carlo method and the adap-
tive Stroud SCM involve sampling. The difference is that in the Monte Carlo method



Y. Ding, T. Li, D. Zhang and P. Zhang / Commun. Comput. Phys., 4 (2008), pp. 102-123 115

realizations are generated randomly, whereas in the adaptive Stroud SCM a structural
expression (the polynomial interpolation) of the output random field is generated at first
and then the collocation points are adopted according to the adaptive Stroud method.

As we know, the Gauss-Legendre formula has the best algebraic accuracy in 1D. From
Section 2.2.1, even we only use 4 Gauss cubature points in every random dimensions, 64
collocation points are needed in the tensor product SCM for this case. It is more than the
double of the computational effort for the ′2∗2′ adaptive Stroud SCM. However, from
Fig. 2(b), the result of the adaptive Stroud SCM is better. The tensor product with 8 Gauss
points in each direction gives highly accurate solution, which matches the MC solution
quite well. But the computational effort is too large compared with our adaptive Stroud
method. From Fig. 2(b), the adaptive Stroud’s result is also better than that of QMC.
So the adaptive Stroud SCM efficiently decreases the error of Stroud-type method and it
needs the least number of collocation points.

Owing to the particular boundary conditions in our examples, the mean head ob-
tained from different approaches are very close to each other. We thus focus our discus-
sion only on the head variance in the following subsections.
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Figure 4: Comparisons of head variance derived from SCMs and MC, with different spatial variability, for η =
4.0.

To further test the validity of the adaptive Stroud SCM, we have examined two more
examples with different spatial variability, while keeping other conditions the same as in
the first case. In Fig. 4, we present the comparisons of the head variance derived from the
SCMs and Monte Carlo method for σ2

Y =0.3 and 2. For small spatial variability, i.e., σ2
Y =

0.3, the result from the adaptive Stroud SCM is almost identical to the Monte Carlo result.
As the spatial variability becomes large, i.e., σ2

Y = 2.0, the adaptive Stroud SCM agrees
with the Monte Carlo result fairly well. This observation is encouraging as the variance of
σ2

Y =2.0, being equivalent to the coefficient of variation of hydraulic conductivity CVKs =
σKs /〈Ks〉=253%, represents a large variability in hydraulic conductivity. We will discuss
the case of huge spatial variability in Section 5.2.
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5.2 Discussions

5.2.1 Effect of correlation length

As shown in Fig. 1, the correlation length η relative to the domain length L controls the
rate of decay in the eigenvalues. To further test the effect of correlation length on the
SCM approaches, three cases for η=2.0 with different spatial variabilities σ2

Y =0.3,1.0 and
2.0, are performed. We also include the Monte Carlo simulation result for comparison.
The head variance obtained from those approaches are presented in Fig. 5. Note that the
number of physical nodes is also chosen as 41 in SCMs and the number of realizations in
Monte Carlo simulations is 10,000. A smaller number of physical nodes or realizations in
Monte Carlo simulations could lead to inaccurate results. To ensure the ratio of energy,

∑
N
n=1λn/(meas(D)σ2

Y), is larger than β1 = 0.8, the retained dimension number in the KL

expansion for SCMs is chosen as N=6. To ensure the ratio of energy, ∑
M′
n=1λn/∑

N
n=1λn, is

larger than β2 =0.8, the divided dimension number in adaptive Stroud SCM is chosen as
M′=3. In this case, we apply tensor product of 2 Gauss points and 8 Gauss points in each
direction to make comparison. For the 26 integration points, the computational effort is
comparable to our adaptive Stroud method (56 points), but the accuracy is worse; for the
86 integration points, it is very accurate but the computational effort is too large! From
Fig. 5, we observe that for small or moderate spatial variability, i.e., σ2

Y = 0.3 or 1.0, the
results obtained from the adaptive Stroud SCM agree well with those from Monte Carlo
method. When σ2

Y is large, i.e., σ2
Y =2.0, the adaptive Stroud SCM’s result is still close to

the Monte Carlo result while the other SCM approaches do not perform well.

5.2.2 Effect of large spatial variability σ2
Y

As illustrated in the previous sections, for moderate spatial variability, the adaptive
Stroud SCM can obtain quite accurate results. In this section, we examine a case with
a huge spatial variability, i.e, σ2

Y =4.0, corresponding to the coefficient of variation of hy-
draulic conductivity CVKs =732% [37]. If we take β1 =β2 =0.8 for η =4.0, Fig. 5(d) shows
there are some deviations between the adaptive Stroud SCM’s result and the MC’s in
this huge spatial variability case. To improve this result, we increase the energy ratio,
β1 =β2 =0.9. The retained dimension number in the KL expansion for SCMs is chosen as
N = 6 and the divided dimension number in adaptive Stroud SCM is chosen as M′ = 3.
Meanwhile, the number of collocation points needed in adaptive Stroud SCM is 56 now.
It is clear that the more collocation points can efficiently decrease the error and lead to a
better result.

5.2.3 Effect of different subdivided dimensions

As we know, adding the collocation points generally can decrease the SCM’s error. Since
the random vector ξ =(ξ1,ξ2,··· ,ξN)T, which is used in Section 3, satisfies a uniform dis-
tribution. Why do we just divide the leading dimensions, not other dimensions? The
reason is the coefficients of F−1(ξi) are different in KL expansion (3.13). Since λi are
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Figure 5: Comparisons of head variance derived from SCMs and MC, with different spatial variability and
different correlation length.

monotonically rapidly decreasing, Y(ξ,x) is more sensitive to the leading random di-
mensions and the variation in the rest dimensions is relatively smooth. Fig. 6 compares
the head variance derived from different subdivided dimensions, respectively, for η=4.0
and η = 2.0, σ2

Y = 1.0. In Fig. 6, ′0+2∗2′ expresses to halve the first two dimensions and
′2+2∗2′ expresses to halve the third and forth dimensions, and so on. The results support
our assertion that refining the leading dimensions is effective and sufficient.

5.3 Illustrative examples in 2D

We consider two examples in the two-dimensional case in this section. In the first ex-
ample, the flow domain is a square of a size L1 = L2 =10.0[L], uniformly discretized into
40×40 square elements. The non-flow conditions are prescribed at the two lateral bound-
aries. The hydraulic head is prescribed at the left and right boundaries as H0 and HL,
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Figure 6: Comparisons of head variance derived from different divided dimensions, for η = 4 and η = 2, σ2
Y =1.0.
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Figure 7: Series of eigenvalues and their finite sums for two-dimensional square flow domain with a separable
covariance function, for η =4.0 and σ2

Y =1.0.

respectively, which produces a mean flow from the left to the right. Assume the source
(or sink) term, g(x), to be zero. The mean of the log hydraulic conductivity is also given
as 〈Y〉=0.0. For simplicity, it is assumed in the following examples that the log saturated
hydraulic conductivity Y(ω,x) = lnKs(ω,x) is second-order stationary with a separable
exponential covariance function

CY(x,y)=CY(x1,x2,y1,y2)=σ2
Y exp

[

− |x1−y1|
η

− |x2−y2|
η

]

. (5.1)

From Eqs. (2.1) and (2.2), for this case the governing equation can be expressed as

∂2h(ω,x)

∂x2
1

+
∂2h(ω,x)

∂x2
2

+
∂Y(ω,x)

∂x1

∂h(ω,x)

∂x1
+

∂Y(ω,x)

∂x2

∂h(ω,x)

∂x2
=0. (5.2)
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Figure 8: Head variance derived from MC, Stroud SCM and adaptive Stroud SCM at x2 = 5.0, with different
boundary conditions, for η =4.0 and σ2

Y =1.0.

Here we suppose η=4.0 and σ2
Y=1.0. Fig. 7 shows the series of eigenvalues and their finite

sums. By the difference between Fig. 1(a) and Fig. 7(a), one can find the eigenvalue decay
ratio in two dimension is slower. To ensure the computational complexity is suitable, we
value β1 =0.6 and β2 =0.8 in this case. That is, the retained dimension number in the KL
expansion for the adaptive Stroud SCM is chosen as N = 7 and the divided dimension
number in the adaptive Stroud SCM is chosen as M′=3.

Fig. 8 compares the head variance from the Monte Carlo simulations, the Stroud SCM
and the adaptive Stroud SCM along the cross section x2=5.0, for different boundary con-
ditions. In Fig. 8(a), H0=10.5[L] and HL=10.0[L]. In Fig. 8(b), H0=7.0[L] and HL =5.0[L].
For comparison, we conduct Monte Carlo simulations using 10,000 two-dimensional re-
alizations generated on the grid of 41×41 nodes with the separable covariance function
given in Eq. (5.1), based on Eq. (3.4) with 200 terms. It is shown that the adaptive Stroud
SCM can obtain quite accurate results.

In the second case, two wells are located at (3.0[L],3.0[L]) and (7.0[L],7.0[L]) with
strengths of −1.0[L3/T] and 1.0[L3/T] (where T is any consistent time unit). A nega-
tive strength represents extraction of fluid out of the domain. We compare results from
the Monte Carlo simulations, the Stroud SCM and the adaptive Stroud SCM along the
diagonal line which passes both wells, as indicated in Fig. 9.

From Eqs. (2.1) and (2.2), the governing equation can be expressed as

∇·
(

Ks(ω,x)∇h(ω,x)
)

=−g(x). (5.3)

The hydraulic head is prescribed at the left and right boundaries as H0 = 10.5[L] and
HL = 10.0[L], respectively, while keeping other conditions the same as in the first two-
dimensional case. To compare the results in detail, the flow domain is uniformly dis-
cretized into 80×80 grids. The steady state, saturated flow equation is solved for each



120 Y. Ding, T. Li, D. Zhang and P. Zhang / Commun. Comput. Phys., 4 (2008), pp. 102-123

+

no−flow

no−flow

10

10A

A’

Figure 9: Boundary configuration for the second 2D illustrative example.
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Figure 10: Comparison of (a) detrended mean head and (b) head variance derived from Monte Carlo, Stroud

SCM and adaptive Stroud SCM along the diagonal line, for η =4.0 and σ2
Y =1.0.

realization of the log hydraulic conductivity, using the finite difference method. The
multi-grid method is used to resolve Eq. (5.3). Then, the sample statistics of the flow
fields, i.e., the mean predictions of head as well as its associated uncertainty (variance),
are computed from realizations.

We compare the results from the Monte Carlo simulations against those from the
Stroud SCM and the adaptive Stroud SCM. Due to the particular boundary configuration
in our example, the mean head profiles derived from different approaches do not dif-
fer significantly. To illustrate their differences more clearly, we plot the detrended mean
head rather than the mean head itself. Fig. 10(a) compares the detrended mean head ob-
tained from Monte Carlo simulations, Stroud SCM and adaptive Stroud SCM along the



Y. Ding, T. Li, D. Zhang and P. Zhang / Commun. Comput. Phys., 4 (2008), pp. 102-123 121

cross section AA′. It is seen that the mean head from both Stroud and adaptive Stroud
SCM are very close to the Monte Carlo results. Fig. 10(b) depicts the comparison of head
variance derived from Monte Carlo simulations, Stroud SCM and adaptive Stroud SCM.
Although the result of the Stroud SCM shows a pattern similar to that of the Monte Carlo
results, the discrepancies are large in well locations. The result of the adaptive Stroud
SCM is getting closer to the Monte Carlo result.

6 Conclusions

In this study, we combined the Karhunen-Loève expansion (KLE) with the stochastic col-
location method (SCM) to present a new method — the adaptive Stroud SCM — for un-
certainty analysis of flow in random porous media. This approach is appealing because
it results in independent deterministic differential equations, which similar to the Monte
Carlo method, can be implemented with existing codes. We applied the adaptive Stroud
SCM to several cases of 1D and 2D flows in random porous media, with different spa-
tial variabilities and correlation lengths. Comparisons with the Monte Carlo method, the
tensor products SCM and the QMC SCM are also done. This study leads to the following
conclusions:

1. With a relatively small computational effort, the adaptive Stroud method based on
KLE is feasible for quantifying uncertainty associated with flow in random porous
media, where the random process and stochastic differential equation have to be
considered.

2. Similar to the Monte Carlo method, the adaptive Stroud SCM can be easily imple-
mented with existing codes and naturally parallelized.

3. Many covariances of the random log transformed hydraulic conductivity field,
CY(x,y), can result in the rapid decay of eigenvalues like (3.5), which is taken into
account by the adaptive Stroud SCM through subdividing the leading dimensions
in probability space. Under certain accuracy, the computational effort of adaptive
Stroud SCM is the smallest among the SCMs that we have tried.

4. The energy ratios, β1 and β2, are important to determine the collocation points of
the adaptive Stroud SCM. As we have shown, it is enough to have the value of
β1 =β2 =0.8 in 1D as a rule. While for larger spatial variability, increasing the value
of β1 and β2 is needed and the adaptive Stroud SCM remains efficient.
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