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Abstract

We study stable equilibria of liquid crystals in the flow being at rest and the stable dynamic states for nematic liquid crystals under
weak shear flow for the Doi model [M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, 1986]. It is first
theoretically proven that there is a hysteresis phenomenon in the flow being at rest when the non-dimensional potential intensity among particles
changes. Furthermore, in the weak shear flow, we show that there exist many stable dynamic states: flow aligning, tumbing, log-rolling and
kayaking, which depend on the initial concentrated orientation of liquid crystal particles. The results are consistent with those of numerical
simulation [M.G. Forest, Q. Wang, R. Zhou, The weak shear kinetic phase diagram for nematic polymers, Rheol. Acta 43 (2004) 17–37;
M.G. Forest, R. Zhou, Q.Wang, Full-tensor alignment criteria for sheared nematic polymers, J. Rheol. 47 (2003) 105–127] and experimental
discoveries [W.R. Burghardt, Molecular orientation and rheology in sheared lyotropic liquid crystalline polymers, Macromol. Chem. Phys. 199
(1998) 471–488; Ch. Gähwiller, Temperature dependence of flow alignment in nematic liquid crystals, Phys. Rev. Lett. 28 (1972) 1554–1556].
Theoretical analysis is reported the first time that the Kayaking state does not circulate around a fixed direction but the asymmetric axis will
periodically change.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Four decades of the theoretical and numerical study of ho-
mogeneous responses of nematic polymers and liquid crystals
to shear flow have led to a fundamental understanding of macro-
molecular fluids [1,4,5,9,10,18,22,26,27]; more complete refer-
ences can be found in [17]. These studies aspire to reproduce,
explain, and predict experimental discoveries of steady and
transient modes [2,3,6,19]. By a combination of theory and ex-
periment, many dynamical and transient modes have been cat-
alogued and named primarily on the basis of director response:
steady alignment with a primary director either in the shear
plane (flow aligning) or along the vorticity axis (log-rolling);
in-plane transient oscillatory (wagging) or rotating (tumbling)
∗ Corresponding author. Tel.: +86 10 8514 6281; fax: +86 10 5880 8202.
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director modes; and out-of plane transient director modes
(kayaking) [15–17] and the references therein.

One of the most popular models is the Doi kinetic theory
describing rigid macromolecules [10]. It is also called the
Smoluchowski equation, which includes the rotation and
translation of polymeric molecules convected with the flow.
It describes the properties of liquid crystalline polymers in
a solvent; see, e.g., [10,12,17,18,26,27]. Its basic feature is
its ability to describe both the isotropic and nematic phases,
e.g., [10,18,28]. One of the simplest models is

∂ f
∂t

=
1

De
R · (R f + fRU )−R · (x × κ · x f ), (1.1)

where f (t, x) denotes the orientation distribution function, and
De is the Deborah number, and x denotes the orientation of
a rigid-rodlike liquid crystal particle in solvent. Now it is
assumed that the lengths of the rods are similar. Therefore,
one can suppose that x ∈ S2, where S2 is the unit sphere,

http://www.elsevier.com/locate/physd
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R = x ×
∂
∂x is an operator, and κ = ∇v with v being the

velocity of the flow. From Eq. (1.1) we see that
∫
|x |=1 f (t, x)dx

is conserved for any time t . Therefore (1.1) is often solved
together with an enforced normalization

∫
|x |=1 f (t, x)dx = 1.

U ([ f ]) is the mean-field interaction potential. Two of the most
popular forms are the Onsager form [10,18,28]:

U ([ f ]) = α

∫
|x ′|=1

|x × x ′
| f (x ′, t)dx ′

; (1.2)

and the Maier–Saupe potential [10,18]

U ([ f ]) = α

∫
|x ′|=1

|x × x ′
|
2 f (x ′, t)dx ′, (1.3)

where the parameter α measures the potential intensity. In the
following discussion one can see that this non-dimensional
parameter will play an important role.

The Smoluchowski equation (1.1) is known to exhibit
nontrivial nonlinear features, e.g. [7,20], and its study has
recently attracted great attention, e.g. [12,26,27]. Phase
transitions to equilibrium solutions of this equation with κ = 0
were first described by Onsager in 1949 [28], using a variational
approach; but his argument was based on an assumed explicit
ansatz for the distribution function

f (x) =
β

4π sinhβ
cosh(βx · y), (1.4)

with the Onsager potential, where y ∈ S2 and β is a parameter
to be determined from the condition that the free energy
be minimized. Using this ansatz Onsager was able to argue
that in the limit of high concentration one has a transition
from the isotropic uniform distribution to an ordered prolate
distribution [28]. The parameter in (1.4) β ∼ α represents
the degree of ordering: β = 0 corresponds to the isotropic
state, and β = ∞ the completely ordered state. Recently,
this transition to order at high concentration was rigorously
proved by Constantin et al. [7], where some nice properties of
equilibrium solutions were also studied. For the Smoluchowski
equation (1.1) restricted on a circle, it has been well understood
because of recent efforts [8,9,13,24,25]. For the Smoluchowski
equation (1.1) on a sphere, the authors in [14] gave the
axial-symmetric property of equilibrium solutions, and critical
intensities of phase transitions are observed based on numerical
calculation. In [24] we gave not only the axial-symmetric
property of equilibrium solutions but also the explicit formulas
for all equilibrium solutions and critical intensities of phase
transitions for the time-independent Smoluchowski equation
R · (R f + fRU ) = 0 with (2.2). Later these results were
proved in [29] by using another approach. However, not all
equilibrium solutions are stable. The stability analysis of these
solutions is desirable and is one of our goals in this paper. By
rigorous analysis it is shown that the stable stationary state of
the liquid crystal particles is from the isotropic state to the
prolate state when the non-dimensional potential intensity α
crosses the critical point 7.5 from small to large, and from the
prolate state to the isotropic state when α crosses the other
critical point 6.731393 from large to small when the flow is
at rest.
With the explicit formulas for all stable equilibria in the flow
at rest, we will pay attention to the stable dynamic states at the
nematic liquid crystals in the weak shear flow. By perturbation
analysis we will show that there are many stable dynamic states
in the weak shear flow: (a) steady alignment in the shear-flow
aligning and tumbling, (b) along the vorticity axis-log-rolling,
(c) out-of plane transient director mode-kayaking. These results
are consistent with the responses of numerical simulation [16,
17,22] and experimental discovery [6,19]. Moreover, one can
deeply understand the kayaking state, in which rodlike liquid
crystal particles do not circulate around a fixed direction but
the asymmetric axis will also periodically change. These results
basically depend on the explicit expression (3.12) of the critical
parameter λ in [21]. Furthermore it is based on the explicit
formula of the equilibrium to the rodlike liquid crystal particles
at rest flow in [24].

This paper is organized as follows: Section 2 is devoted to
the analysis of the stability of the equilibrium states at rest flow.
In Section 3 we give the stable dynamic states at the nematic
liquid crystals in the weak shear flow. The conclusions are
drawn in the final section.

2. Stability of the equilibrium states at rest flow

In this section we will study the stability of the equilibrium
solutions, which were obtained in the work [24], for the Eq.
(1.1) with κ = 0, i.e.

R · (R f + fRU ) = 0 (2.1)

with the Maier–Saupe potential [10,18]:

U ([ f ]) = α

∫
|x ′|=1

|x × x ′
|
2 f (x ′)dx ′ (2.2)

and the normalization∫
|x |=1

f (x)dx = 1. (2.3)

Here we will employ the calculation of a free energy

A( f ) =

∫
|x |=1

[
f (x) ln f (x)+

1
2

f (x)U ([ f ])

]
dx (2.4)

to analyze the stability of the equilibrium solutions. For self-
containment, we first review some important results in [24],
where rigorous proofs can also be found. The first result in [24]
is about the axial symmetry and explicit representations of the
thermodynamic potential U of (2.2).

Lemma 2.1. Consider the Smoluchowski equation (2.1) with
the normalization (2.3). Let U be the thermodynamic potential
defined by (2.2). Then such a potential is necessarily invariant
with respect to rotations around a director y ∈ S2, i.e., it is
axially symmetric. Moreover, this potential must have the form

U =
2α
3

− η

(
|x × y|

2
−

2
3

)
, (2.5)

where η ∈ R is a parameter.
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Fig. 1. η = 0.

The second result in [24] is on the critical intensities of phase
transitions and all explicit equilibrium distributions of (2.1).

Lemma 2.2. The number of equilibrium solutions of the three-
dimensional Smoluchowski equation (2.1) with (2.2) and (2.3)
hinges on whether the intensity α crosses two critical values:
α∗

= 6.731393 and 7.5. All solutions are given explicitly by

f = ke−η(x ·y)2 , (2.6)

where y ∈ S2 is a parameter, η = η(α) and k =

[4π
∫ 1

0 e−ηz2
dz]−1 are determined by α through

e−η∫ 1
0 e−ηz2 dz

−

(
1 −

2η
3

+
4η2

3α

)
= 0. (2.7)

More precisely,

(i) If 0 < α < α∗, there exists one solution f0 = 1/4π .
(ii) If α = α∗, there exist two distinct solutions f0 = 1/4π

and f1 = k1e−η∗

1(x ·y)2 , η∗

1 < 0.
(iii) If α∗ < α < 7.5, there exist three distinct solutions

f0 = 1/4π and fi = ki e−η∗
i (x ·y)2 , η∗

1 < η∗

2 < 0 (i = 1, 2).
(iv) If α = 7.5, there exist two distinct solutions f0 = 1/4π

and f1 = k1e−η∗

1(x ·y)2 , η∗

1 < 0.
(v) If α > 7.5, there exist three distinct solutions f0 = 1/4π

and fi = ki e−η∗
i (x ·y)2(i = 1, 2), η∗

1 < 0, η∗

2 > 0.

In physical terms, an isotropic phase corresponds to the
case when the distribution function is f = 1/4π , and a
nematic phase corresponds to the case when f is concentrated
at some particular director, which includes the prolate and
oblate states. For example, in case (v) of Lemma 2.2, f0 =

1/4π is an isotropic distribution; while the distribution function
f1 = k1 e−η∗

1(x ·y)2(η∗

1 < 0) is concentrated in the direction
±y (called prolate state) and f2 = k2 e−η∗

2(x ·y)2(η∗

2 > 0) is
concentrated on the equator perpendicular to ±y (called oblate
state). The profiles of these three kinds of equilibrium solutions
of (2.6) are shown in Figs. 1–3, where we choose y = (0, 0, 1).
Fig. 2. η = 10.

Fig. 3. η = −10.

Now we state the stability result for the above solutions.

Theorem 2.1. The stability of the equilibrium solutions to (2.1)
with (2.2) and (2.3) obtained in Lemma 2.3 is as follows:

(i) If α ≤ α∗, the constant solution f = 1/4π is stable.
(ii) If α∗ < α < 7.5, the constant solution f = 1/4π is

metastable and the nontrivial solution f = k1e−η∗

1(x ·y)2

(prolate) is stable but f = k2e−η∗

2(x ·y)2 (prolate) is
unstable.

(iii) If α = 7.5, the nontrivial solution f = k1e−η∗

1(x ·y)2

(prolate) is stable.
(iv) If α > 7.5, the constant solution f = 1/4π is unstable

while the nontrivial solution f = k1e−η∗

1(x ·y)2 (prolate) is
stable but f = k2e−η∗

2(x ·y)2 (oblate) is unstable.

Here η∗

i (i = 1, 2) satisfy (2.7) as in Lemma 2.2.

From this theorem we know that the oblate distribution is an
unstable equilibrium. Moreover, from the explicit expression
of (2.5) and (2.6) and Fig. 3, the direction y in (2.6) is the
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Fig. 4. s vs α: the dashed line is the unstable solution; the solid line is the stable
and metastable solution, where α1 = α∗

= 6.731393 and α2 = 7.5.

dominated direction of rodlike particles for the stable nematic
equilibrium solutions.

Before presenting the proof of Theorem 2.1, we illustrate
this equilibrium situation, that is, the stationary solutions at
rest for the sake of clarity as [12]. Fig. 4 shows the scalar
order parameter s reported versus the nondimensional potential
intensity α. The scalar order parameter represents a scalar
measure of the degree of the order of the sample. Here

s =
3
2
Λ, (2.8)

where Λ is the eigenvalue with the largest absolute value of the
traceless second-rank order tensor S given by

S = 〈x ⊗ x〉 −
1
3

I =

∫
|x |=1

x ⊗ x f (x)dx −
1
3

I, (2.9)

with I as the second-rank unit tensor. By using the explicit
formula (2.6) of the equilibrium solutions (2.6), we obtain

S =


η

3α
η

3α
−

2η
3α

 . (2.10)

Therefore,

s = −
η

α
.

The scalar order parameter s is zero when the system is
isotropic and the distribution function as in Fig. 1. Conversely,
its value is nonzero if some degree of orientation is present.
It is positive in the case of prolate distributions (e.g. Fig. 3),
and negative for oblate ones (e.g. Fig. 2). In Fig. 4, solid
lines represent stable and meta-stable stationary solutions and
the dashed lines are unstable stationary solutions. From this
figure we can see the hysteresis phenomenon; that is, the stable
stationary state is from the isotropic phase to the prolate phase
when the potential intensity α crosses the critical point 7.5 from
small to large, and from the prolate phase to the isotropic phase
when α crosses the other critical point 6.731393 from large to
small.

Proof of Theorem 2.1. Now we rewrite the potential of (2.5)
in Lemma 2.1 in the form

Ū =
2α
3

+ ζ(x2
1 − x2

2)+ η

(
x2

3 −
1
3

)
=

2α
3

+ ζ sin2 θ cos 2ϕ + η

(
cos2 θ −

1
3

)
.

Then the solution of (2.1) with (2.2) and (2.3) is

f = ke−Ū
=

e−g(z,ϕ)∫ 2π
0

∫ 1
0 e−g(z,ϕ)dzdϕ

, (2.11)

where k =
∫
|x |=1 e−Ū dx, g(z, ϕ) = ζ(1 − z2) cos 2ϕ + ηz2.

Thus the corresponding free energy with (2.11) is a function of
ζ, η for fixed α > 0 and can be expressed by

Aα(ζ, η) =

∫
|x |=1

[
f (x) ln f (x)+

1
2

f (x)U (x)
]

dx

= − ln 2
∫ 2π

0

∫ 1

0
e−g(z,ϕ)dzdϕ − η〈z2

〉∗

− ζ 〈(1 − z2) cos 2ϕ〉∗ +
α

2
[1 − (q2

1 + q2
2 + q2

3 )],

(2.12)

where

〈h(z, ϕ)〉∗ =

∫ 2π
0

∫ 1
0 h(z, ϕ)e−g(z,ϕ)dzdϕ∫ 2π

0

∫ 1
0 e−g(z,ϕ)dzdϕ

(2.13)

q1 = 〈(1 − z2) cos2 ϕ〉∗, (2.14)

q2 = 〈(1 − z2) sin2 ϕ〉∗, (2.15)

q3 = 〈z2
〉∗. (2.16)

Next, for ease of notation we denote 〈h(z, ϕ)〉 = 〈h(z, ϕ)〉∗|ζ=0.
Firstly, we give the following properties of the free energy
Aα(ζ, η∗) for η∗ satisfying (2.7).

Lemma 2.3. For the η∗ satisfying (2.7), the free energy
Aα(ζ, η∗) possesses the following properties:

∂

∂ζ
Aα(0, η∗) = 0,

∂

∂η
Aα(0, η∗) = 0, η∗

= 0, η∗

1, η
∗

2,

∂2

∂η∂ζ
Aα(0, η) = 0.

Moreover:

(i) If α < α∗, ∂2

∂ζ 2 Aα(0, 0) > 0, ∂
2

∂η2 Aα(0, 0) > 0.

(ii) If α = α∗, then

∂2

∂ζ 2 Aα(0, 0) > 0,
∂2

∂η2 Aα(0, 0) > 0;

∂2

∂ζ 2 Aα(0, η∗

1) > 0,
∂2

∂η2 Aα(0, η∗

1) = 0.
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(iii) If α∗ < α < 7.5, then

∂2

∂ζ 2 Aα(0, 0) > 0,
∂2

∂η2 Aα(0, 0) > 0;

∂2

∂ζ 2 Aα(0, η∗

1) > 0,
∂2

∂η2 Aα(0, η∗

1) > 0;

∂2

∂ζ 2 Aα(0, η∗

2) > 0,
∂2

∂η2 Aα(0, η∗

2) < 0.

(iv) If α = 7.5, then

∂2

∂ζ 2 Aα(0, 0) > 0,
∂2

∂η2 Aα(0, 0) = 0;

∂2

∂ζ 2 Aα(0, η∗

1) > 0,
∂2

∂η2 Aα(0, η∗

1) > 0.

(v) If α > 7.5, then

∂2

∂ζ 2 Aα(0, 0) > 0,
∂2

∂η2 Aα(0, 0) < 0;

∂2

∂ζ 2 Aα(0, η∗

1) > 0,
∂2

∂η2 Aα(0, η∗

1) > 0;

∂2

∂ζ 2 Aα(0, η∗

2) < 0,
∂2

∂η2 Aα(0, η∗

2) > 0.

Here η∗

i (i = 1, 2) are as in Lemma 2.2.

Under the property of the free energy Aα(ζ, η∗) for η∗

satisfying (2.7), we can easily obtain the result of Theorem 2.1.
For example, from Lemma 2.3 we know that (0, η∗

1) is a
minimum point of Aα(ζ, η), while (0, 0) and (0, η∗

2) are saddle
points of Aα(ζ, η) when α > 7.5. Therefore, the solution
f = k1e−η∗

1(x ·y)2 is stable, while the solutions f = 1/4π and
f = k2e−η∗

2(x ·y)2 are unstable. This is (iv) of Theorem 2.1. The
other cases are proved in a similar way. �

Proof of Lemma 2.3. From the formula (2.12), we can verify
that
∂

∂ζ
Aα(0, η)

=

[
η

〈
z2 ∂g
∂ζ

〉
∗

− η〈z2
〉∗

〈
∂g
∂ζ

〉
∗

− α

(
3∑

i=1

qi
∂qi

∂ζ

)]
ζ=0

= 0, for all η, (2.17)

where we used

q1|ζ=0 = q2|ζ=0 =
1
2
〈1 − z2

〉, q3|ζ=0 = 〈z2
〉, (2.18)

∂q1

∂ζ

∣∣∣∣
ζ=0

= −
1
4
〈(1 − z2)2〉,

∂q2

∂ζ

∣∣∣∣
ζ=0

=
1
4
〈(1 − z2)2〉,

∂q3

∂ζ

∣∣∣∣
ζ=0

= 0. (2.19)

Further, we can verify

∂2

∂ζ 2 Aα(0, η) =

[
−η

〈
z2
(
∂g
∂ζ

)2
〉

∗

+η〈z2
〉∗

〈(
∂g
∂ζ

)2
〉

∗

+

〈(
∂g
∂ζ

)2
〉

∗

+ α

(
3∑

i=1

[
qi
∂2qi

∂ζ 2 +

(
∂qi

∂ζ

)2
])]

ζ=0

(2.20)

=
1
2
〈(1 − z2)2〉 −

α

8
〈(1 − z2)2〉2

−
η

2
〈z2(1 − z2)2〉

+
η

2
〈z2

〉〈(1 − z2)2〉

−α

[
〈1 − z2

〉

4
(〈(1 − z2)3〉 − 〈1 − z2

〉〈(1 − z2)2〉)

]
−α

[
〈z2

〉

2
(〈z2(1 − z2)2〉 − 〈z2

〉〈(1 − z2)2〉)

]
, (2.21)

where we used

∂2q1

∂ζ 2 |ζ=0 =
∂2q2

∂ζ 2 |ζ=0

=
1
4
〈(1 − z2)3〉 −

1
4
〈1 − z2

〉〈(1 − z2)2〉,

∂2q3

∂ζ 2

∣∣∣∣
ζ=0

=
1
2
〈z2(1 − z2)2〉 −

1
2
〈z2

〉〈(1 − z2)2〉.

From [24], we know that α and η satisfy 〈z2
〉 =

1
3 −

2η
3α . Then

inserting

η =
α

2
(1 − 3〈z2

〉) (2.22)

into (2.20), the last terms of (2.20) can be written as

−
η

2
〈z2(1 − z2)2〉 +

η

2
〈z2

〉〈(1 − z2)2〉

−α

[
〈1 − z2

〉

4
(〈(1 − z2)3〉 − 〈1 − z2

〉〈(1 − z2)2〉)

]
−α

[
〈z2

〉

2
(〈z2(1 − z2)2〉 − 〈z2

〉〈(1 − z2)2〉)

]
= α

1 − 〈z2
〉

4
[〈(1 − z2)2〉 − 〈z2(1 − z2)2〉 − 〈(1 − z2)3〉]

= 0.

Therefore, for (2.20), we have

∂2

∂ζ 2 Aα(0, η) =
1
2
〈(1 − z2)2〉 −

α

8
〈(1 − z2)2〉2

=
1
2
〈(1 − z2)2〉

(
1 −

α

4
〈(1 − z2)2〉

)
=

1
12

〈(1 − z2)2〉

(
15
2

− α − η

)
, (2.23)

where we used

〈z2
〉 − 〈z4

〉 =
1
α
, (2.24)

from [24]. By (2.23), we can thus derive the corresponding
properties in Lemma 2.3 for η∗

= 0, η∗

1, η
∗

2 .
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From (2.12) we have

∂

∂η
Aα(0, η) = −η(〈z2

〉
2
− 〈z4

〉)− α

(
3∑

i=1

qi
∂qi

∂η

)∣∣∣∣∣
ζ=0

= 0, (2.25)

for η satisfying (2.7) in the formula (2.6) of the equilibrium
solution. Here we used (2.22) and (2.18) and

∂q1

∂η

∣∣∣∣
ζ=0

=
∂q2

∂η

∣∣∣∣
ζ=0

=
1
2
(〈z4

〉 − 〈z2
〉
2),

∂q3

∂η

∣∣∣∣
ζ=0

= −〈z4
〉 + 〈z2

〉
2.

This shows that the η∗ satisfying (2.7) is the extreme point of
Aα(0, η). Further, using the relations

∂2q1

∂η2

∣∣∣∣
ζ=0

=
∂2q2

∂η2

∣∣∣∣
ζ=0

= −
1
2
[〈z6

〉 − 3〈z2
〉〈z4

〉 + 2〈z2
〉
3
]

∂2q3

∂η2

∣∣∣∣
ζ=0

= 〈z6
〉 − 3〈z2

〉〈z4
〉 + 2〈z2

〉
3,

we have

∂2

∂2η
Aα(0, η) = 〈z4

〉 − 〈z2
〉
2
− η[〈z6

〉 − 3〈z2
〉〈z4

〉 + 2〈z2
〉
3
]

−α

(
1
2
(3〈z2

〉 − 1)[〈z6
〉 − 3〈z2

〉〈z4
〉

+ 2〈z2
〉
3
] +

3
2
(〈z4

〉 − 〈z2
〉
2)

)
= (〈z4

〉 − 〈z2
〉
2)

(
1 −

3α
2
(〈z4

〉 − 〈z2
〉
2)

)
=

1
6α
(〈z4

〉 − 〈z2
〉
2)(15α − 2α2

+ 2αη + 4η2),

(2.26)

where we used (2.23) and (2.24). For η∗ satisfying (2.7), we see
that the sign of ∂2

∂2η
Aα(0, η∗) is determined by

Q , 4η∗2
+ 2αη∗

+ 15α − 2α2. (2.27)

When α > 20/3, (2.27) can also be rewritten as

Q = (η∗
− η̄1)(η

∗
− η̄2), (2.28)

where

η̄1 = −
α

4

(
1 + 3

√
1 −

20
3α

)
,

η̄2 = −
α

4

(
1 − 3

√
1 −

20
3α

)
.

(2.29)

From the argument in [24] we know that η∗

1 < η̄1 and η̄1 <

η∗

2 < η̄2 < 0 if 20/3 < α < 7.5, but η∗

2 > η̄2 > 0 if

α > 7.5. Thus we can obtain that ∂2

∂2η
Aα(0, η∗

1) > 0, and
∂2

∂2η
Aα(0, η∗

2) < 0 if α∗ < α < 7.5. While ∂2

∂2η
Aα(0, η∗

1) > 0

and ∂2

∂2η
Aα(0, η∗

2) > 0 if α > 7.5. (2.27) yield ∂2

∂2η
Aα(0, 0) < 0
if α > 15/2, and ∂2

∂2η
Aα(0, 0) > 0 if α < 15/2. The proof of

Lemma 2.3 is now complete. �

3. Stable dynamic states in the weak shear flow

It is well known that the constitutive equation for
the nematic liquid crystals under weak velocity gradient
is derived from the kinetic equation, as presented by
Doi [21]. The constitutive equation is consistent with the
phenomenological equation proposed by Ericksen and Leslie.
The six viscosity parameters (Leslie coefficients) appearing in
the phenomenological theory are expressed by the molecular
parameters. Recently the authors in [11] have completed
the model for the inhomogeneous kinetic theory of rodlike
LCPs and showed that the inhomogeneous theory properly
reduces to the Ericksen–Leslie theory in the limit of the small
Deborah number. Furthermore, there are papers [15–17,22,23]
on the numerical simulation works of these models, and some
experiments [3,19] to discover the dynamic states in the weak
shear flow. However, there do not seem to exist theoretical
results on the stable dynamic states for nematic liquid crystals
under weak velocity gradient. This is our aim in this section.

We now choose the solution of (1.1) in the form of a
perturbation series,

f = f0 + De f1 + · · · (3.1)

where f0 denotes the equilibrium distribution function and
f1 is the first-order perturbation. And setting U (x, [ f1]) =

α
∫
|x |=1 |x × x ′

|
2 f1(x ′)dx ′, we have

U (x, [ f ]) = U (x, [ f0])+ De U (x, [ f1])

+ · · · , U0 + De U1 + · · · . (3.2)

Substituting (3.1) and (3.2) into (1.1), we obtain the equations
for f0 and f1 respectively to order De−1 and De0,

De−1
: R ·R f0 +R · ( f0RU0) = 0, (3.3)

De0
: −z f1 =

d f0

dt
−R · (x × κ · x f0), (3.4)

where the operator z is given by

zφ = −R · (Rφ + φRU0 + f0RU (x, [φ])). (3.5)

For the equation to order De1, we can see that there is a term
d f1
dt ; but we consider the Deborah number De to be very small.

Therefore, here we omit the higher-order equations. Moreover
we remark that the perturbation series (3.1) depends on the
Deborah number. While there is another perturbation method
in [30] depending not only on the Deborah number but also
on a slow scale time introduced by Zhou and Wang, the result
obtained is partially similar.

Now set ψ0 to be the eigenfunction of the Hermitian
conjugate operator z∗ of z corresponding to the zero
eigenvalue, i.e.

z∗ ψ0 = 0. (3.6)

Kuzuu and Doi [21] found a solution in the form

ψ0(x) = 2 · eϕg(θ), (3.7)
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where 2 is an arbitrary constant vector, eϕ is the unit vector for
the spherical coordinate ϕ, and g satisfies

1
sin θ

d
dθ

(
sin θ

dg
dθ

)
−

g

sin2 θ
−

dU ([ f0])

dθ
dg
dθ

= −
dU ([ f0])

dθ
. (3.8)

Similarly to the argument in [11,21], since we consider only
the weak shear flow, we assume that the main term f0 in
(3.1) determines the dominated direction of rodlike particles
for the nematic equilibrium solutions, denoted by n(t). From
(3.4), taking the inner product with the eigenfunction ψ0 of the
operator z∗ with zero engenvalue, one obtains:∫

|x |=1
ψ0

d f0

dt
dx =

∫
|x |=1

ψ0 f ′

0(x · n(t))x · ṅdx

= ṅ × n ·

∫
|x |=1

ψ0R f0dx

= n × ṅ · 〈Rψ0〉 = 2 · (n × ṅ)
s
λ
,

and∫
|x |=1

ψ0R · (x × κ · x f0)dx

= −

∫
|x |=1

Rψ0 · (x × κ · x f0)dx

= κ : 〈x ⊗ x ×Rψ0〉

= 2 · n ×

(
sD · n −

s
λ
Ω · n

)
,

where Ω = (κT
−κ)/2, D = (κT

+κ)/2, s =
1
2 (3〈cos2 θ〉−1)

is the order parameter, and

λ =
2s

〈g dU ([ f0])
dθ 〉

. (3.9)

We will see from (3.4) that the evolution of the time-dependent
and distortional terms reduces to an equation governing the
rotation of the direct n. In terms of the rotation relative to the
background fluid: N = ṅ + Ω · n, this equation can be written
as

n ×

( s
λ

N − sD · n
)

= 0. (3.10)

Here we explain that the reduction of (3.10) is physically
reasonable since we consider the Deborah number De � 1 and
we assume f1 is bounded. Therefore, the main leading term
in (3.1) is f0. Thus, we have to determine that f0. (3.10) is
dependent on f0.

Using the explicit expression Eq. (2.6) of f0 we can now
calculate

U ([ f0]) = α

∫
|x ′|=1

|x × x ′
|
2 f0(x ′)dx ′

= α

[
1 −

∫
|x ′|=1

(x · x ′)2k e−η(x ′
·n)2 dx ′

]
= α

[
1 −

1 − cos2 θ

2
+ k

1 − 3 cos2 θ

2

Fig. 5. g(θ) with g(0) = g(2π).

×

∫ 2π

0

∫ π

0
cos2 θ ′e−η cos2 θ ′

sin θ ′dθ ′dϕ

]

= α

[
1 −

1 − cos2 θ

2
+

1 − 3 cos2 θ

2
4πk

∫ 1

0
z2e−ηz2

dz

]

= α

[
1 −

1 − cos2 θ

2
+

1 − 3 cos2 θ

2

(
1
3

−
2η
3α

)]
=
α

2

[
1 + cos2 θ + (1 − 3 cos2 θ)

(
1
3

−
2η
3α

)]
.

Therefore,

dU ([ f0])

dθ
= −2η cos θ sin θ.

Thus, Eq. (3.8) can be rewritten as

sin θ
d

dθ

(
sin θ

dg
dθ

)
− g + η sin2 θ sin 2θ

dg
dθ

= η sin 2θ sin2 θ. (3.11)

With the periodic boundary condition g(0) = g(2π), we can
simulate the profile of g to as in Fig. 5.

By the calculation in Section 2 we know that s = −
η
α
. Thus

we can obtain the explicit formula of the parameter λ,

λ =
2s

〈g dU ([ f0])
dθ 〉

= −
2η
α

1
〈−g(θ)2η cos θ sin θ〉

=
2
α

1
〈g(θ) sin 2θ〉

. (3.12)

By numerical calculation, we plot the relation between λ and α
in Fig. 6. We can see that λ > 1 if α∗ < α < ᾱ and λ < 1
if α > ᾱ, where ᾱ ≈ 7.88. Here we especially point out that
Eq. (3.11) of g and the parameter formula (3.12) of λ can be
explicitly given since we have the explicit expression (2.6) of
f0 in [24]. But g and λ in [21] are implicit functions depending
on f0. Hereafter one will see that the explicit formula (3.12)
of the parameter λ plays an important role in the analysis of
the stable dynamic states of liquid crystal particles in the weak
shear flow.
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Fig. 6. The relation of λ and α.

We now set n = (n1, n2, n3)
T and for weak shear flow we

denote

κ =

0 0 γ

0 0 0
0 0 0

 ,
where γ is the shear rate. Then (3.10) can be written as

s
λ

ṅ1 −
sγ
2

(
1 +

1
λ

)
n3 = Ln1, (3.13)

s
λ

ṅ2 = Ln2, (3.14)

s
λ

ṅ3 −
sγ
2

(
1 −

1
λ

)
n1 = Ln3 (3.15)

where L is a parameter. (3.13) ·n1+ (3.14) ·n2+ (3.15) ·n3
yields

L = −sγ n1n3, (3.16)

where we used n2
1 + n2

2 + n2
3 = 1. Thus the Eqs. (3.13)–(3.15)

can be rewritten in the form

ṅ1 −
γ

2
(λ+ 1)n3 = −λγ n2

1n3, (3.17)

ṅ2 = −λγ n1n2n3, (3.18)

ṅ3 −
γ

2
(λ− 1)n1 = −λγ n1n2

3. (3.19)

If we rescale time,

t = γ τ,

then the above Eqs. (3.17)–(3.19) become

d
dτ

n1 −
1
2
(λ+ 1)n3 = −λn2

1n3, (3.20)

d
dτ

n2 = −λ n1n2n3, (3.21)

d
dτ

n3 −
1
2
(λ− 1)n1 = −λ n1n2

3. (3.22)

Let

n2 = cos θ, n1 = sin θ cosψ, n3 = sin θ sinψ. (3.23)
Therefore, we obtain the equations of θ, ψ :

dθ
dτ

=
λ

4
sin 2θ sin 2ψ, (3.24)

dψ
dτ

= −
1
2
(1 − λ cos 2ψ). (3.25)

Thus, we only need to analyze Eqs. (3.24) and (3.25) in order
to know the stable dynamic state of (3.20)–(3.22).

From (3.24) and (3.25), we know that when λ ≥ 1 the
equilibrium points of (3.24) and (3.25) satisfy

sin 2θ = 0, 1 − λ cos 2ψ = 0.

Thus, there are these two equilibrium points: (0, 1
2 arccos 1

λ
)

and (π2 ,
1
2 arccos 1

λ
). Next, we study the stability of two

equilibrium points.
(1) For the equilibrium point (0, 1

2 arccos 1
λ
), let ξ = θ, η =

ψ −
1
2 arccos 1

λ
. We then obtain

dξ
dτ

= b(λ)ξ + a1(ξ, η) (3.26)

dψ
dτ

= −2b(λ)η + a2(ξ, η), (3.27)

where b(λ) =
λ
2 sin arccos 1

λ
and ai (ξ, η) (i = 1, 2) are

nonlinear terms of ξ, η. This shows that there is a saddle point.
Thus (0, 1

2 arccos 1
λ
) is an unstable equilibrium point.

(2) For the other equilibrium point (π2 ,
1
2 arccos 1

λ
),

similarly, setting ξ = θ −
π
2 , η = ψ −

1
2 arccos 1

λ
, we have

dξ
dτ

= −b(λ)ξ + a1(ξ, η) (3.28)

dψ
dτ

= −2b(λ)η + a2(ξ, η). (3.29)

This implies that (π2 ,
1
2 arccos 1

λ
) is an asymptotically stable

equilibrium point.
Therefore, from (3.23), the stable equilibrium directors are

n2 = cos
π

2
= 0,

n1 = cos
(

1
2

arccos
1
λ

)
= ±

√
λ+ 1

2λ
,

n3 = sin
(

1
2

arccos
1
λ

)
= ±

√
λ− 1

2λ
. (3.30)

In the following we study the case 0 < λ < 1. In this case
dψ
dτ < 0, so ψ is a decreasing function of τ . Hence we can set
ψ = a(τ ), where a′(τ ) < 0. One can find from (3.25) that ψ is
uniquely determined by the implicit equation

1
√

1 − λ2
arctan

√
1 − λ2 sin 2ψ
λ− cos 2ψ

= τ + C0, (3.31)

with C0 depending on the initial value of ψ . Thus we have from
(3.24),

dθ
dτ

=
λ

4
sin 2θ sin 2a(τ ). (3.32)
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We can solve it by integrating the formula

1
sin 2θ

dθ =
λ

4
sin 2a(τ )dτ,

from 0 to τ . Thus,

1 − cos 2θ
1 + cos 2θ

= Ceλ
∫ τ

0 sin 2a(t)dt ,

where

C =
1 − cos 2θ(0)
1 + cos 2θ(0)

(3.33)

depends on the initial value of θ(τ ). We can see that C ≥ 0.
This yields

cos 2θ =
1 − Ceλ

∫ τ
0 sin 2a(t)dt

1 + Ceλ
∫ τ

0 sin 2a(t)dt
.

Therefore, we obtain from (3.23):

n2 = cos θ = ±

√
1

1 + Ceλ
∫ τ

0 sin 2a(t)dt
, (3.34)

n1 = sin θ cosψ = ±

√
Ceλ

∫ τ
0 sin 2a(t)dt

1 + Ceλ
∫ τ

0 sin 2a(t)dt
cos a(τ ), (3.35)

n3 = sin θ sinψ = ±

√
Ceλ

∫ τ
0 sin 2a(t)dt

1 + Ceλ
∫ τ

0 sin 2a(t)dt
sin a(τ ). (3.36)

In the following we will discuss the stable dynamic states from
the solutions (3.34)–(3.36) for 0 < λ < 1.

(1) When θ(0) = π/2, we have C = ∞ from (3.33). Hence,
n2 = 0, n1 = cos a(τ ), n3 = sin a(τ ). This shows that the
rodlike particles are tumbling in the shear plane since a(τ ) is a
strictly decreasing function.

(2) When θ(0) = 0, we have C = 0. Hence (3.34)–(3.36)
implies n2 = 1, n1 = n3 = 0. It can be seen that the rodlike
particles are always log-rolling around the axial n2.

(3) When θ(0) 6= 0, π/2, we know from (3.33) that C is
bounded. Thus, n1, n2 and n3 are all periodic functions of τ .
This implies that the rodlike particles are kayaking. Moreover,
the asymmetric axis of the kayaking is also periodic.

Combining the above with the expression (3.12) of λ and
Fig. 5 of λ depending on α, we can state the following results.

(i) When 0 < α < ᾱ, λ > 1; flow-aligning (3.30) is the
unique stable solution of (3.10). This means that liquid crystal
particles are flow-aligning in the shear plane when the intensity
α of interaction among particles is weak.

(ii) When α > ᾱ, 0 < λ < 1: the stable dynamic solutions of
(3.10) are log-rolling, tumbling and kayaking, depending on the
initial states of the liquid crystal particles. It implies that liquid
crystal particles are log-rolling, tumbling and kayaking when
their initial directions are perpendicular to the shear plane, in
the shear plane and other cases, respectively, if the intensity α
of the interaction among particles is strong.

4. Conclusion remarks

By rigorous stability analysis we have shown that there is
a hysteresis phenomenon for the equilibrium solution of the
Smoluchowski model (1.1) when the flow is at rest. The stable
stationary state is from the isotropic phase to the prolate phase
when the potential intensity α crosses the critical point 7.5 from
small to large, and from the prolate phase to the isotropic phase
when α crosses the other critical point 6.731393 from large to
small.

From theoretical analysis and numerical calculation we can
conclude that log-rolling, flow-aligning, tumbling and kayaking
are all stable dynamic states of the liquid crystal particles in
a weak shear flow, depending on rod-particles being places.
In detail, if the rod-particles are perpendicular to the shear
plane, then they are always in the log-rolling state on this
vorticity direction. Otherwise, when the intensity α of the
interaction among rod particles is weak, the macroscopic flow
will determine the directions of the rod-like particles, i.e, rod-
particles are in the flow-aligning state for the shear flow when
α � 1. However, when α becomes larger, the rod-particles
are in the kayaking or tumbling state. If rod-particles are in the
shear plane, they are in the tumbling state. If rod-particles are
not in the shear plane, they are kayaking state. Moreover, from
numerical calculation we also know that the kayaking state does
not circulate around a fixed direction but the vortical axis will
change periodically.
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