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We study the phase transition in rigid extended nematics and magnetic suspensions by solving the
Smoluchowski equation for magnetically polarized rigid nematic polymers and suspensions in
equilibrium, in which the molecular interaction is modeled by a dipolar and excluded volume
potential. The equilibrium solution �or the probability distribution of the molecular distribution� is
given by a Boltzmann distribution parametrized by the �first-order� polarity vector and the
�second-order� nematic order tensor along with material parameters. We show that the polarity
vector coincides with one of the principal axes of the nematic order tensor so that the equilibrium
distribution can be reduced to a Boltzmann distribution parametrized by three scalar order
parameters, i.e., a polar order parameter and two nematic order parameters, governed by three
nonlinear algebraic-integral equations. This reduction in the degree of freedom from 8 �3 in the
polarity vector and 5 in the nematic order tensor� to 3 significantly simplifies the solution procedure
and allows one to conduct a complete analysis on bifurcation diagrams of the order parameters with
respect to the material parameters. The stability of the equilibria is inferred from the second
variation of the free energy density. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2408484�

I. INTRODUCTION

The Doi-Hess kinetic theory is developed for flows of
rigid nematic liquid crystals.1,2 It is also applicable to rigid
rodlike particle dispersions in viscous solvent. Lately, it has
been extended to model magnetic dispersions in viscous sol-
vent by Bhandar and Wiest.3 Magnetic dispersions are inter-
esting materials that have many applications in industries.4

The interesting issues for magnetic dispersions are how the
anisotropic particles orient and how the orientation evolves
in time under various conditions.

In Ref. 3, Bhandar and Wiest studied the equilibrium
orientation of magnetic dispersions and the orientational dy-
namics in imposed shear using a closure approximation.
They noted a new transition from the isotropic to nematic
phase using the approximation. We will revisit the issue by
solving the Smoluchowski equation exactly in equilibrium,
bypassing the closure approximation, which may introduce
fictitious solutions, and direct numerical discretization of the
Smoluchowski equation. Recently, a number of papers have
emerged addressing the properties of the Smoluchowski
equation and its solution properties for the Doi-Hess
model,2,5–26 in which the existence, multiplicity, and stability
of equilibrium solutions are rigorously studied and justified.

In this paper, we extend the previous work on the
Smoluchowski equation, especially the work of Wang et al.25

on the exact solution of the Smoluchowski equation with an
intermolecular potential consisted of either a dipolar interac-
tion potential or an excluded volume potential to derive the
exact solution for the Smoluchowski equation with an inter-
molecular potential consisted of both the dipolar and ex-
cluded volume potential. We will first show that the equilib-
rium solution, which is the probability distribution function
�pdf� for the molecular orientation, is of a Boltzmann type
and parametrized by a polarity vector �the first moment of
the pdf� and a nematic order tensor �the second moment of
the pdf�. We then prove mathematically that the equilibrium
polarity vector is coaxial with the nematic order tensor, i.e.,
the polarity vector must parallel to one of the principal axes
of the nematic order tensor; thereby, we establish that the
equilibrium solution can be parametrized by three scalar or-
der parameters and the material constants, in which the three
order parameters are governed by three nonlinear algebraic-
integral equations. This approach allows one to single out the
three essential modes responsible for the equilibrium solu-
tion of the Smoluchowski equation, eliminating the need of
using spherical harmonic expansions or other elaborate nu-
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merical approximations to attain solutions of the Smolu-
chowski equation. With the reduced system of equations, we
are able to derive the complete bifurcation phase diagram in
the parameter space of the strength of the dipolar potential
versus that of the excluded-volume one, and thereby to un-
derstand the phase transition in the material system governed
by the Smoluchowski equation along with the intermolecular
potentials completely.

In a very recent paper, Gopinath et al. studied the tran-
sition to nematic phase in the neighborhood of the isotropic
state asymptotically using the spherical harmonic expansion
of the pdf solution of the Smoluchowski equation.26 Our re-
sults extend their work with the Maier-Saupe potential to the
entire parameter space and all equilibrium solutions.27–29

In the past, a model known as p1-p2 model was used to
study the phase behavior in crystals30 and ferroelectric liquid
crystals.31–34 Using a mean field version of the p1-p2 model,
Krieger and James was able to obtain the phase diagram in
the parameter space encompassing two tricritical points and
a triple point.30 The p1-p2 model is the uniaxial limit of our
model. In this regard, our work in this paper also extends the
early work by providing all equilibria of the Smoluchowski
equation, stable and unstable alike, as well as revealing the
detailed phases including the metastable ones and the limits
of metastability for various phases.35

II. EQUILIBRIUM SOLUTION FOR EXTENDED
„POLAR… NEMATICS

We consider the rigid extended nematics in which the
nematic molecules are magnetically polar. For these nemat-
ics, the molecular interaction includes not only the excluded
volume effect, but also the magnetic dipole-dipole
interaction.3 Let f�m , t� be the probability density function
�pdf� for nematic molecules in direction m at time t. The
total interaction potential for the solution of rigid extended
nematic polymers is given by

V = − �kT�m� · m −
3NkT

2
�mm�:mm , �1�

where m is a unit vector for the axes of symmetry of the
molecule, � the strength of the dipole-dipole interaction, N a
dimensionless parameter describing the strength of the ex-
cluded volume potential, and

��•�� = �
�m�=1

�•�fdm �2�

is the ensemble average with respect to the probability den-
sity function f , which is a solution of the Smoluchowski
equation.

The steady state solution of the Smoluchowski equation,

�

�t
f = R · �DrfR�� , �3�

where �=ln f + �1/kT�V is the normalized chemical potential
given by25

f =
1

Z
e−V/kT, �4�

where Z=	�m�=1e−V/kT is the partition function. In the above
expression, R the rotational gradient operator,1 and Dr the
rotary diffusivity, which is assumed a constant for simplicity
in this study. �We note that the steady state solution is given
by the same form should the rotary diffusivity is a positive
function of m.� Notice that the pdf solution is parametrized
by the first and second moment tensors, �m� and �mm�, re-
spectively, along with the material parameters � and N. The
first and second moment tensors have 8 degrees of freedom
or 8 independent components collectively, which are defined
implicitly through �4�. We next introduce a reduction proce-
dure to reduce the degree of freedom from 8 to 3.

First we show that the degree of freedom can be reduced
from 8 to 5 in the coordinate system set by the principal axes
of the second moment. Let n ,n� ,n* denote the three ortho-
normal eigenvectors of the second moment tensor �mm�. We
parametrize the first moment vector �m� and m with respect
to the basis as follows:

m = cos �n + sin � cos �n� + sin � sin �n*,

�5�
�m� = s1�cos ��n + sin �� cos ��n� + sin �� sin ��n*� ,

where s1 is the polar order parameter, and �� ,�� are the
Euler angles for the first moment vector or the polarity vec-
tor �m�. When s1=0, the material is purely nematic, whereas
it is extended nematic or polar nematic if s1�0. We adopt
the biaxial representation for the second moment tensor:36,37

�mm� = s
nn −
I

3
� + ��n�n� − I/3� + I/3, �6�

where s and � are the pair of the nematic order parameters
describing the birefringence about two principal axes.

With the above parametrization, the equilibrium prob-
ability density function can be rewritten as

f =
1

Z
eh,

�7�
h = �s1�cos �� cos � + sin �� sin � cos�� − ����

+
3N

2
�
s −

�

2
��cos2 � − 1/3� +

�

2
cos 2� sin2 � .

The order parameters are given by

s1 = �cos � cos �� + sin � sin �� cos�� − ���� ,

�8�
� = �sin2 � cos 2��, s = �P2�cos ��� + �/2,

where P2�z�= �3z2−1� /2 is the second-order Legendre poly-
nomial. In the coordinate system set by the principal axes of
the nematic tensor, the pdf solution is parameterized by five
scalar variables: three order parameters s1 , s , �, and two
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angle parameters �� , ��. There are three constraints associ-
ated with the parametrization of m in the coordinate set by
the second moment:

�cos � sin � cos �� = �cos � sin � sin ��

= �sin2 � sin � cos �� = 0. �9�

Let p and q be two orthonormal vectors perpendicular to the
first moment vector. Then

�m · p� = �m · q� = 0. �10�

This hints an additional reduction in the degree of freedom in
the representation of the pdf solution.

Next, we prove a theorem to establish the relationship
between the first moment vector and the second moment
tensor and thereby to attain the explicit values of �� and ��
and further reduction in the degree of freedom in the Boltz-
mann expression.

Theorem 1: The polarity vector is either zero or coaxial
with the second order nematic order tensor. That is, the first

moment vector �m� either vanishes or parallels to one of the
eigenvectors of the second moment tensor �mm�: ��=0 or
��=� /2 and ��=0,� /2.

Proof: First of all, if s1=0, then the first moment van-
ishes. Therefore, we only need to show that the first moment
must parallel to one of the eigenvectors of the second mo-
ment tensor whenever s1�0. We define

h = �s1��1 cos � cos �� + �2 sin � sin �� cos�� − ����

+
3N

2
��s − �/2��cos2 � − 1/3� + ��/2� sin2 � cos�2��� ,

�11�

F��1,�2� = �
0

2�

d��
0

�

sin2 � cos � cos�� − ���ehd� .

It follows from �cos � sin � cos ��=0, �cos � sin � sin i�=0
that, for all ��,

�cos � sin � cos�� − ���� = 0. �12�

Equation �12� implies F�1,1�=0.

F�1,0� = �
0

2�

d��
0

�

sin2 � cos � cos�� − ���e�s1 cos � cos ��+�3N/2���s−�/2��cos2 �−1/3�+��/2� sin2 � cos 2��d�

= �
0

�

sin2 � cos �e�s1 cos � cos ��+�3N/2��s−�/2��cos2 �−1/3�d�

��
0

2�

�cos � cos �� + sin � sin ���e�3N/2���/2� sin2 � cos 2�d� = 0.

Thus, there is a �2
*� �0,1� such that ��F /��2��1,�2

*�=0:

�F

��2
��1,�2�

= const�
0

2�

d��
0

�

sin2 � cos � cos2�� − ���

�e�s1��1 cos � cos ��+�2 sin � sin �� cos��−����+¯d� .

Because cos � is an odd function about �=� /2 while sin���
and cos2��� are even,

�F

��2
�0,�2�

= const�
0

2�

d��
0

�

sin2 � cos � cos2�� − ���

�e�s1��2 sin � sin �� cos��−����+¯d� = 0

for any values of �2. Letting �2=�2
*, we have

��F /��2��0,�2
*�=0, ��F /��2��1,�2

*�=0; then there is a �1
*

� �0,1�, such that ��2F /��1��2���1
* ,�2

*�=0, where

�2F

��1��2
= const sin 2���

�m�=1
sin2 2� cos2�� − ���

�eh/Zdm .

This implies

sin 2�� = 0. �13�

Thus, ��=0,� /2.
In the case of ��=� /2, we define

G��1,�2� = �
�m�=1

sin2 � cos � sin �egdm ,

g =
3N

2
��s − �/2��cos2 � − 1/3� + ��/2� sin2 � cos 2��

+ �s1��1 cos � cos �� + �2 sin � sin ��� .

From �sin2� sin � cos ��=0, we have G�1,1�=0. Notice that
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G�0,1� = �
0

�

sin3 �e�3N/2��s−�/2��cos2 �−1/3�d�
�
0

�

+ �
�

2� �sin 2�e�s1 sin � sin ��+��/2� sin2 � cos 2�d�;

sin � and cos 2� are even functions about �=� /2 ,3� /2, and sin 2� is an odd function about �=� /2 ,3� /2. It can be easily
shown that G�0,1�=0. Thus, there is a �1

*� �0,1� such that ��G /��1���1
* ,1�=0. On the other hand,

�G

��1
��1,0� = const cos ���

0

2�

d��
0

�

sin3 � cos2 � sin �e�s1��1 cos � cos ���+¯d�

= const cos ���
0

�

sin3 �e3N/2�s−�/2��cos2 �−1/3�d�
�
0

�/2

+ �
�/2

3�/2

+ �
3�/2

2� �cos2 � sin �e�s1�1 cos � cos ��+¯d� ,

cos � is an even function about 0, �, and sin � is an odd
function about them. It can also be shown ��G /��1���1 ,0�
=0. Using the same method above for F, we conclude that
there is a �2

*� �0,1� such that ��2G /��1��2���1
* ,�2

*�=0, so
sin 2��=0; i.e., ��=0 or � /2.

The same result can be proved using another approach in
which the Euler angles are not required. We select x, y, and z
axes such that the second moment is diagonal. That is,
�mimj�=0 for i� j. We want to prove �m� is parallel to one
of the principal axes of the second moment �mm�. We prove
this by contradiction.

First we denote the principal axes of �mm� as e1, e2, and
e3. Let �m�=r1e1+r2e2+r3e3. Suppose at least two of r1, r2,
and r3 are nonzero �otherwise, �m� is already parallel to one

of the principal axes of �mm��. Without loss of generality,
we assume both r1	0 and r2	0 �we can always rename x,
y, and z axes to achieve this�. The total potential, then, is

V�m1,m2,m3�
kT

= − �r1m1 + r2m2 + r3m3�

− �c1m1
2 + c2m2

2 + c3m3
2�

� − �r1m1 + r2m2 + r3m3� − V2�m1,m2,m3� ,

�14�

where cj = �3N /2��mjmj�. Notice that V2 is an even function
of m1 and m2, which is going to play a crucial role in the
analysis below. We will show �m1m2�	0, which contradicts
the selection of the principal axes.

�m1m2� =
1

Z
�

�m�=1
m1m2 exp�r1m1 + r2m2 + r3m3 + V2�m1,m2,m3��dm

=
1

Z
�

�m�=1 with m1	0,m2	0
m1m2 exp�r3m3 + V2�m1,m2,m3���exp�r1m1 + r2m2�

− exp�− r1m1 + r2m2� − exp�r1m1 − r2m2� + exp�− r1m1 − r2m2��dm

=
4

Z
�

�m�=1 with m1	0,m2	0
m1m2 exp�r3m3 + V2�m1,m2,m3��sinh�r1m1�sinh�r2m2�dm 	 0. �15�

Now that the first moment must be parallel to one of the
eigenvectors of the second moment, we can find all the equi-
librium solutions of the Smoluchowski equation by solving
the governing equations for the three order parameters; i.e.,
s , � , s1, at ��=0. We remark that the other cases, i.e.,
��=� /2 and ��=0 or ��=� /2, can be handled by a rep-
arametrization of the Euler angles.36,37 Now, the degree of
freedom in the equilibrium solution is reduced to 3.

The stability of the steady states is inferred from the
second variation of the free energy density of the material
system. The free energy density of the nematic polymer sys-
tem is given by

A�f� = �
�m�=1

�kT ln f +
V

2
 fdm . �16�

From �7�, we arrive at the free energy density at equilibrium:

A�f� = �
�m�=1

�− kT ln Z −
V

2
 fdm

= − kT�ln Z −
N

2
�s2 − s� + �2� −

�

2
s1

2 + const.

�17�

The global stable solution yields the smallest free energy
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density, while the local stable ones correspond to the local
minimum of the free energy density.

Solution symmetry

So far, we have shown that the steady state solution in
the coordinate system set by the eigenvectors of the second
moment can be parametrized by three scalar order param-
eters. It has been known that the solution of the Smolu-
chowski equation corresponding to pure nematics is invariant
with respect to the SO�3� group.11,20,22 This property is held
for the extended nematics as well since there is no external
field to specify a distinguished or preferred direction in equi-
librium. This SO�3� degeneracy is consistent with our reduc-
tion procedure alluded to earlier.

The steady state pdf solution is known should the system
of three nonlinear algebraic-integral equations �8� be solved.
It is impossible to derive analytic solutions for the system.
Thus, we resort to numerical methods next.

III. PHASE DIAGRAMS FOR EXTENDED NEMATICS

We study how the equilibrium solutions vary with re-
spect to material parameters, particularly � and N.

The following theorem establishes a lower bound on the
material parameter � below which the material is purely
nematic.

Theorem 2: There exist only purely nematic equilibria
�s1=0� when �
1.

Proof: Let

F1�s1� = �
0

2�

d��
0

�

cos �e�s1 cos �+�3N/2���s−�/2��cos2 �−1/3�+��/2� sin2 � cos 2��d�/Z

= �
0

2�

d��
0

�/2

cos �e�s1 cos �+�3N/2���s−�/2��cos2 �−1/3�+��/2� sin2 � cos 2��d�/Z

+ �
0

2�

d��
0

�/2

cos�� − ��e�s1 cos��−��+�3N/2���s−�/2��cos2��−��−1/3�+��/2� sin2 � cos 2��d�/Z

= �
0

2�

d��
0

�/2

cos �e�3N/2���s−�/2��cos2 �−1/3�+��/2� sin2 � cos 2���e�s1 cos � − e−�s1 cos ��d�/Z .

If ��0, F1�s1�	0 when s1�0, and F�s1��0 when s1	0.
Thus, for any s ,�, only s1=0 satisfies the equation
s1=F1�s1�. We introduce

G1�s1� = s1 − F�s1� .

We note that

dG1

ds1
= 1 − ��cos2 �� + ��cos ��2.

If 0
�
1, dG1 /ds1	0, indicating that G�s1� is an increas-
ing function of s1. Since G1�0�=0, G1�s1��0 for s1�0.
Hence, s1=0 is the only solution.

Again, the same result can be established using a coun-
terproof. From the result of Theorem 1, we assume �m�
=r1e1. We will show that when �
1 �i.e., the strength of the
dipole-dipole interaction is weak�, r1 must be zero so the
only equilibrium is nonpolar. We prove it by contradiction.
Suppose r1	0 �otherwise we can change the coordinate sys-
tem to achieve this�:

r1 = �m1� =

�
S

m1 exp��r1m1 + V2�m1,m2,m3��dS

�
S

exp��r1m1 + V2�m1,m2,m3��dS

=

�
S with m1	0

m1 exp�V2�m1,m2,m3��sinh��r1m1�dS

�
S with m1	0

exp�V2�m1,m2,m3��cosh��r1m1�dS

.

�18�

Using the fact that tanh�x��x for x	0, we have

m1 exp�V2�m1,m2,m3��sinh��r1m1�


 exp�V2�m1,m2,m3��cosh��r1m1�tanh��r1m1�

� �r1 exp�V2�m1,m2,m3��cosh��r1m1� . �19�

Substituting this inequality into the expression for r1 above,
we obtain

r1 � �r1, �20�

which is a contradiction when �
1 and r1	0. �

Remark: At the presence of an imposed magnetic field
H, the total potential is given by
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V = − ��kT�m�� · m −
3NkT

2
�mm�:mm −

�a

2
HH:mm ,

�21�

where �a is the difference of susceptibility parallel and per-
pendicular to the molecular direction m, known as the mate-
rial anisotropy. It can be shown that Theorem 2 applies as
well; i.e., the extended nematics are purely nematic when
�
1 regardless of the orientation of the external field H. In
fact, it is established in Ref. 25 that H must parallel to one of
the principal axis directions.

For pure nematics, the equilibrium phase diagram is well
known.27–29 For �	1, however, polar nematic equilibria
may exist. We examine the equilibria diagram numerically
next. First, we note that, for any values of � and N, s1=0 is
a solution. Thus, all the purely nematic equilibria well-
studied before27,28,37 are also equilibria of the extended nem-
atics. However, their stability can be altered because there
can exist a nonzero stable polar order parameter such that the
purely nematic equilibria are unstable in certain parameter
regimes.

We examine the second variation of the free energy den-
sity along stable uniaxial equilibrium branches to figure out
the stability criteria �see Appendix A�. For the isotropic equi-
librium given by s1=s=�=0, the second variation of the free
energy density can be calculated explicitly:

�2A�s1=0,s=0,�=0 = kT��� − �2/3�2s1 + N�1 − N/5�2s

− N�1 − N/5�s� + N�1 − N/5�2�� .

�22�

This shows explicitly that �=3 and N=5 are two critical
values for the strength of the dipolar potential and the ex-
cluded volume potential, respectively. For the isotropic nem-
atic branch �s=0, �=0�,

�c
�0� = 3 �23�

is the critical dipolar strength beyond which the isotropic
polar order parameter becomes unstable, whereas

Nc
�1� = 5 �24�

is the critical concentration beyond which the isotropic equi-
librium is unstable. Thus, for ��3, N�5, the isotropic equi-
librium is stable.

For uniaxial nematics s�0, �=0 on the other hand �see,
for example, Fig. 3�, the second variation is given by

2A = kT�
1 −
��1 + 2s�

3
�s1

2

+ kTN�s,�� · C · �s,��T, �25�

where

C =�
5

2
−

3

4s

 e3Ns/2

��s�
− 1� +

N

4
�1 + 2s�2 −

5

4
+

3

8s

 e3Ns/2

��s�
− 1� −

N

8
�1 + 2s�2

−
5

4
+

3

8s

 e3Ns/2

��s�
− 1� −

N

8
�1 + 2s�2 25

16
−

N

32
�1 − 20s − 8s2� −

9

32s

 e3Ns/2

��s�
− 1� � , �26�

��s� = �
0

1

e3Nsz2/2dz . �27�

The critical value for � is

�c
�1� =

3

1 + 2s
, �28�

beyond which the uniaxial nematic equilibrium is unstable
due to the instability in the polar order parameter s1. From
Theorem 2, it follows that

�c
�1� 	 1 �29�

in order for the nonzero polar order parameter to emerge via
a bifurcation from the purely nematic branch. This implies
s	0. Our numerical experiments show that the bifurcation
leading to stable solutions can only takes place along the
highly aligned uniaxial branch s�0, implying �c

�1�
3
=lims→0�c

�1�=�c
�0�. The Hessians in �22� and �25� also reveal

the classical phase transition concentration Nc
�1�=5 along the

isotropic branch and Nc
�2��4.49 along the prolate nematic

branch.25

Recall that the nonzero order parameter s in uniaxial
nematics ��=0� is given by a single integral equation37,38

1 + 2s

3
�

0

1

e3Nsz2/2dz = �
0

1

z2e3Nsz2/2dz . �30�

Combining �28� and �30�, we arrive at the function relation
between �c

�1� and the critical value of N denoted as Nc
�3�, at

which the polar nematic phase forms due to a bifurcation out
of the uniaxial nematic branch s	0, �=0 or out of s1=0 in
the polar order parameter space. We note that, since the gov-
erning equation for the equilibrium order parameters
�s1 ,s ,�� is symmetric about s1, the nonzero equilibrium so-
lutions of s1 always come in pairs. The function relation
between �c

�1� and Nc
�3� is plotted in Fig. 1, consisting of the

solid curve down to the point ��c
�1�=1.82127937, Nc

�2�=4.49�
and the dotted one which ends at ��c

�1�=3, Nc
�1�=5�. We no-

tice that the curve is not monotonic. At N�Nc
�1�=5, there are
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two � corresponding to a single value of N; one is bigger
than 1.82127937, while the other is smaller than it. Along
this critical curve, there exists a tricritical point at ��c

1t

=1.4824, Nc
�3t�=4.7�, where the phase transition changes

from the second order to the first one. The governing equa-
tion for the tricritical point is given in Appendix B. The
formation of the polar nematic phase below and above the
tricritical point �c

�1t� at � is quite distinctive.
When �c

�1���c
�1t�, the polar nematic is created via a one-

dimensional transcritical pitchfork bifurcation out of the zero
polar order parameter branch at Nc

�3t� �see Fig. 3�. There are
coexistent regions for N� �Nc

�2� ,Nc
�1��, where either the

isotropic/nematic phase �labeled as I /N in Fig. 1� coexists or
the isotropic/polar-nematic phase �labeled as I /PN in Fig. 1�
coexists. When �c

�1t���c
�1��1.82127937, the polar nematic

phase is born out of a hysteresis bifurcation consisting of a
subcritical pitchfork bifurcation out of the zero polar order
parameter branch �or the uniaxial prolate nematic branch�
along with a pair of turning point bifurcations at ��c

�2� ,Nc
�4��.

The curve ��c
�2� ,Nc

�4�� originates from the tricritical point
�1.4824,4.7�, as shown in Fig. 1. Between �c

�1t���c
�1�

�1.82127937, there exist possibly three coexistent regions:
one is a triphasic region where isotropic/nematic/polar-
nematic �labeled as I /N/PN in Fig. 1� coexist, the others are
biphasic regions where isotropic/nematic or isotropic/polar-
nematic phase coexist, as shown in Fig. 1. The curve termi-
nates at the second tricritical point ��c

�3�=3, Nc
�4�=5/3�.

When 1.82127937���3 and Nc
�4��N�5, isotropic/polar-

nematic phase coexists. The curves �0
�
1.82127937, N
=Nc

�2��, �0
�
3, N=Nc
�1��, ��c

�1� ,Nc
�3��, and ��c

�2� ,Nc
�4�� de-

fine the limits of the metastability.35

Figure 1 depicts the limit curves of the metastability, the
uniphasic, biphasic, and triphasic regions in the parameter
space �� ,N�. Below the second tricritical point �3,5 /3�, the

phase transition from the isotropic to polar-nematic phase
becomes second order. Figure 2 shows the globally stable
phase transition curves in solid, in which the triple point is
shown explicitly. We next detail on the bifurcations of the
equilibrium solutions at representative values of � and N,
respectively. We solve the governing integral equation sys-
tems numerically using Gauss quadratures. We first fix � and
look into the bifurcation of the solutions via N.

Figure 3 depicts the bifurcation diagram for all equilibria
at �=1.3��c

�1t�. There exist two well-known critical concen-
trations for purely nematic order parameters Nc

�2�=4.49 and
Nc

�1�=5 such that a turning point bifurcation takes place at

Nc
�2� yielding a pair of prolate nematic order parameters and a

double saddle node bifurcation occurs at Nc
�1�, leading to un-

stable isotropic and nematic phases beyond Nc
�1�.36,37 Given

the coupling of the polarity to the nematic order, a transcriti-
cal pitchfork bifurcation takes place at a concentration Nc

�3�:
Nc

�2��Nc
�3� along the stable branch of the prolate nematic

order parameter, which can be read off from the solid curve
in Fig. 1 at �=1.3. The polarity enhanced nematic order
parameter s is of higher numerical value than the one corre-
sponding to the purely nematic. The phase transition between
the isotropic and nematic one is the first order, while the
transition from nematic to polar nematic at higher concentra-
tion is apparently the second order. This is a generic diagram
for all 1����c

�1�.
Figure 4 depicts the bifurcation diagram for all equilibria

at �=1.5. Different from the case pictured in Fig. 3, the polar
order parameter bifurcates out of the zero value branch via a
pair of hysteresis bifurcations consisting of a subcritical
pitchfork bifurcation at Nc

�3� and connected at a pair of turn-
ing point bifurcations at smaller concentration Nc

�4�. Between

Nc
�2� and Nc

�3�, there exist three phases: isotropic, nematic, and

FIG. 1. �Color online� The phase diagram in parameter space �� ,N�. The
solid and dashed curves are limits of metastability. Tricritical points are
labeled by stars. The ��c

�1� ,Nc
�3�� curve terminates at �1.82127937,Nc

�2��,
while curve ��c

�2� ,Nc
�4�� begins at the first tricritical point �1.4824,4.7� and

ends at the second tricritical point �3,5 /3�. I: isotropic phase, N: nematic
phase, PN: polar nematic phase.

FIG. 2. �Color online� The phase transition curves and globally stable phase
diagram in parameter space �� ,N�. Tricritical points are labeled by stars.
The solid curves are phase transition curves. The solid curves between the
two tricritical points are the second order phase transition curves. The others
are the first-order phase transition curves. The solid �nearly� straight line is
another second-order phase transition curve. The first tricritical point is lo-
cated at �1.4824,4.7� and the second tricritical point is at �3,5 /3�.
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polar nematic. Two phase transitions are possible. Between
Nc

�4� and Nc
�2� or Nc

�3� and Nc
�1�, there exist two phases: isotro-

pic and polar nematic.. This is the generic scenario for �
��c

�3�, which is the intersection of the lower solid curve with
the line N=Nc

�2� in Fig. 1.
Figure 5 portraits another scenario of phase bifurcation

diagram at �c
�1t���=1.75�1.82127937, where Nc

�4��Nc
�2�.

The scenario of coexisting phases go through single isotropic

phase at 0�N�Nc
�4�; isotropic/polar-nematic biphases at

Nc
�4��N�Nc

�2�; isotropic, nematic, and polar-nematic
triphases at Nc

�2��N�Nc
�3�; isotropic/polar-nematic biphases

at Nc
�3��N�Nc

�1�; and single polar nematic phase at N

	Nc
�1�. This is a representative diagram for �c

�3���

�1.82127937.
Figure 6 depicts the bifurcation diagram for all equilibria

FIG. 3. �Color online� The bifurcation diagram of equilibria as functions of concentration N in terms of order parameters s1 ,s ,� at �=1.3. There exist three
critical values of N: Nc

�2�=4.49, Nc
�1�=5, Nc

�3�. For 0�N�Nc
�1�, the isotropic phase s1=s=�=0 is the unique stable equilibrium. At Nc

�2�, a stable, prolate purely
nematic phase forms through a saddle node �turning point� bifurcation. For Nc

�2��N�Nc
�1�, the stable isotropic phase, and a stable prolate pure nematic phase

coexist along with an unstable prolate phase, identical to the pure nematic case. At Nc
�3�, a pitchfork bifurcation takes place along the highly aligned prolate

nematic branch, giving rise to a pair of stable nonzero polar order parameters in s1. The new stable branch of equilibrium projected onto the space of s gives
rise to a new branch of prolate nematic phase with enhanced alignment. This is the generic scenario as we vary � between 1 and �c

�1t�.
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at �=2.8. As the value of � increases from 1.82127937 to 3,
the critical concentration Nc

�3� �corresponding to the pitchfork
bifurcation along the polar order parameter branch� increases
from Nc

�3�=4.49 toward Nc
�1�=5. The corresponding bifurca-

tion also changes to a pair of hysteresis bifurcations consist-
ing of a subcritical pitchfork at Nc

�3� and a pair of turning
point bifurcations at Nc

�4�. The bifurcation point along the less

aligned, purely nematic prolate branch �Nc
�3� ,s� also slides

toward �Nc
�1� ,0+�, whereas the critical concentration Nc

�4� cor-
responding to the new turning point bifurcation along the
polar order parameter branch decreases monotonically. In
this case, a pair of unstable polar, biaxial equilibria also
come into existence at higher concentration.

We have noted that �=3 is special, yielding a tricritical

FIG. 4. �Color online� The bifurcation diagram of equilibria as functions of concentration N in terms of order parameters s1 ,s ,� at �=1.5. There exist four
critical values of N: Nc

�1�=4.49, Nc
�2�=5, Nc

�3�, Nc
�4�. For 0�N�Nc

�4�, the isotropic phase s1=s=�=0 is the unique stable equilibrium. At Nc
�2�, a stable, prolate

purely nematic phase forms through a saddle node �turning point� bifurcation. A subcritical pitchfork bifurcation takes place at Nc
�3� yielding a pair of unstable

polar nematics. The unstable polar nematics go through a turning point bifurcation at Nc
�4� to regain stability. For Nc

�2��N�Nc
�4�, the stable isotropic phase, and

a stable prolate pure nematic phase coexist; while Nc
�4��N�Nc

�3�, isotropic, pure nematic, and polar nematic phases coexist. When min�Nc
�3� ,Nc

�1���N

�Nc
�1�, the isotropic and polar nematic phases coexist. Beyond Nc

�1�, the only stable phase is the polar nematic one. This is the generic scenario as we vary �
between �c

�1t� and �c
�3�, which is given by the intersection of the lower solid curve with Nc

�2� in Fig. 1.
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point at N=5/3. We detail the bifurcations of solutions as
function of N in Fig. 7. The hysteresis bifurcation combina-
tion degenerates into a single transcritical pitchfork bifurca-
tion making the polar nematic phase stable and the isotropic
phase unstable beyond N=5/3. All other pure nematic
phases are unstable now.

Figure 8 depicts a bifurcation diagram of all equilibria at

�=3.05 while N varies. In the range of �	3, the isotropic
state becomes completely unstable. There exists only a stable
polar nematic phase with a prolate, uniaxial, nematic order
parameter for all values of N	0. Unstable polar, biaxial
nematic states may also exist at higher values of N.

We next present the bifurcation diagrams with respect to
� at two representative values of concentration. Figure 9

FIG. 5. �Color online� The bifurcation diagram of equilibria as functions of concentration N in terms of order parameters s1 ,s ,� at �=1.75. There exist four
critical values of N: Nc

�1�=4.49, Nc
�2�=5, Nc

�3�	Nc
�4�. For 0�N�Nc

�4�, the isotropic phase s1=s=�=0 is the unique stable equilibrium. At Nc
�4�, a stable, prolate

polar nematic phase forms through a saddle node �turning point� bifurcation. A stable pure nematic phase forms at Nc
�2� via a turning point bifurcation. It soon

goes through a subcritical pitchfork bifurcation at Nc
�3� yielding a pair of unstable polar nematics. For Nc

�4��N�Nc
�2�, the stable isotropic phase and a stable

polar nematic phase coexist; while Nc
�2��N�Nc

�3�, isotropic, pure nematic, and polar nematic phases coexist. When min�Nc
�3� ,Nc

�1���N�Nc
�1�, the isotropic and

polar nematic phases coexist. Beyond Nc
�1�, the only stable phase is the polar nematic one. This is behavior together with that alluded to in the previous figure

constitutes the generic phase scenario as we vary � between �c
�3� and 1.82127937.
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depicts a bifurcation diagram of all equilibria at a fixed value
of N=4.75. At this value of N, an isotropic and a stable
uniaxial prolate order parameter s coexist at �=0. The iso-
tropic one is stable up to �=3 and then becomes unstable

through a subcritical pitchfork bifurcation. The prolate nem-
atic order corresponds to zero polar order �pure nematics� up
to �c

�1�=1.437 and then switches to a more aligned prolate
polar nematic branch through a transcritical pitchfork bifur-

FIG. 6. �Color online� The bifurcation diagram of the order parameters s1 ,s ,� as functions of N at �=2.8. The polar order parameter undergoes two
bifurcations. First, it undergoes a hysteresis bifurcation consisting of a subcritical pitchfork bifurcation at Nc

�3� and a secondary turning point bifurcation at Nc
�4�,

yielding two pairs of nonzero polar order parameter branches, among which one with the larger numerical value is stable while the other is unstable. Second,
it undergoes a transcritical pitchfork bifurcation at Nc

�5� leading to two unstable branches of the polar order parameters corresponding to two unstable biaxial
nematic branches. The turning point bifurcation at Nc

�4� yields a highly aligned prolate, stable, nematic phase, and an unstable, less aligned nematic phase. The
isotropic state is stable up to Nc

�2�=5. The biaxial nematic order parameters are plotted in red circled curves.

123103-11 Study of phase transition Phys. Fluids 18, 123103 �2006�

Downloaded 30 Oct 2007 to 162.105.69.59. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



cation. Biaxial states exist at higher values of �, but are all
unstable.

Figure 10 depicts the bifurcation diagram at an elevated
value of N=5.5. At this concentration, the only stable steady
state at �=0 is the highly aligned, uniaxial, prolate nematic
phase. It corresponds to the zero polar order parameter
branch and is stable up to �c

�1�=1.25. It then bifurcates into a

more aligned prolate polar nematic phase while the polar
order parameter goes through a transcritical pitchfork bifur-
cation. Again, biaxial states are born and annihilated through
some fancy pitchfork and turning point bifurcations.

In summary, Fig. 1 provides an atlas for the equilibrium
solutions of the Smoluchowski equation for extended nemat-
ics. uniphasic, biphasic, and even triphasic regions can exist

FIG. 7. �Color online� The bifurcation diagram of the order parameters s1 ,s ,� as functions of N at �=3. The polar order parameter undergoes a transcritical
pitchfork bifurcation at N=5/3 yielding two pairs of stable, nonzero polar order parameter branches; second, it undergoes a secondary transcritical pitchfork
bifurcation at Nc

�5� leading to two unstable branches of the polar order parameters corresponding to two unstable biaxial nematic branches. The isotropic state
is stable up to N=5/3. This is a degenerate case encompassing the tricritical point �3,5 /3�.
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in parameter space �� ,N�. Two tricritical points are identified
to indicate change of phase transition behavior. Biaxial equi-
libria are observed, but are unstable.

IV. CONCLUSION

We have studied the equilibrium solutions of the Smolu-
chowski equation for flows of extended �polar� nematic

liquid crystal polymers where the molecular interaction is
modeled by a dipole-dipole interaction together with the
Maier-Saupe excluded volume potential. We show that the
first moment or the polarity vector must parallel to one of the
principal axes of the second moment so that the equilibrium
solution of the Smoluchowski equation is reduced to a Bolt-
zmann function parametrized by only three scalar order pa-
rameters along with the material parameters. The equilibrium

FIG. 8. �Color online� The bifurcation diagram of order parameters s1 ,s ,� as functions of N at �=3.05. When ��3, a pair of polar nematics exist and is
stable for all values of N; two pairs of unstable nonzero polar order parameters emerge as results of transcritical bifurcations along the zero polar order
parameter branch, one of which yields the unstable biaxial nematic order parameter branches, plotted in red circles. The purely nematic equilibria are all
unstable.
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solutions are sought by solving three coupled nonlinear
algebraic-integral equations avoiding a complicated spherical
harmonic expansion procedure used in the past.6,15,26 Due to
the coupling of the polar order parameter s1 and the nematic
order parameters �s ,��, new polar nematic and biaxial
phases are formed and phase transitions are observed. A
phase diagram for stable phases are obtained and two tricrit-
cial points are identified in parameter space �� ,N�. All stable

solutions are shown to be uniaxial. A comprehensive analysis
on bifurcation diagrams for all equilibria are presented at
selected values of � and N, respectively. The results also
apply to the magnetic suspensions in viscous solvent since
the Doi-Hess theory equipped with the same potential ap-
plies to these fluids as well.3 The reduction procedure devel-
oped in this paper can be extended to the case when external
magnetic or flow field is imposed or inhomogeneous system

FIG. 9. �Color online� The bifurcation diagram of order parameters s1 ,s ,� as functions of � at N=4.75. The isotropic state is stable up to �=3. It loses
stability due to a subcritical pitchfork bifurcation along the zero polar order parameter branch. At the critical value �c=1.437, a transcritical pitchfork
bifurcation takes place yielding a pair of stable polar order nematic branches corresponding to the stable highly aligned prolate nematic order parameter branch
in s. The purely nematic prolate order parameter loses stability at �c. Biaxial phases can form at high values of �, depicted in red circles.
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bypassing the spherical harmonic expansion approach if only
the stable solutions are desired.
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APPENDIX A: FREE ENERGY DENSITY
AND ITS SECOND VARIATION

The free energy density at equilibrium is given by

FIG. 10. �Color online� The bifurcation diagram of order parameters s1 ,s ,� as functions of � at N=5.5. The isotropic state is unstable for all �	0. The stable
prolate nematic order parameter s is stable up to a critical value of �c=1.25 and then bifurcates into a highly aligned prolate uniaxial order as the polar order
bifurcates into a pair of nonzero order branches through a transcritical pitchfork bifurcation. Biaxial phases exist at high values of �, depicted in red circles.

123103-15 Study of phase transition Phys. Fluids 18, 123103 �2006�

Downloaded 30 Oct 2007 to 162.105.69.59. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



A�f� = − kT ln Z +
kT

2
��s1

2 + N�s2 − s� + �2�� ,

�A1�

Z = �
�m�=1

e�s1 cos �+�3N/2���s−�/2��cos2 �−1/3�+��/2� sin2 � cos 2��

�dm .

Its first and second derivatives are given by

�A

�s1
= �kT�s1 − �cos ��� ,

�A

�s
= kTN
s +

1 − �

2
−

3

2
�cos2 ��� ,

�A

��
= kTN
� +

1 − s

2
−

3

2
�sin2 � cos2 ��� ,

�2A

�s1
2 = �kT − �2kT��cos2 �� − �cos ��2�

= �kT − �2kT
1 + 2s − �

3
− s1

2� ,

�2A

�s1�s
= −

3N�kT

2
��cos3 �� − �cos ���cos2 ���

= −
3N�kT

2

�cos3 �� − s1

1 + 2s − �

3
� , �A2�

�2A

�s1��
= −

3N�kT

2
��cos � sin2 � cos2 ��

− �cos ���sin2 � cos2 ���

= −
3N�kT

2

�cos � sin2 � cos2 �� − s1

1 − s + 2�

3
� ,

�2A

�s2 = kTN −
9N2kT

4
��cos4 �� − �cos2 ��2�

= kTN −
9N2kT

4

�cos4 �� −

�1 + 2s − ��2

9
� ,

�2A

�s��
= −

kTN

2
−

9N2kT

4
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−
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−
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9
� ,

�2A
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4
��sin4 � cos4 �� − �sin2 � cos2 ��2�

= kTN −
9N2kT

4

�sin4 � cos4 �� −

�1 − s + 2��2

9
� .

At the isotropic branch �s1=0 ,s=0,�=0�, the second
variation of the free energy density is

2�A�s1=0,s=0,�=0 = kT��� − �2/3�2s1 + N�1 − N/5�2s

− N�1 − N/5�s� + N�1 − N/5�2�� .

Thus, the isotropic equilibrium is unstable whenever �	3 or
N	5.

For the nonzero purely uniaxial nematic equilibria: s
�0�=0,

2A = kT�
1 −
��1 + 2s�

3
�s1

2

+ kTN�s,�� · C · �s,��T, �A3�

where

C =�
5

2
−

3

4s

 e3Ns/2

��s�
− 1� +

N

4
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5

4
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3
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− 1� −

N

8
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−
5

4
+

3

8s

 e3Ns/2

��s�
− 1� −

N

8
�1 + 2s�2 25

16
−

N

32
�1 − 20s − 8s2� −

9

32s

 e3Ns/2

��s�
− 1� � , �A4�

��s� = �
0

1

e3Nsz2/2dz . �A5�

APPENDIX B: CONDITIONS FOR TRICRITICAL
POINTS

Since the tricritical points appears along the uniaxial
branches, we focus on the free energy density in the limit of
uniaxial phase:

A�f� = − kT�ln Z −
N

2
s2 −

�

2
s1

2 ,

�B1�

Z = �
0

2� �
0

�

e�3N/2�s�cos2 �−1/3�+�s1 cos � sin �d�d� .

The first variation of the free energy density about s1, s
yields the equation for s1 and s. Since A is symmetric in
s1, ���2A /�s�s1��s1=0=0. Along the zero polar order param-
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eter branch �s1=0�, the Hessian of the second variation is
diagonal:

2A = s1
2�2A

�s1
2 + s2�2A

�s2 . �B2�

The condition for tricritical points follows from39

�2A

�s1
2 = 0,

�4A

�s1
4

�2A

�s2 − 3
 �3A

�s1
2�s

�2

= 0. �B3�
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