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Abstract. The Doi kinetic theory for homogeneous flows of rodlike liquid crystalline polymers

(LCPs) is extended to inhomogeneous flows through introducing a nonlocal intermolecular potential.

An extra term in the form of an elastic body force comes out as a result of this extension. Systematic

asympototic analysis in the small Deborah number limit is carried out, and the classical Ericksen-

Leslie equations are derived in this limit. The Leslie coefficients are derived in terms of molecular

parameters, and the Ericksen stress emerges from the body force.
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1. Introduction. The Doi kinetic theory for spatially homogeneous flows of rod-

like molecules have been very successful in describing the properties of liquid crystal

polymers in a solvent [2]. This theory models the orientational distribution function

of the liquid crystal polymers and takes into account the effects of hydrodynamic flow,

Brownian motion and intermolecular forces on the molecular orientation distribution.

However, it does not include effects such as distortional elasticity. Therefore it is valid

only in the limit of spatially homogeneous flows.

On the other hand, for small molecule liquid crystals, distortional elasticity is

described quite well by the classical Frank energy. For hydrodynamics, the Ericksen-

Leslie theory is also quite adequate except for disclinations.

Attempts have been made to either extend the Ericksen-Leslie theory to flows

in the presence of defects such as disclinations, or to extend the Doi theory to in-

homogeneous flows. Ericksen [3] introduced an order parameter that describes the

local degree of orientation. Tsuji and Rey [16, 17] added distortional elasticity via

the Landau- de Gennes free energy to the kinetic equation of the Doi theory but did

not give a stress tensor. All these approaches are phenomenological in nature, and

the resulting theories are unsatisfactory in one way or another. First, they invari-

ably contain a large number of unknown parameters which in general are difficult

to determine using experimental results. This causes both conceptual and practical

difficulties when dealing with spatial distortions, especially the severe distortions near

defects. Secondly, the use of the Landau-de Gennes expansion is unjustified in these

theories. A third drawback of the phenomenological theories is the lack of consistency

with existing theories and among themselves. We believe that a molecular approach

would be more advantageous than a phenomenological one.

A molecular theory for distortional elasticity was put forward by Marrucci and

Greco [13] who proposed a nonlocal mean field nematic potential for LCPs which ac-

counts for spatial variations in the molecular orientation distribution. This is done by
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resurrecting the tensorial order parameter notion and adding a square gradient term

of this tensorial order parameter in the free energy. Feng et. al. [6] derived a mole-

cularly based constitutive theory for nematic LCPs which incorporates distortional

elasticity via the Marrucci-Greco potential. In the limit of weak flows and small dis-

tortions, they demonstrated that the theory properly reduces to the Ericksen-Leslie

theory.

As an extension of the Kuzuu-Doi [8] theory to hydrodynamics of inhomogeneous

liquid crystalline polymers, Wang [20] models the LCP molecules as spheroids of equal

shape and sizes, he derives an intermolecular potential which could be considered as

an extension of the Marrucci-Greco potential.

We intend to develop a theory for inhomogeneous flows of liquid crystalline poly-

mers with few adjustable parameters that could model a variety of configurations and

dynamics of polymeric liquid crystal systems. In the present paper, we will follow the

set-up initiated in [21]. We will give a quick review of that framework and then we

will focus on the problem of studying the asymptotic limit as the Deborah number

goes to zero. Our purpose is to derive the well-known Ericksen-Leslie equations from

systematic asymptotic analysis. Some initial ideas of this work can be found in [9].

2. Kinetic molecular theory for liquid crystal polymer flow. Our start-

ing point for the derivation of the Ericksen-Leslie equation is a molecular theory in

the form of a kinetic equation describing the position-orientation distribution func-

tion. The original idea of modeling liquid crystals using the orientation distribution

function goes back to Onsager [15]. Onsager was only concerned with the isotropic-

nematic phase transition, and did not include effects of fluid dynamics. Doi extended

Onsager’s theory to the case of homogeneous flows [2]. Inhomogeneous flows were

first studied in this setting by Marrucci and Greco [13], and subsequently by many

people [6, 20]. Instead of using the distribution as the sole order parameter, they

used a combination of the tensorial order parameter and the distribution function,

and used the spatial gradients of the tensorial order parameter to describe the spatial

variations. This is a departure from the original motivation that led us to the kinetic

theory. Therefore it is still desirable to set up a formalism in which the interaction

between molecules are treated more directly using the position-orientation distribu-

tion function via interaction potentials, and this was the motivation of the work of

Wang, E, Liu and Zhang [21]. Here we will give a quick review of that formalism.

2.1. The intermolecular potentials. We model the LCP molecules as rigid

rods of equal size. Let Ω be a material volume in which the solution of LCPs resides

and let f(x,m, t) be the number density function (NDF) in place of the probability

density function (PDF) for the number of molecules parallel to the m direction at

material point x and time t. We extend the free energy in the Doi kinetic theory to

include effects of nonlocal intermolecular interactions through an interaction potential

as follows:

A(f) = kBT

Z
Ω

Z
‖m‖=1

[f(x, m, t) ln f(x,m, t)−f(x,m, t)+
1

2kBT
U(x,m, t)f(x,m, t)]dmdx,

(2.1)

where kB is the Boltzmann constant and T is the absolute temperature. The mean-

field intermolecular potential U(x,m, t) is defined by

U(x,m, t) = kBT

∫

Ω

∫

‖m‖=1

B(x,x′
;m,m′

)f(x
′,m′, t)dm′dx′. (2.2)
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Here B(x,x′
;m,m′

) is the interaction kernel. It should be symmetric with respect to

the interchange of m and m
′
, x and x

′
. B is often translation invaraint and hence it

can be written in the form

B(x − x
′
;m,m′

).

Examples of B include the Onsager potential

B(x − x
′
;m,m′

) = α|m × m
′
|

and the Maier-Saupe potential

B(x − x
′
;m,m′

) = α|m × m
′
|
2

describing excluded volume effects. For spheroidal molecules, the excluded volume

with finite range molecular interaction was used by Wang [20]. We suggest a simple

potential

B(x − x
′
;m,m′

) = α|m × m
′
|
2

1

εd
g

(
x− x

′

ε

)
,

where d is the spatial dimension, g is an approximate δ-function that satisfies the

condition g ≥ 0,
∫ ∞

−∞
g(r)dr = 1, g(r) = 0 if |r| ≥ 1. This potential neglects the

interaction between orientation and position. But it is sufficient in many cases.

The number density of the LCP at a material point x is given by

ρ(x, t) =

∫

‖m‖=1

f(x,m, t)dm. (2.3)

The chemical potential is given by

µ =
δA

δf
, (2.4)

a simple calculation leads to

µ = kBT ln f(x,m, t) + U(x,m, t). (2.5)

2.2. Smoluchowski equation. We will treat the LCP system as being incom-

pressible. Accounting for effects of both the translational and rotational diffusion as

well as convection and following the derivation given in [2], we obtain the Smolu-

chowski equation for the LCP system as follows:

df

dt
=

1

kBT
∇ · {[D‖mm +D⊥(I − mm)] · (∇µ)f}

+
Dr

kBT
R · (fRµ) −R(m × κ · mf), (2.6)

where D‖ ≥ 0 and D⊥ ≥ 0 are respectively the translational diffusion coefficients

parallel and normal to the orientation of the LCP molecule, Dr =
ξr

kBT
is the rotary

diffusivity, ∇ is the gradient operator with respect to the spatial variable x, ∇m is

the gradient operator with respect to the orientational variable m, R = m × ∇m is

the rotational gradient operator. κ = (∇v)
T

is the velocity gradient tensor, and
d
dt
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is the material derivative
∂
∂t

+ v · ∇. In (2.6) the first and second term at the right

hand side model respectively the translational and rotational diffusion of the LCPs,

the last term models the distortion caused by the velocity gradients.

Let L0 be the typical size of the flow region, V0 be the typical velocity scale,

T0 =
L0

V0
be a typical convective time scale. Another important time scale is the

relaxational time scale due to orientation diffusion: Tr =
ξr

kBT
. The ratio of these two

time scales is an important parameter called the Deborah number

De =
Tr

T0

=

ξr

kBT

L0

V0

=
ξrV0

kBTL0

.

Let

ε =
L

L0

,

where L is the length of the rods. We can then non-dimensionalize the kinetic equa-

tion, and obtain

∂f

∂t
+ ∇ · (vf) =

ε2

De
∇ · {[D∗

‖mm +D∗
⊥(I − mm)] · (∇f + f∇Ũ)}

+
1

De
R · (Rf + fRŨ) −R · (m × κ ·mf), (2.7)

Ũ =

∫

Ω

∫

‖m‖=1

B(x,x′
;m,m′

)f(x
′,m′, t)dm′dx′. (2.8)

where

D∗
‖ =

L0De

V0L2
D‖

and

D∗
⊥ =

L0De

V0L2
D⊥

are the respectively the non-dimensionalized translational diffusion coefficients parallel

and normal to the orientation of the LCP molecule.

2.3. Constitutive equation for the the stress tensor. Now consider liquid

crystal polymer flows, the total stress is the sum of the viscous stress τs
and the

elastic stress τe
,

τ = τs
+ τe. (2.9)

There are two contributions to the viscous stress, one from the solvent and the other

from the constraint force arising from the rigidity of the rod, derived in [2]

τs
= 2ηsD +

1

2
ξrD : 〈mmmm〉, (2.10)

where D =
1

2
(κ + κT

) =
1

2
(∇v + (∇v)

T
) is the strain rate tensor, ηs is the solvent

viscosity, and

〈(·)〉 =

∫

‖m‖=1

(·)f(x,m, t)dm
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is the ensemble average with respect to the NDF f(x,m, t).

The elastic stress is derived through a generalized virtual work principle [2]. Con-

sider an infinitesimal displacement given by δu = vδt, corresponding to a deformation

rate δǫ = ∇vδt. The variation of the free energy over the control volume Ω in response

to the infinitesimal deformation and displacement can be expressed as:

δA =

∫

Ω

(δǫ : τe
− δu ·F

e
)dx, (2.11)

where F
e

is the body force and τe
is the elastic stress.

F
e

= −〈∇µ〉. (2.12)

Therefore we identify the elastic stress as

τe
= −〈mm ×Rµ〉 (2.13)

= 3kBTSαβ − 〈mα(m ×RU)β〉. (2.14)

where

Sαβ = 〈mαmβ −
1

3
δαβ〉

Since

δf =
df

dt
δt = −R · (m × κ ·mf)δt. (2.15)

we have

δA = kBT

∫

Ω

∫

‖m‖=1

[(ln f +
1

kBT
U)δf +

1

2kBT
(δUf − Uδf)]dmdx

= kBT

∫

Ω

∫

‖m‖=1

[µ
df

dt
δt+

1

2kBT
(δUf − Uδf)]dmdx. (2.16)

The first term on the right hand side can be written as

∫

Ω

∫

‖m‖=1

µ
df

dt
δtdmdx =

∫

Ω

∫

‖m‖=1

µ[−R · (m × κ ·mf)]δtdmdx,

=

∫

Ω

∫

‖m‖=1

Rµ · (m × κ · m)fδtdmdx.

= −

∫

Ω

∫

‖m‖=1

(m ×Rµm) : κδtfdmdx

Hence the elastic stress can be identified as

τe
= −〈mm×Rµ〉.
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The second part of the right hand side reads

∫

Ω

∫

‖m‖=1

1

2
(δUf − Uδf)dmdx

=

∫

Ω

∫

‖m‖=1

1

2
(
dU

dt
f − U

df

dt
)δtdmdx

=
kBT

2

∫

Ω

dx

∫

‖m‖=1

dm

∫

‖m′‖=1

dm′

∫

Ω

dx′f(x,m, t)

[(v(x, t) − v(x
′, t)) · ∇B(x − x

′
;m,m′

)f(x
′,m′, t)δt

+B(x− x
′
;m,m′

)
df

dt
(x

′,m′, t)δt]

−
1

2

∫

Ω

∫

‖m‖=1

U(x,m, t)
df(x,m, t)

dt
δtdmdx

=
1

2

∫

Ω

∫

‖m‖=1

f(x,m, t)v(x, t) · ∇Uδtdmdx

−
kBT

2

∫

Ω

dx

∫

‖m‖=1

dm

∫

‖m′‖=1

dm′

∫

Ω

dx′f(x
′,m′, t)

v(x, t) · ∇x
′B(x

′
− x;m

′,m)f(x,m, t)δt

=

∫

Ω

∫

‖m‖=1

f(x,m, t)v(x, t) · ∇Uδtdmdx

=

∫

Ω

∫

‖m‖=1

f(x,m, t)v(x, t) · ∇µδtdmdx.

Thus we have the expression for the body force

F
e

= −

∫

‖m‖=1

∇µf(x,m, t)dm

= −〈∇µ〉. (2.17)

Note that this is not a gradient for inhomgenenous systems.

2.4. Hydrodynamic equation. The velocity field satisfies Navier-Stokes-like

equation expressing conservation of mass and momentum:

ρ(
∂v

∂t
+ v · ∇v) = −∇p+ ∇ · τ + F

e, (2.18)

∇ · v = 0. (2.19)

Let ηp = ξr, η = ηs + ηp, γ =
ηs

η
, we can non-dimensionalize the above system

∂v

∂t
+ v · ∇v = −∇p+

γ

Re
△ v +

1 − γ

2Re
∇ · (D : 〈mmmm〉)

+
1 − γ

DeRe
(∇ · τe

+ F
e
), (2.20)

where Re is the Reynolds number.
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2.5. Energy dissipation. Let ρ be the density. When the external force is

neglected, the rate of energy dissipation can be calculated as

−
d

dt
[

∫

Ω

ρ

2
v · vdx +A(f)]

= −

∫

Ω

ρ
dv

dt
· vdx − kBT

∫

Ω

∫

‖m‖=1

d

dt
[f ln f − f +

1

2kBT
Uf ]dmdx

= −

∫

Ω

(−∇p+ ∇ · τs
+ ∇ · τe

+ F
e
) · vdx

−kBT

∫

Ω

∫

‖m‖=1

µ
df

dt
+

1

2kBT
(
dU

dt
f − U

df

dt
)dmdx

=

∫

Ω

(τs
: ∇v + τe

: ∇v − F
e
· v)dx

−kBT

∫

Ω

∫

‖m‖=1

{
1

kBT
∇ · [D‖mm +D⊥(I − mm)] · ∇µf

+
Dr

kBT
R · (fRµ)} − µR · (m × κ · mf)dmdx

−
kBT

2

∫

Ω

dx

∫

‖m‖=1

dm

∫

‖m′‖=1

dm′

∫

Ω

dx′f(x,m, t)

(v(x, t) − v(x
′, t)) · ∇B(x − x

′
;m,m′

)f(x
′,m′, t)

=

∫

Ω

τs
: ∇vdx +

∫

Ω

〈∇µ · [D‖mm +D⊥(I − mm)]∇µ+DrRµ · Rµ〉dx

=

∫

Ω

[2ηsD : D +
ξr
2
〈(mm : D)

2

〉]dx

+

∫

Ω

〈∇µ · [D‖mm +D⊥(I − mm)]∇µ〉 +Dr〈Rµ · Rµ〉dx.

This is non-negative definite provided that

ηs ≥ 0, ξr ≥ 0,

D‖mm +D⊥(I − mm) ≥ 0,

Dr ≥ 0.

2.6. Equilibrium distributions. Let f0 be the equilibrium distribution func-

tion. It satisfies the Doi-Onsager equation

R · (Rf0 + f0RU0[f0]) = 0, (2.21)

where U0 is the Maier-Saupe potential, then such a potential is necessarily invariant

with respect to rotations around a director n ∈ S
2
, i.e., it is axially symmetric. The

number of stationary solutions of the Doi-Onsager equation on the sphere depends

on the intensity parameter α. There are two critical values for α: α∗
1
≈ 6.731393 and

α∗
2

= 7.5, the nematic phase will be appeared after α > α∗
1
, the isotropic phase will

lose stability after α > α∗
2
. All solutions are given explicitly by

f0 = k e−η(m·n)
2

,
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where n ∈ S
2

is a parameter, η = η(α) and k = [4π
∫

1

0
e−ηz2

dz]−1
are determined by

α through

3e−η

∫
1

0
e−ηz2dz

−

(
3 − 2η +

4η2

α

)
= 0.

Axial-symmetry and explicit formulas for equilibrium distribution function was es-

tablished in [10, 5]. See also the related work in [1].

The work that follows resembles the hydrodynamic limit for the kinetic theory of

gases, where Deborah number plays the role of Knusden number. In particular, we

will refer to f0(m · n(x)) as local equilibrium distribution function.

3. Frank elastic energy. In classical continuum theory of liquid crystals, the

elastic energy density due to the distortion of the average orientation of the liquid

crystals is given by the Frank energy density:

eF
= K1(∇ · n)

2

+K2(n · ∇ × n)
2

+K3(n ×∇× n)
2

(3.1)

Here n is the so-called director field: n(x) gives the preferred orientation of the liquid

crystal molecules at the position x. K1,K2,K3 are the elastic constants.

Several attempts have been made to evaluate these elastic constants from mole-

cular models of the Onsager type, using either the Onsager potential [18] or the

Maier-Saupe mean field potential [13].

We will make the local equilibrium approximation. In the case when the system is

subject to a weak ordering field that varies slowly in space, this amounts to assuming

that the response of the liquid crystal to such a field is that the preferred orientation

aligns everywhere along that field, and the relative probability of a molecule at x

having orientation m is f0(m · n(x)), where n(x) is the local preferred orientation.

The extra free energy due this variation of n(x) can be calculated as

EF =
kBT

2

∫

Ω

dx

∫

‖m‖=1

dm

∫

‖m′‖=1

dm′

∫

Ω

dx′f0(m · n(x))

B(x − x
′
;m,m′

)[f0(m
′
· n(x

′
)) − f0(m

′
· n(x))] (3.2)

We will now evaluate (3.2) to second order in the derivatives of n(x). The slow

spatial variation of n(x) allows us to write

f0(m
′
· n(x

′
)) − f0(m

′
· n(x)) = f ′

0
(m

′
· n(x)){(x

′
− x) · ∇(m

′
· n(x))

+
1

2
[(x

′
− x) · ∇]

2

(m
′
· n(x))} (3.3)

+
1

2
f ′′
0
(m

′
· n(x))[(x

′
− x) · ∇(m

′
· n(x))] + · · ·

then we have

EF

kBT
=

1

2

∫

Ω

dx

∫

‖m‖=1

dm

∫

‖m′‖=1

dm′

∫

Ω

dx′f0(m · n(x))

B(x − x
′
;m,m′

)f ′
0
(m

′
· n(x))[(x

′
− x) · ∇(m

′
· n(x))]

−
1

2

∫

Ω

dx

∫

‖m‖=1

dm

∫

‖m′‖=1

dm′

∫

Ω

dx′
[(x

′
− x) · ∇(m · n(x))]

f ′
0
(m · n(x))B(x − x

′
;m,m′

)f ′
0
(m

′
· n(x))[(x

′
− x) · ∇(m

′
· n(x))]. (3.4)
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We assume that the first term vanishes. Otherwise the liquid crystal must be a

“cholesteric” with a finite twist in the equilibrium state. The Frank elastic energy

can then be written as

EF = kBT

∫

Ω

dx

∫

‖m‖=1

dm

∫

‖m′‖=1

dm′f ′
0
(m · n(x))f ′

0
(m

′
· n(x))

B(m,m′
) : [∇(m · n(x))∇(m

′
· n(x))]

≃

∫

Ω

[K1(∇ · n)
2

+K2(n · ∇ × n)
2

+K3(n ×∇× n)
2

]dx (3.5)

where

B(m,m′
) = −

1

2

∫

Ω

xxB(x;m,m′
)dx = (Bij(m,m′

)).

By restricting this expression to special configurations, we obtain the Frank elastic

constants:

Splay: i + yj,

K1 = kBT

∫

‖m‖=1

dm

∫

‖m′‖=1

dm′f ′
0
(m · i)f ′

0
(m

′
· i)B22(m,m′

)(m · j)(m
′
· j).

Twist: i + zj,

K2 = kBT

∫

‖m‖=1

dm

∫

‖m′‖=1

dm′f ′
0
(m · i)f ′

0
(m

′
· i)B33(m,m′

)(m · j)(m
′
· j).

Bend: i + xj,

K3 = kBT

∫

‖m‖=1

dm

∫

‖m′‖=1

dm′f ′
0
(m · i)f ′

0
(m

′
· i)B11(m,m′

)(m · j)(m
′
· j).

4. The Ericksen-Leslie Theory. The classical Ericksen-Leslie theory describes

the hydrodynamics of small liquid crystal molecules. The configuration of the liquid

crystals are described by a director field n(x). The hydrodynamic equation takes the

form

∂v

∂t
+ v · ∇v = −∇p+

γ

Re
△ v +

1 − γ

Re
∇ · σ (4.1)

in which stress is modelled by the phenomenological constitutive relation:

σ = σL
+ σE , (4.2)

where σL
is the viscous (Leslie) stress,

σL
= α1(nn : D)nn + α2nN + α3Nn

+α4D + α5nn · D + α6D · nn (4.3)

N = ṅ + Ω · n (4.4)

The six constants α1, · · · , α6 are called the Leslie coefficients; σE
is the elastic (Er-

icksen) stress:

σE
= −

∂EF

∂(∇n)
· (∇n)

T , (4.5)
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The dynamics of the director field is governed by

n× (h− γ1N− γ2D · n) = 0, (4.6)

γ1 = α3 − α2, γ2 = α6 − α5,

(4.7)

where h is the molecular field

h = −
δEF

δn
= ∇ ·

∂EF

∂(∇n)
−
∂EF

∂n
. (4.8)

As a consequence, we have the energy dissipation relation for the Ericksen-Leslie

equations

−
d

dt
[

∫

Ω

Re

2(1 − γ)
|v|

2dx + EF ]

=
γ

1 − γ

∫

Ω

|∇v|
2dx + (α1 +

γ2

2

γ1

)

∫

Ω

|D : nn|
2dx

+α4

∫

Ω

D : Ddx + (α5 + α6 + λγ2)

∫

Ω

|D · n|
2dx

+
1

γ1

∫

Ω

|n× h|
2dx.

5. The small Deborah number limit. Our aim is to derive the Ericksen-

Leslie equation from the microscopic molecular theory represented by (2.7) and (2.8).

We will consider the limit when ε≪ 1, De ∼ O(ε2).

5.1. Dynamics of the director field. We start with the mean-field potential:

Ũ(x,m, t) = U0 + DeU
e
, (5.1)

U0 =

Z
Ω

Z
‖m′‖=1

B(x − x
′;m,m

′)f(x,m
′
, t)dm′

dx
′

=

Z
‖m′‖=1

B0(m,m
′)f(x,m

′
, t)dm′

, (5.2)

U
e =

1

De

Z
Ω

Z
‖m′‖=1

B(x − x
′;m,m

′)[f(x′
,m

′
, t) − f(x,m

′
, t)]dm′

dx
′
, (5.3)

where

B0(m,m′
) =

∫

Ω

B(x;m,m′
)dx.

We make the following ansatz

f(x,m, t) = f0(m · n(x)) +Def1(x,m, t) + o(De), (5.4)

where f0 denotes the equilibrium distribution function and f1 is the first order per-

turbation. Define

ℑφ = −R · (Rφ + f0RU0[φ] + φRU0[f0]),
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then f1 satisfies

−ℑf1 =
df0
dt

−
ε2

De
∇ · [D∗

‖mm +D∗
⊥(I − mm)](∇f0 + f0∇U0)

+R · [(m × κ · m −RUe
[f0])f0)], (5.5)

Solvability condition gives:

∫

‖m‖=1

ψ0{
df0
dt

−
ε2

De
∇ · [D∗

‖mm +D∗
⊥(I − mm)](∇f0 + f0∇U0)

+R · [(m × κ · m −RUe
[f0])f0)]} = 0, (5.6)

where the ψ0’s are non-trivial solutions of

ℑ
∗ψ0 = 0.

The solutions to this equation were characterized by Kuzuu and Doi [8]. They take

the form:

ψ0(m) = Θ · eφg(θ), (5.7)

where Θ is an arbitrary constant vector, eφ is the unit vector for the spherical coor-

dinate φ and g satisfies

1

sin θ

d

dθ
(sin θ

dg

dθ
) −

g

sin
2 θ

−
dU0[f0]

dθ

dg

dθ
= −

dU0[f0]

dθ
.

Let Ω = (κT − κ)/2, S2 =
1

2
(3〈cos

2 θ〉 − 1),

λ =
2S2

〈g dU0[f0]

dθ
〉
.

The terms in (5.7) can be described as follows:

∫

‖m‖=1

ψ0

df0
dt
dm =

∫

‖m‖=1

ψ0f
′
0
(m · n(x))m · ṅdm

= ṅ× n ·

∫

‖m‖=1

ψ0Rf0dm

= n× ṅ · 〈Rψ0〉 = Θ · (n × ṅ)
S2

λ
,

∫

‖m‖=1

ψ0R · (m × κ ·mf0)dm = −

∫

‖m‖=1

Rψ0(m × κ ·mf0)dm

= κ : 〈m ⊗ m ×Rψ0〉

= Θ · n× (S2D · n−
S2

λ
Ω · n),

∫

‖m‖=1

ψ0R · (f0RU
e
)dm =

∫

‖m‖=1

R(f0Rψ0)U
edm

= Θ ·

∫

‖m‖=1

Rf0U
edm

= Θ · n × (−
δ(EF )

δn
)

= Θ · n × h,
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where h is the molecular field,

h = −
δ(EF )

δn
,

Using (2.21), and the fact that µ0 = ln f0 + U0 is independent of x, we get

∫

‖m‖=1

ψ0∇ · [D∗
‖mm +D∗

⊥(I − mm)](∇f0 + f0∇U0)dm = 0.

Therefore we have

Θ · (n× ṅ)
S2

λ
− Θ · (S2D · n −

S2

λ
Ω · n) = Θ · n× h.

Since this is true for all Θ, we have

n× (
S2

λ
N− S2D · n) = n × h, (5.8)

where N = ṅ + Ω · n.

5.2. The viscous stress tensor. We will see that the viscous stress tensor can

be expressed by the second and fourth moments of m only. Let

Q2 = 〈mm −
1

3
I〉,

multiplying mm −
1

3
I to both sides of (2.7) and integrating over the unit sphere, we

get after some manipulation

∂Q2

∂t
+ ∇ · (vQ2)

=
ε2

De

∫

‖m‖=1

(mm−
1

3
I)∇ · {[D∗

‖mm +D∗
⊥(I − mm)] · (f∇µ)}dm

+
1

De

∫

‖m‖=1

(mm −
1

3
I)[R · (Rf + fRŨ) −DeR(m × κ · mf)]dm. (5.9)

Straightforward calculation gives

∫

‖m‖=1

(mm −
1

3
I)R · (Rf + fRŨ)dm = 〈m ×Rµ⊗ m + m ⊗ m ×Rµ〉

∫

‖m‖=1

(mm −
1

3
I)R · (m × κ ·mf)dm, = 2D : 〈mmmm〉 − D · 〈mm〉 + Ω · 〈mm〉

−〈mm〉 · D− 〈mm〉 · Ω.

Noting that µ0 is independent of x, we have

〈m ×Rµ⊗ m + m ⊗ m ×Rµ〉 = De[
∂Q2

∂t
+ ∇ · (vQ2) + 2D : 〈mmmm〉

−D · 〈mm〉 + Ω · 〈mm〉

−〈mm〉 ·D − 〈mm〉 · Ω]. (5.10)
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The polymer stress

τp
=
De

2
〈mmmm〉 : D − 〈m ⊗ m ×Rµ〉

=
De

2
〈mmmm〉 : D −

1

2
〈m ×Rµ⊗ m + m ⊗ m ×Rµ〉

−
1

2
〈m ×Rµ⊗ m − m ⊗ m ×Rµ〉. (5.11)

Using the symmetry of 〈m ⊗ m ×Rµ0〉,

τp
=
De

2
〈mmmm〉 : D −

De

2
[
∂Q2

∂t
+ ∇ · (vQ2) + 2D : 〈mmmm〉

−D · 〈mm〉 + Ω · 〈mm〉 − 〈mm〉 ·D − 〈mm〉 · Ω]

−
De

2
[〈m ⊗ mRUe

〉 − 〈m ×RUe
⊗ m〉]. (5.12)

the notation of mm is not consistent. By definition,

〈m ⊗ m ×RUe
〉 =

∫

‖m‖=1

(m ⊗ m ×RUe
)f0dm

=

∫

‖m‖=1

m · ∇mU
e
m ⊗ mf0dm −

∫

‖m‖=1

m ⊗∇mU
ef0dm,

we have

〈m ⊗ m ×RUe
〉 − 〈m ×RUe

⊗ m〉 =

∫

‖m‖=1

(∇mU
e
⊗ m − m ⊗∇mU

e
)f0dm

= 〈m × Ue
∇mf0 − Ue

∇mf0 ⊗ m〉

= 〈f ′
0
(m · n(x))Ue

(m ⊗ n(x) − n(x) ⊗ m)〉

=
δEF

δn
⊗ n(x) − n(x) ⊗

δEF

δn
= −h⊗ n(x) + n(x) ⊗ h.

Therefore,

τp
=
De

2
〈mmmm〉 : D −

De

2
[
dQ2

dt
+ 2D : 〈mmmm〉

−D · 〈mm〉 + Ω · 〈mm〉 − 〈mm〉 ·D − 〈mm〉 ·Ω]

−
De

2
[n(x) ⊗ h − h⊗ n(x)]. (5.13)

We define

Q4αβγµ = 〈mαmβmγmµ −
1

7
(mαmβδγµ +mγmµδαβ +mαmγδβµ +mβmµδαγ

+mαmµδβγ +mβmγδαµ) +
1

35
(δαβδγµ + δαγδβµ + δαµδβγ)〉,

then we obtain

〈mmmm〉 : D = Q4 : D +
1

7
D : 〈mm〉I +

2

7
(〈mm〉 ·D + D · 〈mm〉) −

2

35
D

= Q4 : D +
1

7
D : 〈mm〉I +

2

7
(Q2 · D + D ·Q2) +

2

15
D.
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Hence the viscous stress tensor can be expressed

τp
=
De

2
[
5

7
(Q2 · D + D ·Q2) +

8

15
D −Q4 : D −

1

7
D : Q2I

−Ω ·Q2 +Q2 ·Ω−
dQ2

dt
] −

De

2
[n(x) ⊗ h − h⊗ n(x)]. (5.14)

In the equilibrium state, the order parameter tensors can be written as

Q2αβ = S2(nαnβ −
1

3
δαβ), (5.15)

Q4αβγµ = S4[nαnβnγnµ −
1

7
(nαnβδγµ + nγnµδαβ + nαnγδβµ + nβnµδαγ

+nαnµδβγ + nβnγδαµ) +
1

35
(δαβδγµ + δαγδβµ + δαµδβγ)], (5.16)

where

S2 = 〈P2(m · n)〉,

and

S4 = 〈P4(m · n)〉,

and P2(m · n) and P4(m · n) are the Legendre polynomials of second- and fourth-

order.

Substituting (5.15) and (5.16) into (5.14), we have

τp
=
De

2
[−S4(D : nn)nn −

1

7
(D : nn)I − S2(nN + Nn) + (

8

15
−

10

21
S2 −

2

35
S4)D

+(
5

7
S2 +

2

7
S4)(nn ·D + D · nn)] −

De

2
(nh − hn). (5.17)

5.3. The Leslie coefficients. Using (5.8), we have

h = γ1N + γ2D · n + Cn (5.18)

where γ1 =
S2

λ
, γ2 = −S2, C is a constant. Substituting (5.18) into (5.17) we have

τp
=
De

2
[−S4(D : nn)nn −

1

7
(D : nn)I − (1 +

1

λ
)S2nN

−(1 −
1

λ
)S2Nn + (

8

15
−

10

21
S2 −

2

35
S4)D

+(
5

7
S2 +

2

7
S4 + S2)nn ·D + (

5

7
S2 +

2

7
S4 − S2)D · nn]. (5.19)

Comparing (5.19) with (4.3), we obtain the Leslie coefficients:

α1 = −
1

2
S4,

α2 = −
1

2
(1 +

1

λ
)S2,

α3 = −
1

2
(1 −

1

λ
)S2,

α4 =
1

2
(

8

15
−

10

21
S2 −

2

35
S4)),

α5 =
1

2
(
5

7
S2 +

2

7
S4 + S2),

α6 =
1

2
(
5

7
S2 +

2

7
S4 − S2).
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We see that Parodi’s relation

α2 + α3 = α6 − α5,

is automatically satisfied. We also have

γ1 = α3 − α2 =
S2

λ
,

γ2 = α6 − α5 = −S2.

5.4. The elastic stress tensor. The body force induced by the long range

(nonlocal) molecular interaction is given by

F
e

= −〈∇µ〉 = −

∫

‖m‖=1

(∇xµ)fdm. (5.20)

Giving a virtual displacement field v(x), the work done by the body force is

∫

Ω

F
e
· vdx = −

∫

Ω

∫

‖m‖=1

v · ∇xµfdmdx.

Since µ0 is independent of x, we have

∫

Ω

F
e
· vdx = −De

∫

Ω

∫

‖m‖=1

v · ∇xU
ef0dmdx

= De

∫

Ω

∫

‖m‖=1

Ue
v · ∇xf0dmdx

= De

∫

Ω

∫

‖m‖=1

Uef ′
0
m · [v · ∇n(x)]dmdx

= De

∫

Ω

δEF

δn
· [v · ∇n(x)]dx. (5.21)

For the Frank elastic energy, we have

δEF

δn
=
∂EF

∂n
−∇ ·

∂EF

∂(∇n)
.

Therefore

∫

Ω

F
e
· vdx = De

∫

Ω

[
∂EF

∂n
−∇ ·

∂EF

∂(∇n)
] · [v · ∇n(x)]dx

= De

∫

Ω

{
∂EF

∂n
· [v · ∇n(x)] +

∂EF

∂(∇n)
: [v · ∇

2

n(x)]}dx

+De

∫

Ω

[
∂EF

∂(∇n)
· (∇n)

T
] : ∇vdx

= De

∫

Ω

v · ∇EF (n,∇n)dx +De

∫

Ω

[
∂EF

∂(∇n)
· (∇n)

T
] : ∇vdx

= De

∫

Ω

[
∂EF

∂(∇n)
· (∇n)

T
] : ∇vdx. (5.22)

From this we obtain

σE
= −

∂EF

∂(∇n)
· (∇n)

T . (5.23)
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6. Energy dissipation in the small Deborah number limit. When the

external force is neglected, the energy dissipation relation becomes

−
d

dt
E = −

d

dt
[

∫

Ω

DeRe

2(1 − γ)
v · vdx +A(f)]

= −

∫

Ω

DeRe

1 − γ

dv

dt
· vdx −

∫

Ω

∫

‖m‖=1

µ
∂f

∂t
mdx

= −
DeRe

1 − γ

∫

Ω

(−∇p+
γ

Re
△ v +

1 − γ

2Re
∇ · (D : 〈mmmm〉)) · vdx

+

∫

Ω

(∇ · τe
+ F

e
) · vdx −

∫

Ω

∫

‖m‖=1

µ
∂f

∂t
dmdx

=

∫

Ω

[
Deγ

1 − γ
|∇v|

2

+
De

2
〈(mm : D)

2

〉]dx

+
ε2

De

∫

Ω

〈∇µ · [D∗
‖mm +D∗

⊥(I − mm)]∇µ〉 +
1

De
〈Rµ · Rµ〉dx,

where E is the total energy and

A(f) = A0(f0) +DeEF .

Using (2.7), we have

∫

Ω

[
Deγ

1 − γ
|∇v|

2

+
De

2
〈(mm : D)

2

〉]dx

−

∫

Ω

∫

‖m‖=1

µ · (
ε2

De
∇ · [D∗

‖mm +D∗
⊥(I − mm)]∇µ+

1

De
R · fRµ)dmdx

=

∫

Ω

[
Deγ

1 − γ
|∇v|

2

+
De

2
〈(mm : D)

2

〉]dx

−

∫

Ω

∫

‖m‖=1

µ · [
df

dt
+ R · (m × κ ·mf)]dmdx

=

∫

Ω

[
Deγ

1 − γ
|∇v|

2

+
De

2
〈(mm : D)

2

〉]dx

−

∫

Ω

∫

‖m‖=1

µ ·
∂f

∂t
dmdx +

∫

Ω

[−〈mm ×Rµ〉 : ∇v + 〈∇µ〉 · v]dx.

Using (5.11), we obtain

−
d

dt
E =

∫

Ω

[
Deγ

1 − γ
|∇v|

2

+ τp
: ∇v + 〈∇µ〉 · vdx −

dA(f)

dt

=

∫

Ω

[
Deγ

1 − γ
|∇v|

2

+ τp
: ∇v + 〈∇µ〉 · vdx −De

dEF

dt
.
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Using (5.19), (5.20) and (5.23), we have

−
d

dt
E = De

∫

Ω

[
γ

1 − γ
|∇v|

2

+ σL
: ∇v + σE

: ∇v]dx

+De

∫

Ω

[
δEF

δn
· (v · ∇n) + h · ṅ]dx

= De

∫

Ω

[
γ

1 − γ
|∇v|

2

+ h · ṅ]dx +De

∫

Ω

[α1(nn : D)nn + α2nN

+α3Nn + α4D + α5nn ·D + α6D · nn] : (D + Ω)dx

= De

∫

Ω

[
γ

1 − γ
|∇v|

2

+ α1(nn : D)
2

+ α4D : D + (α5 + α6)|D · n|
2dx

+De

∫

Ω

[γ2N ·D · n +
1

2
(hn− nh) : Ω + h · ṅ]dx

= De

∫

Ω

[
γ

1 − γ
|∇v|

2

+ α1(nn : D)
2

+ α4D : D + (α5 + α6)|D · n|
2dx

+De

∫

Ω

[γ2N ·D · n + h ·N]dx.

Using (5.8), it is easy to see

∫

Ω

[γ2N ·D · n + h · N]dx =

∫

Ω

[γ2(n × N) · (n× D · n) + (n × h) · (n × N)]dx

=
1

γ1

∫

Ω

|n × h|
2dx −

γ2

γ1

∫

Ω

(n × h) · (n × D · n)dx

+γ2

∫

Ω

(n × N) · (n × D · n)dx

=
1

γ1

∫

Ω

|n × h|
2dx −

γ2

2

γ1

∫

Ω

|n × D · n|
2dx

=
1

γ1

∫

Ω

|n × h|
2dx + λγ2

∫

Ω

(|D · n|
2

− |D : nn|
2

)dx.

Finally, we get

−
d

dt
E = De

∫

Ω

[
γ

1 − γ
|∇v|

2

+ (α1 +
γ2

2

γ1

)|D : nn|
2

+ α4D : D

+(α5 + α6 + λγ2)|D · n|
2

+
1

γ1

|n× h|
2

]dx.

7. Conclusion. In this paper, we extended the Doi theory for homogeneous LCP

flows to inhomogeneous systems. One important consequence is that a term in the

form of body force resulted in this extension. In the small Deborah number limit, we

recover the Ericksen-Leslie equation in which this term becomes the Ericksen stress.

In addition, the Leslie coefficients are expressed in terms of three parameters: the

order parameters S2 and S4 and the parameter λ.
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