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Abstract

We study the well-posedness of a multi-scale model of polymeric fluids. The
microscopic model is the kinetic theory of the finitely extensible nonlinear elastic
(FENE) dumbbell model. The macroscopic model is the incompressible
non-Newton fluids with polymer stress computed via the Kramers expression.
The boundary condition of the FENE-type Fokker-Planck equation is proved to
be unnecessary by the singularity on the boundary. Other main results are the lo-
cal existence, uniqueness and regularity theorems for the FENE model in certain
parameter range.

1. Introduction

This paper is concerned with the local well-posedness of the coupled hydrody-
namic and kinetic model for the dynamics of a mixture of dilute polymer molecules
in a solvent. By denoting u and p as the velocity and pressure fields of the fluid
respectively, the hydrodynamic systems take the form:

ut + (u · ∇)u + ∇p = γ

Re
�u + 1 − γ

ReDe
∇ · τ, for x ∈ �, (1)

∇ · u = 0, for x ∈ �, (2)

where the parameters Re and De are the Reynolds and Deborah numbers respec-
tively, and γ is the viscosity ratio between the polymer and the solvent. The first
term on the right-hand side of (1) is the contribution to stress from the solvent, and
the second term is the contribution from the polymer. To compute the polymer stress
τ , we model the individual polymer by a dumbbell with two beads connected by a
spring. In the dilute regime, the interaction between the dumbbells are neglected.
The configuration of the dumbbell is completely determined by the configuration
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of the spring which is described by a configuration field variable Q governed by
the following equations:

dQ
dt

+ u · ∇Q = κ · Q − 1

2De
g(Q)+ 1√

2De
Ẇ, (3)

dx
dt

= u, (4)

where κ = (∇u)T , Ẇ is temporal white noises, and g(Q) is the spring force. In this
paper, we will focus on a more commonly used model for the spring force, namely
the finitely extensible nonlinear elastic (FENE) model:

g(Q) = fb(|Q|2)Q and fb(|Q|2) = 1

1 − |Q|2/b |Q| < √
b, (5)

where the parameter b is a measure of the maximum extensibility of the dumbbell.
It is noted that (3) is a stochastic partial differential equation for the configura-

tion field Q, which has an equivalent Fokker-Planck form:

ψt + (u · ∇)ψ = 1

2De
�Qψ − ∇Q ·

[
(κ · Q − 1

2De
g(Q))ψ

]
. (6)

In (6) , Q ∈ R
d becomes an independent variable of the distribution function

ψ(x,Q, t), where d is the dimension of the configuration space. From a numerical
calculation, (6) is more complicated than (3) as more dimensions of the variables
are involved. However, from a theoretical point of view, (6) seems to allow us
to use traditional analytical methods for partial differential equations with high
dimensions to deal with theoretical issues such as local well-posedness.

Equations (1), (2) and (6) are finally closed by an expression for the polymer
stress τ from the principle of virtual work:

τ = −I + 〈g(Q)⊗ Q〉, (7)

where 〈·〉 denotes ensemble average with respect to Q:

〈f 〉 =
∫
f (Q)ψ(Q)dQ. (8)

More details about these models can be found in [2, 4, 11]. In this paper, we will
work with the following non-dimensionalized system, e.g. [15]:

ut + (u · ∇)u + ∇p = γ

Re
�u + 1 − γ

ReDe
b∇ · τ, for x ∈ �, (9)

∇ · u = 0, for x ∈ �, (10)

τ = −1

b
I + 〈g(Q)⊗ Q〉, for Q ∈ R

d , (11)

ψt + (u · ∇)ψ = 1

2bDe
�Qψ − ∇Q ·

[
(κ · Q − 1

2De
g(Q))ψ

]
, (12)

g(Q) = f (|Q|2)Q and f (|Q|2) = 1

1 − |Q|2 , |Q| < 1. (13)
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Next we will consider (9)–(13) with the boundary condition for the hydrodynamic
equation

u = 0, for x ∈ ∂�, (14)

and note that the boundary condition of FENE-type Fokker-Planck equation is
unnecessary by the singularity on the boundary, and the initial condition

u(x, 0) = u0, ψ(x,Q, 0) = ψ0(x,Q), x ∈ �,Q ∈ B1. (15)

Hereinafter,Br denotes the ball with center 0 and radius r ,Bcr = {x ∈ R
d , x /∈ Br}.

This system satisfies the following energy identity:

d

dt

∫
�

(
1

2
|u|2 + λ

∫
B1

ψ(
1

2bDe
lnψ + 1

2De
U)dQ

)
dx

= −
∫
�

(
γ

Re
|∇u|2 + λ

∫
B1

ψ |∇Q(
1

2bDe
lnψ + 1

2De
U)|2dQ

)
dx,

where λ = γ−1
Re

·2b andU = − 1
2 ln(1−|Q|2)2, therefore g in (13) can be rewritten

as ∇QU .
Define a scale of spaces for the distribution function ψ :

Xn,i =

ψ : B1 → R|

i∑
k=0


∫

B1


n+5−k∑

j=0

f j


|∇k

Qψ(Q)|dQ


 < ∞, n ∈ N


 , (16)

for n+ 5 � i(i ∈ N) with the norm

‖ψ‖Xn,i
=

i∑
k=0


∫

B1


n+5−k∑

j=0

f j


 |∇k

Qψ(Q)|dQ


 ,

where f = 1/(1 − |Q|2) is given by (13). Later we will use n � 7 for the solution
in this paper. Our main assumptions are:

(A1) The domain � ∈ R
3 is bounded and ∂� is of class C4.

(A2) u0 ∈ H 4(�).
(A3) For given n ∈ N,ψ0 ∈ H 4(�,Xn,3). Moreover,ψ0 � 0 and

∫
B1
ψ0(x,Q)dQ

= 1 for every x ∈ �.

In addition, we need compatibility conditions between the initial data and the incom-
pressibility and boundary conditions. So we assume the following compatibility
conditions:

(C) div u0 = 0 and u0 = 0 on ∂�.

Below we state the main result of this work.
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Theorem 1. Assume that (A1)–(A3) and (C) hold. Then there exists a T ∗ > 0 such
that the problem (9)–(15) has a unique solution satisfying

u ∈
2⋂
k=0

Hk([ 0, T ∗] ;H 4−2k(�)); (17)

τ ∈
1⋂
k=0

Hk(0, T ∗] ;H 3−2k(�)); (18)

ψ ∈
1⋂
k=0

Hk(0, T ∗] ;H 3−2k(�,Xn,0)) (19)

ψ(x,Q, t) = 0, a.e. Q ∈ Bc1 (20)

provided that

b >
4n(n+ 1)

2n− d − 5
. (21)

In particular, b > 32, n > 7 as d = 2 and b > 36, n > 8 as d = 3.

From the regularities of (17)–(19), it is known that u ∈ C1(�×[ 0, T ∗] ), τ ∈
C(�×[ 0, T ∗] ) and

∫
B1

[∑n+5
j=0(

1
1−|Q|2 )

j
]
ψ(x,Q, t)dQ ∈ C(�×[ 0, T ∗] ). In

particular, we point out that from (20) the distribution function ψ is almost every-
where zero on the domain ofBc1 for any x ∈ � and t ∈ [

0, T ∗) , which is consistent
with the result of Jourdain et al. [9].

The difficulty of the problem lies in the nonlinearity and the singularity of the
FENE force g(Q) in (12). Equations (9) and (12) are linearized to alternatively
solve the decoupled equations. For the linearized macro equations (22) and (23),
the well-posedness of the solution can be obtained by the Galerkin method. For
the decoupled micro equation (25), the key idea is to extend the FENE-type Fok-
ker-Planck equation as a Cauchy problem with the regularized extensible nonlinear
elastic force (52) concerned with a parameter ε. Thus the uniform estimates can be
obtained in the weighted space (60) of the solution φε to the approximation Cauchy
problem (54) and (55). With these estimates of φε being independent of ε, there
exists a limit function ψ in the weighted space (16) which satisfies (12) by Lemma
3.1. Thus, it is shown that the distribution function ψ is almost everywhere zero on
the domain of Bc1 and

∫
B1
ψ(x,Q, t)dQ = 1 for every x ∈ �, t > 0.

We now review some existing results on similar problems. For general spring
force g(Q) = f (|Q|2)Q in (13), where f satisfies certain conditions, Renardy

[17] proved a local existence and uniqueness theorem in weighted spaces for solu-
tions of Euler equation coupled with kinetic theory of polymeric fluid. Here, some
technical estimates in weighted spaces were not presented, which turned out to
be crucial not only for proving well-posedness but also for analyzing numerical
methods. Therefore, in [13] a detailed proof is given of these technical estimates
along with an extension of some of Renardy’s results. It is noted that the results in
[13, 17] all excluded the FENE case (5) which corresponds to the most popularly
used model of FENE dumbbells [2].
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Barrett et al. [1] established the existence of global-in-time weak solutions
to the coupled microscopic-macroscopic model (9)–(16) with Dirichlet boundary
condition of FENE-type Fokker-Planck equation. In order to complete their exis-
tence proofs, the velocity field appearing in the drift term of the Fokker-Planck
equation (12) had to be suitably mollified in the case of corotational microscopic-
macroscopic models. In the case of general, noncorotational models, the extra-stress
tensor τp on the right side of (11) had to be mollified also. Du et al. [5] showed
the finite-time existence of the solution to the Fokker-Planck equation (12) with a
Neumann boundary condition for general given velocity gradients, and also long-
time existence of the solution in case that the velocity gradients are close to being
purely symmetric or anti-symmetric. The stability of the steady-state solution for
general velocity gradient was also highlighted in the analysis of the FENE-P closure
approximation.

The FENE dumbbells in the stochastic model (3) are of particular interest since
numerical methods based on the stochastic models are becoming more popular. In
the analytical aspects, E et al. [7] proved the local well-posedness for the sto-
chastic model for general nonlinear spring models with smooth potential. The
one-dimensional problems were investigated in [6, 8–10]. The authors gave a com-
plete numerical analysis of a finite element method coupled with a Monte Carlo
method for the Hookean dumbbell case in [8]. In [9] Jourdain et al. studied the
FENE model for the one-dimensional shear flows. In this case, the local well-
posedness of the weak solution to the stochastic model was proved for b > 6. We
would like to point out the lower bounds on the parameter b in Theorem 1.1 of
this paper are obtained from the energy estimates for the Fokker-Planck equation
(1.6). In [9], they stated that the local-in-time existence and uniqueness holds under
the“optimal” assumption b > 2 for certain initial random variables (see also [10]
for more details). They note that none of the assumptions on b are restrictive in
practice given that b is physically of the order of 100.

This paper is organized as follows. In section 2, we define an iterative scheme
to obtain the existence of the solution. The scheme alternates between solving an
equation of the same type encountered in incompressible elasticity, and solving a
linear diffusion equation. Section 3 gives the detailed proofs the main lemmas. We
first give the estimates forψ with respect to the Lagrangian variable and then obtain
the corresponding estimates with respect to the Eulerian variable. The conclusions
are drawn in the final section.

2. Construction of the iterative solution

In this section, we construct an iterative scheme for the system (9)–(15) to
obtain the existence of the solution. Given an um we determine um+1 by solving
the equations

um+1
t + (um · ∇)um+1 + ∇pm+1 = γ

Re

um+1 + 1 − γ

ReDe
b∇ · τm, (22)

∇ · um+1 = 0 (23)
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with the initial condition um+1(x, 0) = u0(x) and boundary condition um+1|∂� =
0, where

τm = −1

b
I +

∫
Rd

g(Q)⊗ Qψm+1dQ. (24)

Meanwhile, for given um, we determine ψm+1 from the initial- value problem

ψm+1
t + (um · ∇)ψm+1 = −∇Q ·

[
(κm · Q − 1

De
g(Q))ψm+1

]

+ 1

2bDe
�Qψ

m+1, (25)

ψm+1(x,Q, 0) = ψ0(x,Q), (26)

where κm = (∇um)T . Our goal is to show that the mapping M : um �→ um+1 is a
contraction in an appropriate function space, so that the solution is the fixed point
of the mapping.

We will consider the mapping M in the function space S(M, T ) with a metric
d(·, ·), where S(M, T ) is the set of all functions u : � × [0, T ] → R

3 with the
following properties:

u ∈
2⋂
k=0

Hk([0, T ] ;H 4−2k(�)), (27)

‖u‖0,4 + ‖u‖1,2 + ‖u‖2,0 � M, (28)

∇ · u = 0, (29)

u = 0 on ∂�, (30)

u(x, 0) = u0,ut (x, 0) = u1(x). (31)

Here ‖ · ‖k,l denotes the norm in Hk([0, T ] ;Hl(�)). The function u0 and u1 lie
in H 4(�) and H 2(�), respectively. On S(M, T ), we define the metric

d(u1,u2) = ‖u1 − u2‖0,4 + ‖u1 − u2‖1,2 + ‖u1 − u2‖2,0. (32)

It is easy to verify that S(M, T ) is complete with the associated metric, and it
is non-empty for large M , as observed in [16]. The contraction of the mapping M
is established by using the following five lemmas.

Lemma 1. Assume the bounds of following kind hold:

‖um‖0,4 + ‖um‖1,2 + ‖um‖2,0 � M, (33)

‖τm‖0,3 + ‖τm‖1,1 � K, (34)

where τm is defined by (24). Then the system (22)–(24) has a solution

um+1 ∈
2⋂
k=0

Hk([0, T ] ;H 4−2k(�)) (35)
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which satisfies that

‖um+1‖0,4 + ‖um+1‖1,2 + ‖um+1‖2,0 � φ1(M, T ,K), (36)

where φ1(M, T ,K) may depend on the initial values u0 and u1, and is bounded if
the parameters M , T and K are bounded.

The above lemma can be established using the same method as that used in the
proof for Lemma 2 of [13] when ∇·τm ∈ L2([0, T ] ;H 2(�))∩H 1([0, T ] ;L2(�))

and u0 ∈ H 4(�).

Lemma 2. Consider the equations

vm+1
t + (vm · ∇)vm+1 + ∇qm+1 = γ

De

vm+1 + 1 − γ

ReDe
b∇ · πm, (37)

∇ · vm+1 = 0 (38)

with the initial and boundary conditions

vm+1(x, 0) = u0(x); vm+1 = 0, on ∂�. (39)

Assume vm ∈ S(M, T ), vm = um, πm = τm for t = 0, and that the assumptions
of Lemma 1 also hold for (37) (with the same constantsM,K). Then the following
estimate holds:

‖ um+1 − vm+1‖0,4 + ‖um+1 − vm+1‖1,2 + ‖um+1 − vm+1‖2,0

� φ2(M, T ,K) · (‖um − vm‖0,4 + ‖um − vm‖1,2 + ‖um − vm‖2,0

+‖τm − πm‖0,3 + ‖τm − πm‖1,1),

where um+1 is defined by (22)–(23), φ2(M, T ,K) is similar to φ1(M, T ,K) in
Lemma 1. Moreover, limT→0 φ2(M, T ,K) = 0.

Lemma 3. If um ∈ S(M, T ) and (21) holds, then there exists a unique solution of
(25)–(26) which satisfies the regularity property:

ψm+1 ∈
1⋂
k=0

Hk
(

[0, T ] ;H 3−2k(�,Xn,2)
)
. (40)

Moreover, the solution satisfies the following estimate:

‖ψm+1‖1,1
n,2 � K1(n,M, T ), (41)

where K1 is similar to φ1 in Lemma 1, and ‖ · ‖1,1
n,2 is the norm in

1⋂
k=0

Hk([0, T ] ;H 3−2k(�,Xn,2)). (42)
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In fact, it is observed that the regularity of ψm+1 is better than (40). However,
only the estimate of ψm+1 is needed in the norm ‖ · ‖1,1

n,2, so it suffices to use (40).
Let us consider a related equation of the following form:

ψ̂m+1
t + (vm · ∇)ψ̂m+1 = −∇Q ·

[
(κ̂m · Q − 1

2De
g(Q))ψ̂m+1

]

+ 1

2bDe
�Qψ̂

m+1, (43)

ψ̂m+1(x,Q, 0) = ψ̂0(x,Q), (44)

where κ̂m = (∇vm)T , and we assume vm|t=0 = u0. In addition to (25), the follow-
ing result holds.

Lemma 4. Let um, vm ∈ S(M, T ) be given and assume (21) holds. Then the fol-
lowing estimate holds:

‖ψm+1 − ψ̂m+1‖1,1
n,2 � K2(M, T )d(um, vm), (45)

where K2 is similar to φ2 in Lemma 2.

Lemma 5. Let τm be defined by (22)–(23). We have

τm ∈
1⋂
k=0

Hk
(

[0, T ] ;H 3−2k(�)
)

(46)

and

‖τm − πm‖0,3 + ‖τm − πm‖1,1 � K2(n,M, T )d(um−1, vm−1),

provided that ψm, ψ̂m ∈ ⋂1
k=0H

k([0, T ] ;H 3−2k(�,Xn,2)), where πm =∫
Rd

g(Q)⊗ Qψ̂mdQ.

By combining Lemmas 1–5, it follows easily thatM is a contraction inS(M, T ),
ifM is chosen sufficiently large and T is chosen sufficiently small. Therefore, The-
orem 1 follows immediately. The following section will be concerned with the
proofs of Lemmas 3 and 4. The proofs of Lemmas 2 and 5 are similar to those for
Lemmas 3 and 6 of [13], respectively, and will be omitted.

Remark 1. Now we would like to point out that the iterative scheme (22)–(25) still
preserves the energy law when ψm+1 possesses the regularity of (40). Similar to
the arguments in [12], multiplying um+1 to (22) and integrating it in � yields

1

2

d

dt

∫
�

|um+1|2dx = − γ

Re

∫
�

|∇um+1|2dx

− 1 − γ

ReDe
b

∫
�

∫
B1

(∇um+1)T · Q · ∇QU · ψm+1dQdx. (47)
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For equation (25) of ψm+2, multiplying 1
2bDe lnψm+2 + 1

2DeU and integrating it
in �× B1 yields

d

dt

∫
�

∫
B1

ψm+2(
1

2bDe
lnψm+2 + 1

2De
U)dQdx

− 1

2De

∫
�

∫
B1

(∇um+1)T · Q · ∇QU · ψm+1dQdx

= −
∫
�

∫
B1

ψm+2|∇Q(
1

2bDe
lnψm+2 + 1

2De
U)|2dQdx. (48)

A combination of (47) and (48) implies the following energy law:

d

dt

∫
�

(
1

2
|um+1|2 + λ

∫
B1

ψm+2(
1

2bDe
lnψm+2 + 1

2De
U)dQ

)
dx

= −
∫
�

(
γ

Re
|∇um+1|2+λ

∫
B1

ψm+2|∇Q(
1

2bDe
lnψm+2+ 1

2De
U)|2dQ

)
dx.

3. Proof of Lemmas 3 and 4

3.1. Estimates of ψ with respect to Lagrangian variables

We will first obtain the estimate for ψ with respect to the Lagrangian variables,
and then translate them to the Eulerian variables. Consider the flow map

∂

∂t
x(α, t) = um(x(α, t), t), x(α, 0) = α, (49)

whereα denotes the Lagrangian coordinates, and defineφ(α,Q, t)=ψm+1(x(α, t),
Q, t). Then (25) can be rewritten in the form

∂

∂t
φ(α,Q, t) = −∇Q ·

[
(κ · Q − 1

2De
g(Q))φ

]
+ 1

2bDe
�Qφ. (50)

In this section we still denote (∇um(x(α, t), t))T by κ . Now we will construct an
approximate equation for (50). Firstly, let η be a C∞ function [0, 1] → [0, 1] such
that η(s) = 1 in a neighborhood of 0 and η(s) = 0 in a neighborhood of 1, and let
ηε(Q) = η( 2

ε
[|Q| − (1 − ε)]) for 0 < ε < 1/2. We then define

fε(|Q|2)=



f (|Q|2), if |Q| � 1−ε,
f ((1−ε/2)2), if |Q| � 1−ε/2,
ηε(Q)f (|Q|2)+(1−ηε(Q))f ((1− ε

2 )
2), if 1−ε < |Q|<1−ε/2.

(51)

Now we set

gε(Q) = fε(|Q|2)Q, (52)
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and the extension of ψ0(x,Q) is given by

ψ̄0(x,Q) =
{
ψ0(x,Q), if Q| � 1,

0, if |Q| > 1.
(53)

Next we will solve the following Cauchy problem

∂

∂t
φε(α,Q, t) = −∇Q ·

[
(κ · Q − 1

2De
gε(Q))φε

]
+ 1

2bDe
�Qφ

ε (54)

φε(α,Q, 0) = ψ̄0(α,Q). (55)

Since the coefficients of the equation (54) are unbounded, standard existence argu-
ments for parabolic equations cannot be used. Motivated by the work of [17], we
will use a sequence of approximating problems with bounded coefficients to derive
uniform estimates.

Let χ(Q) be a C∞ function such that χ(Q) = 1 in B1, where χ is a mono-
tone decreasing function of |Q| satisfying χ(Q)|Q| � 1 in Bc1 = R

d\B1 and
χ(Q) = |Q|−1 for large |Q|. Obviously, such an χ(Q) exists. For N ∈ N, let
χN(Q) = χ(Q/N). We now consider (54)–(55) by the following approximate
problem

∂

∂t
φN,ε(α,Q, t) = −∇Q ·

[
χN(Q)(κ · Q − 1

2De
gε(Q))φN,ε

]

+ 1

2bDe
�QφN,ε, (56)

φN,ε(α,Q, 0) = ψ̄0(α,Q). (57)

The proof of solutions to the Cauchy problem (56)–(57) is straightforward since
the coefficients of (56) are bounded. It follows from the maximum principle that
positivity is preserved, and by integrating both sides of (56) we find that∫

Rd
φN,ε(α,Q, t)dQ =

∫
Rd
φN,ε(α,Q, 0)dQ =

∫
B1

ψ(α,Q, 0)dQ=1, for all t.

(58)

We will consider the next regularity estimates of φN,ε and its derivatives with
respect to α and Q. For ease of notation, we denote

φ
(i1,i2,... ,im;j1,j2,... ,jn)
N,ε = ∂mQi1 ,Qi2 ,... ,Qim

∂nαj1 ,αj2 ,... ,αjn
φN,ε, (59)

and in particular,

φ
(i1,i2,... ,im;0)
N,ε = ∂mQi1 ,Qi2 ,... ,Qim

φN,ε, φ
(0;j1,j2,... ,jn)
N,ε = ∂nαj1 ,αj2 ,... ,αjn

φN,ε. (60)

Define a group of spaces similar to the one in (16):

X ε
n,i =


φε : R

d → R|
i∑

k=0


∫

Rd


n+5−k∑

j=0

wjε


 |∇k

Qφε(Q)|dQ


 < ∞, n ∈ N




(61)
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with the norm

‖φε‖X ε
n,i

=
i∑

k=0


∫

Rd


n+5−k∑

j=0

wjε


 |∇k

Qφε(Q)|dQ


 ,

where

wε(Q) =
{

f (|Q|2) = 1
1−|Q|2 , if |Q| � 1 − ε,

A1 + A2 [|Q| − (1 − ε)] , if |Q| > 1 − ε.
(62)

In (62), A1 = 1
ε(2−ε) and A2 = 2(1−ε)

ε2(2−ε)2 . The function wε and its gradient are
continuous at |Q| = 1 − ε, and wε has linear growth at infinity. By the definition
of wε(Q), we can obtain the following result.

Lemma 6. Suppose that φε satisfies (54) for every ε ∈ (0, 1/2) and ‖φε‖X ε
n,i+1

is

bounded being independent of ε, then there exists a function φ ∈ Xn,i which sat-
isfies (50) for Q ∈ B1, and φ is almost everywhere zero on the domain of Bc1 and
‖φ‖Xn,i

� limε→0 ‖φε‖X ε
n,i+1

.

Proof. For ε1 ∈ (0, 1/2) fixed, by the properties of φε, we know that φε satisfies
(54) for Q ∈ B1−ε1 and every ε ∈ (0, ε1] and

i+1∑
k=0


∫

B1−ε1


n+5−k∑

j=0

wjε


 |∇k

Qφ
ε(Q)|dQ




=
i+1∑
k=0


∫

B1−ε1


n+5−k∑

j=0

f j


 |∇k

Qφ
ε(Q)|dQ




� ‖φε‖X ε
n,i+1

,

here we have used the definition (62) of wε(Q). The uniform bound of ‖φε‖X ε
n,i+1

implies that

i+1∑
k=0


∫

B1−ε1


n+5−k∑

j=0

f j


 |∇k

Qφ
ε(Q)|dQ


 (63)

is uniformly bounded with respect to ε. Therefore, there is a convergent subse-
quence in B1−ε1 still denoted by {φε} with the loss of confusion. We now denote
its limit by φ for Q ∈ B1−ε1 as ε → 0.

Here we should note that (63) is based in L1 type norms and the limit of a con-
vergent bounded sequence in L1 may not be a L1 function but a singular measure.
To overcome the difficulty, we can utilize the technique in [17] to obtain the weak
regular limit function by using high-order regular sequence (63). That is, φ has the
bound of

i∑
k=0


∫

B1−ε1


n+5−k∑

j=0

f j


 |∇k

Qφ(Q)|dQ


 (64)
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being independent of ε1 ∈ (0, 1/2). Now we see that the regularity index in (64) is
i instead of i + 1 in (63). Moreover, φ also satisfies (54) for Q ∈ B1−ε1 because of
gε(Q)) = f (|Q|2)Q for Q ∈ B1−ε1 being no singularity. By the property of (64),
we know that when ε1 → 0,

i∑
k=0


∫

B1−ε1


n+5−k∑

j=0

f j


 |∇k

Qφ(Q)|dQ




converge to a singular integral

i∑
k=0


∫

B1


n+5−k∑

j=0

f j


 |∇k

Qφ(Q)|dQ


 .

Hence, φ satisfies (50) in the sense of the weighted integral with respect to the var-
iable Q ∈ B1 and φ ∈ Xn,i as ε1 → 0. Using the same argument and the definition
of wε(Q), we have

i∑
k=0

[∫
BR∩Bc1

|∇k
Qφ(Q)|dQ

]
= 0, ∀R > 1,

then φ is almost everywhere zero on the domain of Bc1. ��
Next we state and prove a crucial lemma which will be used frequently in the paper.

Lemma 7. For 1 − ε < δ � 1, there exists a positive constant ε0 such that
∫
Bδ

(
1

1 − |Q|2
)n+1

φN,εdQ � µ

∫
Bδ

|Q|2
(

1

1 − |Q|2
)n+2

φN,εdQ

+C
∫
Bδ

(
1

1 − |Q|2
)n
φN,εdQ, (65)

for small ε, where µ > ε0 and C only depends on ε0.

Proof. Choosing ε < a < 1/4 gives
∫
Bδ

(
1

1 − |Q|2
)n+1

φN,εdQ

=
∫

|Q|�δ−a

(
1

1 − |Q|2
)n+1

φN,εdQ

+
∫
δ−a<|Q|�δ

(1 − |Q|2)
(

1

1 − |Q|2
)n+2

φN,εdQ

� 1

1 − (δ − a)2

∫
|Q|�δ−a

(
1

1 − |Q|2
)n
φN,εdQ

+(1 − (δ − a)2)

∫
δ−a<|Q|�δ

(
1

1 − |Q|2
)n+2

φN,εdQ.
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Since a < 1/4 and δ > 1 − ε > 1/2 by ε ∈ (0, 1/2) and the fact

1 − (δ − a)2 � [1 + a − (1 − ε)] [1 + δ − a] (since δ > 1 − ε)

� 2 [1 + a − (1 − ε)] (since δ � 1)

= 2 [a + ε)]

� 4a (since a > ε).

Using δ−a < 1/4, then 4a/(δ−a)2 � 64a < µ, where we chooseµ > ε0 = 64a.
Thus 1 − (δ − a)2 � 4a � µ(δ − a)2. Therefore,

(1 − (δ − a)2)

∫
δ−a<|Q|�δ

(
1

1 − |Q|2
)n+2

φN,εdQ

� µ

∫
δ−a<|Q|�δ

|Q|2
(

1

1 − |Q|2
)n+2

φN,εdQ

� µ

∫
Bδ

|Q|2
(

1

1 − |Q|2
)n+2

φN,εdQ.

Meanwhile, we choose C � 1
a(1−a) , then we have

1

1 − (δ − a)2

∫
|Q|�δ−a

(
1

1 − |Q|2
)n
φN,εdQ

� C

∫
|Q|�δ−a

(
1

1 − |Q2|
)n
φN,εdQ

� C

∫
Bδ

(
1

1 − |Q|2
)n
φN,εdQ.

Combining the above inequalities yields the result (65). ��

3.1.1. The estimate of φN ,ε. Let δ = 1 − ε and denote D1 = 1/(2De),D2 =
1/(2bDe). Multiplying (56) with (wε(Q))n (also denote bywnε ) and integrating by
parts yields

∂

∂t

∫
Rd
wnε φN,εdQ = ∂

∂t

(∫
Bδ

+
∫
Bcδ

)
wnεφN,εdQ

= D2

(∫
Bδ

+
∫
Bcδ

)
φN,ε�Qw

n
ε dQ

+
(∫

Bδ

+
∫
Bcδ

) [
χN(Q)φN,ε {κ · Q −D1gε(Q)} · ∇Qw

n
ε

]
dQ
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= D2

∫
Bδ

φN,ε

[
4n(n+ 1)|Q|2f n+2 + 2nd f n+1

]
dQ

+
∫
Bδ

χN(Q)φN,ε {κ · Q −D1fQ} · 2nf n+1QdQ

+D2

∫
Bcδ

nA2w
n−1
ε φN,ε [(d − 1)/|Q|] dQ

+D2

∫
Bcδ

n(n− 1)A2
2w

n−2
ε φN,εdQ

+
∫
Bcδ

nA2w
n−1
ε χN(Q)φN,ε {κ · Q −D1gε(Q)} · [Q/|Q|] dQ,

where we have used the continuity of wε and its gradient at |Q| = 1 − ε. Since
χN(Q) = 1 in B1 for all N ∈ N, we obtain by virtue of Lemma 7 that

∂

∂t

∫
Rd
wnε φN,εdQ + 2nD1

(
1 − 2(n+ 1)

b

)∫
Bδ

φN,ε|Q|2f n+2dQ

+
∫
Bcδ

nA2D1χN(Q)φN,εwn−1
ε fε(|Q|2)|Q|dQ

� µ

∫
Bδ

φN,ε|Q|2f n+2dQ

+CD2

∫
Bδ

φN,ε2nd f
ndQ + C|κ|

∫
Bδ

χN(Q)φN,ε2nf ndQ

+D2

∫
Bcδ

nA2w
n−1
ε φN,ε [(d − 1)/|Q|] dQ

+D2

∫
Bcδ

n(n− 1)A2
2w

n−2
ε φN,εdQ

+|κ|
∫
Bcδ

nA2χN(Q)φN,εwn−1
ε |Q|dQ. (66)

By the definitions ofA2,Bcδ , fε(|Q|2) and χN(Q), we claim that when we choose a
suitably small ε, the last three terms on the right-hand side of (66) will be bounded
by the term

∫
Bcδ
nA2D1χN(Q)φN,εwn−1

ε fε(|Q|2)|Q|dQ, i.e. the last term on the
left-hand side of (66). Now we will show this one by one.

(i) Firstly, choose a constant 0 < � < 1
2 , �fε(|Q|2)|Q| � � 1−ε

ε(2−ε) as |Q| > 1−ε.
So for every b > 0, we can choose ε > 0 such that �fε(|Q|2)|Q| � 2 d−1

b
.

Thus,

�

∫
Bcδ

nA2D1χN(Q)φN,εwn−1
ε fε(|Q|2)|Q|dQ

� D2

∫
Bcδ

nA2w
n−1
ε φN,ε [(d − 1)/|Q|] dQ. (67)
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(ii) Similarly, for the uniform upper bound of |κ|, we can also choose ε > 0 such
that �fε(|Q|2) � � 1

ε(2−ε) � |κ|
D1

for |Q| > 1 − ε. Thus

�

∫
Bcδ

nA2D1χN(Q)φN,εwn−1
ε fε(|Q|2)|Q|dQ

� |κ|
∫
Bcδ

nA2χN(Q)φN,εwn−1
ε |Q|dQ. (68)

(iii) Below we will prove the following inequality:

(1 − 2�)
∫
Bcδ

nA2D1χN(Q)φN,εwn−1
ε fε(|Q|2)|Q|dQ

� D2

∫
Bcδ

n(n− 1)A2
2w

n−2
ε φN,εdQ. (69)

It will be established by considering the following three possible cases.

(i) For 1 − ε < |Q| � 1, we know χN(Q) = 1 and

(1 − 2�)|Q|fε(|Q|2)wε � (1 − 2�)
1 − ε

ε(2 − ε)
wε

� (1 − 2�)
1 − ε

ε(2 − ε)

1

ε(2 − ε)
.

Therefore,

(1 − 2�)χN(Q)|Q|fε(|Q|2)wε � n− 1

b
A2 (70)

provided that

2(n− 1)

b
� 1 − 2�. (71)

This implies that when b, n satisfy (71), we have (69) for 1 − ε < |Q| � 1.
(ii) When |Q| � N , by virtue of χN(Q) = χ(Q/N) and χ(Q) = |Q|−1 for large

|Q|, we have χN(Q)|Q| = N . Moreover, fε(|Q|2) � 4
ε(4−ε) . So for any fixed

b and n, it is easy to see that

(1 − 2�)χN(Q)|Q|fε(|Q|2)wε � (1 − 2�)N
4

ε(4 − ε)
[A1 + (N − 1)A2]

� n− 1

b
A2

is true for large N . This shows that (69) is true when |Q| � 1.



388 Hui Zhang & Pingwen Zhang

(iii) When 1 < |Q| < N , χN(Q)|Q| � 1 (since χ(Q)|Q| � 1 in Bc1 = R
d\B1),

(1 − 2�)χN(Q)|Q|fε(|Q|2)wε � (1 − 2�)
4

ε(4 − ε)
[A1 + εA2]

� (1−2�)
4

ε(4 − ε)

[
1

ε(2−ε)+
2(1−ε)
ε(2−ε)2

]

� n− 1

b

2(1 − ε)

ε2(2 − ε)2

for b � 2(n− 1) fixed and for suitable 0 < � < 1/2 and small ε. Thus (69) is
true. This completes the proof for (69).

The results (67)–(69) confirm our earlier claim by choosing ε suitably and by
assuming (71). Now we will weaken the condition (71) by replacing it with

b > 2(n− 1). (72)

By choosing suitably a 0 < � � 1 we can prove (71) for b > 2(n − 1). This is
also why we introduce a parameter �. By the above analysis, we have shown that
the inequality (66) can be rewritten as

∂

∂t

∫
Rd
wnε φN,εdQ � C(n, d,D2, κ)

∫
Rd
wnε φN,εdQ (73)

provided that

b > 2(n+ 1), (74)

where (74) implies (72) and 2nD1

(
1 − 2(n+1)

b

)
> µ, here we choose µ = 3

2ε0,

ε0 = nD1(1 − 2(n + 1)/b). The positive constant C(n, d,D2, κ) in (73) is inde-
pendent of ε. The Gronwall inequality yields

∫
Rd
wnε φN,εdQ ∈ L∞([0, T ] , L∞(�)) (75)

under the assumptions of (74) and
∫

Rd
wnε ψ̄0dQ ∈ L∞(�)). (76)

By the definition (53) of ψ̄0 and the definition (62) of wε we know that
∫

Rd
wnε ψ̄0dQ =

∫
B1

wnεψ0dQ �
∫
B1

f nψ0dQ. (77)

This shows that
∫
Rd
wnε ψ̄0dQ is bounded by being independent of ε if the condition

(A3) is satisfied. In the following the other uniform bounds of the derivatives to ψ̄0
follow a similar argument.
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3.1.2. The estimate of ∇m
QφN , ε (m = 1, 2, 3). Differentiating (56) with respect

to Qi gives the following equation for φ(i;0)N,ε :

∂

∂t
φ
(i;0)
N,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(i;0)
N,ε

]

+D2�Qφ
(i;0)
N,ε +�i (78)

φ
(i;0)
N,ε (α,Q, 0) = ∂Qi ψ̄0(α,Q), (79)

where

�i = − {
∂QiχN

[
κjk ·Qk −D1gεj (Q)

]
+χN(Q)

[
κji −D1∂Qi gεj (Q)

]}
φ
(j ;0)
N,ε

−∇Q · {∂Qi [χN(Q)(κ · Q −D1gε(Q))
]}
φN,ε

= �+
i +�−

i . (80)

Here �+
i = �i ∨ 0 and �−

i = −(�i ∧ 0). Now we decompose φ(i;0)N,ε = φ
(i;0)
N+,ε −

φ
(i;0)
N−,ε, where φ(i;0)N+,ε and φ(i;0)N−,ε are the solutions of the following problems,

∂

∂t
φ
(i;0)
N+,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(i;0)
N+,ε

]

+D2�Qφ
(i;0)
N+,ε +�+

i (81)

φ
(i;0)
N+,ε(α,Q, 0) = max{∂Qi ψ̄0(α,Q), 0}, (82)

and

∂

∂t
φ
(i;0)
N−,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(i;0)
N−,ε

]

+D2�Qφ
(i;0)
N−,ε +�−

i (83)

φ
(i;0)
N−,ε(α,Q, 0) = max{−∂Qi ψ̄0(α,Q), 0}, (84)

respectively. Since φ(i;0)N+,ε and φ(i;0)N−,ε are both positive, we can now proceed with
the estimate of φN,ε. We obtain

∂

∂t

∫
Rd
wnε φ

(i;0)
N+,εdQ + 2nD1

(
1 − 2(n+ 1)

b

)∫
Bδ

φ
(i;0)
N+,ε|Q|2f n+2dQ

+
∫
Bcδ

nD1A2χN(Q)φ
(i;0)
N+,εw

n−1
ε fε(|Q|2)|Q|dQ

� µ

∫
Bδ

φ
(i;0)
N+,ε|Q|2f n+2dQ
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+CD2

∫
Bδ

φ
(i;0)
N+,ε2nd f

ndQ + C|κ|
∫
Bδ

χN(Q)φ
(i;0)
N+,ε2nf

ndQ

+D2

∫
Bcδ

nA2w
n−1
ε φ

(i;0)
N+,ε [(d − 1)/|Q|] dQ

+D2

∫
Bcδ

n(n− 1)A2
2w

n−2
ε φ

(i;0)
N+,εdQ

+|κ|
∫
Bcδ

nA2χN(Q)φ
(i;0)
N+,εw

n−1
ε |Q|dQ +

∫
Rd
wnε�

+
i dQ. (85)

By using (80), we have

∫
Rd
wnε

∑
i

(�+
i +�−

i )dQ

�
∫

Rd

∑
i

(
wnεφN,ε

∣∣∇Q · {∂Qi
[
χN(Q)(κ · Q −D1gε(Q))

]}∣∣) dQ

+
∫

Rd

∑
i

(
wnε (φ

(j ;0)
N+,ε + φ

(j ;0)
N−,ε)

{|∂QiχN |(|κjk||Qk| +D1|gεj (Q)|)

+χN(Q)(|κji | +D1|∂Qi gεj (Q)|︸ ︷︷ ︸)}
)
dQ. (86)

Hereinafter the term underlined “︸︷︷︸” will affect the condition imposed on b (later
it will be seen from the condition on b). Now we start to estimate the right-hand
side of (86) in domains Bδ and Bcδ , respectively:

∫
Bδ

• dQ � C|κ|
∫
Bδ

φN,εf
ndQ + C

∫
Bδ

φN,εf
n+1dQ

+C
∫
Bδ

φN,ε

[
f n+2 + f n+3

]
dQ

+C
∫
Bδ

(∑
i

|φ(i;0)N,ε |
)(

|κ|f n + d f n+1
)
dQ

+
∫
Bδ

(∑
i

|φ(i;0)N,ε |
)(

|κ|f n + d f n+1 +D1(d + 1) |Q|2f n+2
)
dQ.

(87)

The last term in the fifth integral is from the term underlined “︸︷︷︸” in (86). The
first three terms on the right-hand side of (87) can be estimated by a constant inde-
pendent of ε times

∫
Rd
(
∑n+3
i=n wiε)φN,εdQ, by using the same arguments as that in

Section 3.1.1. The terms with the factor f n+1 in the last two integrals of (87) can be
estimated by utilizing Lemma 7 with φN,ε replaced by

∑
i |φ(i;0)N,ε |. The last term in
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the fifth integral can be controlled by putting some conditions on b (the restriction
(91) below). For the estimate of

∫
Bcδ

• dQ, observe

∫
Bcδ

• dQ � (|κ| +D1fε(|Q|2))
∫
Bcδ

wnε φN,εdQ

+(|κ| +D1fε(|Q|2))
∫
Bcδ

wnε

(∑
i

|φ(i;0)N,ε |
)
dQ,

asN is sufficiently large. The first integral can be controlled by
∫
Rd
(
∑n+3
i=n wiε)φN,ε

dQ from Section 3.1.1. Note when ε is sufficiently small, the second integral may
be controlled by

∫
Bcδ
nD1A2χN(Q)(

∑
i |φ(i;0)N,ε |)wn−1

ε fε(|Q|2)|Q|dQ related to the

third integral on the left-hand side of (85) since n � 7. Similar estimates can be
done for all φ(i;0)N−,ε. Summing over all the indices i and the +,− equations, we

obtain an inequality for
∫
Rd
wnε

∑
i |φ(i;0)N,ε |dQ. More precisely, we obtain

∫
Rd
wnε

∑
i

|φ(i;0)N,ε |dQ ∈ L∞([0, T ] ;L∞(�)) (88)

provided that
∫

Rd
wnε

∑
i

|∂Qi ψ̄0|dQ ∈ L∞(�) (89)

∫
Rd

(
n+3∑
i=n

wiε

)
ψ̄0dQ ∈ L∞(�) (90)

when

2n

2De

(
1 − 2(n+ 1)

b

)
>
d + 1

2De
i.e. b >

4n(n+ 1)

2n− d − 1
. (91)

The requirement (91) is similar to (74) and in fact, (91) includes (74). The regularity
requirement (90) is required to estimate

∫
Rd
(
∑n+3
i=n wiε)φN,εdQ in Section 3.1.1. It

can be shown that (89) and (90) are satisfied if

ψ0 ∈ L∞(�,Xn,1). (92)

Similarly, we can differentiate (78) with respect to Qm to obtain the following
equation for φ(i,m;0)

N,ε :

∂

∂t
φ
(i,m;0)
N,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(i,m;0)
N,ε

]

+D2�Qφ
(i,m;0)
N,ε +�im (93)

φ
(i;0)
N,ε (α,Q, 0) = ∂Qi ψ̄0(α,Q), (94)
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where

�im = −{∇Q·[χN(Q)(κ · Q −D1gε(Q)︸ ︷︷ ︸)] }φ(i,m;0)
N,ε

−∂Qm{∇Q·[χN(Q)(κ · Q −D1gε(Q))] }φ(i;0)N,ε + ∂Qm�i

= −{∇Q·[χN(Q)(κ · Q −D1gε(Q)︸ ︷︷ ︸)] }φ(i,m;0)
N,ε

−∂Qm{∇Q·[χN(Q)(κ · Q −D1gε(Q))] }φ(i;0)N,ε

−∂Qm{∂QiχN [ κjk ·Qk −D1gεj (Q)]

+χN(Q)[ κji −D1∂Qi gεj (Q)] }φ(j ;0)N,ε

−{∂QiχN [ κjk ·Qk −D1gεj (Q)]

+χN(Q)[ κji −D1∂Qi gεj (Q)︸ ︷︷ ︸] }φ(j,m;0)
N,ε

−∂Qm∇Q · {∂Qi [χN(Q)(κ · Q −D1gε(Q))] }φN,ε
−∇Q · {∂Qi [χN(Q)(κ · Q −D1gε(Q))] }∂QmφN,ε

= �+ +�−. (95)

Using the same techniques used above, we can obtain∫
Rd
wnε

∑
i,m

|φ(i,m;0)
N,ε |dQ ∈ L∞([ 0, T ] ;L∞(�)) (96)

provided that ∫
Rd
wnε

∑
i,m

|∂Qi ∂Qmψ̄0|dQ ∈ L∞(�) (97)

∫
Rd

(
n+3∑
i=n

wiε

)
|∂Qj ψ̄0|dQ ∈ L∞(�) (98)

∫
Rd

(
n+4∑
i=n

wiε

)
ψ̄0dQ ∈ L∞(�) (99)

when

2n

2De

(
1 − 2(n+ 1)

b

)
>
d + 3

2De
i.e. b >

4n(n+ 1)

2n− d − 3
. (100)

The regularity requirements (98)–(99) are used to estimate
∫
Rd
(
∑n+3
i=n wiε)|∂Qj φN,ε|

dQ as earlier in this section, and to estimate
∫
Rd
(
∑n+4
i=n wiε)φN,εdQ as in Section

3.1.1, respectively. The conditions (97)–(99) are satisfied if

ψ0 ∈ L∞(�,Xn,2). (101)

Similarly, we can obtain∫
Rd
wnε

∑
i,j,m

|φ(i,j,m;0)
N,ε |dQ ∈ L∞([ 0, T ] ;L∞(�)) (102)
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provided that

ψ0 ∈ L∞(�,Xn,3) (103)

when

2n

2De

(
1 − 2(n+ 1)

b

)
>
d + 5

2De
i.e. b >

4n(n+ 1)

2n− d − 5
. (104)

3.1.3. The estimate of (φN ,ε)t . We take the absolute value of the two sides of
(56) and multiply it by wnε , and integrate the resulting equation in Q space. It can
be shown that ∫

Rd
wnε |(φN,ε)t |dQ ∈ L∞([ 0, T ] ;L∞(�)) (105)

provided that (100) and (101) are satisfied.

3.1.4. The estimate of ∇αφN ,ε. In the following we will show that
∫
Rd
wnε |∇αφN,ε|

dQ is bounded. Differentiating (56) with respect to αi yields the equation

∂

∂t
φ
(0;i)
N,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(0;i)
N,ε

]

+D2�Qφ
(0;i)
N,ε +�i (106)

φ
(0;i)
N (α,Q, 0) = ∂αi ψ̄0(α,Q), (107)

where

�i = −∇Q · [χN(Q)∂αi κ · QφN,ε
]

= −∇Q · [χN(Q)∂αi κ · Q
]
φN,ε − [

χN(Q)∂αi κ · Q
] · ∇QφN,ε

= �+
i +�−

i . (108)

Here �+
i and �−

i have a similar definition as before. Let φ(0;i)
N,ε = φ

(0;i)
N+,ε −

φ
(0;i)
N−,ε, where φ(0;i)

N+,ε and φ(0;i)
N−,ε are the solutions of the following problems

∂

∂t
φ
(0;i)
N±,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(0;i)
N±,ε

]

+D2�Qφ
(0;i)
N±,ε +�±

i (109)

φ
(0;i)
N±,ε(α,Q, 0) = (∂αi ψ̄0)

±. (110)

Since φ(0;i)
N+,ε and φ(0;i)

N−,ε are positive, we can proceed as before. By observing

that there are only φN,ε and φ(j ;0)N,ε terms involved in �i , and by using ∇ακ ∈
L2([ 0, T ] , L∞(�)), we can obtain∫

Rd
wnε

∑
i

|φ(0;i)
N,ε |dQ ∈ L∞([ 0, T ] ;L∞(�)) (111)

under the assumptions (91) and

ψ0 ∈ H 3(�,Xn,2). (112)
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3.1.5. The estimate of ∇Q∇αφN ,ε and ∇2
Q∇αφN ,ε. Next we will estimate the

mixed derivatives of φN,ε. Differentiating (106) with respect toQj yields the equa-

tion of φ(j ;i)N,ε ,

∂

∂t
φ
(j ;i)
N,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(j ;i)
N,ε

]

+D2�Qφ
(j ;i)
N,ε +�ji (113)

φ
(j ;i)
N,ε (α,Q, 0) = ∂Qj ∂αi ψ̄0(α,Q), (114)

where

�ji = −{∂Qj χN [ κlk ·Qk −D1gεl(Q)] +χN(Q)[ κlj −D1∂Qj gεl(Q)︸ ︷︷ ︸] }φ(l;i)N,ε

−∇Q · {∂Qj [χN(Q)(κ · Q −D1gε(Q))] }φ(0;i)
N,ε

−∇Q·[ ∂Qj χN∂αi κ · QφN,ε] −∂Ql [χN(Q)∂αi κljφN,ε]
−∇Q·[χN(Q)∂αi κ · Qφ(j ;0)N,ε ]

= �+
ji +�−

ji , (115)

Here �+
ji and �−

ji have similar meanings as before. Let φ(j ;i)N,ε = φ
(j ;i)
N+,ε − φ

(j ;i)
N−,ε,

where φ(j ;i)N+,ε and φ(j ;i)N−,ε are the solutions of the following problems

∂

∂t
φ
(j ;i)
N±,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(j ;i)
N±,ε

]

+D2�Qφ
(j ;i)
N±,ε +�±

ji (116)

φ
(j ;i)
N±,ε(α,Q, 0) = (∂Qj ∂αi ψ̄0)

±. (117)

Since φ(j ;i)N+,ε and φ(j ;i)N−,ε are positive, we can proceed as before. The terms involv-

ing φ(l;i)N,ε in �ji can be controlled by the condition (100); the other terms have
been estimated in previous sections. Thus, using the fact that ∇ακ and κ belong to
L2([0, T ] , L∞(�)), we find

∫
Rd
wnε

∑
ij

|φ(j ;i)N,ε |dQ ∈ L∞([0, T ] ;L∞(�)) (118)

under the assumptions (100) and (112).
Similarly, differentiating (113) with respect to Qm yields the equation for

φ
(j,m;i)
N,ε ,

∂

∂t
φ
(j,m;i)
N,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(j,m;i)
N,ε

]

+D2�Qφ
(j,m;i)
N,ε + �ji (119)

φ
(j,m;i)
N,ε (α,Q, 0) = ∂Qm∂Qj ∂αi ψ̄0(α,Q), (120)
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where

�ji = −{∂Qj χN [κlk ·Qk −D1gεl(Q)
]+ χN(Q)

[
κlj −D1∂Qj gεl(Q)

] }
φ
(j,l;i)
N,ε

−∇Q · {∂Qj [χN(Q)(κ · Q −D1gε(Q))
] }
φ
(j ;i)
N,ε + ∂Qm�ji

= −{∂Qj χN [κlk ·Qk −D1gεl(Q)
]+ χN(Q)

[
κlj −D1∂Qj gεl(Q)︸ ︷︷ ︸

]}
φ
(j,l;i)
N,ε

−∇Q · {∂Qj [χN(Q)(κ · Q −D1gε(Q))
] }
φ
(j ;i)
N,ε

−{∂Qj χN [κlk ·Qk −D1gεl(Q)
]+ χN(Q)

[
κlj −D1∂Qj gεl(Q)︸ ︷︷ ︸

]}
φ
(l,m;i)
N,ε

−∂Qm
{
∂Qj χN

[
κlk ·Qk −D1gεl(Q)

]+χN(Q) [κlj −D1∂Qj gεl(Q)
] }
φ
(l;i)
N,ε

+∂Qm
{

− ∇Q · {∂Qj [χN(Q)(κ · Q −D1gε(Q))
] }
φ
(0;i)
N,ε

−∇Q · [∂Qj χN∂αi κ · QφN,ε
]− ∂Ql

[
χN(Q)∂αi κljφN,ε

]
−∇Q ·

[
χN(Q)∂αi κ · Qφ(j ;0)N,ε

] }
. (121)

Similarly, we can obtain the following estimate∫
Rd
wnε

∑
i,j,m

|φ(j,m;i)
N,ε |dQ ∈ L∞([0, T ] ;L∞(�)) (122)

provided that (100) and (112) are satisfied.

3.1.6. The estimate of (∇αφN ,ε)t . We take the absolute value of both sides of
(106) and multiply it by wnε and then integrate the resulting equation in Q. More-
over, we integrate it with respect to α given the factor ∂αi κ of �i in (106) only
belongs to L2([0, T ] , L∞(�)). By using (118) and (122), it can be shown that∫

Rd
wnε |(∇αφN,ε)t |dQ ∈ L∞([0, T ] ;L∞(�)) (123)

provided (100) and (112) are satisfied.

3.1.7. The estimate of ∇2
αφN ,ε. Next we estimate the high-order derivatives of

φN,ε with respect to α. Differentiating (106) with respect to αj yields the equations

∂

∂t
φ
(0;i,j)
N,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(0;i,j)
N,ε

]

+D2�Qφ
(0;i,j)
N,ε +�ij (124)

φ
(0;i,j)
N,ε (α,Q, 0) = ∂2

αiαj
ψε0 (α,Q), (125)

where

�ij = −∇Q ·
[
χN(Q)∂2

αiαj
κ · QφN,ε

]
− ∇Q ·

[
χN(Q)∂αi κ · Qφ(0;j)

N,ε

]

−∇Q ·
[
χN(Q)∂αj κ · Qφ(0;i)

N,ε

]

= �+
ij +�−

ij . (126)
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Here�+
ij and�−

ij have similar definitions as before.Again we decomposeφ(0;i,j)
N,ε =

φ
(0;i,j)
N+,ε − φ

(0;i,j)
N−,ε , where φ(0;i,j)

N+,ε and φ(0;i,j)
N−,ε satisfy

∂

∂t
φ
(0;i,j)
N±,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(0;i,j)
N±,ε

]

+D2�Qφ
(0;i,j)
N±,ε +�±

ij (127)

φ
(0;i,j)
N±,ε (α,Q, 0) = (∂2

αiαj
ψ̄0)

±. (128)

It follows from (126) that

∫
Rd
wnε�

+
ij dQ � |∇2

ακ|
(∫

Rd
wnε φN,εdQ +

∫
Rd

|Q|wnε
∑
k

|φ(k;0)N,ε |dQ

)

+|∇ακ|

∫

Rd
wnε

∑
l

|φ(0;l)
N,ε |dQ +

∫
Rd

|Q|wnε
∑
k,l

|φ(k;l)N,ε |dQ


 .

(129)

By multiplying both sides of (127) by wnε , and integrating in Q and summing them
altogether, we obtain

∂

∂t

∫
Rd
wnε |φ(0;i,j)

N,ε |dQ � C(n, d,D2, κ)

∫
Rd
wnε |φ(0;i,j)

N,ε |dQ

+|∇2
ακ|

(∫
Rd
wnε φN,εdQ +

∫
Rd

|Q|wnε
∑
k

|φ(k;0)N,ε |dQ

)

+|∇ακ|

∫

Rd
wnε

∑
l

|φ(0;l)
N,ε |dQ +

∫
Rd

|Q|wnε
∑
k,l

|φ(k;l)N,ε |dQ


 . (130)

By multiplying (130) by
∫
Rd
wnε |φ(0;i,j)

N,ε |dQ, and integrating the resulting inequality
in the α space gives

∂

∂t

∫
�

(∫
Rd
wnε |φ(0;i,j)

N,ε |dQ
)2

dα (131)

� C

∫
�

(∫
Rd
wnε |φ(0;i,j)

N,ε |dQ
)2

dα + C1

∫
�

|∇2
ακ|2dα + C2‖∇ακ‖2

L∞ .

Here we have used the fact that∫
Rd
wnε φN,εdQ,

∫
Rd
wn+1
ε

∑
k |φ(k;0)N,ε |dQ∫

Rd
wnε

∑
l |φ(0;l)

N,ε |dQ,
∫
Rd
wn+1
ε

∑
k,l |φ(k;l)N,ε |dQ

(132)

belong toL∞([0, T ]×�) and the boundedness of�. By using |∇ακ| ∈ L2([0, T ] ,
L∞(�)) and the Gronwall’s inequality, we obtain

φN,ε ∈ L∞([0, T ] ;H 2(�,X ε
n,0)), if ψ0 ∈ H 3(�,Xn,2). (133)
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3.1.8. The estimate of ∇3
αφN ,ε. Differentiating (124) with respect to α, yields

the equations

∂

∂t
φ
(0;i,j,k)
N,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(0;i,j,k)
N,ε

]

+D2�Qφ
(0;i,j,k)
N,ε + ϒijk (134)

φ
(0;i,j,k)
N,ε (α,Q, 0) = ∂3

αiαj αk
ψ̄0(α,Q), (135)

where

ϒijk = −∇Q ·
[
χN(Q)∂3

αiαj αk
κ · QφN,ε

]
− ∇Q ·

[
χN(Q)∂2

αiαj
κ · Qφ(0;k)

N,ε

]

−∇Q ·
[
χN(Q)∂2

αiαk
κ · Qφ(0;j)

N,ε

]
− ∇Q ·

[
χN(Q)∂2

αjαk
κ · Qφ(0;i)

N,ε

]

−∇Q ·
[
χN(Q)∂αi κ · Qφ(0;j,k)

N,ε

]
− ∇Q ·

[
χN(Q)∂αj κ · Qφ(0;i,k)

N,ε

]

−∇Q ·
[
χN(Q)∂αkκ · Qφ(0;i,j)

N,ε

]

= ϒ+
ijk + ϒ−

ijk. (136)

Here ϒ+
ijk and ϒ−

ijk have similar definitions as before. Again we decompose

φ
(0;i,j,k)
N,ε = φ

(0;i,j,k)
N+,ε − φ

(0;i,j,k)
N−,ε , where φ(0;i,j,k)

N+,ε and φ(0;i,j,k)
N−,ε satisfy

∂

∂t
φ
(0;i,j,k)
N±,ε = −∇Q ·

[
χN(Q)(κ · Q −D1gε(Q))φ

(0;i,j,k)
N±,ε

]

+D2�Qφ
(0;i,j,k)
N±,ε + ϒ±

ijk (137)

φ
(0;i,j,k)
N±,ε (α,Q, 0) = (∂3

αiαj αk
ψ̄0)

±. (138)

It follows from (136) that

∫
Rd
wnεϒ

+
ijkdQ

� |∇3
ακ|

(∫
Rd
wnε φN,εdQ +

∫
Rd

|Q|wnε
∑
l

|φ(l;0)N,ε |dQ

)

+|∇2
ακ|


∫

Rd
wnε

∑
l

|φ(0;l)
N,ε |dQ +

∫
Rd

|Q|wnε
∑
i,j

|φ(i;j)N,ε |dQ




+|∇ακ|

∫

Rd
wnε

∑
i,j

|φ(0;i,j)
N,ε |dQ+

∫
Rd

|Q|wnε
∑
l,i,j

|φ(l;i,j)N,ε |dQ


 . (139)
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By multiplying both sides of (137) by wnε , and integrating in Q and summing them
altogether, yields

∂

∂t

∫
Rd
wnε |φ(0;i,j,k)

N,ε |dQ

� C(n, d,D2, κ)

∫
Rd
wnε |φ(0;i,j,k)

N,ε |dQ

+|∇3
ακ|

(∫
Rd
wnε φN,εdQ +

∫
Rd

|Q|wnε
∑
l

|φ(l;0)N,ε |dQ

)

+|∇2
ακ|


∫

Rd
wnε

∑
l

|φ(0;l)
N,ε |dQ +

∫
Rd

|Q|wnε
∑
i,j

|φ(i;j)N,ε |dQ




+|∇ακ|

∫

Rd
wnε

∑
i,j

|φ(0;i,j)
N,ε |dQ+

∫
Rd

|Q|wnε
∑
l,i,j

|φ(l;i,j)N,ε |dQ


 .(140)

Now we multiply
∫
Rd
wnε |φ(0;i,j,k)

N,ε |dQ to (140) and integrate it with respect to α.
It can be shown that

∂

∂t

∫
�

(∫
Rd
wnε |φ(0;i,j,k)

N,ε |dQ
)2

dα

� C

∫
�

(∫
Rd
wnε |φ(0;i,j,k)

N,ε |dQ
)2

dα

+C1

∫
�

(|∇3
ακ|2 + |∇2

ακ|2)dα + C2‖∇ακ‖2
L∞ . (141)

Here we have also used the fact that functions in (132) belong toL∞([0, T ] ;L∞
(�)) and the boundedness of �. An application of Gronwall’s inequality, together
with the fact ∇ακ ∈ L2([0, T ] ;L∞(�)), implies that

φN,ε ∈ L∞([0, T ] ;H 3(�,X ε
n,0)), if ψ0 ∈ H 3(�,Xn,2). (142)

3.2. Estimate of ψ with respect to the Eulerian variable

It is known that we need the estimates for the derivatives of ψ with respect to
x, but we now only have estimates for ψ with respect to α. Equation (49) implies
that the desired estimates can be obtained if we can estimate x(α, t) in (49). Since
um ∈ S(M, T ), we can obtain the following estimate of flow map from (49) (see
e.g. [13])

∇α ∈ L∞([0, T ] ×�), ∇2α,∇3α ∈ L∞([0, T ] ;L2(�)). (143)

Using (143) and the fact

∇φN,ε(x,Q, t) = ∇αφN,ε · ∇α, (144)
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we have

φN,ε(x,Q, t) ∈ ∩1
k=0H

k([0, T ] ;H 3−2k(�,X ε
n,2)) (145)

when um ∈ S(M, T ) and

φN,ε(α,Q, t) ∈ ∩1
k=0H

k([0, T ] ;H 3−2k(�,X ε
n,2)). (146)

3.3. The limit of φN,ε when N → ∞ and ε → 0

All of the estimates above are uniform in N and the restriction to the initial
data is ψ0 ∈ H 3(�,Xn,2). However, when N goes to ∞, the limit of the sequence
φN,ε may not be in ∩1

k=0H
k([0, T ] ;H 3−2k(�,X ε

n,2)) since X ε
n,2 are based in L1

type norms, and it is known that the limit of a distributionally convergent bounded
sequence in L1 may not be a L1 function but a singular measure. To overcome
this difficulty, we can use the technique in [17] to improve the regularity of ψ0.
This is the reason for assuming ψ0 ∈ H 4(�,Xn,3) in the condition (A3) of The-
orem 1. The details are omitted since they are similar to that in [17]. Moreover,
since all of the estimates above are uniform in ε, when ε → 0, we know that
φ ∈ ∩1

k=0H
k([0, T ] ;H 3−2k(�,Xn,2)) by using Lemma 6, which is the solution

of (50) with the initial data ψ0 ∈ H 4(�,Xn,3). In addition, when ε → 0, we have
φ(x,Q, t) � 0 and (58) becomes∫

B1

φ(x,Q, t)dQ =
∫
B1

ψ0(x,Q)dQ = 1.

Lemma 4 can be established by applying the same type of estimates to the function
ψ − ψ̂ . The details will be omitted here.

4. Conclusion

A detailed well-posedness analysis for the FENE dumbbell model of polymeric
fluids is carried out in this paper. The model under consideration is a coupled system
for the fluid velocity u and the distribution densityψ for polymeric fluids. A rigor-
ous analysis is focused on the uniform estimate ψ and its derivative with respect to
space variable α inL1 weighted norm. It is demonstrated that the uniform estimates
to theL∞ norm of

∫
Rd
wnε φN,εdQ,

∫
Rd
wnε |∇QφN,ε|dQ,

∫
Rd
wn+1
ε |∇xφN,ε|dQ and∫

Rd
wn+1
ε |∇x∇QφN,ε|dQ are essential in establishing the main results. Importantly,

the boundary condition of the FENE-type Fokker-Planck equation is proved to be
unnecessary by the singularity on the boundary. We point out that this work is cru-
cial for the numerical analysis of the recently proposed multiscale methods [3, 14]
for solving (9)–(15).
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