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CONVERGENCE ANALYSIS OF BCF METHOD FOR HOOKEAN
DUMBBELL MODEL WITH FINITE DIFFERENCE SCHEME∗

TIEJUN LI† AND PINGWEN ZHANG‡

Abstract. A convergence analysis of the Brownian configuration fields (BCF) method [M. A.
Hulsen, A. P. G. van Heel, and B. H. A. A. van den Brule, J. Non-Newtonian Fluid Mech., 70 (1997),
pp. 79–101] for the Hookean dumbbell model with finite difference scheme in dimension 2 or 3 is
given in this paper under the assumption that the continuous solution is smooth enough. An explicit
solution of the Hookean dumbbell model is obtained via deformation tensor. A large deviation-type
estimate for the error of polymeric stress E(QQ) is given, which is a key step in the proof. It is
shown that if the number of configuration fields N , the space stepsize h, and the time stepsize δt are
chosen appropriately, the convergence of second order in space and first order in time may be proved
after excluding a set of small probability. Simultaneous discretization of Monte Carlo and space and
the inverse inequality trick are essential for the proof.
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1. Introduction. The dumbbell model is the simplest model of polymeric fluids
that takes into account the microscopic behavior of the solute polymers [2, 4, 16]. It
models the polymers in dilute solution by dumbbells, each with two beads connected
by a spring. The configuration of the spring then specifies the conformation of the
polymer. Denote by u and p the velocity and pressure of the fluid and by Q the
configuration of the spring; then one has the following coupled macroscopic-kinetic
equations:

∂tu + (u · ∇)u + ∇p = Δu + ∇ · E(F (Q)Q),(1.1)

∇ · u = 0,(1.2)

dQ = (−u · ∇Q + κQ − F (Q))dt + dW t,(1.3)

where F (Q) is the spring force, κ = ∇uT is the strain rate, W t is the standard mul-
tidimensional Wiener process only in time, F (Q)Q is understood as tensor product,
and E is the expectation of random variables. Here all of the physical constants are
taken to be 1 for simplicity. In general, F (Q) = γ(|Q|2)Q, and γ(|Q|2) ≥ 0. The
corresponding initial and boundary conditions are supplied for different problems. In
the case of F (Q) = Q, the Hookean dumbbell model, the polymeric stress τ = E(QQ)
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satisfies the well-known Oldroyd-B model

τ+
∇
τ= I,(1.4)

where I is the identity matrix and

∇
τ := ∂tτ + (u · ∇)τ − κ · τ − τ · κT(1.5)

is the upper convective derivative [1]. In a general case one would not expect a closure
equation for the stress τ .

The system (1.1), (1.2), and (1.3) has its meaning in the multiscale simulation of
complex fluids. Usually a flexible polymer in the solvent is modelled as a connected
elastic dumbbell. In the dilute case, the probability density function f satisfies the
well-known Fokker–Planck equations which lie in a very high dimensional configura-
tion space. The direct deterministic discretization is not feasible for the huge compu-
tational effort. In the first successful multiscale simulation scheme—CONNFFESSIT
[11]—one may simulate these elastic dumbbells in the solvent numerically according
to a stochastic differential equation (SDE) such as (1.3), except that the convection
term dQ + u · ∇Qdt is replaced by material derivative DQ. It is obviously a La-
grangian method. This algorithm suffers from the local concentration and sparsity
of the polymers, which makes the empirical average for polymeric stress lose accu-
racy. It is improved with Brownian configuration fields (BCF) [8] by introducing the
fields Q in (1.3) with an Eulerian viewpoint. Some deeper explanations and further
developments of BCF may be found in [3, 17].

Many mathematical issues for this type of problem have been considered in recent
years. The analysis for Hookean dumbbell F (Q) = Q in shear flow was first considered
in [9, 5]. In this simplified form the linearity and decoupling of one component of Q
to the other are sufficiently utilized. The mean square convergence after excluding
a set of exponentially small probability is obtained. The local well-posedness for

FENE model F (Q) = Q/(1 − Q2

Q2
0
) in shear flow is obtained in [10], where Q0 is the

maximal extension of the spring. In this case, the force is singular when Q tends
to Q0. A delicate analysis for the nonexplosive behavior of Q is deduced. In a high
dimensional case, the local well-posedness is proved in [6] for the coupled system under
the polynomial growth condition of Q

|∇mF (Q)| ≤ 1 + |Q|p (m = 0, 1, 2, 3, 4)(1.6)

for some positive real p. The most recent progress for the mathematical analysis of
complex fluids is reviewed in [12]. To the best knowledge of the authors, there are no
results concerning the convergence of the BCF methods for the dumbbell model in
the nonshear flow case, even for the Hookean spring, which is the main contribution
of this paper.

The basic approach we take is very similar to the shear flow case [5, 9] under the
assumption that the continuous solution is smooth enough. But a stronger result is
obtained for the analysis of the error of polymeric stress E(QQ). In order to exhibit
the essence of the proof, we take the finite difference MAC scheme (described in
section 2) for a model problem in a rectangular domain D with periodic boundary
condition; this is quite common in computational fluid mechanics. The proof would
be easily adapted to general boundary conditions. The first point of our proof is that
the space should be discretized. In this case the inverse inequality

‖ūn‖L∞
h

≤ h− d
2 ‖ūn‖L2

h
, ‖Q̄n‖L∞

h
≤ h− d

2 ‖Q̄n‖L2
h
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could be applied, where ūn, Q̄
n

are numerical solutions of the coupled system, h is
spatial stepsize, d is space dimension, and L∞

h and L2
h are the discrete L∞ and L2

norms defined in (2.9) and (2.10). Then the discrete L∞ norm of ūn and Q̄
n

could
be bounded by the discrete L2 norm and the high order convergence of the scheme.
This is essentially one part of Strang’s trick [19]. Let us consider the error of Q

En,m := Q̃
n,m − Q̄

n,m
, m = 1, 2, . . . , N,

only with time discretization, where the superscript m = 1, 2, . . . , N represents N
different fields driven by N independent Wiener processes in BCF methods. Here
Q̃

n,m
means the numerical solution of Q with exact velocity un = u(tn). Their

rigorous definition is in (4.14) and (4.15). En,m satisfies

1

δt
(En+1,m − En,m) + ūn · ∇En+1,m + en · ∇Q̃

n+1,m
(1.7)

= κ̄nEn+1,m + ∇enQ̃
n+1,m − En,m,

where en = un − ūn is the error of velocity, and κ̄n = (∇ūn)T . The term∫
D

ūn · ∇En+1,m · En+1,mdx = 0(1.8)

in the space continuous case. In order to estimate
∫
D

en · ∇Q̃
n+1,m · En+1,mdx, one

needs

‖〈|∇Q̃
n+1,·|2〉N‖L∞ � Const.,(1.9)

where 〈·〉N is the empirical average with respect to m defined in (2.7), and “�”
means “≤” after excluding a set of exponentially small probability. This could be
very difficult. It is easier to obtain the following L2-type estimate:

‖〈|∇Q̃
n+1,·|2〉N‖L2 � Const.(1.10)

But it cannot be transferred back to the L∞ norm. This difficulty could be overcome
by using the inverse inequality trick in the spatially discrete case.

Even if the space is discretized, the inverse inequality makes the estimate of the
mean square type in [9] inapplicable. This can be clarified by the following arguments.
Now the term ūn · ∇En+1 becomes ūn · ∇hEn+1, where ∇h is some kind of spatially
discretized derivative (for example, one of (2.1)), and we have dropped the subscripts
“i, j” denoting spatial dependence of variables for simplicity. In this discrete case∑

ij

ūn · ∇hEn+1,m · En+1,m 	= 0.(1.11)

It has only the estimate∣∣∣∣∣
∑
ij

ūn · ∇hEn+1,m · En+1,m

∣∣∣∣∣ ≤ ‖∇hūn‖L∞
h
‖En+1,m‖L2

h
.(1.12)

One demands

δt‖∇hūn‖L∞
h

� Const.(1.13)
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This could be transferred to the L2
h estimate by inverse inequality, but a convergence

result of the mean square type gives only

E

(
δt‖∇hūn‖L∞

h
· 1Ac

)
≤ Const.,(1.14)

where A is a set of exponentially small probability. The expectation cannot be elim-
inated, which means a stronger result is needed.

The key point in this paper is to prove the following large deviation type for the
error of polymeric stress:

‖E(Q̃
n,·

Q̃
n,·

) − 〈Q̃n,·
Q̃

n,·〉N‖2
L∞

h
� 1

N1−ε
,(1.15)

where 0 < ε < 1 is an arbitrary small positive real number. This goal is achieved by
observing that Q is a Gaussian process and the discrete Q̃

n,m
are independently and

identically distributed (i.i.d.) Gaussian random variables in section 4.
Finally, the authors want to comment that our method may be generalized to the

finite element method in principle. But in the finite element method, the treatment of
the convection term must be very careful. Many more details will be involved, which
is beyond the scope of the current paper.

The rest of the paper is organized as follows. In section 2, we state some notation
and the main theorem. In section 3, we cite some lemmas for later use. An explicit
solution and some analysis for Q are given in section 4. The final convergence analysis
is given in section 5. Some technical details are included in the appendix.

2. Main results. In order to state the main theorem, we should introduce some
related notation and definitions first. The boundary condition is taken to be periodic
in space Rd, where d = 2, 3 is the space dimension. One period is the cube [0, 1]d

denoted by D ⊂ Rd. Without loss of generality, we will use only the two-dimensional
notations; the three-dimensional analysis is similar. We define the continuous solution
(u, p,Q) and the discretized solution (ū, p̄, Q̄) as

u = (u1, u2), Q = (Q1, Q2),

ū = (ū1, ū2), Q̄ = (Q̄1, Q̄2),

where the superscript represents the coordinate components. The difference operators
to u1 with respect to the x-direction are defined as

D̄xu
1(x, y) :=

u1(x + Δx, y) − u1(x− Δx, y)

2Δx
,

Dxu
1(x, y) :=

u1(x + Δx
2 , y) − u1(x− Δx

2 , y)

Δx
,

Ēxu
1(x, y) :=

u1(x + Δx, y) + u1(x− Δx, y)

2
,

Exu
1(x, y) :=

u1(x + Δx
2 , y) + u1(x− Δx

2 , y)

2
,

where Δx is the space stepsize. Similar definitions are given to the y-direction and
u2-component. Correspondingly, the discrete gradient and Laplacian operators are
defined as

∇h :=

(
Dx

Dy

)
, ∇̄h :=

(
D̄x

D̄y

)
, Δh := D2

x + D2
y.(2.1)
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u1

u2

Q

p

(i, j ) 
(i+1/2, j ) 

(i, j+1/2 ) 

Fig. 2.1. Staggered grid for u1, u2, p, and Q.

The staggered MAC grid is applied to (1.1), (1.2), and (1.3) spatially, and the
discretized variables will be denoted as ū, p̄, and Q̄, respectively. As in Figure 2.1,
let xi = iΔx, yj = jΔy be the subdivision points in the x-axis and the y-axis, where
we take Δx = Δy = h to be the space stepsize for simplicity. The components of
fluid velocity u1 is defined at the points (i, j + 1

2 ) (i.e., the nodes labelled with “→”),
u2 is defined at the points (i + 1

2 , j) (i.e., the nodes labelled with “↑”), the pressure
p is defined at the points (i + 1

2 , j + 1
2 ) (i.e., the nodes labelled with “×”), and the

configuration vector Q is defined at the points (i, j). For the sake of simplicity, we
will omit the subscript (i, j) later. All of the discretized variables will be understood
at the corresponding nodes without confusion.

For the backward Euler to time and MAC scheme to space, we have the discretized
hydrodynamic equations

ū1,n+1 − ū1,n

δt
+ ū1,nD̄xū

1,n + ExEyū
2,nD̄yū

1,n + Dxp̄
n+1(2.2)

= Δhū
1,n+1 + D̄xEy τ̄

11,n + Dy τ̄
21,n at

(
i, j +

1

2

)
,

ū2,n+1 − ū2,n

δt
+ ExEyū

1,nD̄xū
2,n + ū2,nD̄yū

2,n + Dyp̄
n+1(2.3)

= Δhū
2,n+1 + Dxτ̄

12,n + D̄yExτ̄
22,n at

(
i +

1

2
, j

)
,

Dxū
1,n+1 + Dyū

2,n+1 = 0 at

(
i +

1

2
, j +

1

2

)
,(2.4)

where ūl,n (l = 1, 2; n = 0, 1, . . . ) are numerical velocity at time tn = nδt. The
polymer stress τ̄kl,n will be defined after the discretization of Q.

For the equation of Q, we apply the Euler–Maruyama scheme to time, centered
difference to space, and the implicit scheme for the following convection term:

Q̄1,m,n+1 − Q̄1,m,n −
(
Eyū

1,nD̄xQ̄
1,m,n+1 + Exū

2,nD̄yQ̄
1,m,n+1

)
δt(2.5)

=
(
D̄xEyū

1,nQ̄1,m,n + Dyū
1,nQ̄2,m,n

)
δt− Q̄1,m,nδt + δW 1,m,n,
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Q̄2,m,n+1 − Q̄2,m,n −
(
Eyū

1,nD̄xQ̄
2,m,n+1 + Exū

2,nD̄yQ̄
2,m,n+1

)
δt(2.6)

=
(
Dxū

2,nQ̄1,m,n + D̄yExū
2,nQ̄2,m,n

)
δt− Q̄2,m,nδt + δW 2,m,n

at (i, j), m = 1, . . . , N,

where δW l,m,n are i.i.d. N(0, δt) random variables, which are the discretization of
Wiener process. The superscript m in Q̄ represents the mth replica induced by the
i.i.d. temporal Gaussian random variable δW l,m,n. That is one key ingredient in the
BCF method.

Now we state the definition of polymer stress τ̄kl,n

τ̄kl,n =
1

N

N∑
m=1

Q̄k,m,nQ̄l,m,n :=
〈
Q̄k,·,nQ̄l,·,n

〉
N
,(2.7)

which is the empirical average of QkQl. Here k, l = 1, 2 and 〈f〉N := 1
N

∑N
m=1 f

m for
arbitrary N -array f . The superscript “·” means to be taken for all possible choices.

Define the error of u

el,n = ul,n − ūl,n

on corresponding nodes (i, j + 1
2 ) or (i + 1

2 , j) for e1 or e2, respectively, where ul,n =
ul(tn), and the notation for discrete

L1
h norm ‖ūn‖L1

h
= hd

∑
ij

(
|ū1,n

i,j+ 1
2

| + |ū2,n

i+ 1
2 ,j

|
)
,(2.8)

L2
h norm ‖ūn‖2

L2
h

= hd
∑
ij

(
(ū1,n

i,j+ 1
2

)2 + (ū2,n

i+ 1
2 ,j

)2
)
,(2.9)

L∞
h norm ‖ūn‖L∞

h
= max

ij

{
|ū1,n

i,j+ 1
2

|, |ū2,n

i+ 1
2 ,j

|
}
,(2.10)

and

L2
τL

2
h norm ‖ūn‖2

L2
τL

2
h

= δt
∑
n

‖ūn‖2
L2

h
,(2.11)

L∞
τ L∞

h norm ‖ūn‖L∞
τ L∞

h
= max

n
‖ūn‖L∞

h
,(2.12)

where d is the space dimension.

The main results of this paper are as follows.

Theorem 2.1. Under the condition u ∈ C1([0, T ] ×D), the SDE

dQ + (u · ∇)Qdt = (κQ − Q)dt + dW t, Q(x, 0) = Q0(x),(2.13)

has the explicit solution in Lagrangian coordinates α defined in (4.1)

Q(α, t) = e−tF (α, t)Q0(α) + F (α, t) ·
∫ t

0

es−tF−1(α, s) · dW s,(2.14)



CONVERGENCE OF BCF IN HIGH DIMENSIONS 211

where F (α, t) is the deformation tensor defined in (4.4). With the assumption that
Q0(x) is a constant Gaussian random field independent of Wiener process W t, the

following large deviation-type estimate for its numerical solution Q̃
n

holds:

‖E(Q̃
n
Q̃

n
) − 〈Q̃n

Q̃
n〉N‖2

L∞
h

� 1

N1−ε
(2.15)

after excluding an event A with probability

(d2 + d)T

hdδt
e−Nb +

dT

hdδt
e−Nε 1

2B3 +
d2T

hdδt
e−NεB4(2.16)

if δt = h2, N = h−α (α > 0), where b,B3, B4 are defined in (4.32), (4.36), and (4.42)
respectively, and 0 < ε < 1 is an arbitrary fixed small positive number. The rigorous
definition of Q̃ is in (4.14) and (4.15).

Remark 2.1. The initial condition Q0(x) being a constant Gaussian random
field means that Q0(x) = (Q1

0, Q
2
0, . . . , Q

d
0), and Ql

0 (l = 1, 2, . . . , d) are indepen-
dent Gaussian random variables. This is reasonable when polymers are initially at
equilibrium [9].

Theorem 2.2. Assume that

u ∈ C5([0, T ] ×D).(2.17)

If δt = h2, N = h−α, α > d, where d is the space dimension (d = 2, 3), then we have
the following error estimates of BCF methods for the Hookean dumbbell model with
finite difference method:

‖e·,n‖2
L∞

τ L2
h
� C

(
δt2 + h4 +

1

N1−ε

)
(2.18)

and

‖∇he·,n‖2
L2

τL
2
h
� C

(
δt2 + h4 +

1

N1−ε

)
(2.19)

after excluding the same event A as that in Theorem 2.1, where C depends on the
norm ‖u‖C5(D×[0,T ]).

Remark 2.2. The conditions δt = h2, N = h−α, and α > d are much more
stringent than those in the shear flow case [9]. But it is necessary for the current
proof because of the application of inverse inequality. In the shear flow case [9], the
choice of δt, h, and N could be independent of each other, and the probability of

excluded event takes the form similar to T
δte

−N
δt−N ln δt. It is easy to find that the

probability tends to 0 whenever δt → 0 or N → ∞ and the other is fixed. It is still
an issue on how to remove the dependent condition on h, δt, and N in the current
proof.

Remark 2.3. Though we prove the convergence of the numerical scheme to the
continuous solution, this does not imply another existence proof in the continuous
level. The proof relies heavily on the existence of a priori smooth solution, while this
could be proved for the nonlinear dumbbell model with polynomial growth condition in
local time [6]. The convergence does not hold only in local time; it is valid until the
solution loses its smoothness demanded in the proof.

Notation. We will use the shorthand a � b in the rest of this paper to denote
a ≤ b, except for an event of small probability approaching zero exponentially as that
in the paper [14].
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3. Preliminaries and lemmas. Here we present some technical lemmas with-
out proof for later use.

Lemma 3.1 (inverse inequality for spatial discretization).

‖ū‖L∞
h

≤ h− d
2 ‖ū‖L2

h
, ‖∇hū‖L2

h
≤ h−1‖ū‖L2

h
,(3.1)

where d is the dimension, and all the norms and variables are spatially discretized.
Lemma 3.2 (discrete integration by parts).∑

ij

ū · ∇hp̄ = −
∑
ij

p̄∇h · ū,(3.2)

hd
∑
ij

Δhū · ū = −‖∇hū‖2
L2

h
.(3.3)

Lemma 3.3 (discrete Gronwall inequality). If ai ≥ 0, ci ≥ 0 (i = 0, . . . , n), which
satisfy

an ≤ (1 + cnδt)an−1 + δtp(3.4)

and δt
∑n

i=1 ci ≤ C0, nδt ≤ T , then we have the following inequality:

an ≤ C1a0 + C2δt
p−1,(3.5)

where C1 = eC0 , C2 = TeC0 .
Lemma 3.4 (Cramér’s theorem). Let {Xn}N1 be P -i.i.d. random variables with

common distribution μ, assume the associated moment generating function Mμ satis-
fies

Mμ(λ) :=

∫
R

eλxμ(dx) < ∞ for all λ ∈ R,(3.6)

set m =
∫
R
xμ(dx), and define Iμ as the Legendre transform

Iμ(x) := sup{λx− Λμ(λ) : λ ∈ R}, x ∈ R,

of Λμ(λ), where Λμ(λ) = log(Mμ(λ)) is the logarithmic moment generating function
of μ; then

P
(
〈X〉N ≥ a

)
≤ e−NIμ(a) for all a ∈ [m,∞),(3.7)

P
(
〈X〉N ≤ a

)
≤ e−NIμ(a) for all a ∈ (−∞,m].(3.8)

The proof of this lemma may be found in [20].

4. Analysis of Q’s equation. In this section, we will give an explicit solution
for the equation of Q and consider some numerical issues with the velocity term u
being exact deterministic variables.

4.1. An explicit solution of linear Hookean dumbbell model. Let us first
consider the linear Hookean dumbbell model (2.13) with u known. We assume the
initial value Q0(x) is as described in Remark 2.1 and the covariance matrix of Q0 is
Σ0. We assume Σ0 is a symmetric positive definite matrix.

Lemma 4.1. The SDE (2.13) has the explicit solution (2.14).
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Proof. Define the flow map

dx(α, t)

dt
= u(x(α, t), t), x(α, 0) = α,(4.1)

and let Q(α, t) = Q(x(α, t), t); then Q(α, t) satisfies

dQ = (κQ − Q)dt + dW t, Q(α, 0) = Q0(α).(4.2)

The smoothness and incompressibility of u(x, t) guarantee the flow map is a homeo-
morphism from Rd to Rd. Define the solution operator of the flow map F t

s : Rd → Rd,
i.e.,

dF t
sx

dt
= u(F t

sx, t), Fs
sx = x;

then

x(α, t) = F t
0α.(4.3)

In order to give the explicit solution of (4.2), we define the deformation tensor

F (α, t) =
∂x

∂α
, i.e., Fij =

∂xi

∂αj
,(4.4)

motivated by [13]. From the incompressibility condition of u and F (α, 0) = I, we
have

detF (α, t) = 1,(4.5)

and F, F−1 satisfies

dF

dt
= κ · F, dF−1

dt
= −F−1 · κ,(4.6)

respectively.
Define P (α, t) = etF−1 · Q; then

dP (α, t) = (etF−1 · Q − etF−1 · κQ)dt + etF−1 · dQ = etF−1 · dW t,(4.7)

so we have the explicit solution of (4.2)

Q(α, t) = e−tF (α, t)Q0(α) + F (α, t) ·
∫ t

0

es−tF−1(α, s) · dW s.(4.8)

Pushing forward to the Eulerian coordinates we will have the corresponding solution

Q(x, t) = e−tF (x, t)Q0(x) + F (x, t) ·
∫ t

0

es−tF−1(Fs
t x, s) · dW s.(4.9)

From this explicit form and the assumption on Q0(x) we have that Q(α, t) is a
spatially smooth Gaussian random field N(0,Σ(α, t)) and

Σ(α, t) = EQQT = e−2tF · Σ0 · FT(4.10)

+ F (α, t) ·
∫ t

0

e2(s−t)F−1F−T (α, s)ds · FT (α, t).
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It is clear that Σ(α, t) is also symmetric positive definite.
Lemma 4.2. The spectrum of covariance matrix Σ(x, t) has the following uniform

bounds:

0 < c0 ≤ λmin(Σ(x, t)) ≤ λmax(Σ(x, t)) ≤ C0,(4.11)

where the constants C0 and c0 depend only on ‖u‖C1(D×[0,T ]) and Σ0. Thus the
diagonal entry σ2

i (x, t) of Σ(x, t) has the corresponding lower bound c0 and upper
bound C0.

Proof. From the Wieland–Hoffman theorem [7], the ith eigenvalue of any sym-
metric matrix is continuous with respect to the symmetric perturbations. Then from
expression (4.10) all of the eigenvalues of Σ(α, t) are a continuous function of α and
t. Because (α, t) ∈ D× [0, T ] is a compact region, λmin achieves a lower bound c0 and
λmax achieves an upper bound C0. From the positivity of Σ(α, t), c0 is positive.

From the Courant–Fisher theorem, the diagonal entry σ2
i (α, t) of Σ(α, t) has the

same lower bound and upper bound. Pushing forward to the Eulerian coordinates
gives the desired results.

Lemma 4.3. If u ∈ Cm+1(D × [0, T ]) and Q0 ∈ Cm(D × [0, T ], L2(Ω)), then

∇mQ ∈ L∞(D × [0, T ], L2(Ω))(4.12)

for arbitrary m ∈ N ∪ {0}, and

∇m∂tQ ∈ L∞(D × [0, T ], L2(Ω))(4.13)

for arbitrary m ∈ N.
Proof. From the explicit form of Q(x, t) and the smoothness of u and Q0, the

inequality (4.12) above is obvious by direct differentiation and Itô isometry [15]. In-
equality (4.13) comes from the SDE (2.13) and the fact that the spatial derivative of
W t is 0; thus the most singular term vanishes.

Another estimating method is to differentiate both sides of (2.13) and perform an
energy estimate as in [6].

4.2. Time discretization of Q. For the analysis of the error of Q we define an
auxiliary random variable Q̃ which obeys similar equations as (2.5) and (2.6), except
the velocity ū is replaced by the exact u

Q̃1,n+1 − Q̃1,n −
(
Eyu

1,nD̄xQ̃
1,n+1 + Exu

2,nD̄yQ̃
1,n+1

)
δt(4.14)

=
(
D̄xEyu

1,nQ̃1,n + Dyu
1,nQ̃2,n

)
δt− Q̃1,nδt + δW 1,n,

Q̃2,n+1 − Q̃2,n −
(
Eyu

1,nD̄xQ̃
2,n+1 + Exu

2,nD̄yQ̃
2,n+1

)
δt(4.15)

=
(
Dxu

2,nQ̃1,n + D̄yExu
2,nQ̃2,n

)
δt− Q̃2,nδt + δW 2,n.

This is nothing but the time discretization of Q.
Defining the error

Ẽl,n = Ql,n − Q̃l,n,

we have the following lemma.
Lemma 4.4 (mean square convergence of Q̃ to Q).

E‖Ẽn‖2
L2

h
≤ C(δt2 + h4),



CONVERGENCE OF BCF IN HIGH DIMENSIONS 215

where C depends on ‖u‖C4(D×[0,T ]).
Proof. In order to prove the convergence theorem above, we integrate both sides

of Q’s equation from tn to tn+1 and in the rectangle [xi−1, xi+1] × [yj−1, yj+1]; then
we have ∫ xi+1

xi−1

∫ yj+1

yj−1

Q(x, y, tn+1)dydx−
∫ xi+1

xi−1

∫ yj+1

yj−1

Q(x, y, tn)dydx

=

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(−u · ∇Q + κQ − Q)dtdydx + 4h2 · δW n.

Here δW n are i.i.d. N(0, δt) random variables in Rd.
We rewrite the above equations with the similar form as (2.5) and (2.6); then we

will have the following equations and the remainder terms:

Q1,n+1 −Q1,n −
(
Eyu

1,nD̄xQ
1,n+1 + Exu

2,nD̄yQ
1,n+1

)
δt(4.16)

=
(
D̄xEyu

1,nQ1,n + Dyu
1,nQ2,n

)
δt−Q1,nδt + δW 1,n + R1,n,

Q2,n+1 −Q2,n −
(
Eyu

1,nD̄xQ
2,n+1 + Exu

2,nD̄yQ
2,n+1

)
δt(4.17)

=
(
Dxu

2,nQ1,n + D̄yExu
2,nQ2,n

)
δt−Q2,nδt + δW 2,n + R2,n

at (i, j),

where Ql,n+1 = Ql(tn+1), l = 1, 2. The truncation errors Rl,n are analyzed in the
appendix in detail. Defining Rn = (R1,n, R2,n), we have from the appendix

Rn = Rn
1 + Rn

2 .(4.18)

Rn
i satisfy the following estimates:

E‖Rn
1‖2

L2
h
≤ C1δt

3, E‖Rn
2‖2

L2
h
≤ C2δt

2(h4 + δt2),(4.19)

where C1 and C2 are positive constants depending on ‖u‖C4(D×[0,T ]), and

ERn
1 · Ẽn

= 0(4.20)

by independence.
Subtracting (4.16), (4.17) and (4.14), (4.15), we have

Ẽ1,n+1 − Ẽ1,n −
(
Eyu

1,nD̄xẼ
1,n+1 + Exu

2,nD̄yẼ
1,n+1

)
δt(4.21)

=
(
D̄xEyu

1,nẼ1,n + Dyu
1,nẼ2,n

)
δt− Ẽ1,nδt + R1,n,

Ẽ2,n+1 − Ẽ2,n −
(
Eyu

1,nD̄xẼ
2,n+1 + Exu

2,nD̄yẼ
2,n+1

)
δt(4.22)

=
(
Dxu

2,nẼ1,n + D̄yExu
2,nẼ2,n

)
δt− Ẽ2,nδt + R2,n.

Timing both sides with Ẽl,n+1 and taking summation on the nodes, the term

∑
ij,l

(Ẽl,n+1 − Ẽl,n) · Ẽl,n+1 =
1

2

(
‖Ẽn+1‖2

L2
h
− ‖Ẽn‖2

L2
h

+ ‖Ẽn+1 − Ẽ
n‖2

L2
h

)
.
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The second term can be controlled as follows through summation by parts:∑
ij,l

(
Eyu

1,nD̄xẼ
l,n+1 + Exu

2,nD̄yẼ
l,n+1

)
· Ẽl,n+1 ≤ ‖∇hun‖L∞

h
‖Ẽn+1‖2

L2
h
.

The third term can be controlled as follows through Cauchy’s inequality:∑
ij

(
D̄xEyu

1,nẼ1,n + Dyu
1,nẼ2,n

)
· Ẽ1,n+1 +

(
Dxu

2,nẼ1,n

+ D̄yExu
2,nẼ2,n

)
· Ẽ2,n+1 ≤ ‖∇hun‖2

L∞
h
‖Ẽn‖2

L2
h

+ ‖Ẽn+1‖2
L2

h
.

The fourth term is standard:∑
ij,l

Ẽl,n · Ẽl,n+1 ≤ 1

2

(
‖Ẽn+1‖2

L2
h

+ ‖Ẽn‖2
L2

h

)
.

The term Rn · Ẽn+1
can be estimated by

Rn · Ẽn+1 ≤ Rn · Ẽn
+

1

2
(|Ẽn+1 − Ẽ

n|2) +
1

2
|Rn|2

and Rn · Ẽn
= Rn

1 · Ẽn
+ Rn

2 · Ẽn
,

Rn
2 · Ẽn ≤ 1

2δt
|Rn

2 |2 + δt|Ẽn|2.

Combining all terms together and taking expectation, by using the important identity
(4.20) we have

E‖Ẽn+1‖2
L2

h
≤ (1 + C3δt) E‖Ẽn‖2

L2
h

+ C4δt(δt
2 + h4),

where C3 > 0 depends only on ‖u‖C1(D×[0,T ]), and C4 > 0 depends on ‖u‖C4(D×[0,T ]).
By the discrete Gronwall inequality we obtain the desired result.
Lemma 4.5 (mean square convergence of ∇̄hQ̃ to ∇̄hQ).

E‖∇̄hẼ
n‖2

L2
h
≤ C(δt2 + h4),

where C depends on ‖u‖C5(D×[0,T ]).
Proof. The procedure is almost the same as Lemma 4.4. Note that for any two

arrays f and g, we have

D̄x(fg)ij = (D̄xf)ij · gi+1,j + fi−1,j · (D̄xg)ij ,

D̄y(fg)ij = (D̄yf)ij · gi,j+1 + fi,j−1 · (D̄yg)ij .

We take D̄x, D̄y to both sides of (4.21) and (4.22) and define F̃ l,n = D̄xẼ
l,n, G̃l,n =

D̄yẼ
l,n; then

F̃ 1,n+1 − F̃ 1,n −
(
Eyu

1,n
i−1,jD̄xF̃

1,n+1 + Exu
2,n
i−1,jD̄yF̃

1,n+1
)
δt(4.23)

+
(
D̄xEyu

1,nF̃ 1,n+1
i+1,j + D̄xExu

2,nG̃1,n+1
i+1,j

)
δt =

(
D̄xEyu

1,n
i−1,jF̃

1,n + Dyu
1,n
i−1,jF̃

2,n
)
δt

+
(
D̄xD̄xEyu

1,nẼ1,n
i+1,j + D̄xDyu

1,nẼ2,n
i+1,j

)
δt− F̃ 1,nδt + D̄xR

l,n,

F̃ 2,n+1 − F̃ 2,n −
(
Eyu

1,n
i−1,jD̄xF̃

2,n+1 + Exu
2,n
i−1,jD̄yF̃

2,n+1
)
δt(4.24)

+
(
D̄xEyu

1,nF̃ 2,n+1
i+1,j + D̄xExu

2,nG̃2,n+1
i+1,j

)
δt =

(
Dxu

2,n
i−1,jF̃

1,n + D̄yExu
2,n
i−1,jF̃

2,n
)
δt

+
(
D̄xDxu

2,nẼ1,n
i+1,j + D̄xD̄yExu

2,nẼ2,n
i+1,j

)
δt− F̃ 2,nδt + D̄xR

2,n,
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and G̃l,n satisfies similar equations, which we will omit here. The new remainder
terms D̄xR

l,n, D̄yR
l,n are analyzed in the appendix.

Timing both sides with F̃ l,n+1 (or G̃l,n+1 for G̃l,n+1’s equation) and taking sum-
mation on the nodes, we have the following estimate with similar arguments as
Lemma 4.4:

E‖∇̄hẼ
n+1‖2

L2
h
≤ (1 + C1δt) E‖∇̄hẼ

n‖2
L2

h
+ C2δt(δt

2 + h4),

where C1 > 0 depends only on ‖u‖C1(D×[0,T ]), and C2 > 0 depends on ‖u‖C5(D×[0,T ]).
The discrete Gronwall inequality gives the desired result.

4.3. Large deviations related to Q̃. For the analysis of the error caused by
Q̄ in BCF methods, we introduce N i.i.d. duplications of (4.14) and (4.15)

Q̃1,m,n+1 − Q̃1,m,n −
(
Eyu

1,nD̄xQ̃
1,m,n+1 + Exu

2,nD̄yQ̃
1,m,n+1

)
δt(4.25)

=
(
D̄xEyu

1,nQ̃1,m,n + Dyu
1,nQ̃2,m,n

)
δt− Q̃1,m,nδt + δW 1,m,n,

Q̃2,m,n+1 − Q̃2,m,n −
(
Eyu

1,nD̄xQ̃
2,m,n+1 + Exu

2,nD̄yQ̃
2,m,n+1

)
δt(4.26)

=
(
Dxu

2,nQ̃1,m,n + D̄yExu
2,nQ̃2,m,n

)
δt− Q̃2,m,nδt + δW 2,m,n,

where m = 1, 2, . . . , N . δW l,m,n are i.i.d. N(0, δt) random variables.
Lemma 4.6. If the space time stepsize satisfies

‖u‖C0(D×[0,t])
δt

h
<

1

d
,(4.27)

then (4.14) and (4.15) are solvable, and the random variables Q̃l,n are Gaussian
random variables with mean 0.

Proof. We can define a large vector Q̃n whose components are Q̃
l,n

at node points
and rewrite (4.14) and (4.15) in matrix form. Simply denote it as

An · Q̃n+1 = Bn · Q̃n + δW n,

where An, Bn are deterministic matrices, and δW n are random vectors formed by
δW l,n. The diagonal of matrix An is 1, and each row of An has 2d off-diagonal
elements, each of which can be bounded by ‖u‖C0(D×[0,t])

δt
2h . Thus An is strictly

diagonally dominant; i.e., An is invertible. We have

Q̃n+1 = (An)−1Bn · Q̃n + (An)−1δW n.

By induction, we have that Q̃n are Gaussian random variables because Q̃0 and δW n

are i.i.d. Gaussian. Taking expectation shows EQ̃n = 0 immediately.
Lemma 4.7. Suppose the random variable Q̃ ∼ N(0, σ̃2); then Q̃2 obeys large

deviation theory with rate function

I(x) =
x

2σ̃2
− 1

2
+

1

2
ln

σ̃2

x
(4.28)

for x > 0.
Lemma 4.8. Suppose the random vector (Q̃1, Q̃2) ∼ N(0, Σ̃), where

Σ̃ =

(
σ̃11 σ̃12

σ̃21 σ̃22

)
.
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Σ̃ is symmetric positive definite. Then Q̃1Q̃2 obeys large deviation theory with rate
function

I(x) = λ(x)x− Λ(λ(x)),

for x ∈ R, where λ(x) satisfies

σ̃12 + λ(x) det(Σ̃)

1 − 2λ(x)σ̃12 − λ2(x) det(Σ̃)
= x(4.29)

and

Λ(λ) = −1

2
ln
(
1 − 2λσ̃12 − λ2 det(Σ̃)

)
.(4.30)

The proofs of the two lemmas above are deferred to the appendix.
For later use, we have the following estimates of large deviation type after ex-

cluding a set of exponentially small probability.
Lemma 4.9. We have the following bounds hold for all l = 1, 2 and 0 ≤ n ≤ T

δt
if δt = h2, N = h−α, and h is small enough such that (4.27) is satisfied and the
following probability of excluded set is less than 1:

‖〈|Q̃l,·,n|2〉N‖L∞
h

� B1, ‖〈|∇̄hQ̃
l,·,n|2〉N‖L∞

h
� B2,(4.31)

after excluding a set with probability (d2+d)T
hdδt

e−Nb, where b is defined in (4.32), B1 =

4(‖EQ2‖L∞(D×[0,T ]) + 1), and B2 = 4(‖E|∇Q|2‖L∞(D×[0,T ]) + 1).

Proof. According to Lemma 4.6, the random variables Q̃l,m,n and ∇̄hQ̃
l,m,n are

i.i.d. Gaussian random variables with mean 0. From Cramér’s theorem (Lemma 3.4)

P
(
〈|Q̃l,·,n|2〉N ≥ 2σ̃2

l

)
≤ exp(−N · I(2σ̃2

l )),

where σ̃2
l is the variance of Q̃l,n, and the rate function is shown in Lemma 4.7. We

have

I(2σ̃2
l ) =

1

2
(1 − ln 2) := b > 0.(4.32)

Because the estimate above is only for one node point in D, we should prove that
σ̃2

1 has a uniform upper bound for all node points. By triangle inequality and inverse
inequality

σ̃2
l = E(Q̃l,n)2 ≤ 2

(
E(Ql,n)2 + E(Ẽl,n)2

)
≤ 2

(
‖EQ2‖L∞(D×[0,T ]) + Ch−d(δt2 + h4)

)
≤ 2(‖EQ2‖L∞(D×[0,T ]) + 1).

So the estimate

‖〈|Q̃l,·,n|2〉N‖L∞
h

� B1

is obtained after excluding a set of probability

dT

hdδt
exp(−Nb).
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Similarly as above

P
(
〈|∇̄hQ̃

l,·,n|2〉N ≥ 2σ̄2
l

)
≤ exp(−N · I(2σ̄2

l )),

where σ̄2
l is the variance of ∇̄hQ̃

l,n. The uniform upper bound of σ̄2
l is estimated

through inverse inequality and Lemma 4.5:

σ̄2
l = E(∇̄hQ̃

l,n)2 ≤ 2
(
E(∇̄hQ

l,n)2 + E(∇̄hẼ
l,n)2

)
≤ 2

(
‖E|∇Q|2‖L∞(D×[0,T ]) + Ch−d(δt2 + h4)

)
≤ 2(‖E|∇Q|2‖L∞(D×[0,T ]) + 1).

Thus we have

‖〈|∇̄hQ̃
l,·,n|2〉N‖L∞

h
� B2

after excluding a set of probability d2T
hdδt

exp(−Nb).

Lemma 4.10. We have the following estimates hold for k, l = 1, 2 and 0 ≤ n ≤ T
δt

if δt = h2, N = h−α, and h is small enough such that (4.27) is satisfied and the
following probability of excluded set is less than 1:

‖E(Q̃k,nQ̃l,n) − 〈Q̃k,·,nQ̃l,·,n〉N‖2
L∞

h
� 1

N1−ε
, k, l = 1, 2,(4.33)

after excluding a set with probability dT
hdδt

e−Nε 1
2B3 + d2T

hdδt
e−NεB4 , where B3, B4 are

defined in (4.36) and (4.42), respectively. 0 < ε < 1 is an arbitrary fixed small
positive number.

Proof. First consider k = l case. Suppose E(Q̃l)2 = σ̃2
l . From Cramér’s theorem

P
(
〈(Q̃l,·,n)2〉N ≥ σ̃2

l + δ
)
≤ exp(−N · I(σ̃2

l + δ)),

P
(
〈(Q̃l,·,n)2〉N ≤ σ̃2

l − δ
)
≤ exp(−N · I(σ̃2

l − δ))

for 0 < δ < σ̃2
l , where I(x) is the rate function for (Q̃l)2. Taylor’s expansion gives

I(σ̃2
l ± δ) = I(σ̃2

l ) ± I ′(σ̃2
l )δ +

1

2
I ′′(ξ)δ2,(4.34)

where ξ = σ̃2
l + θδ, θ ∈ [−1, 1]. From Lemma 4.7 we have

I(σ̃2
l ) = 0, I ′(σ̃2

l ) = 0, I ′′(x) =
1

2x2
.(4.35)

Taking δ = N− 1−ε
2 and noting that

ξ2 ≤ 2σ̃4
l + 2N−(1−ε) ≤ B2

1

2
+ 1 := B3,(4.36)

we have

‖E(Q̃k,nQ̃l,n) − 〈Q̃k,·,nQ̃l,·,n〉N‖2
L∞

h
� 1

N1−ε



220 TIEJUN LI AND PINGWEN ZHANG

for k = l after excluding a set of probability

dT

hdδt
exp

(
−N ε 1

2B3

)
.

For the k 	= l case, the idea is the same. We will take k = 1, l = 2 as an example;
then we have E(Q̃1Q̃2) = σ̃12 and σ̃kk = σ̃2

k (k = 1, 2). The only thing left is to prove

the uniform positive lower bound of I ′′(ξ), where ξ = σ̃12 + θN− 1−ε
2 , θ ∈ [−1, 1].

It is not difficult to find that I(x) is smooth for σ̃ij and x from its concrete
expression. We have Taylor’s expansion

I ′′(σ̃12 + y) = I ′′(σ̃12) + I ′′′(ξ̃)y,(4.37)

where ξ̃ = σ̃12 + θ̃y, θ̃ ∈ [0, 1], y ∈ [−N− 1−ε
2 , N− 1−ε

2 ]. Thus

I ′′(σ̃12 + y) ≥ I ′′(σ̃12) − max
ξ̃, σ̃ij

|I ′′′(ξ̃)|N− 1−ε
2 .(4.38)

It is not difficult to obtain

I ′′(σ̃12) =
1

det Σ̃ + 2σ̃2
12

=
1

(1 + ρ2)σ̃2
1 σ̃

2
2

,(4.39)

where ρ is the correlation coefficient for Q̃1,n and Q̃2,n and ρ ∈ [−1, 1]. The uniform
positive upper bound and lower bound for σ̃2

1 and σ̃2
2 are easily proved from Lemmas

4.2 and 4.9. Thus I ′′(σ̃12) has a uniform positive lower bound b0. The function
I ′′′(σ̃12 + θ̃y) may be viewed as a function of variables

(ρ, σ̃1, σ̃2, θ̃, y) ∈ [−1, 1] × [b11, b12] × [b21, b22] × [0, 1] × [−N− 1−ε
2 , N− 1−ε

2 ],(4.40)

where b11, b12, b21, b22 are fixed positive real numbers independent of N , h, and δt.
From the uniform continuity of I ′′′(·) for these variables,

max
ξ̃, σ̃ij

|I ′′′(ξ̃)| ≤ b3.(4.41)

Thus when N is sufficiently large,

I ′′(ξ) ≥ b0 − b3N
− 1−ε

2 ≥ b0
2

:= B4 > 0;(4.42)

thus we obtain

‖E(Q̃k,nQ̃l,n) − 〈Q̃k,·,nQ̃l,·,n〉N‖2
L∞

h
� 1

N1−ε

for k 	= l after excluding a set of probability d2T
hdδt

exp(−N εB4).
Remark 4.1. In the rest of the paper, all of the excluded events are the union of

the excluded sets indicated in Lemmas 4.9 and 4.10. We will denote it as A. All of
the inequalities with notation “�” in the following sections mean that they hold after
excluding event A.

5. Convergence analysis. After the preparations in the last section, the con-
vergence analysis is relatively standard and easy with the inverse inequality trick.
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5.1. Truncation error for u. For the exact solution u, we have the truncated
equations under the assumption u ∈ C2([0, T ], C4(D))

u1,n+1 − u1,n

δt
+ u1,nD̄xu

1,n + ExEyu
2,nD̄yu

1,n + Dxp
n+1(5.1)

= Δhu
1,n+1 + D̄xEyτ

11,n + Dyτ
21,n + O(δt + h2) at

(
i, j +

1

2

)
,

u2,n+1 − u2,n

δt
+ ExEyu

1,nD̄xu
2,n + u2,nD̄yu

2,n + Dyp
n+1(5.2)

= Δhu
2,n+1 + Dxτ

12,n + D̄yExτ
22,n + O(δt + h2) at

(
i +

1

2
, j

)
,

Dxu
1,n+1 + Dyu

2,n+1 = O(h2) at

(
i +

1

2
, j +

1

2

)
,(5.3)

where

ul,n = ul(tn), τkl,n = E
(
Qk(tn)Ql(tn)

)
, tn = nδt,

and they take values at corresponding nodes as in (2.2), (2.3), and (2.4).
Because Dxu

1,n+1 + Dyu
2,n+1 = O(h2) in (5.3), which will bring trouble to the

analysis, we need the following lemma [18].
Lemma 5.1. There exists uh(x, t), such that

uh(x, t) = u(x, t) + O(h2)(5.4)

and ∇h · uh = 0, where ∇h · u(x, t) = Dxu
1(x, t) + Dyu

2(x, t).
Proof. Note that in two dimensions u = (−∂yψ, ∂xψ), where ψ is the stream

function, so we define

uh = (−Dyψ,Dxψ).

It is obvious that

uh = u + O(h2), and ∇h · uh = 0.

A similar case will be in three dimensions.
Replacing the velocity u with uh in (4.14), (4.15), (4.16), (4.17), (5.1), (5.2),

(5.3), the order of the truncation error will not be affected. We still abbreviate uh as
u for the simplicity in what follows.

5.2. Analysis of the error of u. Define

qn = pn − p̄n, Ekl,n
τ = τkl,n − τ̄kl,n, El,m,n = Q̃l,m,n − Q̄l,m,n;

then by subtracting (2.2), (2.3), (2.4) and (5.1), (5.2), (5.3), we have

e1,n+1 − e1,n

δt
+ e1,nD̄xu

1,n + ū1,nD̄xe
1,n + ExEye

2,nD̄yu
1,n + ExEyū

2,nD̄ye
1,n

+ Dxq
n+1 = Δhe

1,n+1 + D̄xEyE
11,n
τ + DyE

21,n
τ + O(δt + h2),(5.5)

e2,n+1 − e2,n

δt
+ ExEye

1,nD̄xu
2,n + ExEyū

1,nD̄xe
2,n + e2,nD̄yu

2,n + ū2,nD̄ye
2,n

+ Dyq
n+1 = Δhe

2,n+1 + DxE
12,n
τ + D̄yExE

22,n
τ + O(δt + h2),(5.6)

Dxe
1,n+1 + Dye

2,n+1 = 0.(5.7)
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In order to apply the inverse inequality trick to control the L∞
h norm of related

variables, we define the “blow-up” time

nmax := max
n

{
0 ≤ n ≤ T

δt

∣∣∣∣∣ ‖〈|Q̄·,·,k|2〉N‖L∞
h

� 2(B1 + 1),(5.8)

‖ū·,k‖L∞
h

� ‖u‖C0(D×[0,T ]) + 1, δt

k∑
l=0

‖∇hū·,l‖2
L∞

h
� T‖u‖2

C1(D×[0,T ]) + 1,

δt‖∇hū·,k‖L∞
h

� 1

4
, δt‖∇hū·,k‖2

L∞
h

� 1

8
, 0 ≤ k ≤ n

}
,

where B1 is defined in Lemma 4.9.
Lemma 5.2. For all n ≤ nmax we have the estimate

1

2δt

(
‖e·,n+1‖2

L2
h
− ‖e·,n‖2

L2
h

+ ‖e·,n+1 − e·,n‖2
L2

h

)
+

1

2
‖∇he·,n+1‖2

L2
h

(5.9)

� C1‖e·,n‖2
L2

h
+ C2‖e·,n+1‖2

L2
h

+
1

8
‖∇he·,n‖2

L2
h

+
1

2
‖E·,n

τ ‖2
L2

h
+ O(δt2 + h4),

where C1 > 0 depends on ‖u‖C1(D×[0,T ]), and C2 > 0 depends on ‖u‖C0(D×[0,T ]).
Here

‖E·,n
τ ‖2

L2
h

:=

2∑
k, l=1

‖Ekl,n
τ ‖2

L2
h
,

and

‖Ekl,n
τ ‖2

L2
h
� 2d

N1−ε
+ C3(δt

2 + h4) +
(∥∥∥〈|Q̃k,·,n|2

〉
N

∥∥∥
L∞

h

(5.10)

+
∥∥∥〈|Q̄l,·,n|2

〉
N

∥∥∥
L∞

h

)〈
‖E·,·,n‖2

L2
h

〉
N
,

where C3 is positive and depends on ‖u‖C4(D×[0,T ]).

Proof. Taking inner product to both sides of (5.5) and (5.6) with el,n+1 and taking
summation, we will consider term by term for (5.5).

The first term at the left-hand side of the equation can be estimated as

∑
ij,l

(el,n+1 − el,n) · el,n+1 =
1

2

(
‖e·,n+1‖2

L2
h
− ‖e·,n‖2

L2
h

+ ‖e·,n+1 − e·,n‖2
L2

h

)
.

The second to fifth terms can be estimated by Cauchy’s inequality, so they can be
bounded by

(1 + 8‖ūn‖2
L∞

h
)‖e·,n+1‖2

L2
h

+ ‖∇̄hun‖2
L∞

h
‖e·,n‖2

L2
h

+
1

8
‖∇he·,n‖2

L2
h
.

The sixth term at the left-hand side of the equation will be 0 by summation by parts
and (5.7). The first term at the right-hand side can be estimated by (3.3). The second
and third terms can be estimated by summation by parts and Cauchy’s inequality, so
they can be bounded by

1

2
‖∇he·,n+1‖2

L2
h

+
1

2
‖E·,n

τ ‖2
L2

h
.
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Finally, by using

‖∇̄hun‖2
L∞

h
≤ ‖u‖2

C1(D×[0,T ])

and the condition ‖ūn‖2
L∞

h
≤ ‖u‖C0(D×[0,T ]) + 1, we have the inequality (5.9).

For the error of polymeric stress we have

‖Ekl,n‖2
L2

h
= ‖〈Qk,nQl,n〉 − 〈Q̄k,·,nQ̄l,·,n〉N‖2

L2
h

≤ ‖〈Qk,nQl,n〉 − 〈Q̃k,nQ̃l,n〉‖2
L2

h
+ ‖〈Q̃k,nQ̃l,n〉 − 〈Q̃k,·,nQ̃l,·,n〉N‖2

L2
h

+ ‖〈Q̃k,·,nQ̃l,·,n〉N − 〈Q̄k,·,nQ̄l,·,n〉N‖2
L2

h

:= P1 + P2 + P3,(5.11)

where P1 accounts for the discretization error with u exact, P2 accounts for Monte
Carlo discretization, and P3 accounts for the discretization error with u replaced by ū.

We have

P1 ≤ ‖E(Qn)2‖L∞
h

E‖Ẽn‖2
L2

h
+ ‖E(Q̃

n
)2‖L∞

h
E‖Ẽn‖2

L2
h
≤ C(δt2 + h4)(5.12)

by Lemmas 4.4 and 4.9,

P2 � 2d

N1−ε
(5.13)

by Lemma 4.10, and

|〈Q̃k,·,nQ̃l,·,n〉N − 〈Q̄k,·,nQ̄l,·,n〉N |
≤ |〈Q̃k,·,nQ̃l,·,n〉N − 〈Q̃k,·,nQ̄l,·,n〉N | + |〈Q̃k,·,nQ̄l,·,n〉N − 〈Q̄k,·,nQ̄l,·,n〉N |
≤

〈
|Q̃k,·,n||Ēl,·,n|

〉
N

+
〈
|Ēk,·,n||Q̄l,·,n|

〉
N

;

thus by Cauchy’s inequality we have

P3 ≤
(∥∥∥〈|Q̃k,·,n|2

〉
N

∥∥∥
L∞

h

+
∥∥∥〈|Q̄l,·,n|2

〉
N

∥∥∥
L∞

h

)〈
‖E·,·,n‖2

L2
h

〉
N
.(5.14)

The proof of Lemma 5.2 is complete.

5.3. Analysis of the error of Q. Subtracting the discretized equation (2.5),
(2.6) of Q̄ and (4.25), (4.26) of Q̃, we have

E1,m,n+1 = E1,m,n −
(
Eye

1,nD̄xQ̃
1,m,n+1 + Eyū

1,nD̄xE
1,m,n+1(5.15)

+ Exe
2,nD̄yQ̃

1,m,n+1 + Exū
2,nD̄yE

1,m,n+1
)
δt +

(
D̄xEye

1,nQ̃1,m,n + D̄xEyū
1,nE1,m,n

+ Dxe
1,nQ̃2,m,n + Dxū

1,nE2,m,n
)
δt− E1,m,nδt,

E2,m,n+1 = E2,m,n −
(
Eye

1,nD̄xQ̃
2,m,n+1 + Eyū

1,nD̄xE
2,m,n+1(5.16)

+ Exe
2,nD̄yQ̃

2,m,n+1 + Exū
2,nD̄yE

2,m,n+1
)
δt +

(
Dxe

2,nQ̃1,m,n + Dxū
2,nE1,m,n

+ D̄yExe
2,nQ̃2,m,n + D̄yExū

2,nE2,m,n
)
δt− E2,m,nδt.

Timing both sides with El,m,n+1 and taking summation on all grid points, we will
obtain the discrete norm estimate. Because the whole procedure is tedious, we will
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pay attention to the convection term at first. For simplicity we define Pm,n+1 for the
convective terms

Pm,n+1 =

(
Eyū

1,nD̄xE
1,m,n+1 + Exū

2,nD̄yE
1,m,n+1

Eyū
1,nD̄xE

2,m,n+1 + Exū
2,nD̄yE

2,m,n+1

)

and P l,m,n+1
ij for its lth component at corresponding node (i+ 1

2 , j) or (i, j + 1
2 ); then

we have the following lemma.
Lemma 5.3. Considering the discretization effect of convection term

P l,m,n+1
i,j · El,m,n+1

i,j = El,m,n+1
i,j · Eyū

1,n
i,j · (El,m,n+1

i+1,j − El,m,n+1
i−1,j )/2h

+ El,m,n+1
i,j · Exū

2,n
i,j · (El,m,n+1

i,j+1 − El,m,n+1
i,j−1 )/2h,

we have the estimate

‖Pm,n+1 · El,m,n+1‖L1
h
≤ ‖∇hū·,n‖L∞

h
‖Em,n+1‖2

L2
h
.(5.17)

Proof. Summation by parts shows that∑
i,j

P l,m,n+1
i,j · El,m,n+1

i,j =
∑
i,j

(Eyū
1,n
i−1,j − Eyū

1,n
i,j )El,m,n+1

i,j El,m,n+1
i−1,j /2h

+
∑
i,j

(Exū
2,n
i,j−1 − Exū

2,n
i,j )El,m,n+1

i,j El,m,n+1
i,j−1 /2h.

Then the standard inequality

El,m,n+1
i,j El,m,n+1

i−1,j ≤
(
(El,m,n+1

i,j )2 + (El,m,n+1
i−1,j )2

)/
2

and summation with respect to l give the estimate (5.17).
Lemma 5.4. For all n ≤ nmax and δt ≤ 1

2 , we have the following estimate for the
error E:〈

‖E·,·,n+1‖2
L2

h

〉
N

�
〈
‖E·,·,n‖2

L2
h

〉
N

+ C1δt‖e·,n‖2
L2

h
+

δt

2
‖∇he·,n‖2

L2
h

(5.18)

+ C2δt
(
1 + ‖∇hū·,n‖2

L∞
h

)〈
‖E·,·,n‖2

L2
h

〉
N
,

where C1 depends on B2, and C2 depends on B1.
Proof. For simplicity we define

Gm,n+1 =

(
Eye

1,nD̄xQ̃
1,m,n+1 + Exe

2,nD̄yQ̃
1,m,n+1

Eye
1,nD̄xQ̃

2,m,n+1 + Exe
2,nD̄yQ̃

2,m,n+1

)

for the rest of the convective terms and

Hm,n+1 =

(
D̄xEye

1,nQ̃1,m,n + D̄xEyū
1,nE1,m,n + Dxe

1,nQ̃2,m,n + Dxū
1,nE2,m,n

Dxe
2,nQ̃1,m,n + Dxū

2,nE1,m,n + D̄yExe
2,nQ̃2,m,n + D̄yExū

2,nE2,m,n

)

for the terms related to κ · Q. W define Gl,m,n+1
ij , H l,m,n+1

ij for their lth components

at corresponding node (i + 1
2 , j) or (i, j + 1

2 ). Timing both sides of (5.15) and (5.16)
with El,m,n+1, we will consider each term with the following abbreviations:

El,m,n+1 − El,m,n = δt(P l,m,n+1 + Gl,m,n+1 + H l,m,n+1 − El,m,n).(5.19)
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We can obtain the following estimate after minor manipulations:

1

2

(
(El,m,n+1)2 − (El,m,n)2 + (El,m,n+1 − El,m,n)2

)
≤ δt

2
(Gl,m,n+1)2

+
δt

32B1
(H l,m,n+1)2 +

δt

2
(El,m,n)2 + δt(1 + 8B1)(E

l,m,n+1)2

+ δtP l,m,n+1 · El,m,n+1.

We have

hd

〈∑
ij,l

(Gl,m,n+1
i,j )2

〉
N

≤ ‖〈|∇̄hQ̃
l,·,n+1|2〉N‖L∞

h
‖e·,n‖2

L2
h
� B2‖e·,n‖2

L2
h

(5.20)

by Lemma 4.9. For the κ · Q term we have

hd

〈∑
ij,l

(H l,m,n+1
i,j )2

〉
N

≤ 4‖〈|Q̃l,·,n|2〉N‖L∞
h
‖∇he·,n‖2

L2
h

+ 8‖∇hū·,n‖2
L∞

h
‖E·,·,n‖2

L2
h

� 4B1‖∇he·,n‖2
L2

h
+ 8‖∇hū·,n‖2

L∞
h
‖E·,·,n‖2

L2
h

(5.21)

by Lemma 4.9. The term δtP l,m,n+1 · El,m,n+1 can be estimated by Lemma 5.3.
Combining all the estimates above we have

1

2

(〈
‖E·,·,n+1‖2

L2
h

〉
N
−
〈
‖E·,·,n‖2

L2
h

〉
N

+
〈
‖E·,·,n+1 − E·,·,n‖2

L2
h

〉
N

)
(5.22)

� B2δt

2
‖e·,n‖2

L2
h

+
δt

8
‖∇he·,n‖2

L2
h

+ δt(‖∇hū·,n‖L∞
h

+ 1 + 8B1)
〈
‖E·,·,n+1‖2

L2
h

〉
N

+ δt

(
1

2
+

1

4B1
‖∇hū·,n‖2

L∞
h

)〈
‖E·,·,n‖2

L2
h

〉
N
.

Moving the E·,·,n+1 term to the left-hand side and dividing the coefficient

1 − 2δt(‖∇hū·,n‖L∞
h

+ 1 + 8B1)

to both sides, the only term causing trouble is 1 − 2δt‖∇hū·,n‖L∞
h

. By condition
n ≤ nmax we have

1 ≤ (1 − 2δt‖∇hū·,n‖L∞
h

)−1 � 1 + δt(2‖∇hū·,n‖L∞
h

+ 1) � 2.(5.23)

Some simple manipulations give inequality (5.18).
Lemma 5.5. For all n ≤ nmax we have

‖e·,n+1‖2
L2

h
+
〈
‖E·,·,n+1‖2

L2
h

〉
N

� C3

(
δt2 + h4 +

1

N1−ε

)
(5.24)

and

n+1∑
k=0

‖∇he·,k‖2
L2

h
� C3

(
δt2 + h4 +

1

N1−ε

)
,(5.25)

where C3 depends on ‖u‖C4(D×[0,T ]), C1, and C2 in Lemma 5.4.
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Proof. From Lemma 5.2, we have

‖e·,n+1‖2
L2

h
+ δt‖∇he·,n+1‖2

L2
h
≤ (1 + Cδt)‖e·,n‖2

L2
h

+
δt

2
‖∇he·,n‖2

L2
h

(5.26)

+ δt‖E·,n
τ ‖2

L2
h

+ C(δt2 + h4)δt.

From Lemma 5.4, we have

〈
‖E·,·,n+1‖2

L2
h

〉
N

�
〈
‖E·,·,n‖2

L2
h

〉
N

+ Cδt‖e·,n‖2
L2

h
+

δt

2
‖∇he·,n‖2

L2
h

(5.27)

+ Cδt
(
1 + ‖∇hū·,n‖2

L∞
h

)〈
‖E·,·,n‖2

L2
h

〉
N
.

From the error estimate of stress (5.10) and assumption, we have

‖E·,n
τ ‖2

L2
h
� 2d

N1−ε
+ C(δt2 + h4) + C

〈
‖E·,·,n‖2

L2
h

〉
N
.(5.28)

Summing up all the inequalities, we obtain

‖e·,n+1‖2
L2

h
+ δt‖∇he·,n+1‖2

L2
h

+
〈
‖E·,·,n+1‖2

L2
h

〉
N

�
(
1 + Cδt(‖∇hū·,n‖2

L∞
h

+ 1)
)

·
(
‖e·,n‖2

L2
h

+ δt‖∇he·,n‖2
L2

h
+
〈
‖E·,·,n‖2

L2
h

〉
N

)
+ C

(
δt2 + h4 +

1

N1−ε

)
δt.(5.29)

By the discrete Gronwall inequality and the condition n ≤ nmax, we have

‖e·,n+1‖2
L2

h
+
〈
‖E·,·,n+1‖2

L2
h

〉
N

� C

(
δt2 + h4 +

1

N1−ε

)

and

n+1∑
k=0

‖∇he·,k‖2
L2

τL
2
h
� C

(
δt2 + h4 +

1

N1−ε

)
.

The proof is complete.

5.4. Inverse estimate. The final job is to prove nmax = T
δt by a continuation

technique with inverse inequality. We have the following lemma.
Lemma 5.6. With the error estimate in Lemma 5.5, the following inequalities

hold for all 0 ≤ n ≤ T
δt ; i.e., we have nmax = T

δt :∥∥∥〈|Q̄·,·,n|2
〉
N

∥∥∥
L∞

h

� 2 (B1 + 1) , ‖ū·,n‖L∞
h

� ‖u‖C0(D×[0,T ]) + 1,

δt
∑
n

‖∇hū·,n‖2
L∞

h
� T‖u‖2

C1(D×[0,T ]) + 1, δt‖∇hū·,n‖L∞
h

� 1

4
, δt‖∇hū·,n‖2

L∞
h

� 1

8
.

Proof. We have for all n ≤ nmax∥∥∥〈|Q̄·,·,n+1|2
〉
N

∥∥∥
L∞

h

≤
(∥∥∥〈|Q̄·,·,n+1 − Q̃

·,·,n+1|2
〉
N

∥∥∥
L∞

h

+
∥∥∥〈|Q̃·,·,n+1|2

〉
N

∥∥∥
L∞

h

)
· 2

�
(∥∥∥〈|E·,·,n+1|2

〉
N

∥∥∥
L∞

h

+ B1

)
· 2,
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and

∥∥∥〈|E·,·,n+1|2
〉
N

∥∥∥
L∞

h

≤
〈∥∥E·,·,n+1

∥∥2

L∞
h

〉
N

≤
〈(

h− d
2

∥∥E·,·,n+1
∥∥
L2

h

)2
〉

N

= h−d
〈∥∥E·,·,n+1

∥∥2

L2
h

〉
N

� h−d

(
1

N1−ε
+ δt2 + h4

)
.

If we choose δt = h2, N = h−α, in order to ensure convergence, we need

h−d(hα(1−ε) + h4) −→ 0 as h → 0,

i.e., α(1 − ε) > d, which is equivalent to

α > d.

That is the condition we need in Theorem 2.2.

For ‖ū·,n+1‖L∞
h

we have

‖ū·,n+1‖L∞
h

≤ ‖ū·,n+1 − u·,n+1‖L∞
h

+ ‖u·,n+1‖L∞
h

≤ ‖e·,n+1‖L∞
h

+ ‖u‖C0(D×[0,T ]),

and

‖e·,n+1‖L∞
h

≤ h− d
2 ‖e·,n+1‖L2

h
� h− d

2 (N− 1−ε
2 + δt + h2) −→ 0

as h → 0.

For δt
∑n+1

k=0 ‖∇hū·,k‖2
L∞

h
we have

δt
n+1∑
k=0

‖∇hū·,k‖2
L∞

h
≤ δt

n+1∑
k=0

‖∇he·,k‖2
L∞

h
+ δt

n+1∑
k=0

‖∇hu·,k‖2
L∞

h

≤ h−dδt

n+1∑
k=0

‖∇he·,k‖2
L2

h
+ T‖u‖2

C1(D×[0,T ]).

In a similar argument as that for ‖ū·,n+1‖L∞
h

, we have

h−dδt

n+1∑
k=0

‖∇he·,k‖2
L2

h
−→ 0

as h → 0.

For δt‖∇hū·,n+1‖2
L∞

h
, we have

δt‖∇hū·,n+1‖2
L∞

h
≤ 2δt‖∇he·,n+1‖2

L∞
h

+ 2δt‖∇hu·,n+1‖2
L∞

h

≤ 2h−dδt‖∇he·,n+1‖2
L2

h
+ 2δt‖u‖C1(D×[0,T ]).

In a similar argument as above, it is quite clear δt‖∇hū·,n+1‖2
L∞

h
→ 0. The reason for

δt‖∇hū·,n+1‖L∞
h

is the same.

By continuation technique, we know nmax = T
δt in (5.8); thus the proof is end-

ed.
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6. Conclusion. The convergence analysis for the BCF method with MAC
scheme in dimension 2 or 3 for the Hookean dumbbell model is performed in this
paper. It is shown that if the number of configuration fields N , the space stepsize h
and the time stepsize δt are chosen appropriately, the convergence of second order in
space and first order in time is obtained after excluding a set of exponentially small
probability. The inverse inequality trick is the key step for the numerical analysis
of the coupled system. The explicit large deviation estimates for (Q̃k)2 and Q̃kQ̃l

for the empirical polymeric stress are the central issue. Further investigations on the
convergence analysis for nonlinear dumbbell models are needed in the future work.

Appendix A. Proof of Lemma 4.7. The proof is obtained by a direct com-
putation. First, consider the logarithmic moment generating function

Λ(λ) = ln EeλQ̃
2

= ln

∫ ∞

−∞

1√
2πσ̃2

eλx
2

e−
x2

2σ̃2 dx = −1

2
ln(1 − 2λσ̃2).

Then from ∂
∂λ [λx− Λ(λ)] = 0, we have

x =
σ̃2

1 − 2λσ̃2
.

The existence of exponential moment needs

1 − 2λσ̃2 > 0, i.e., λ <
1

2σ̃2
.

But when λ ∈ (−∞, 1
2σ̃2 ), x ∈ (0,+∞), and Λ′(λ) > 0, then there exists only one

λ(x) =
1

2σ̃2
− 1

2x

for arbitrary x ∈ (0,+∞). Thus

I(x) =
x

2σ̃2
− 1

2
+

1

2
ln

σ̃2

x
.

The proof is complete.

Appendix B. Proof of Lemma 4.8. The proof is obtained by a direct com-
putation. First, consider the logarithmic moment generating function

Λ(λ) = ln EeλQ̃1Q̃2 = ln

∫ ∞

−∞

∫ ∞

−∞

1

2π det(Σ̃)
1
2

eλxye−
1
2X

T Σ̃−1Xdxdy

= ln

∫ ∞

−∞

∫ ∞

−∞

1

2π det(Σ̃)
1
2

e−
1
2X

T (Σ̃−1+λS)Xdxdy

= −1

2
ln(1 − 2λσ̃12 − λ2 det(Σ̃)),

where X = (x, y)T , S = ( 0 −1
−1 0 ). Then from ∂

∂λ [λx− Λ(λ)] = 0, we have

x =
σ̃12 + λ det(Σ̃)

1 − 2λσ̃12 − λ2 det(Σ̃)
.

The existence of exponential moment needs

1 − 2λσ̃12 − λ2 det(Σ̃) > 0, i.e., λ− < λ < λ+,
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where λ± =
−σ̃12±

√
σ̃2
12+det(Σ̃)

det(Σ̃)
. But when λ ∈ (λ−, λ+), x ∈ (−∞,+∞), and Λ′(λ) >

0, then there exists only one λ(x) for arbitrary x ∈ R.

Appendix C. Estimate for remainders in Lemma 4.4. Let us first consider
the expressions and estimates for remainder terms Rl,n in (4.16) and (4.17). We will
consider only R2,n here; a similar case will be for R1,n. Finally, we will obtain the
decompostion

Rn = Rn
1 + Rn

2 .

Rn
i satisfy the following estimates:

E‖Rn
1‖2

L2
h
≤ C1δt

3, E‖Rn
2‖2

L2
h
≤ C2δt

2(h4 + δt2),

where C1 and C2 are positive constants depending on ‖u‖C4(D×[0,T ]), and Rn
1 is the

martingale part which satisfies E(Rn
1 · Ẽn

) = 0. The concrete expressions of Rn
1 are

composed of PB
6,3, P

B
8,3, and PB

9,3 in (C.1), (C.2), and (C.3). Now we have

R2,n =
1

4h2
· (−I + II + III + IV + V )

and

I =

∫ xi+1

xi−1

∫ yj+1

yj−1

(
Q2(x, y, tn+1) −Q2(xi, yj , tn+1)

)
dydx

=

∫ xi+1

xi−1

∫ yj+1

yj−1

(∫ x

xi

Q2
x(x̃, y, tn+1)dx̃ +

∫ y

yj

Q2
y(xi, ỹ, tn+1)dỹ

)
dydx

=

∫ xi+1

xi−1

∫ yj+1

yj−1

(∫ x

xi

∫ x̃

xi

Q2
xx(˜̃x, y, tn+1)d˜̃xdx̃ +

∫ y

yj

∫ ỹ

yj

Q2
yy(xi, ˜̃y, tn+1)d˜̃ydỹ

)
dydx,

II =

∫ xi+1

xi−1

∫ yj+1

yj−1

(
Q2(x, y, tn) −Q2(xi, yj , tn)

)
dydx

=

∫ xi+1

xi−1

∫ yj+1

yj−1

(∫ x

xi

Q2
x(x̃, y, tn)dx̃ +

∫ y

yj

Q2
y(xi, ỹ, tn)dỹ

)
dydx

=

∫ xi+1

xi−1

∫ yj+1

yj−1

(∫ x

xi

∫ x̃

xi

Q2
xx(˜̃x, y, tn)d˜̃xdx̃ +

∫ y

yj

∫ ỹ

yj

Q2
yy(xi, ˜̃y, tn)d˜̃ydỹ

)
dydx.

So we have

I − II =

∫ xi+1

xi−1

∫ yj+1

yj−1

(∫ x

xi

∫ x̃

xi

∫ tn+1

tn

Q2
xxs(˜̃x, y, s)dsd˜̃xdx̃

+

∫ y

yj

∫ ỹ

yj

∫ tn+1

tn

Q2
yys(xi, ˜̃y, s)dsd˜̃ydỹ

)
dydx.

From this formula and Lemma 4.3, we obtain E|I − II| ≤ Ch4δt.

III =

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
−u · ∇Q2 + Eyu

1,nD̄xQ
2,n+1

+ Exu
2,nD̄yQ

2,n+1

)
dtdydx = III1 + III2.
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Here

III1 =

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
−u1Q2

x + Eyu
1,nQ2

x − Eyu
1,nQ2

x

+ Eyu
1,nD̄xQ

2,n+1

)
dtdydx

=

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
(−u1 + Eyu

1,n)Q2
x − Eyu

1,n(Q2
x − D̄xQ

2)

)
dtdydx

= P1 − P2.

From this formula, we obtain E|P1| ≤ Ch4δt.
For P2, we have the following estimate:

P2 = Eyu
1,n

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
Q2

x − D̄xQ
2,n+1

)
dtdydx

= Eyu
1,n

∫ yj+1

yj−1

∫ tn+1

tn

((
Q2(xi+1, y, t) −Q2(xi+1, yj , tn+1)

)

−
(
Q2(xi−1, y, t) −Q2(xi−1, yj , tn+1)

))
dtdy

= Eyu
1,n

∫ yj+1

yj−1

∫ tn+1

tn

(∫ y

yj

∫ xi+1

xi−1

Q2
xy(x, ỹ, t)dxdỹ

+

∫ tn+1

t

∫ xi+1

xi−1

Q2
xs(x, yj , s)dxds

)
dtdy

= Eyu
1,n

∫ yj+1

yj−1

∫ tn+1

tn

(∫ y

yj

∫ xi+1

xi−1

∫ yj

y

Q2
xyy(x, ˜̃y, t)d˜̃ydxdỹ

+

∫ tn+1

t

∫ xi+1

xi−1

Q2
xs(x, yj , s)dxds

)
dtdy

= P2,1 + P2,2.

From this formula, we obtain E|P2,1| ≤ Ch4δt, E|P2,2| ≤ Ch2δt2.
Similarly for III2, we have

III2 =

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
−u2Q2

y + Exu
2,nQ2

y − Exu
2,nQ2

y

+ Exu
2,nD̄yQ

2,n+1

)
dtdydx

=

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
(−u2 + Exu

2,n)Q2
y − Exu

2,n(Q2
y − D̄yQ

2,n+1)

)
dtdydx

= P3 − P4.

From this formula, we obtain E|P3| ≤ Ch4δt.
For P4, we have the following estimate:

P4 = Exu
2,n

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
Q2

y − D̄yQ
2,n+1

)
dtdydx
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= Exu
2,n

∫ xi+1

xi−1

∫ tn+1

tn

((
Q2(x, yj+1, t) −Q2(xi, yj+1, tn+1)

)

−
(
Q2(x, yj−1, t) −Q2(xi, yj−1, tn+1)

))
dtdx

= Exu
2,n

∫ xi+1

xi−1

∫ tn+1

tn

(∫ x

xi

∫ yj+1

yj−1

Q2
xy(x̃, y, t)dydx̃

+

∫ tn+1

t

∫ yj+1

yj−1

Q2
ys(xi, y, s)dxds

)
dydt

= Exu
2,n

∫ xi+1

xi−1

∫ tn+1

tn

(∫ x

xi

∫ yj+1

yj−1

∫ x̃

xi

Q2
xxy(˜̃x, y, t)d˜̃xdydx̃

+

∫ tn+1

t

∫ yj+1

yj−1

Q2
ys(xi, y, s)dxds

)
dydt

= P4,1 + P4,2.

From this formula, we obtain E|P4,1| ≤ Ch4δt, E|P4,2| ≤ Ch2δt2.

IV =

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
u2
xQ

1 + u2
yQ

2 −Dxu
2,nQ1,n − D̄yExu

2,nQ2,n

)
dtdxdy

= IV1 + IV2.

Here

IV1 =

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
u2
xQ

1 −Dxu
2,nQ1 + Dxu

2,nQ1 −Dxu
2,nQ1,n

)
dtdxdy

=

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

((
u2
x −Dxu

2,n
)
Q1 + Dxu

2,n
(
Q1 −Q1,n

))
dtdxdy

= P5 + P6.

From this formula, we obtain E|P5| ≤ Ch4δt.
For P6, we have the following estimate:

P6 = Dxu
2,n

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
Q1 −Q1,n

)
dtdxdy

= Dxu
2,n

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
Q1(x, y, t) −Q1(xi, yj , tn)

)
dtdxdy

= Dxu
2,n

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(∫ x

xi

Q1
x(x̃, y, t)dx̃ +

∫ y

yj

Q1
y(xi, ỹ, t)dỹ

+

∫ t

tn

Q1
s(xi, yj , s)ds

)
dtdydx

= Dxu
2,n

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(∫ x

xi

∫ x̃

xi

Q1
xx(˜̃x, y, t)d˜̃xdx̃

+

∫ y

yj

∫ ỹ

yj

Q1
yy(xi, ˜̃y, t)˜̃ydỹ +

∫ t

tn

Q1
s(xi, yj , s)ds

)
dtdydx

= P6,1 + P6,2 + P6,3.
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We have

P6,3 =

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

∫ t

tn

Q1
s(xi, yj , s)dsdtdydx

=

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(∫ t

tn

(−u · ∇Q + κQ − Q)1ds +

∫ t

tn

dW 1
s

)
dtdydx

= PA
6,3 + PB

6,3.

Here (−u ·∇Q+κQ−Q)1 means the first component of the term in the parentheses,
and

PB
6,3 =

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

∫ t

tn

dW 1
s dtdydx(C.1)

is one part of Rn
1 . From this formula and Lemma 4.3, we obtain

E|P6,1|, E|P6,2| ≤ Ch4δt, E|PA
6,3| ≤ Ch2δt2, E|PB

6,3|2 ≤ Ch4δt3.

Similarly for IV2, we have

IV2 =

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
u2
yQ

2 − D̄yExu
2,nQ2 + D̄yExu

2,nQ2

− D̄yExu
2,nQ2,n

)
dtdydx

=

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

((
u2
y − D̄yExu

2,n
)
Q2 + D̄yExu

2,n
(
Q2 −Q2,n

))
dtdydx

= P7 + P8.

From this formula, we obtain E|P7| ≤ Ch4δt.
For P8, we have the following estimate:

P8 = D̄yExu
2,n

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
Q2 −Q2,n

)
dtdxdy

= D̄yExu
2,n

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
Q2(x, y, t) −Q2(xi, yj , tn)

)
dtdxdy

= D̄yExu
2,n

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(∫ x

xi

Q2
x(x̃, y, t)dx̃

+

∫ y

yj

Q2
y(xi, ỹ, t)dỹ +

∫ t

tn

Q2
s(xi, yj , s)ds

)
dtdxdy

= D̄yExu
2,n

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(∫ x

xi

∫ x̃

xi

Q2
xx(˜̃x, y, t)d˜̃xdx̃

+

∫ y

yj

∫ ỹ

yj

Q2
yy(xi, ˜̃y, t)d˜̃ydỹ +

∫ t

tn

Q2
s(xi, yj , s)ds

)
dtdxdy

= P8,1 + P8,2 + P8,3.

Here P8,3 can be estimated similar to P6,3. We denote

PB
8,3 =

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

∫ t

tn

dW 2
s dtdydx(C.2)
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and then PB
8,3 is one part of Rn

1 . We have

E|P8,1|, E|P8,2| ≤ Ch4δt, E|PA
8,3| ≤ Ch2δt2, E|PB

8,3|2 ≤ Ch4δt3.

Finally, we have the equation for the Q2 term:

V =

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(
Q2 −Q2(xi, yj , tn)

)
dtdydx

=

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(∫ x

xi

Q2
x(x̃, y, t)dx̃

+

∫ y

yj

Q2
y(xi, ỹ, t)dỹ +

∫ t

tn

Q2
s(xi, yj , s)ds

)
dtdydx

=

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

(∫ x

xi

∫ x̃

xi

Q2
xx(˜̃x, y, t)d˜̃xdx̃

+

∫ y

yj

∫ ỹ

yj

Q2
yy(xi, ˜̃y, t)d˜̃ydỹ +

∫ t

tn

Q2
s(xi, yj , s)ds

)
dtdydx

= P9,1 + P9,2 + P9,3.

Here P9,3 can be estimated similar to P6,3. We denote

PB
9,3 =

∫ xi+1

xi−1

∫ yj+1

yj−1

∫ tn+1

tn

∫ t

tn

dW 2
s dtdydx(C.3)

and then PB
9,3 is one part of Rn

1 . We have

E|P9,1|, E|P9,2| ≤ Ch4δt, E|PA
9,3| ≤ Ch2δt2, E|PB

9,3|2 ≤ Ch4δt3.

Combining all the results above, we obtained the error estimates for remainder
terms.

For ∇̄hRn, the analysis is almost the same, only with the deference quotient
replaced by integral average. Furthermore, the Rn

1 terms will disappear after this
difference quotient manipulation, which makes the analysis easier. The details are
omitted for the lengthy statements.
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