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Discontinuous Galerkin Time-Domain Method for
GPR Simulation in Dispersive Media

Tiao Lu, Wei Cai, and Pingwen Zhang

Abstract—This paper presents a newly developed high-order
discontinuous Galerkin time-domain (DGTD) method for solving
Maxwell’s equations in linear dispersive media with UPML
boundary treatment. A unified formulation is derived for linear
dispersive media of Debye type and the artificial material in
the UPML regions with the help of auxiliary differential equa-
tions. The DGTD employs finite-element-type meshes, and uses
piecewise high-order polynomials for spatial discretization and
Runge–Kutta method for time integrations. Arbitrary high-order
accuracy can be obtained for scattering of various objects in
dispersive media. After validating the numerical convergence of
the DGTD method together with the second-order Yee’s scheme,
we apply this new method to the ground-penetrating radar for the
detection of buried objects in a lossy half space.

Index Terms—Discontinuous Galerkin time-domain (DGTD),
dispersive media, ground-penetrating radar (GPR), perfectly
matched layer (PML).

I. INTRODUCTION

T IME-DOMAIN methods of electromagnetic scattering
can provide important transient and broadband frequency

information of scattering waves. There have been recent efforts
in developing high-order time-domain methods beyond the
traditional second-order Yee’s scheme [1] for the application
of ground-penetrating radar (GPR) in dispersive media [2],
[3]. In order to achieve higher order results, it is critical to
avoid accuracy degeneracy of the numerical methods due to
the material interfaces of the inhomogeneous media. Several
remedies have been proposed to avoid the accuracy degeneracy
of Yee’s scheme and the Cartesian grid-based method by mod-
ifying the difference formulas near the material interfaces, and
second-order results have been obtained [4], [5]. On the other
hand, discontinuous Galerkin time-domain (DGTD) methods
have been shown to have the flexibility of handling material
interfaces with high-order accuracy by using finite-element tri-
angulation of the inhomogeneous media [6]–[11]. The DGTD
shares some similarity with the multidomain pseudospectral
time-domain method of [3] in using high-order polynomials
over a finite-element type of mesh. However, the unique feature
of DGTD is the fact that the numerical solutions are allowed
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to be discontinuous across element interfaces where numerical
fluxes are defined in a manner to guarantee the conservation
of physical quantities. As the solutions are allowed to be
discontinuous, DGTD provides the capability to approximate
discontinuous fields accurately across the material interfaces in
inhomogeneous media in addition to the high-order accuracy
where the media and fields are continuous.

For scattering in dispersive media, such as GPR in the earth
soil, the numerical methods should also be able to handle ef-
ficiently the frequency dependence of the dielectric constant
and the constitutive relations to the same degree of accuracy of
the discretization of the Maxwell equations. For time-domain
simulation methods, the frequency dependence of the dielec-
tric constant implies a temporal convolution of the the suscep-
tibility and the electric field, resulting in expensive storages of
the history of the electric fields. Several types of techniques have
been proposed to avoid this storage, including recursive convo-
lution (RC) and piecewise linear recursive convolution (PLRC)
[12]–[14], auxiliary differential equations (ADEs) [15]–[17],
and Z-transform (ZT) [18]. As we are using a high-order dis-
continuous Galerkin method, the ADE method has been shown
[11] to handle this convolution in time to the same order of
accuracy as the spatial discretization of the DGTD. The fre-
quency dependence of the material property could also come
from the introduction of the PML layers [19]–[21] used to ter-
minate the computational domain. In [11], we have introduced
a unified DGTD formulation to solve transverse magnetic (TM)
Maxwell’s equations in the linear Debye dispersive media and
in the uniaxial PML (UPML) region. The UPML [20], [21] is in-
corporated with the DGTD allowing us to treat the frequency de-
pendence of the dielectric constant of the soil dispersive media
and the artificial dispersive media of the UPML region in a uni-
fied way. Highly accurate results have been obtained for scat-
tering in dispersive media [11]. In this paper, we will apply this
newly developed DGTD to the GPR in dispersive earth media.

In Section II, we will present the unified formulation with
ADE methods for both TM and transverse electric (TE) waves
for electric dispersive media of the Debye type. Section III will
cover the discontinuous Galerkin time-domain method based on
the formulation of Section II. In Section IV, we present sev-
eral numerical validations of the proposed DGTD in compar-
ison with Yee’s finite-difference scheme, and then, applications
to GPR in dispersive soil media. Finally, a conclusion is given
in Section V.

II. FORMULATION

In [11], we have presented a unified formulation of DGTD
for the TM Maxwell equations in the dispersive media and the
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UPML regions where ADE methods are used to handle the tem-
poral convolution of the electric field. Here, we will give the
unified formulation for both TM and TE Maxwell equations for
completeness for electric dispersive media of the Debye type.

A. TE and TM Waves: Maxwell’s Equations in Debye
Dispersive Materials and PML Regions

Consider an inhomogeneous, conductive, and electrically dis-
persive medium with relative magnetic permeability and con-
ductivity . Here, we consider a single-pole Debye medium with
the electric susceptibility in frequency domain expressed as

where is the static zero-frequency relative electric permit-
tivity, is the infinite-frequency relative electric permittivity,

is the change in relative permittivity, and is the pole re-
lation time. The Maxwell’s equations for TM and TE cases in
dispersive media and UPML regions are given as follows. The
equations are reduced to the normal Maxwell equations in the
physical media when the UPML parameters .

TM case:

(1)

TE case:

(2)

where

and and are the auxiliary polarization variables.

B. DGTD Method

The spatial discretization of the DGTD is based on a Galerkin
approximation procedure for the spatial derivatives,, while
the time integration is done using high-order Runge–Kutta
methods. First, the computational domain will be decomposed
into elements (triangles or quadrilaterals); then, on each
element , the field components and the auxiliary variables
are expressed in terms of polynomial basis functions. The
numerical solutions are allowed to be discontinuous across
interfaces between the elements; however, a unique numerical
flux will be defined along the interface using the
solution values on both sides of the interface, i.e., .
We will illustrate the procedure for the case of the TM wave.
Equation (1) can be written in a vector form as

(3)

(4)

where

and

(5)

(6)

Basis function space : Let be a triangulation of
the solution domain , and and are assumed constant on
each element . We denote a finite-dimensional space
of smooth functions defined on an element by . This
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space will be used to approximate solution .
Setting

(7)

To define the basis function space on an element we
first construct a set of basis functions on a standard reference
element I; then, using the mapping , we can obtain a set of
basis functions on the physical element . For example, we can
define a set of basis functions on the standard reference triangle
element I

span span

where is the maximum order of the polynomial and
. For triangular elements, if higher order basis

is desired, Dubiner orthogonal polynomial basis func-
tions [22] have been shown to provide well-conditioned mass
matrices (25) and yield exponential convergence for even dis-
continuous fields [23].

A set of basis functions for the standard rectangle element I
can be chosen as

span span

where is the Legendre polynomial of order and
.

And the set of basis functions on each physical element is
obtained by the mapping as

span

where .
Next the electric field and magnetic field and are

represented in terms of the basis functions

(8)

(9)

Here, and are the time-dependent coefficients.
And is also approximated by the basis functions

(10)

(11)

Galerkin approximation: To derive the spatial discretization
for (3) and (4), we multiply both sides of the equations by a test
function and integrate over each element , and we
transfer the gradient operator in to the test function

using integration by parts. Then, the DGTD space discretiza-
tion of the hyperbolic system for the eight-component vector

is formulated as follows. Find such that, for all
and on each element

(12)

(13)

where is the outward unit normal to ,
and are the values of the solution on each side of the
boundary of , defined as

and the numerical flux is an approximation
to on the faces of the element , which satisfies
the following consistent condition:

(14)

For the TM wave, we have shown in [11] that

(15)

where and are the local
impedance and admittance, respectively.

From the duality of the TE and TM cases, the numerical
flux for the TE case can be obtained by replacing with ,
replacing by , and replacing by , replacing
by and replacing by in (15)

(16)

where .
By setting on each element , a

system of ODEs will be obtained for the expansion coefficients
(8)–(11) of the field and auxiliary variables.

ODEs for unknowns: On each element , we define the un-
known vectors
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and also the basis function vector

Now, assuming that are constant on
each element, using the Gauss quadrature formulation to eval-
uated the integration in (12)–(13), we can obtain the following
ODEs for the unknown vectors:

(17)

(18)

(19)

where

And for the auxiliary variables, we have

(20)

(21)

(22)

(23)

(24)

Here, we have introduced the local mass matrix

(25)

and two local stiffness matrices

C. Time Integration

The ODE systems (17)–(24) can be recast in the matrix
format

where

and stands for the right-side terms in (17)–(24).
The solution is integrated in time with stage Runge–Kutta

method

(26)

where

(27)

where , and are the parameters of Runge–Kutta
methods [24]. We used a four-stage fourth-order method given
in [24]. But for general Runge–Kutta methods, a fifth-order
method would require six stages. However for linear problems,
one can achieve th-order Runge–Kutta methods with stages
for any . There are some complications with explicit time
dependency, and one can refer to [25] and [26].

III. NUMERICAL RESULTS

In this section, we will first compare the DGTD with the tradi-
tional Yee finite-difference scheme for the scattering of a disper-
sive cylinder and study their convergence; then, we will apply
the DGTD for the GPR detection of buried objects in soil media.

A. Numerical Convergence: Scattering Wave of a Dispersive
Square Cylinder

To demonstrate the high-order accuracy of the DGTD for dis-
persive media, we consider the scattering of a dispersive square
cylinder, which is embedded in a dielectric medium with the rel-
ative permittivity and the relative permeability .
The square cylinder is aligned with the grid mesh line so the
Yee’s scheme could retain its second-order accuracy. The dis-
persive square cylinder is of Debye medium having a Debye
pole with parameters S/m,

s. A TM wave is excited by a current line
source and scattered by the dispersive square

cylinder [Fig. 2(a)]. The source is an electric line
current source in direction

(28)
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where , and is the location of the source.
Here, is an Gaussian pulse

(29)

where , and the center frequency
MHz.

Yee’s scheme: In Yee’s FDTD algorithm, the -function is
approximated as

where and are the increments of the FDTD grid along
the and axes, respectively. The is assumed to co-
incide with an FDTD node of the Yee grid . The incre-
ment of the grid m, the time step

ns, where is the velocity of the
light in the background, and is the velocity of the light in free
space.

Using the notations of [27], the FDTD expressions in nondis-
persive domain are given as

(30)

(31)

(32)

Meanwhile, in the dispersive domain, the FDTD methods are

(33)

where

(34)

where

The computational domain is terminated with a third-order
Mur’s absorbing boundary condition [27] (similar accuracy
was obtained with UPML boundary conditions).

DGTD with UPML: For the DGTD, the computational
domain is decomposed into rectangles and fourth-order basis

functions and fourth-order Runge–Kutta method are used. The
-function is approximated as

(35)

where are the basis functions and satisfies

(36)

where is assumed to be at the center of the square ele-
ment . The initial computational domina is

.
The UPML parameter is set to be polynomial profile

[27]

(37)

where is the distance from the interface between the PML and
the physical solution domain, and is the thickness of the PML.
The definition of is similar. Equation (37) increases the
value of the PML’s from zero at , the surface of the
PML, to at , the PEC outer boundary. The reflection
factor is

(38)

where is the PML’s characteristic wave impedance, and is
the incident angle. Let , and the desired reflection error

be known; then can be computed as

(39)

For the computation below, we have set
. In order to demonstrate the accuracy of the DGTD, we select

the width of the UPML such that the reflection error from the
UPML is negligible compared with the discretization error of
DGTD. First, we compute with the DGTD with a fine mesh

with a 20-cell PML of thickness 0.2 and use the
result as a reference. To gauge the error from PML for mesh

, we compute with two different PML widths (10
and 15 cells) and then compare the results against the result
obtained on the finer mesh . Fig. 1 shows that errors
for are of the same order for both the 10- and 15-cell
UPML; thus, the error of the numerical results is mainly from
the DGTD spatial and time discretization.

Convergence study in -norm of the error: We define
-norm of the error of the two numerical results and

as

(40)

where is the velocity of the light in free space, and
( or ) is the linear interpolation function.
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Fig. 1. Error of scattered wave E of two choices of UPML regions. One uses
10-cell UPML, and the other uses 15-cell UPML. The referenceE is computed
by the DGTD with grid size �x = 0:01.

FDTD results over three meshes with grid sizes 0.008,
0.008/3, and 0.008/9 are denoted by , and ,
respectively, while DGTD results for three meshes with
grid sizes 0.04, 0.02, and 0.01 by , re-
spectively. It has been found that

, and
, and

, which shows the convergence
of both methods, as the mesh is refined with better convergence
for the DGTD. The error convergence order of DGTD is 5.58,
while the convergence rate for the FDTD is only 1.17, which
shows the degeneracy of Yee’s scheme near material interfaces.
Also, by comparing the results of two methods, we found
that

, and thus, both
methods converge to the same solution.

Fig. 2(b) shows the numerical incident field computed by
FDTD and DGTD. Fig. 2(c) shows the calculated scattered field

.
We normalize the scattered field spectrum by the inci-

dent field spectrum and define the relative scattered power
spectrum as

Fig. 3 shows the relative scattered power spectral amplitudes.

B. Scattering Wave of a Rotated Dispersive Square Cylinder

In this example, we will compute the scattering of a disper-
sive cylinder not aligned with the grid lines [the cylinder of
Fig. 4(a)]. It is well known that Yee’s scheme will have accu-
racy degeneracy due to the staircase problem [27]. However, the
numerical results of the DGTD show its high-order accuracy
as long as the mesh triangulation conforms to the geometry of
the scatter. The source and receiver are located at (0, 0.7) and

(a)

(b)

(c)

Fig. 2. (a) Dispersive nonrotated square cylinder. (b) The incident wave
computed by two algorithms, FDTD and DGTD. (c) The scattering wave
computed by two algorithms, FDTD and DGTD.

(0, 0.9), respectively. The line source and the parameters of the
media are the same as the previous example.

Fig. 4(b) shows the numerical scattered field . Three
meshes with sizes , and
are used, and their numerical scattered fields are denoted
by , and . The -norms of the differ-
ence between them are ,
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Fig. 3. Relative scattered power of spectral amplitude P =
20 log jE (!)=E (!)j of a nonrotated square cylinder.

(a)

(b)

Fig. 4. (a) Dispersive nonrotated square cylinder. (b) The scattering wave
computed by DGTD. Two DGTD meshes of sizes �x = 0:04;�x = 0:02,
and �x = 0:01 are used.

, and
. The error convergence order is 5.92.

C. GPR Detection of Buried Objects

In this example, we will simulates the detection of under-
ground objects by GPR [2] (see Fig. 5). One part of PML ter-
minates the dispersive earth media, and the other terminates the

Fig. 5. Geometry of three objects buried in a dispersive earth, with a
circle of radius 0.6 with centered at (0.0, 1.5). The rectangular on the
left is [�2:775;�2:025] � [0:75;1:35], and the one on the right is
[2:025;2:775]� [1:05;1:65].

Fig. 6. First derivative of the Blackman–Harris window function used as the
line source.

air. Fig. 5 shows a two-dimensional (2-D) GPR for the detection
of objects buried in a dispersive earth medium. The rectangular
object on the left is dispersive Debye medium (same parameters
as before), while the other two anomalies are air voids.

The line current source used is the first derivative of the
Blackman–Harris window function pointing in the direction
with a center frequency 200 MHz. The Blackman–Harris
window function is given by

if
otherwise

(41)

where is the duration of the source function. The coefficients
used are

The source duration is given by , where is
the center frequency of the source. For MHz, the first
derivative of the Blackman–Harris window function is shown in
Fig. 6.

The initial computational domain is m m
m m , terminated by a UPML of thickness

m. The discretization is m
and ps. The local basis functions are the polynomials
of degree 4, and the Runge–Kutta of order 4 is used for time
discretization. The outer boundary of PML is assumed to be
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Fig. 7. Incident normalized field E at the receiver (0:0375;�0:0375) when
the source locates at (0:4125;�0:0375).

Fig. 8. Scattering E computed by using. The source and the receiver are
located at (0:0375;�0:0375) and (0:4125;�0:0375), respectively. The
L -norms of the error between them are 1:711� 10 .

a PEC wall. It should be noted that of the PML terminating
different media is different [27]. In our computation, we set

in all the PMLs. We use the time step 10 ps to compute
the incident wave.

The source is located at m, and the
receivers are located at m, where

. To compute the scattering wave of
the buried objects, we first compute the total wave when both the
three objects and the ground are present. Then, we compute the
incident wave when the ground is present, but the three objects
are absent. The scattering wave is then obtained by subtracting
the incident wave (see Fig. 7) from the total wave.

Mesh convergence: Before we compute the scattering wave
at all receivers, we conduct the numerical convergence of DGTD
with different meshes. For this purpose, we fix the source and the
receiver at and , respec-
tively. Then, the scattering wave is computed with DGTD on

and , and the -norm of the differ-
ence between the two calculated scattering wave is
(see Fig. 8), thus confirming the mesh convergence. For the rest
of the computations, we will use .

Fig. 9. Scattering E plotted with 2 log jE j.

Fig. 10. Scattered field E at the different receivers and sources. The sources
are at (x ;�0:0375) and the receivers at (x +0:375;�0:0375), where x =
�3:7125+ i � 0:075; i = 0; 1; 2; 3; . . . ; 99.

Fig. 9 shows the scattering wave at three locations above
the buried objects. Fig. 10 is the contour of the scattering waves
at all receivers. The horizontal axis indicates the locations of
the receivers, while the vertical axis is the time. The effect of
the dispersion of the left most rectangle is seen clearly in the
pattern of its scattering wave.

IV. CONCLUSION

We have developed a discontinuous Galerkin time-domain
algorithm for general dispersive media, and the linear Debye
media and the UPML terminating the computational domain
are handled in a unified manner with the auxiliary differential
equations method. The DGTD provides high-order accuracy in
treating arbitrary shape of scatters and the temporal convolution
of the electric field.
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