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AXIAL SYMMETRY AND CLASSIFICATION OF STATIONARY
SOLUTIONS OF DOI-ONSAGER EQUATION ON THE SPHERE

WITH MAIER-SAUPE POTENTIAL∗

HAILIANG LIU† , HUI ZHANG‡ , AND PINGWEN ZHANG§

Abstract. We study the structure of stationary solutions to the Doi-Onsager equation with
Maier-Saupe potential on the sphere, which arises in the modelling of rigid rod-like molecules of
polymers. The stationary solutions are shown to be necessarily a set of axially symmetric functions,
and a complete classification of parameters for phase transitions to these stationary solutions is
obtained. It is shown that the number of stationary solutions hinges on whether the potential
intensity crosses two critical values α1≈6.731393 and α2 =7.5. Furthermore, we present explicit
formulas for all stationary solutions.
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1. Introduction
We begin with the Doi-Onsager model

∂f

∂t
=DrR·(Rf +fRU), (1.1)

where f(t,x) denotes the orientation distribution function, and Dr is the rotational
diffusivity, which, without loss of generality, will be set to 1. Here x∈S

2, S
2 is the

unit sphere and

R=x× ∂

∂x
(1.2)

is the differential operator on S
2. U is the mean-field interaction potential. This

equation arises in the modelling of rigid rod-like molecules of polymers. Different
expression of potentials leads to different models. Onsager considered the potential

U(x),U(x,[f ])=α

∫
|x′|=1

|x×x′|f(x′)dx′. (1.3)

We will consider the Maier-Saupe potential [4, 10], defined by

U(x)=α

∫
|x′|=1

|x×x′|2f(x′)dx′, (1.4)

where α is a parameter that measures the potential intensity. From the Doi-Onsager
equation (1.1) we see that

∫
|x|=1

f(t,x)dx is conserved. Therefore (1.1) is often solved
together with an enforced normalization∫

|x|=1

f(x)dx=1. (1.5)
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202 THE STATIONARY SOLUTIONS OF DOI-ONSAGER MODEL

This model has a free energy

A(f)=
∫
|x|=1

[
f(x)lnf(x)+

1
2
f(x)U(x)

]
dx, (1.6)

as its Lyapunov functional. We will be interested in the stationary solutions of (1.1):

R·(Rf +fRU)=0. (1.7)

The Doi-Onsager equation for rod-like molecules has been very successful in
describing the properties of liquid crystalline polymers in a solvent, see e.g.,
[4, 8, 9, 10, 14, 15]. The basic object in the Doi-Onsager equation is the single
molecule position-orientation distribution function. Interactions between molecules
are modelled by a mean-field potential. Therefore, the Doi-Onsager equation can be
regarded as a mean-field kinetic theory. Besides interaction with other rods, the rods
are also interacting with the flow and are subject to Brownian forces. If the interac-
tion strength is sufficiently strong, compared with the Brownian forces, or if the rod
concentration is sufficiently high, then the system prefers to be in a nematic phase
in which the rods tend to line up with each other. Otherwise the system is in an
isotropic phase in which the orientation of the rods is completely random.

The Doi-Onsager equation is known to exhibit nontrivial nonlinear features, e.g.,
[1, 11] and its study has recently attracted great attention, e.g., [8, 14, 15]. The general
Doi-Onsager equation describes the rotation and translation of polymeric molecules
convected with the flow. A basic feature of this model is its ability to describe both the
isotropic and nematic phases, e.g., [4, 10, 16]. The complex dynamical properties are
amplified considerably when the phase changes. Such a remarkable phase transition
phenomenon in rigid rod-like polymers has been observed in both experiments and
numerical simulations, e.g., [8, 9, 14, 15].

In this paper we focus our attention on the Doi-Onsager equation with the Maier-
Saupe potential (1.4). We study structure and phase transitions to stationary solu-
tions of the Doi-Onsager equation on the sphere. Such a phase transition problem
was first described by Onsager in 1949 [16], using a variational approach. He used
the free energy (1.6) with the potential (1.3), by restricting f to be of the form

f(x)=
β

4π sinhβ
cosh(βx ·y),

where y∈S
2 is a director parameter. β is a parameter to be determined from the

condition that the free energy be minimized. Here β represents the degree of ordering:
β =0 corresponds to the isotropic state where f = const, and β =∞ the completely
ordered state where f is a Delta function. Onsager was able to argue that in the limit
of high concentration one has a transition from the isotropic uniform distribution to
an ordered prolate distribution [1, 16].

In the last few years, the Doi-Onsager model has attracted a great deal of at-
tention in the mathematics community [1, 2, 3, 6, 13]. In particular, concerning the
structure of stationary solutions of the Doi-Onsager model, Constantin et al. [1] re-
duced the Doi-Onsager model (1.7) into the nonlinear equations with two parameters
and classified these solutions in the high concentration limit. They also proved that
the isotropic state is the only possible solution at low enough concentration. The
situation is much better understood in the two-dimensional case when the orientation
variable lives on the circle. Constantin et al. [2] established a bound on the number



HAILIANG LIU, HUI ZHANG AND PINGWEN ZHANG 203

of stationary solutions, and at the same time, gave a sharp estimate on the region of
stability for the isotropic solution. Luo et al. [13] gave a detailed study of the struc-
ture of the stationary solutions, proving that there are only two possible solutions,
one corresponding to isotropic state, the other corresponding to the nematic state.
Their proof was further simplified in [3, 6].

For the Doi-Onsager model on the sphere with the Maier-Saupe potential, our
main results are: (1) We prove that all stationary solutions are axially symmetric.
(2) We give estimates on the sharp characterization of the bifurcation regimes for the
isotropic and nematic solutions. Taken together, these results give rather complete
understanding of the Doi-Onsager model on the sphere with Maier-Saupe potential.

A different proof of the axial symmetry was done independently and at about the
same time by Fatkullin and Slastikov [7].

Now we state our main results. Our first result is about the axial symmetry and
explicit representations of the thermodynamic potential U .

Theorem 1.1. Consider the Doi-Onsager equation (1.7) with the normalization
(1.5). Let U be the potential defined by (1.4), then such a potential is necessarily
invariant with respect to rotations around a director y∈S

2, i.e., it is axially symmet-
ric. Moreover, this potential must have the following form

U =
2α

3
−η

(
|x×y|2− 2

3

)
,

where η∈R is a parameter.

We now state our second result on critical intensities of phase transitions and all
explicit stationary distributions.

Theorem 1.2. The number of stationary solutions of the Doi-Onsager equation on
the sphere (1.7) with (1.4), (1.5) hinges on whether the intensity α crosses two critical
values: α∗≈6.731393 and 7.5, where

α∗=min
η

∫ 1

0
e−ηz2

dz∫ 1

0
(z2−z4)e−ηz2dz

. (1.8)

All solutions are given explicitly by

f =ke−η(x·y)2 ,

where y∈S
2 is a parameter, η =η(α) and k =[4π

∫ 1

0
e−ηz2

dz]−1 are determined by α
through

3e−η∫ 1

0
e−ηz2dz

−
(

3−2η+
4η2

α

)
=0. (1.9)

More precisely,
(i). If 0<α<α∗, there exists one solution f0 =1/4π.
(ii). If α=α∗, there exist two distinct solutions f0 =1/4π and f1 =

k1e−η1(x·y)2 ,η1 <0.
(iii). If α∗<α<7.5, there exist three distinct solutions f0 =1/4π and fi =

kie
−ηi(x·y)2 ,ηi <0 (i=1,2).
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(iv). If α=7.5, there exist two distinct solutions f0 =1/4π and f1 =
k1e−η1(x·y)2 ,η1 <0.

(v). If α>7.5, there exist three distinct solutions f0 =1/4π and fi =
kie

−ηi(x·y)2(i=1,2),η1 <0,η2 >0.

Regarding this result several remarks are in order.
1). As for the critical value α∗, a simple numerical simulation, based on Matlab,

of (1.8) gives the result, our numerical calculation indicates that α∗≈6.731393 is
accurate up to 10−6.

2). Our results provide not only a complete picture of phase transitions but
also explicit expressions for all stationary solutions. In Theorem 1.2 any stationary
solution f(x) with all solutions of the form f(Tx), where T is an arbitrary rotation in
R

3, has been counted as one distinct solution. The identity of each individual function
is made by the use of the parameter y∈S

2.
3). We should point out that not all stationary solutions are stable. The stability

analysis of these solutions is desirable and is under our current study.
4). In physical terms, an isotropic phase corresponds to the case when the dis-

tribution function f =1/4π and a nematic phase corresponds to the case when f is
concentrated at some particular director, which includes the prolate and oblate states.
For example, in case (v) of Theorem 1.2, f0 = 1

4π is an isotropic distribution; while
the distribution function f1 =k1e−η1(x·y)2(η1 <0) is concentrated in the direction ±y

(calledprolate state) and f2 =k2e−η2(x·y)2(η2 >0) is concentrated on the equator per-
pendicular to y (calledoblate state).

The difficulty of the problem lies in the nonlocal coupling between the potential
U and the distribution f . The observation [2] of the decoupled equation for U is one
of key steps to our approach. The advantage of rewriting a nonlocal equation into
a coupled system has been well exploited in different contexts, see [2, 5, 12]. From
the decoupled linear equation for U , we are able to write out all possible solutions.
Some irrelevant solutions are further excluded by using the nonlocal constraint. This
enables us to conclude that all potentials must be axially symmetric. We further give
explicit expressions for all stationary solutions. Equipped with the solution formula,
the determination of the number of solutions reduces to the determination of zeros of
a simple function involving a parameter η and the intensity α. The detailed analysis of
the number of zeros of this function in terms of α constitutes another main technical
part of this work.

This paper is organized as follows: in Sec. 2, we give a rehearsal of our novel
approach applied to the reduced model on a circle. This approach leads to the simplest
proof of the result recently obtained in [3, 6, 13]. Sec. 3 is devoted to the analysis of
the Doi-Onsager model on the sphere, which is far less trivial than the reduced one.
The presentation is split into several lemmas, from which a complete picture on the
Doi-Onsager model is naturally shaped.

2. The Doi-Onsager equation on the circle
For the two-dimensional case, the Doi-Onsager equation (1.7) with (1.2),(1.4)

reduces to the following,

fθθ +(fUθ)θ =0, θ∈ [0,2π], (2.1)

U(θ)=α

∫ 2π

0

sin2(θ−θ′)f(θ′)dθ′, (2.2)
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subject to the normalization ∫ 2π

0

f(θ)dθ =1. (2.3)

The structure of stationary solutions has been studied in [13], somehow we were
unable to extend the approach introduced in [13] to the Doi-Onsager equation on the
sphere. The novel approach taken in this paper works for both cases, and particularly
provides a simpler proof for the two-dimensional model.

In order to highlight our approach, we now start with the Eq. (2.1)-(2.3). It
follows from (2.2) that

Uθ =α

∫ 2π

0

sin2(θ−θ′)f(θ′)dθ′.

Further

Uθθ =2α
∫ 2π

0

cos2(θ−θ′)f(θ′)dθ′

=2α
∫ 2π

0

[1−2sin2(θ−θ′)]f(θ′)dθ′

=2α−4U,

where (2.3) has been used. Therefore we obtain a decoupled equation (2.4) for U

Uθθ +4U =2α. (2.4)

Its general solution is

U =
α

2
+ηcos2(θ−θ0), (2.5)

where η and θ0 are two arbitrary parameters. Without loss of generality we assume
η≥0 because a sign change can be always made by simply shifting θ0 to θ0 +π. With
this explicit formula U at hand, we proceed to solve f in terms of U . Integration of
the equation (2.1) from 0 to 2π yields

fθ +fUθ =C1. (2.6)

The integral constant C1 has to be zero, as evidenced by the following calculation:
integration of (2.6) from 0 to 2π gives

2πC1 =
∫ 2π

0

fUθdθ =α

∫ 2π

0

∫ 2π

0

sin2(θ−θ′)f(θ)f(θ′)dθdθ′

=α

∫ 2π

0

∫ 2π

0

[sin2θcos2θ′−cos2θsin2θ′]f(θ)f(θ′)dθdθ′=0.

From (2.6) it follows that

f =C2e
−U . (2.7)

Note that the fact C1 =0 shows the equivalence of the Doi-Onsager equation to the
Euler-Lagrange equation obtained from minimizing the free energy (1.6). Using (2.5)
we have

f =Ce−ηcos2(θ−θ0), (2.8)
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where C =C2e
−α/2 is still an arbitrary parameter. The use of relation (2.3) gives

C(η)=
[∫ 2π

0

e−ηcos2θdθ

]−1

. (2.9)

Combining this with the nonlocal constraint (2.2) we obtain the following relation∫ 2π

0
sin2(θ−θ′) e−ηcos2(θ′−θ0)dθ′∫ 2π

0
e−ηcos2(θ−θ0)dθ

=
1
2

+
η

α
cos2(θ−θ0), (2.10)

which can be further simplified as∫ 2π

0
cos2θ e−ηcos2θdθ∫ 2π

0
e−ηcos2θdθ

+
2η

α
=0. (2.11)

It is now clear that the determination of the number of solutions f is equivalent to
the determination of the number of η in terms α since C is uniquely determined by
η from (2.9). Therefore we just need to determine the number of zeros of B(η,α),
which is defined by

B(η,α)=

∫ 2π

0
cos2θ e−ηcos2θdθ∫ 2π

0
e−ηcos2θdθ

+
2η

α
. (2.12)

We now discuss the critical values of α at which the number of zeros of B changes.
First we note that η =0 is always a zero of B for any α. In this case f =1/2π. Note
that |B(η,α)− 2η

α |≤1, which implies that B(η,α) becomes positive for large η >0. It
remains to show whether there is another finite zero η∗.

Let η∗ be a zero of B, we have∫ 2π

0
cos2θ e−η∗ cos2θdθ∫ 2π

0
e−η∗ cos2θdθ

=−2η∗

α
. (2.13)

From (2.12) and using (2.13) it follows

Bη(η∗,α)=
(
∫ 2π

0
cos2θ e−η∗ cos2θdθ)2

(
∫ 2π

0
e−η∗ cos2θdθ)2

−
∫ 2π

0
cos22θ e−η∗ cos2θdθ∫ 2π

0
e−η∗ cos2θdθ

+
2
α

=
4η∗2

α2
− 1

2
− 1

2

∫ 2π

0
cos4θ e−η∗ cos2θdθ∫ 2π

0
e−η∗ cos2θdθ

+
2
α

.

For η∗=0, we have

Bη(0,α)=
4−α

2α
. (2.14)

For η∗ 6=0, ∫ 2π

0

cos2θ e−η∗ cos2θdθ =−η∗
∫ 2π

0

sin22θ e−η∗ cos2θdθ

=
η∗

2

∫ 2π

0

(cos4θ−1) e−η∗ cos2θdθ,
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which combined with (2.13) gives∫ 2π

0

cos4θ e−η∗ cos2θdθ =
1

C(η∗)
− 2

η∗
2η∗

αC(η∗)
=

α−4
αC(η∗)

.

Therefore,

Bη(η∗,α)=
1
α2

[α(4−α)+4η∗2]. (2.15)

From (2.14) and (2.15) we see that there are three cases for α to be distinguished.
(i). If α<4, Bη(0,α)>0. This indicates that Bη(η1,α) has to be non-positive if

η1 >0 is a neighboring zero of B(η,α), which contradicts to (2.15). Therefore, in this
case there is no zero of B on (0,∞).

(ii). If α=4, then Bη(0,α)=0. A careful calculation gives

Bηη(0,α)=0 and Bηηη(0,α)=π2− π

4
>0,

which implies that B(η,α)>0 for 0<η <δ(small δ). This fact combined with
B(M,α)>0(large M >0) and Bη(η∗,α)= η∗2

4 >0 tells that no such η∗>0 exists.
(iii). If α>4, Bη(0,α)<0, there exists at least one zero for B in (0,∞) since

B(∞,α)>0. On the other hand, the relation Bη(η∗,α)= 4
α2 (η∗+ α

2

√
1−4/α)(η∗−

α
2

√
1−4/α) implies that there exists at most one zero η∗> α

2

√
1−4/α.

The above analysis enables us to conclude the following.

Theorem 2.1. The number of stationary solutions to (2.1)-(2.3) depends on whether
the intensity crosses the critical value α=4. More precisely,

(i) If α≤4, then the only stationary solution is the constant f =1/2π.
(ii) If α>4, then besides the constant solution f =1/2π, all other stationary

solutions are given by

f(θ)=
e−η∗ cos2(θ−θ0)∫ 2π

0
e−η∗ cos2θdθ

,

where θ0 is arbitrary, η∗> α
2

√
1−4/α are uniquely determined by

∫ 2π

0
cos2θ e−η∗ cos2θdθ∫ 2π

0
e−η∗ cos2θdθ

+
2η∗

α
=0. (2.16)

3. The Doi-Onsager equation on the sphere
This section is devoted to the analysis of the three-dimensional case. Consider

the Doi-Onsager equation on the sphere with Maier-Saupe potential:

R·Rf +R·(fRU)=0, x∈S
2, (3.1)

U(x)=α

∫
|x′|=1

|x×x′|2f(x′)dx′, (3.2)

with the normalization ∫
|x|=1

f(x)dx=1. (3.3)
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The proof of Theorem 1.1 and 1.2 will be completed through a series of lemmas.

Lemma 3.1. The solution of (3.1) can be expressed as

f =Ce−U , (3.4)

where C =[
∫
|x|=1

e−Udx]−1.
(3.4) can be obtained using a similar argument to (2.7) as in Sec. 2. This is

consistent with the Euler-Lagrange equation

lnf(x)+U(x)= const.

In order to identify all solutions of f , we just need to find all solutions of U . To
do so, we first obtain a decoupled linear equation for U .

Lemma 3.2. The mean-field interaction potential U defined in (3.2) satisfies a de-
coupled equation

R·RU +6U =4α. (3.5)

Proof. Now we change the form of U

U =α

∫
|x′|=1

[1−(x ·x′)2]f(x′)dx′

=α−α

∫
|x′|=1

(x ·x′)2f(x′)dx′, (3.6)

where (3.3) has been used. From (3.6) and (1.2) we know

RU =−2α

∫
|x′|=1

xT x′(x×x′)f(x′)dx′. (3.7)

Therefore,

R·RU =−2α

∫
|x′|=1

(
x× ∂

∂x

)
· [xT x′(x×x′)]f(x′)dx′

=−2α

[∫
|x′|=1

|x×x′|2f(x′)dx′−2
∫
|x′|=1

(x ·x′)2f(x′)dx′
]

=4α−6U.

This is the desired equation (3.5).
The potential U also has the following important properties.

Lemma 3.3. U(x) is a solution of (3.2) if and only if it satisfies

U(x)=α

∫
|x′|=1

|x×x′|2e−U(x′)dx′
[∫

|x′|=1

e−U(x′)dx′
]−1

. (3.8)

Moreover, if U(x) is a solution to (3.8), U(Tx) is also a solution, where T is an
arbitrary rotation operator in R

3.
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Proof. The formula (3.4) combined with (3.2) and (3.3) gives (3.8). Let T be an
arbitrary rotation operator in R

3, then

U(Tx)=α

∫
|x′|=1

|Tx×x′|2e−U(x′)dx′
[∫

|x′|=1

e−U(x′)dx′
]−1

=α

∫
|x′|=1

|x×T ∗x′|2e−U(x′)dx′
[∫

|x′|=1

e−U(x′)dx′
]−1

=α

∫
|y′|=1

|x×y′|2e−U(Ty′)dy′
[∫

|y′|=1

e−U(Ty′)dy′
]−1

,

where y′=T ∗x′ has been taken, where T ∗ is the transport of T . This implies that
U(Tx) is also a solution of (3.8).

Based on this observation we are able to prove the following key lemma.

Lemma 3.4. U is a solution of (3.8) if and only if it can be expressed as

U =
2α

3
−η

(
|x×y|2− 2

3

)
(3.9)

where η∈R,y∈S
2 are parameters.

Proof. First it is easy to verify U =2α/3 is a particular solution of (3.5). In order
to obtain the general solution of (3.5) we only need to solve the linear homogenous
equation

R·RV +6V =0, (3.10)

where V =U− 2α
3 . Since R·R is the Laplace-Beltrami operator on the sphere, its

characteristic element functions are the spherical harmonics. The space spanned by
the characteristic functions with the characteristic value −6 has five dimensions. Now
we write the spherical harmonics in spherical coordinates by setting

x(θ,ϕ)=(x1,x2,x3)=(cosϕsinθ,sinϕsinθ,cosθ), (3.11)

as follows

Y −2
2 (θ,ϕ)=

1
4

√
15
2π

sin2θ e−2iϕ,

Y −1
2 (θ,ϕ)=

1
2

√
15
2π

sinθcosθ e−iϕ,

Y 0
2 (θ,ϕ)=

1
4

√
5
π

(3cos2θ−1),

Y 1
2 (θ,ϕ)=−1

2

√
15
2π

sinθcosθ eiϕ,

Y 2
2 (θ,ϕ)=

1
4

√
15
2π

sin2θ e2iϕ.

Therefore the five real linearly independent solutions when written in Eulerian coor-
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dinates are

Y1 =
1
2
(Y −2

2 +Y 2
2 )=

1
4

√
15
2π

(x2
1−x2

2),

Y2 =
1
2i

(Y 2
2 −Y −2

2 )=
1
4

√
15
2π

x1x2,

Y3 =
1
2
(Y −1

2 +Y 1
2 )=

1
2

√
15
2π

x1x3,

Y4 =
1
2
(Y −1

2 −Y 1
2 )=

1
2

√
15
2π

x2x3,

Y5 =Y 0
2 =

3
4

√
5
π

(
x2

3−
1
3

)
.

The general solution V of (3.10) is in the following space

Y, span{x2
1−x2

2,x1x2,x2x3,x1x3,x
2
3−1/3}. (3.12)

Insertion of V =U−2α/3 into (3.8) gives

V (x)=α

∫
|x′|=1

[
|x×x′|2− 2

3

]
e−V (x′)dx′

[∫
|x′|=1

e−V (x′)dx′
]−1

. (3.13)

Using the rotational invariance we can always choose an operator T such that (3.13)
can be simplified as

V (Tx)=α

∫
|x′|=1

[
|Tx×x′|2− 2

3

]
e−V (x′)dx′

[∫
|x′|=1

e−V (x′)dx′
]−1

=α

∫
|x′|=1

[
1
3
−(Tx ·x′)2

]
e−V (x′)dx′

[∫
|x′|=1

e−V (x′)dx′
]−1

=α

(
1
3
−

3∑
i=1

qix
2
i

)
, (3.14)

where

qi , qi(V )=
∫
|x|=1

x2
i e
−V (x)dx

[∫
|x|=1

e−V (x)dx

]−1

(3.15)

is a functional of V , up to a rotation. From (3.15) it follows

3∑
i=1

qi =1 and qi≥0. (3.16)

Under the operator T,V (Tx) is still in Y. We now construct V (x) of the form (3.14)
from a larger class (3.12). From (3.12) it follows

V (x)=a1(x2
1−x2

2)+a2x1x2 +a3x1x3 +a4x2x3 +a5(x2
3−1/3) (3.17)
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with a1,a2,a3,a4,a5 to be determined by

V (x)=α

(
1
3
−

3∑
i=1

qix
2
i

)
for ∀x∈S

2. (3.18)

Setting x=(0,0,1) in (3.17) with (3.18) we obtain

α

(
1
3
−q3

)
=

2a5

3
. (3.19)

Setting x=( 1√
2
, 1√

2
,0), (1,0,0) and (0,1,0), we have

a2

2
− a5

3
=α

(
1
3
− 1

2
(q1 +q2)

)
, (3.20)

a1− a5

3
=α

(
1
3
−q1

)
, (3.21)

−a1− a5

3
=α

(
1
3
−q2

)
, (3.22)

respectively. These relations lead to a2 =0. Similarly we can show that a3 =a4 =0.
Thus (3.17) and (3.18) reduce to

a1(x2
1−x2

2)+a5

(
x2

3−
1
3

)
=α

(
1
3
−

3∑
i=1

qix
2
i

)
. (3.23)

From (3.19), (3.21) and (3.22) it follows that

α(q2−q1)−2a1 =0 (3.24)
α(1−3q3)−2a5 =0. (3.25)

Using (3.24) and (3.25), we obtain an α-independent equation

a1(1−3q3)−a5(q2−q1)=0, (3.26)

it is equivalent to

F (a1,a5)=
∫
|x|=1

[a1(1−3x2
3)−a5(x2

2−x2
1)]e

−a1(x
2
1−x2

2)−a5(x
2
3−1/3)dx (3.27)

=2
∫ 1

0

∫ 2π

0

[a1(1−3z2)−a5(z2−1)cos2ϕ] ea1(z
2−1)cos2ϕ+a5(1/3−z2)dϕdz

=0.

From (3.27) it is straightforward to see that

F (0,a5)=0, F (a5,a5)=0, F (−a5,a5)=0 ∀a5∈R. (3.28)

The rest of the proof boils down to establishing the elementary fact that there are
no other zeros of the function F (a1,a5) besides a1 =0,±a5, whose contour lines are
depicted in Figure 3.1. We do this by restricting to a specific ordering among the
q’s, namely q3 <q1 <q2, which corresponds to the region where 0<a1 <a5. We now
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Fig. 3.1. The contour lines of function F (a1,a5).

demonstrate F (a1,a5) 6=0 in this region by checking the sign of F along all rays
a5 = ra1 for r∈ (1,∞). Along each ray we define

G(a1,ra1)=
1
2
e2a1r/3F (a1,a1r)

=
∫ 1

0

∫ 2π

0

a1[(1−3z2)−r(z2−1)cos2ϕ] ea1[(z
2−1)cos2ϕ+r(1−z2)]dϕdz

=a1

∞∑
n=0

Cn(r)an
1/n!,

where

Cn(r)=
∫ 1

0

∫ 2π

0

[(1−3z2)−r(z2−1)cos2ϕ] [(z2−1)cos2ϕ+r(1−z2)]
n
dϕdz.

Here the analyticity of G in a1 has been used to validate the Taylor expansion.
Set

σn =
∫ 1

0

(z2−1)ndz, Sn(r)=
∫ 2π

0

(cos2ϕ−r)ndϕ,

for which the recursion relations can be obtained

σn+1 =−2n+2
2n+3

σn,

Sn+1(r)=−2n+1
n+1

rSn(r)+
n

n+1
(1−r2)Sn−1(r).
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Using these recursion relations, we have C0(r)=C1(r)=0 and

Cn(r)=−rσn+1Sn+1(r)−(r2 +3)σn+1Sn(r)−2σnSn(r)

=
2n

2n+3
(1−r2)[Sn(r)+rSn−1(r)]σn, n≥2.

Noting that

Sn(r)+rSn−1(r)=
∫ 2π

0

(cos2ϕ−r)n−1 cos2ϕdϕ,

and

(−1)n[Sn(r)+rSn−1(r)]>0 n≥2, (−1)nσn >0,

we obtain Cn(r)<0 for r>1 and n≥2. It implies that G(a1,a1r) 6=0 for any r>1
and a1 >0, which enables us to conclude that F (a1,a5) 6=0 for 0<a1 <a5.

The fact that there are only three zeros of F , a1∈{0,±a5}, when interpreted in
terms of q′s is equivalent to qi = qj ,i 6= j. Without loss of generality, we assume q1 = q2,
that is a1 =0. This when applied to (3.23) shows that a5Y5 is the only candidate
solution to (3.10), where a5 is an arbitrary constant. All other solutions of V must be
in the form of a5Y5(Tx), where T is an arbitrary rotation in R

3, here again we used
the Lemma 3.3. Up to a scaling, we construct a family of solutions to (3.8) from V ,

Ū(x)=
2α

3
+η

(
x2

3−
1
3

)
=

2α

3
−η

(
|x× ȳ|2− 2

3

)
, ∀η∈R,

where ȳ =(0,0,1)∈S
2. Therefore, all solutions of (3.8) are

U(x)= Ū(Tx)=
2α

3
−η

(
|Tx× ȳ|2− 2

3

)
=

2α

3
−η

(
|x×y|2− 2

3

)
,

where y =T ∗ȳ∈S
2.

The axial symmetry of U when combined with Lemma 3.1 implies the axial sym-
metry of equilibrium solutions of the Doi-Onsager equation (3.1) with the Maier-Saupe
interaction potential. Theorem 1.1 follows. We now proceed to complete the proof of
Theorem 1.2.

Lemma 3.5. The solutions of (3.1) can be expressed by

f =ke−η(x·y)2 , (3.29)

where η,k depend on α through the relations:

3e−η∫ 1

0
e−ηz2dz

−
(

3−2η+
4η2

α

)
=0, (3.30)

k =
[
4π

∫ 1

0

e−ηz2
dz

]−1

. (3.31)

Proof. From Lemma 3.1 and 3.4, we have

f =Ce−U =Ce−2α/3eη(|x×y|2−2/3) =Ce−2α/3eη/3e−η(x·y)2 . (3.32)



214 THE STATIONARY SOLUTIONS OF DOI-ONSAGER MODEL

Since both C and η are to be determined, we change Ce−2α/3eη/3 to k and obtain
(3.29). From the proof of Lemma 3.4 we know y =T ȳ, where ȳ =(0,0,1). Without loss
of generality we focus on the case y = ȳ. Other solutions are just U(Tx,ȳ)=U(x,T ȳ).
The normalization (3.3) with (3.29) gives

k

∫
|x|=1

e−ηx2
3dx−1=0, (3.33)

which proves (3.31) for

4πk

∫ 1

0

e−ηz2
dz =1. (3.34)

Using the nonlocal constraint (3.2) we obtain the following relation

2α

3
−η

(
1
3
−x2

3

)
=kα

∫
|x′|=1

[1−(x ·x′)2]e−ηx′3
2
dx′,

which combined with (3.33) yields

1−k

∫
|x′|=1

(x ·x′)2e−ηx′3
2
dx′=− η

α

(
1
3
−x2

3

)
+

2
3
. (3.35)

Now we proceed to simplify (3.35). Using the polar coordinate (3.11), we have

(x ·x′)2 =[cosθcosθ′+cos(ϕ−ϕ′)sinθsinθ′]2

=cos2θcos2θ′+cos2(ϕ−ϕ′)sin2θsin2θ′+
1
2

cos(ϕ−ϕ′)sin2θsin2θ′

=
1
2
[1−cos2θ−cos2θ′+3cos2θcos2θ′+cos2(ϕ−ϕ′)sin2θsin2θ′

+cos(ϕ−ϕ′)sin2θsin2θ′]. (3.36)

This fact combined with (3.35) yields

0=
1
3
− k

2

∫ 2π

0

∫ π

0

[
1−cos2θ−cos2θ′+3cos2θcos2θ′

]
e−ηcos2 θ′ sinθ′dθ′dϕ′

+
η

α

(
1
3
−cos2θ

)

=−1/3−cos2θ

2
+

3k(1/3−cos2θ)
2

∫ 2π

0

∫ π

0

cos2θ′ e−ηcos2 θ′ sinθ′dθ′dϕ′

+
η

α

(
1
3
−cos2θ

)
.

This implies

k

∫ 2π

0

∫ π

0

cos2θ′ e−ηcos2 θ′ sinθ′dθ′dϕ′− 1
3

+
2η

3α
=0,

which can be further simplified as

4πk

∫ 1

0

z2e−ηz2
dz =

1
3
− 2η

3α
. (3.37)
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(3.37) divided by (3.34) shows that α and η satisfy∫ 1

0

z2e−ηz2
dz =

α−2η

3α

∫ 1

0

e−ηz2
dz. (3.38)

Integration by part yields∫ 1

0

e−ηz2
dz =e−η +2η

∫ 1

0

z2e−ηz2
dz (3.39)

=e−η +2η
α−2η

3α

∫ 1

0

e−ηz2
dz.

This leads to the relation (3.30).
From Lemma 3.5 we see that in order to determine the number of solutions of

(3.1), it suffices to determine the number of zeros of B(η,α) in term of α, where

B(η,α), 3e−η∫ 1

0
e−ηz2dz

−
(

3−2η+
4η2

α

)
. (3.40)

Lemma 3.6. The number of zeros of B(η,α) is determined by the intensity α as
follows:

(i). If α>7.5, B(η,α) has three zeros η∗1 <0,η∗2 >0 and η0 =0.
(ii). If α=7.5, B(η,α) has two zeros η∗1 <0 and η0 =0.
(iii). There exists an α∗∈ (20/3,7.5) such that B(η,α) has three zeros η∗1 <0,η∗2 <

0 and η0 =0 for α∗<α<7.5.
(iv). If α=α∗, B(η,α) has two zeros η∗1 <0 and η0 =0.
(v). If 0<α<α∗, B(η,α) has one zero η0 =0.

Proof. We will complete the proof in five steps.
Step 1. We first show that

B(±M,α)<0 for M�1. (3.41)

Note that, for η >0, the mean value theorem gives 3e−η/
∫ 1

0
e−ηz2

dz =3e−η(1−γ2)∈
(0,3) for some γ∈ (0,1). For η <0, we have from (3.39)

e−η =
∫ 1

0

e−ηz2
dz−2η

∫ 1

0

z2e−ηz2
dz≤ (1−2η)

∫ 1

0

e−ηz2
dz.

This shows 0< 3e−η
R 1
0 e−ηz2dz

≤3(1−2η). Thus for large |η|�1, B is determined by the

quadratic term −4η2/α. (3.41) follows.

Step 2. If α>7.5 we will show that B(η,α) has at least two zeros η1 <0, and
η2 >0. We know that η =0 is always a zero since B(0,α)=0. Moreover, using (3.38)
we have

Bη(η,α)=
−3e−η

∫ 1

0
e−ηz2

dz+3e−η
∫ 1

0
z2e−ηz2

dz

(
∫ 1

0
e−ηz2dz)2

−
(
−2+

8η

α

)

=
3e−η∫ 1

0
e−ηz2dz

(
−1+

α−2η

3α

)
+2
(

1− 4η

α

)

=
−2e−η∫ 1

0
e−ηz2dz

(
1+

η

α

)
+2
(

1− 4η

α

)
. (3.42)
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This yields Bη(0,α)=0. Therefore, η =0 is a double zero of B for every α. Hence
the local shape of B needs to be determined by Bηη(0,α). A further calculation from
(3.40) gives

Bηη(0,α)=
4
3α

(
α− 15

2

)
. (3.43)

Thus Bηη(0,α)>0 for α>7.5. B is locally convex near η =0. This together with
(3.41) implies that there exist at least two zeros η∗1 <0 and η∗2 >0 besides η =0. Now
we assume η∗ is a zero of B, i.e.,

3e−η∗∫ 1

0
e−η∗z2dz

=3−2η∗+
4η∗2

α
. (3.44)

This inserted into (3.42) gives

Bη(η∗,α)=− 8η∗

3α2

(
η∗2 +

η∗α
2

+
α

2

(
15
2
−α

))
(3.45)

=



− 8η∗

3α2 (η∗− η̄1)(η∗− η̄2), if α>20/3,

− 8η∗

3α2 (η∗+ α
4 )2, if α=20/3,

− 8η∗

3α2 [(η∗+ α
4 )2 + 15α

4 (1− 3α
20 )], if α<20/3,

(3.46)

where

η̄1 =−α

4

(
1+3

√
1− 20

3α

)
, η̄2 =−α

4

(
1−3

√
1− 20

3α

)
. (3.47)

From (3.46), we see that η∗1 <η̄1 <−α/2, and η∗2 >η̄2 >0.

Step 3. We now show that B(η,α) has at most two zeros besides 0 for α>7.5.
From (3.46), Bη(η∗,α)<0 for η∗∈ (η̄2,∞). This implies that there is at most one zero
of B in (0,∞). Otherwise Bη(η∗,α) has to be negative at another zero. Similarly,
there exists at most one η∗∈ (−∞, η̄1). The claim in (i) is thus proved.

Step 4. We now consider the case α=7.5, for which we show that there exist
two zeros η∗1 <0 and 0. In this case, Bη(0,α)=Bηη(0,α)=0. In order to see the local
shape of B at η =0, we calculate

Bηηη(0,α)=−16
45

<0. (3.48)

This means

ηB(η,α)<0 for |η|�1. (3.49)

(3.45) with α=7.5 gives

Bη(η∗,α)=−8η∗2

3α2

(
η∗+

α

2

)
, (3.50)

where η∗ is assumed to be a zero of B. The local behavior implied from (3.49) and the
negative sign of Bη(η∗,α) for η∗>0 shows that no zero of B exists in (0,∞). On the
other hand, (3.49), together with B(−M,α)<0 shows that there exists at least one
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zero in (−∞,0). We denote it by η∗1 . By (3.50), we know η∗1 <−α/2 and Bη(η∗1 ,α)>0.
Now we claim η∗1 is a unique zero of B in (−∞,0). Otherwise, there should appear at
least two more zeros in (−∞,0), which is not allowed by (3.50). This proves (ii).

Step 5. As argued in step 4, we can show that B(η,α) has no zero in (0,∞) for
α<7.5. Moreover, if α≤20/3, B(η,α) even has no zero in (−∞,0). This is ensured
by the fact B(−M,α)<0 and the sign constrained by (3.46), as argued in step 4.

−4−6 −2 2 4 6 8 10

8

6

4

2

−2

−4

−6

−8

α

−η

Fig. 3.2. The relation between α and η.

In order to identify the second critical value α∗∈ (20/3,7.5), we need to use a
continuity argument. First for 7.5−δ <α<7.5, δ >0 small, there are two zeros η∗1 ,η∗2 <
0 of B. In fact for this range of α, Bηη(0,α)<0. B(η,α) is locally concave near η =0.
We also know that B(η,7.5)>0 for η∈ (−δ,0). This together with B(−M,α)<0 shows
that there are two zeros of B in (−∞,0). From (3.46),

η∗1 ≤ η̄1, η̄1≤η∗2 <η̄2.

On the other hand for α≤20/3, B(η,α)<0 for η∈ (−∞,0). By continuity of B in α,
as α decreases in (20/3,7.5), two zeros of B will become closer and get together at a
point α=α∗:

η∗1 = η̄1(α∗)=η∗2

at which B(η̄1(α∗),α∗)=Bη(η̄1(α∗),α∗)=0. That is, when α=α∗, η̄1(α∗) is also a
double zero. For 20/3<α<α∗, B(η,α) has no zero in (−∞,0) either. Thus α∗, instead
of 20/3, is indeed a critical value. These all together finish the proof of (iii)-(v).

We now conclude this paper by giving a formula for α∗. Using (3.38), we have

α=
2η
∫ 1

0
e−ηz2

dz∫ 1

0
(1−3z2)e−ηz2dz

=

∫ 1

0
e−ηz2

dz∫ 1

0
(z2−z4)e−ηz2dz

,
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from which a relation between α and −η, besides the isotropic case η =0, can be
visualized in Figure 3.2. The second critical intensity α∗ can be expressed as

α∗=min
η

∫ 1

0
e−ηz2

dz∫ 1

0
(z2−z4)e−ηz2dz

,

which is about α∗≈6.731393 from our numerical calculation.
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