
J. Non-Newtonian Fluid Mech. 121 (2004) 117–125

Stochastic models of polymeric fluids at small Deborah number

T. Li a,∗, E. Vanden-Eijndenb,d, P. Zhanga, W. Ec,d

a LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, PR China
b Courant Institute, New York University, New York, NY 10012, USA

c Department of Mathematics and PACM, Princeton University, Princeton, NJ 08544, USA
d School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA

Received 5 December 2002; received in revised form 15 April 2004

Abstract

Stochastic models are considered as a numerical tool for simulating the dynamic behavior of polymeric fluids. At small Deborah number,
straightforward numerical integration of these models is both costly because of the separation of time scales and inaccurate because of the
large numerical fluctuation. A new technique, motivated by the recently developed heterogeneous multi-scale method (HMM), is introduced
to overcome these problems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic models of polymeric fluids have attracted a
great deal of attention in recent years[8]. Compared with tra-
ditional hydrodynamic models which rely on sophisticated
constitutive relations to represent the polymeric nature of
the fluid, stochastic models have the advantage of bypassing
empirical constitutive relations and at the same time provide
a direct link between the conformation of the polymers and
the behavior of the fluid.

In this paper, we will focus on the Brownian configura-
tion fields (BCF) model of polymeric fluids introduced by
Hulsen et al.[6]. The simplest example of such a model is
the dumbbell model in which the polymers are modelled as
dumbbells each of which consists of two beads connected
by a spring. The configuration of the dumbbell is specified
by the positional vectors of the spring, denoted byQ. In
the BCF modelQ is a random vector field, the ensemble
of which represents the ensemble of configurations of the
dumbbells. The dumbbells are convected and stretched by
the flow and at the same time experiences the spring and
Brownian forces:
∂Q
∂t

+ (u · ∇)Q = KQ − 1

2De
F(Q) + 1√

De
Ẇ(t). (1)

∗ Corresponding author.
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whereK = (∇u)T , F(Q) is the spring force,De the Deb-
orah number, which measures the relative importance be-
tween elastic and convective effects, andẆ(t) the temporal
white-noise modeling thermal effects;u the velocity field,
which satisfies the momentum equation and incompressibil-
ity condition:

∂u
∂t

+ (u · ∇)u + ∇p = γ

Re

u + 1 − γ

ReDe
∇ · τp,

∇ · u = 0, (2)

whereRe is the Reynolds number,γ the ratio between sol-
vent and polymer viscosities andτp the extra stress due to
the polymers. In the dilute limit, this polymeric stress is
given by Kramers expression:

τp = −I + τ̄p, τ̄p = 〈F(Q) ⊗ Q〉 (3)

where⊗ denotes tensor product, and〈·〉 denotes averaging
with respect to thermal noise. Noting that∇ · τp = ∇ ·
τ̄p, we only need to evaluatēτp in the fluid equation. For
clarity we have expressed(1) and (2)and(3) in appropriate
non-dimensional units.

In practice, the stochastic fieldQ(x, t) is represented by
N replicas,{Qi(x, t)}Ni=1, each of which evolves according
to (1) with an independent white-noise; the extra stress in
(3) is then computed through ensemble averaging over the
N configuration fields at each grid point as
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τ̄p ≈ 1

N

N∑
i=1

F(Qi) ⊗ Qi. (4)

Compared with previous methods, such as the calculation
of non-Newtonian flow: finite elements and stochastic sim-
ulation Technique (CONNFFESSIT)[7], in which the poly-
mers are represented by individual dumbbells, this approach
eliminates the problem with the non-uniform distribution of
the dumbbells, and at the same time reduces the variance in
the computed velocity field.

In spite of this, BCF remains computationally too expen-
sive in interesting situations when the Deborah number is
small, for two reasons. First, there is a time-scale issue; while
we are mainly interested in the behavior of the flow at the
convective time scale, say,Tc, in simulations we are forced
to deal with the much smaller elastic time scale, say,Tr, be-
cause of the model we use. SinceTr = O(De) asDe → 0
from (1), whereasTc = O(1) from ((2)) (usingτp = O(De),
see(6) below), the number of time-steps necessary to reach
the convective time-scale diverges asDe−1. Second, there
is an accuracy issue in computing the average in(3) which
defines the stress̄τp. This can be seen as follows. Using the
Giesekus expression, we have forCQ := 〈Q ⊗ Q〉:
∂CQ

∂t
+ (u · ∇)CQ = KCQ + CQKT − 1

De
τ̄p + 1

De
I, (5)

from which it can be deduced that

τ̄p = I + O(De), (6)

as De → 0. The error square in the computation ofτ̄p
via((4)) is dominated by the leading order termI and can be
estimated as

error2 = var{F(Q) ⊗ Q}
N

, (7)

where, from(1), var{F(Q)⊗Q} is typicallyO(1) in De. Yet,
only the smallO(De) correction term in(6) contributes to
the force, and the relative error one makes on this term us-
ing (4) isO(De−1N−1/2). Therefore the numerical solutions
based directly on(1)suffer from large fluctuations whenDe
is small, and the numberN of realizations necessary to ob-
tain via (4) an estimate of̄τp accurate toO(De) diverges as
De−2 for smallDe.

These problems have been noted in the review article of
Suen et al.[12]. From a physical point of view, at smallDe,
the relaxation time for the springs is much shorter than the
convective time scale. Hence the fluid stays near equilibrium.
In principle, this property can be used to obtain closures for
the model by deriving effective constitutive relation. Indeed
this can be easily done for BCF. In practice, however, such
a procedure may become too complicated if more realistic
polymer models are used. Therefore, we will concentrate
on analytical and numerical procedures that can be readily
extended to more complicated polymer models.

In this paper we combine two techniques to overcome the
numerical difficulties with the stochastic models at small

Deborah number. The first is a variance reduction technique
that extracts the dominant fluctuating terms from the poly-
meric stress through a decomposition ofQ. In this formula-
tion, two auxiliary fields are used to representQ, and(1) is
enlarged into two equations for these fields. Similarly, the
empirical average in(4) can be re-expressed in terms of the
auxiliary fields. This eliminates the accuracy problem of(4).
Variance reduction techniques of this type were already used
in [2,9] and, in a more general context, in[13]. This formu-
lation also allows us to compute the zero Deborah number
limit of (1) and (2), and show that the field is Newtonian
in this limit, but with a renormalized viscosity. The sec-
ond technique is a multi-scale numerical method that deals
with the problem of time-scale separation. The essence is to
compute the evolution ofQ andu using different time-steps
(and different discretization in time) on different time inter-
vals which are adapted to the natural time-scales on which
these fields evolve. In particular, the evolution of the aux-
iliary fields Q needs only to be computed on time-intervals
of the order ofTr, yet the technique allows us to access the
evolution ofu on time intervals of the orderTc.

While the techniques we introduce are general, in the
numerical tests we will focus on two special cases of the
spring force in(1); the Hookean model for which

F(Q) = Q, (8)

and the FENE model for which

F(Q) = Q

1 − Q2/Q2
0

, (Q2 < Q2
0) (9)

whereQ2 = |Q|2. Notice that both forces are potential,
F(Q) = ∇QV(Q), with V(Q) = 1/2Q2 and V(Q) =
−1/2Q2

0 log(1 − Q2/Q2
0), respectively. Notice also that,

for Hookean dumbbells, we can derive a closed equation
for the polymer stress:

τp + De
∇
τ̄p = 0 (10)

whereτ̄p = τp + I, andτ̄p∇ is the Oldroyd derivative of̄τp,
which is defined as:

∇
τ̄p = ∂τ̄p

∂t
+ (u · ∇)τ̄p − K · τ̄p − τ̄p · KT .

In terms ofτ̄p, ((10)) is

∇ · τ̄p = ∇ · τp, τ̄p + Deτ̄
∇ p

= I, (11)

which is the well-known Oldroyd-B model for polymeric
fluids [1].

2. A new numerical implementation of BCF

Here we introduce an efficient numerical scheme for BCF
in the small Deborah number regime. This is done in two
steps; first, BCF is appropriately reformulated to eliminate
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the accuracy problem with the expression in(3) for the
stress. This is done via the introduction of auxiliary fields to
representQ following the ideas for variance reduction pro-
posed in[2,9] (see also[13]). Second, we introduce a nu-
merical scheme for the new formulation of BCF to deal with
the issue of time scale separation. The overall scheme uses
the techniques introduced in[4,13] to deal with dynamical
systems with multiple time-scale and fits well the system-
atic framework of the heterogeneous multi-scale methods
(HMM) proposed in[5].

2.1. Variance reduction using auxiliary fields

We writeQ(x, t) in the form

Q(x, t) = Q̄(t) + Deq(x, t), (12)

whereQ̄(t) is the solution of

dQ̄
dt

= − 1

2De
F(Q̄) + 1√

De
Ẇ(t). (13)

From (1) and (12), and (13), it is then easy to see using
∇Q̄ = 0 thatq(x, t) satisfies

∂q
∂t

+ (u · ∇)q = 1

De
K(Q̄ + Deq) − 1

2De
G(Q̄, q,De),

(14)

where

G(Q̄, q,De)=
∫ 1

0
(q · ∇Q̄)F(Q̄ + Deθq)dθ

= (q · ∇Q̄)F(Q̄) + O(De). (15)

(13) and (14)are strictly equivalent to(1) via (12).
On the other hand, we also have

1

De
τp = 〈F(Q̄) ⊗ q〉 + 〈G(Q̄, q,De) ⊗ Q̄〉

+ De〈G(Q̄, q,De) ⊗ q〉, (16)

where we used that〈F(Q̄) ⊗ Q̄〉 depends only ont from
(13). The rescaled stress,τp/De, which enters(2) can now
be computed directly from(16). The terms at the right hand
side of(16) areO(1) in De and therefore do not suffer from
the same accuracy problem as(4). With N replica fields of
Q̄, q, {Q̄i, qi}Ni=1, this amounts to estimating(16) using

1

De
τp ≈ 1

N

N∑
i=1

(
F(Q̄i) ⊗ qi + G(Q̄i, qi,De) ⊗ Q̄i

+ DeG(Q̄i, qi,De) ⊗ qi
)
. (17)

From now on, we shall compute with the new system
(2), (13) and (14), and(16); in the appendix, we also show
that this system can be used to deduce the zero Deborah
limit of BCF.

Fig. 1. Sketch of time stepping procedure.

2.2. Dealing with the separation of time scales

We now consider the problem due to the disparity be-
tween the microscopic relaxation time scaleTr = O(De),
and the macroscopic convective time scaleTc = O(1) (in
De; in fact, Tc = O(Re) in De, Re). We will refer toTr as
the micro-time-scale andTc as the macro-time-scale. Since
we are mainly interested in the macro-time-scale, we will
solve the hydrodynamic equation in(2) for u using a macro
time step∆tc. However to obtainτp, we need to solve the
equations in(13) and (14)for Q̄ andq using a much smaller
micro-time-step∆tr. The key observation is that because
the relaxation time of̄Q andq is short compared with∆tc,
(13) and (14)only need to be solved on a time interval which
is much smaller than the macro-time-step in order to provide
accurate enough estimates forτp. The overall time stepping
strategy then uses a grid illustrated inFig. 1.

To summarize, the overall numerical procedure consists
of two components:

1. Solve the equation foru in (2) on the macro-time-step
using standard ODE solvers, such as Runge–Kutta.

2. At each macro-time-step or Runge–Kutta stage, estimate
τp from (16) by solving the equations for̄Q and q in
(13) and (14) with u fixed using micro-time-steps until
the empirically computedτp reaches a quasi-stationary
value.

To obtain better statistics, we use time averages (after
the configuration fieldsQ become statistically stationary)
in addition to ensemble averaging. Since this scheme fits
within the HMM framework, we shall simply refer to it
as such.

A further simplification can be obtained if we note the
fact that, becausēQ does not depend onu, it can in principle
be computed only once. In particular, this means that one
could (i) obtain once and for all a representative ensemble of
time-independent random variableQ̄i on the invariant mea-
sure of the process̄Q(t), then (ii) estimateτp via algebraic
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solution of ((14)) – i.e. obtain the steady solution of this
equation,∂q/∂t = 0 – at givenu and for each fixed̄Qi.

3. Numerical tests on shear flows

It is instructive to look at the special case of pressure-driven
shear flows in two dimension, for which

u(x, y) =
(
u(y)

0

)
, ∇p =

(
c

0

)
, (18)

with c prescribed. In this case, it is easy to check that the
original equations in(1) and (2)reduce to


∂Q1

∂t
= ∂u

∂y
Q2 − 1

2De
F1(Q) + 1√

De
Ẇ1,

∂Q2

∂t
= − 1

2De
F2(Q) + 1√

De
Ẇ2,

∂u

∂t
+ c = γ

Re

∂u2

∂y2
+ 1 − γ

ReDe

∂

∂y
〈F2(Q)Q1〉.

(19)

These equations can be reformulated in terms of the auxiliary
fields (12); though we consider both the Hookean and the
FENE models in the numerical tests below, we only give
these equations explicitly for the Hookean model, where
they take a particularly simple form due to the linearity of
the forcing which impliesQ2 = Q̄2, q2 = 0:


∂Q̄1

∂t
= − 1

2De
Q̄1 + 1√

De
Ẇ1,

∂q1

∂t
= 1

De

∂u

∂y
Q2 − 1

2De
q1,

∂Q2

∂t
= − 1

2De
Q2 + 1√

De
Ẇ2,

∂u

∂t
+ c = γ

Re

∂2u

∂y2
+ 1 − γ

Re

∂

∂y
〈q1Q2〉.

(Hookean)

(20)

In Figs. 2–6we present some numerical results on this
model. The domain of the channel is taken to bey ∈ [0,1].
The parameters are chosen asRe = 1, c = −1, γ = 1/9,
and we used 250 configuration fields. The initial data are
set asu|t=0 = 0, Qi|t=0 = N(0,1) which are independent
standard normal random variables. The initial data for aug-
mented system are

Q̄1,i|t=0 = N(0,1), Q2,i|t=0 = N(0,1),

q1,i|t=0 = 0.

Both the Hookean and FENE models are computed to test
the effectiveness of the approach. MAC scheme is used
to discretize the momentum equation[10], and the Euler
scheme is used to discretize the SDEs[11]. For FENE, the
rejection method is used[8]. The maximal extension of the
spring is set atQ2

0 = 100. We reject all moves which lead

Fig. 2. Time history ofu at the middle point of the channely = 1/2.
Solid line is the result of Hookean model, dotted line is the result from
Oldroyd-B equation.De = 10−3,Re= 1, γ = 1/9. Note the large error
in the transient regime.

to a value ofQ2 that exceeds 75 percent of the maximal
extensionQ2

0. Numerical experience suggests that rejection
occurs very rarely.

In order to better calibrate the statistical error in BCF, we
also compute the solution for the Hookean model with that
of the Oldroyd-B model. The two should be the same in the
absence of statistical error.

Numerical Test 1: Original system (19). Shown inFig. 3
is the numerical result using directly the original BCF model.
We see a large error in the transient regime.

Numerical Test 2: Augmented system (20). In Figs. 3
and 4 we present the numerical results for the Hookean
model atDe = 10−3 using the auxiliary fields. We see that

Fig. 3. Time history ofu at the middle point of the channely = 1/2.
Solid line is the result of Hookean model, dotted line is the result from
Oldroyd-B equation.De = 10−3,Re= 1, γ = 1/9. The large error in the
transient regime is now eliminated.
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Fig. 4. Time history ofu at the middle point of the channely = 1/2 for
the FENE model.Q2

0 = 100,De = 10−3,Re= 1, γ = 1/9. Again there
is no large error in the transient regime.

Fig. 6. Time history of velocityu, v. Solid—Hookean, dotted—Oldroyd-B, dashed—Newtonian. Upper left—u at (3/4,1/4); upper right—v at (3/4,1/4);
lower left—u at (3/4,3/4); lower right—v at (3/4,3/4).

Fig. 5. Time history ofu at the middle point of the channely = 1/2.
Solid line is the result for Hookean model using HMM. Dotted line is the
result for Newtonian fluid.De = 10−9,Re= 1, γ = 1/9. This calculation
relies essentially on the multiscale techniques discussed in the text.
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the large error in the transient regime is eliminated. HMM
is not used in these results.

Numerical Test 3: Augmented system (20) with HMM.
The application of HMM allows us to simulate at signifi-
cantly smallerDe. The results are presented inFig. 5. These
calculations are impossible without using HMM.

It is shown in the appendix that the Hookean model con-
verges to the Newtonian fluid in the zero Deborah number
limit, and so does FENE with a renormlized viscosity. The
simplified momentum equation is

∂u

∂t
+ c = (1 − γ)CQ̄ + γ

Re

∂2u

∂y2
, (21)

whereCQ̄ is defined in appendix.

4. Numerical tests on a two-dimensional example

In this section we test the ideas discussed earlier on a
full two dimensional example: the driven cavity flow. The
equations now are(1) and (2). The computational domain
is taken to be the unit square [0,1] × [0,1]. The boundary
conditions areu = 0 except at the top whereu = 1. The
parameters are chosen asRe= 1,De = 10−11, γ = 1/9. For
the equation ofu, projection method on a staggered grid is
used[10]. For the equation ofQ, first order upwind scheme
is used for the convective term, and the Euler scheme is
used to discretize the SDEs. The unit square [0,1] × [0,1]
is divided into a 128× 128 mesh. The macro time step-size
is set as∆t = 0.0001, while the micro time step-size is
set atδt = 0.05× De. Nf = 200 fields are used. At every
macro time step, the micro-scale process forQ is evolved
for 20 micro time steps. The results of the last five steps are
averaged to get the polymer stress.

We compare the results of Hookean dumbbell model, the
Oldroyd-B model and the Newtonian fluid. InFig. 2 we
plot the history of speedu and v at the points(x, y) =
(3/4,1/4) and (x, y) = (3/4,3/4). We can see that the
results of the Hookean dumbbell model agree well with that
of the Newtonian fluid.

Fig. 7 shows the streamline of Hookean dumbbell model
at t = 0.095.

We also experimented with the FENE model. Our results
are consistent with those presented earlier, and are therefore
omitted from here.

5. Generalizations

So far we have only studied the dumbbell models. In this
section we will discuss briefly how stochastic decomposition
for variance reduction and multiscale time-stepping can be
extended to general models.

We first discuss multiscale time-stepping techniques. The
HMM type of procedure we discussed earlier can be used
for general systems that exhibit separation of time scales. In

Fig. 7. Streamlines of Hookean model att = 0.095.De = 10−11,Re= 1,
γ = 1/9.

particular for systems with small Deborah number for which
the elastic time scale is much shorter than the hydrodynamic
time scale, HMM can be used to speed up time integration.
We refer to[5,13] for more details in this direction.

Next we discuss how to implement stochastic decom-
position as a variance reduction device for computing the
polymer stress in a stochastic simulation at small Deborah
number. The details of the implementation, such as obtain-
ing an alternative expression for polymer stress, is model
dependent, but the general procedure is as follows. Assum-
ing that the configurational variable (theQ for the dumbbell
models, andu for the rod models that we discuss below) is
denoted byQ, we write

Q = Q̄ + Deq.

For Q̄, we impose the same equation as that ofQ, except
that we neglect the term due to velocity gradient. The equa-
tion for q is then derived from the equations forQ and
Q̄. We then rewrite the expression for the polymer stress
in terms of the new variables̄Q and q, deleting the lead-
ing order term inDe. This term should not contribute to
the forces. Otherwise the force will become infinite as the
Deborah number goes to zero. The remaining terms should
stay finite in the zero Deborah number limit. Therefore the
variance for polymer stress will also stay finite.

We already carried out this procedure for the dumbell
model inSection 2.1. Now, we will carry it out explicitly for
the example of rod-like molecules in liquid crystal polymers.
The equations are still asEq. (2), but the polymer stress is
given by[3]

τp = 3S − 〈(v ×RV) ⊗ v〉 + De

2
K : 〈v ⊗ v ⊗ v ⊗ v〉,

(22)
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wherev is the director of liquid crystal polymers and

S = 〈v ⊗ v〉 − 1
3I, R = v × ∇v. (23)

The ensemble average is defined as

〈f 〉(x, t) =
∫

|v|=1
f(v)ψ(v, x, t)dv. (24)

whereψ is the probability density function ofv which sat-
isfies the following Fokker–Planck equation:

∂ψ

∂t
+ (u · ∇)ψ

= 1

De
R · (Rψ + ψRV) −R · (v × K · vψ), (25)

andV is the Maier–Saupe excluded volume potential

V(v, x, t) = U

∫
|v|=1

|v × v′|2ψ(v′, x, t)dv′. (26)

U is the strength of interaction.
The configurational variable for this problem is the ori-

entation of the rods. Its dynamics can be described by the
stochastic differential equation

∂v
∂t

+ (u · ∇)v

= (I − v ⊗ v) ·
(

− 1

De
RV + v × K · v +

√
2

De
Ẇ(t)

)
,

(27)

where the potentialV in (26) can now be expressed as

V(v, x, t) = U〈|v × v′|2〉′v. (28)

Here〈·〉′v denotes the expectation overv′ at fixedv.
For the stochastic decomposition, we writev = v̄ + Deṽ,

wherev̄ satisfies

dv̄
dt

= (I − v̄ ⊗ v̄) ·
(

− 1

De
R̄V̄ +

√
2

De
Ẇ(t)

)
. (29)

HereR̄ = v̄ × ∇v̄ and

V̄ (v̄, x, t) = U〈|v̄ × v̄′|2〉v̄′ . (30)

Correspondingly,̃v satisfies

∂ṽ
∂t

+ 1

De
(u · ∇)(v̄ + Deṽ)

= 1

De
((v̄ + Deṽ) × K · (v̄ + Deṽ))

+
√

2

De
(v̄ ⊗ ṽ + ṽ ⊗ v̄ + Deṽ ⊗ ṽ) · Ẇ

− 1

De
(v̄ ⊗ ṽ + ṽ ⊗ v̄ + Deṽ ⊗ ṽ)

· (R̄V + Deṽ × ∇v̄V) − 1

De
(I − v̄ ⊗ v̄)

· (R̄Ṽ + Deṽ × ∇v̄V), (31)

where the potentialV is expressed as

V(v, x, t)= V(v̄ + Deṽ, x, t)

=U〈|(v̄ + Deṽ) × (v̄′ + Deṽ′)|2〉v̄′
,ṽ′ , (32)

and we defined

Ṽ (v̄, ṽ, x, t)= 2U〈(v̄ × v̄′) · ((ṽ × v̄′) + (v̄ × ṽ′)
+ DeU(ṽ × ṽ′))〉v̄′ṽ′ + DeU 〈|(ṽ × v̄′)

+ (v̄ × ṽ′) + De(ṽ × ṽ′)|2〉v̄′ṽ′ . (33)

(29) and (33)are equivalent to(27).
In terms ofv̄ andṽ, the polymer stressτp can be expressed

asτp = τ0
p + Deτ1

p, with

τ0
p = 3〈v̄ ⊗ v̄〉 − I − 〈(v̄ × R̄V̄ ) ⊗ v̄〉, (34)

and

τ1
p = 3〈v̄ ⊗ ṽ + ṽ ⊗ v̄ + Deṽ ⊗ ṽ〉

− 〈v̄ × (R̄Ṽ + Deṽ × ∇v̄V) ⊗ v̄〉 − 〈(ṽ ×RV) ⊗ v̄〉
− 〈(v̄ ×RV) ⊗ ṽ〉 − De〈(ṽ ×RV) ⊗ ṽ〉
+ 1

2K : 〈(v̄ + Deṽ) ⊗ (v̄ + Deṽ)

⊗ (v̄ + Deṽ) ⊗ (v̄ + Deṽ)〉. (35)

To show that the introduction of the auxiliary fieldsv̄ and
ṽ allow us to achieve variance reduction in the computation
of the stress, notice that the equilibrium probability density
function of v̄ can be formally expressed as

ψ̄(v̄) = Z−1e−V̄ (v̄) with

V̄ (v̄) = U

∫
|v̄′|=1

|v̄ × v̄′|2ψ̄(v̄)dv̄′, (36)

andZ = ∫
|v̄|=1 e

−V̄ (v̄)dv̄ is a normalization factor. Note that
there may be more than one solution to(36), indicating that
the equilibrium density is nonunique and selected by the
initial and boundary conditions forv.

(36) implies that

R̄V̄ ψ̄ = −R̄ψ̄. (37)

Therefore

〈(v̄ × R̄V̄ ) ⊗ v̄〉 =
∫

|v̄|=1
(v̄ × R̄V̄ ) ⊗ v̄ ψ̄ dv̄

= −
∫

|v̄|=1
(v̄ × R̄ψ̄) ⊗ v̄ dv̄

=
∫

|v̄|=1
(I − 3(v̄ ⊗ v̄))ψ̄ dv̄

= I − 3〈v̄ ⊗ v̄〉, (38)

where the third equality follows by straightforward integra-
tion by parts. Thus, from(34), τ0

p rapidly becomes zero,

τ0
p → 0, whenDe is small, and after aO(De) transient pe-

riod, we have

1

De
τp = τ1

p. (39)
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In summary, the introduction of the auxiliary fields al-
lows us to compute directly the leading order contribution
to the stress,τp = Deτ1

p. Without the auxiliary fields, it
would be very difficult to estimate the stress accurately,
since τp is given in (22) as the difference betweenO(1)
terms that need to cancel each other toO(De) (and there-
fore must be computed very accurately) in order to realize
that τp = O(De). Notice also that, asDe → 0, V → V̄ ,
and

τ1
p → 3〈v̄ ⊗ ṽ + ṽ ⊗ v̄〉 − 〈(v̄ × R̄V̂ ) ⊗ v̄〉

− 〈(ṽ × R̄V̄ ) ⊗ v̄〉 − 〈(v̄ × R̄V̄ ) ⊗ ṽ〉
+ 1

2K : 〈v̄ ⊗ v̄ ⊗ v̄ ⊗ v̄〉 (40)

whereV̂ = limDe→0Ṽ , i.e.

V̂ (v̄, ṽ, x, t) = 2U〈(v̄ × v̄′) · ((ṽ × v̄′) + (v̄ × ṽ′))〉v̄′
,ṽ′ .

(41)

Therefore, unlike the dumbbell model, the zero Deborah
number limit of the rod model is not a simple Navier–Stokes
equation.

6. Conclusion

In this paper, we explored BCF at small Deborah number.
We used a stochastic multi-scale decomposition with aux-
iliary fields in the equation for the configuration fields and
this technique greatly reduced the variance in the numerical
results. HMM is applied to efficiently deal with the separa-
tion of time scales.
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Appendix A. The zero Deborah number limit

The zero Deborah number limit of BCF can be readily
computed using(2) together with the enlarged system(13)
and (14)instead of(1). We start from the following equation
for S = 〈Q̄ ⊗ q〉 + 〈q ⊗ Q̄〉 obtained from(13) and (14):

∂

∂t
S + (v · ∇)S

= 1

De
(KCQ̄ + CQ̄KT ) + K〈q ⊗ Q̄〉 + 〈Q̄ ⊗ q〉KT

− 1

2De
(〈q ⊗ F(Q̄)〉 + 〈F(Q̄) ⊗ q〉

+ 〈G ⊗ Q̄〉 + 〈Q̄ ⊗ G〉), (A.1)

whereCq = 〈q⊗q〉, CQ̄ = 〈Q̄⊗Q̄〉. From(16)and the sym-
metry ofτp, the sum of last four terms at the right hand-side
is precisely the leading order term ofτp/De2; therefore,
(A.1) implies that, to leading order inDe,

1

De
τp = KCQ̄ + CQ̄KT = CQ̄(K + KT ), (A.2)

where we usedCQ̄ = CQ̄I which follows from the isotropy
of the forcing,F(Q) = ∇QV(Q). (A.2) implies that in the
limit as De → 0, (2) reduces to

∂u
∂t

+ (u · ∇)u + ∇p = γ

Re

u + (1 − γ)CQ̄

Re

u,

∇ · u = 0. (A.3)

This is the standard Navier–Stokes equation with a new
(renormalized) viscosity. Furthermore, since the equilibrium
density for(13) is (usingF(Q) = ∇QV(Q))

ρ(Q̄) = Z−1e−V(Q̄), with Z =
∫

e−V(Q̄)ddQ̄, (A.4)

For the Hookean dumbbell model, one obtainsZ = (
√

2π)d ,
and

CQ̄ = 1

d
〈Q̄2〉ρ = 1 (A.5)

which means that the Hookean dumbbell model will con-
verge to Newtonian flow in the zero Deborah number limit,
while for FENE model, one can also obtain a closed form
of CQ̄

CQ̄ = 1

d
〈Q̄2〉ρ = Q2

0

Q2
0 + d + 2

. (A.6)

It is easy to find thatCQ̄ is a monotone increasing function
of Q0, andCQ̄ ∼ 1 asQ0 → +∞.
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