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Singularity formation in three-dimensional vortex sheets
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We study singularity formation of three-dimensional~3-D! vortex sheets without surface tension
using a new approach. First, we derive a leading order approximation to the boundary integral
equation governing the 3-D vortex sheet. This leading order equation captures the most singular
contributions of the integral equation. By introducing an appropriate change of variables, we show
that the leading order vortex sheet equation degenerates to a two-dimensional vortex sheet equation
in the direction of the tangential velocity jump. This change of variables is guided by a careful
analysis based on properties of certain singular integral operators, and is crucial in identifying the
leading order singular behavior. Our result confirms that the tangential velocity jump is the physical
driving force of the vortex sheet singularities. We also show that the singularity type of the
three-dimensional problem is similar to that of the two-dimensional problem. Moreover, we
introduce a model equation for 3-D vortex sheets. This model equation captures the leading order
singularity structure of the full 3-D vortex sheet equation, and it can be computed efficiently using
fast Fourier transform. This enables us to perform well-resolved calculations to study the generic
type of 3-D vortex sheet singularities. We will provide detailed numerical results to support the
analytic prediction, and to reveal the generic form of the vortex sheet singularity. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1526100#
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I. INTRODUCTION

One of the classical examples of hydrodynamic insta
ity occurs when two fluids are separated by a free surf
across which the tangential velocity has a jump discontinu
This is called Kelvin–Helmholtz instability. Kelvin–
Helmholtz instability is a fundamental instability of incom
pressible fluid flow at high Reynolds number. The idealiz
tion of a shear layered flow as a vortex sheet separating
regions of potential flow has often been used as a mode
study mixing properties, boundary layers and coherent st
tures of fluids. Without physical regularization such as v
cosity or surface tension, the vortex sheet problem is
posed in the Hadamard sense. Small perturbations in
frequency modes can lead to rapid growth in time. Moreov
nonlinear interaction of high frequency modes can lead
singularity formation in finite time. It has been conjectur
that Kelvin–Helmholtz instability plays a role in maintainin
turbulent flow by causing the break-up of shear layers.1

The singularity formation in two-dimensional~2-D! vor-
tex sheets has been thoroughly studied in the last two
cades. Among the early contributions, Moore2 studied the
nonlinear evolution of a vortex sheet with a small sinusoi
initial disturbance of amplitude«. He predicted that close to
the singularity, the curvature of the sheet is proportiona
uG2Gsu21/2, whereG is the circulation in the sheet measur

a!Electronic mail: hou@acm.caltech.edu
b!Electronic mail: gang.hu@lehman.edu
c!Electronic mail: pzhang@pku.edu.cn
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from a fixed reference particle andGs is the position of the
singularity. Although Moore’s analysis was based on form
asymptotic analysis, his result was supported by Meir
Baker and Orszag,3 who analyzed a power series solution
time. Further, Moore’s result was confirmed numerically
Krasny4 and Shelley,5 in which the roundoff error growth
was controlled by spectral filtering. Moreover, as a rigoro
validation of Moore’s analysis, Caflisch and Orellan6

proved the existence for a slightly perturbed vortex sheet
to t5O(u log(«)u) for Moore’s initial condition ~see also
Duchon and Roberts7!. More recently, Cowley, Baker and
Tanveer8 provided a further detailed study to singularity fo
mation of the two-dimensional vortex sheet problem. In p
ticular, they showed how the32 singularity in the vortex shee
is selected at early time in the extended complex dom
Moreover, they obtained an asymptotic description of
sheet shape as the physical singularity forms.

Most studies of 2-D vortex sheets are based on form
lating the problem in complex variables. Such a formulati
does not generalize naturally to three-dimensional~3-D! vor-
tex sheets. There have been only limited progresses in
study of three-dimensional vortex sheets. Among them, Is
hara and Kaneda9 provided some evidence of the singulari
formation in the three-dimensional problem by directly ge
eralizing Moore’s analysis to the three-dimensional proble
However, their result does not give a clear description of
singularity structure of the 3-D vortex sheet problem. Bra
and Pullin10 studied three-dimensional vortex sheets wh
have cylindrical shape and normal mode initial data. Th
showed that for this type of special initial data, the thre
© 2003 American Institute of Physics
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dimensional vortex sheet problem can be reduced exact
a two-dimensional vortex sheet problem.

In this article, we study singularity formation in three
dimensional vortex sheets with more general initial data
ing a new approach. We do not consider the surface ten
effect in this study. The key in our analysis is to identify t
leading order contribution of the three-dimensional vor
sheet equation by using properties of certain singular inte
operators. This asymptotic analysis suggests a global ch
of variables via the Riesz transform. The leading order str
ture of the vortex sheet problem becomes more apparen
ing the new variables. Moreover, the leading ord
asymptotic analysis suggests we use the dipole strengt
one of the independent variables. Using these new variab
we obtain a surprising result: along the direction of the t
gential velocity jump, the three-dimensional vortex sh
problem can be effectively reduced to a corresponding t
dimensional problem to the leading order approximati
More precisely, we show that the Kelvin–Helmholtz inst
bility is mainly due to the coupling of two of the three tran
formed interface variables. The analysis also suggests
one need only to complexify one of the two independ
variables along the direction of the tangential velocity jum
The other independent variable serves as a parametrizatio
the singularity curve in the extended complex domain. Th
many techniques for studying singularity formation for 2
vortex sheets can be used to study singularity formation
3-D vortex sheets.

What is the generic form of vortex sheet singularities
3-D vortex sheets? We investigate this question by study
the early time singularity formation of solutions to the thre
dimensional vortex sheet equations. The key in studying
early time singularity is to derive a local approximate syst
for the vortex sheet equations. Previous studies~see
Moore,2,11 Caflisch and Semmes,12 Cowley, Baker and
Tanveer8! relied on complexifying the integral and applyin
the residue theorem. However, there is no natural way
extend this idea to the three-dimensional problem. Here
take a different approach which applies to the thr
dimensional problem. By using the dipole representation
Bernoulli’s equation, we are able to derive the local ter
describing the velocity jump in the tangential directio
across the sheet. From this local approximate system,
show that along certain space curves on the thr
dimensional vortex sheet surface, singularity formation
equivalent to that of a two-dimensional vortex sheet to
leading order. Moreover, by choosing a special set of co
dinates att50 and complexifying one of the two indepen
dent variables, we show that branch point singularities
order 3/2 develop spontaneously att501 in the extended
complex domain. The formation of the complex singular
of order 3/2 att501 from initially analytic data is a singu
lar perturbation in time due to the strong nonlinear inter
tion. Once the 3/2 singularity is formed, it generically do
not change type dynamically, and it becomes a physical
gularity when it reaches the real axis.

To study the local form of the curvature singularity at t
physical singularity time, we employ the asymptotic analy
performed by Hou and Zhang.13 We present an approxima
to
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tion to the local vortex sheet surface in the neighborhood
the singularity near the physical singularity time. We sho
that with an appropriate transformation of the interface va
ables, the local form of the curvature singularity is observ
only in two of the three components to the leading ord
Thus, the technique used by Cowley, Baker and Tanveer8 can
be applied to obtain the local form of the singularity at t
singularity time. We remark that the leading order asympto
analysis cannot determine the order of the singularity. T
information must be obtained from the early time singular
analysis using a singular perturbation technique. The anal
needs to takes into account the nonlinear interactions am
various singular terms by appropriately rescaling the sp
and time variables near the singularity.

One interesting open question is whether the singula
in a 3-D vortex sheet first appears as isolated points or al
a one-dimensional line segment? We investigate this ques
in our paper. By studying the motion of singularities in th
extended complex domain, we show that the singula
curve in the extended complex domain is actually an anal
function of its parametrizationb2 ~see Sec. III C!. Using ana-
lytic continuation, we argue that when physical singularit
form, they appear either at some isolated points, or along
entire one-dimensional curve in the real parameter plane.
not possible for the interface to develop finite time singula
ties along a segment of a one-dimensional curve.

To confirm our analytical study, we perform careful n
merical experiments to study singularity formation in 3-
vortex sheets. However, direct simulations of the thr
dimensional vortex sheet equations are very expensive.
complexity in every time step isO(N4) by direct summa-
tions of the dipole representation, whereN is the number of
particles used to discretize the surface in each dimens
Moreover, for initial conditions which are double period
perturbations to the flat surface, one has to sum the co
butions from all the periodic images. This adds substantia
to the overall computational cost. It becomes prohibitive
expensive even withN at the level ofO(100). The fast mul-
tipole methods developed by Greengard and Rokhlin,14 Ber-
man and Greengard15 can be used in principle to reduce th
operating account tocN2. However, the constantc could be
quite large in practice.

To alleviate the numerical difficulty mentioned abov
we introduce a model equation for the three-dimensional v
tex sheet problem. Our model equation has two import
properties. First, it captures the leading order behavior of
singular solution of 3-D vortex sheets. In fact, we show th
our model equation forms the same tangential velocity ju
as that of the full equation. Therefore, by applying the sa
analysis developed for the full equation, we can show t
our model equation captures the same singularity type of
full equation. We also show that the local singularity stru
ture of our model equation has the same form as that of
full equation near the physical singularity time. Another im
portant property of our model equation is that it can be co
puted efficiently. In particular, we show that when using
special coordinate, our model equation can be expresse
terms of certain Riesz transforms, which are convolution
erators. Thus our model equation can be evaluated with
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fast Fourier transform~FFT! with O„N2 log(N)… operation
count. This offers a tremendous saving over the full equa
and enables us to perform well-resolved computations
study the singularity formation of 3-D vortex sheets. O
extensive numerical study provides partial confirmation
our analytical predictions. In particular, our results show t
the three-dimensional vortex sheet develops a curvature
gularity in finite time. We provide evidence showing that t
singularity is of order 3/2, and the singularity is essentia
two-dimensional.

The rest of the paper is organized as follows. In Sec
we review the formulation of 3-D vortex sheets and der
the leading order approximation to the 3-D vortex sheet
Sec. III, we study the early time singularity formation a
the local singularity form in the three-dimensional vort
sheet problem. Our model equation is introduced and a
lyzed by similar asymptotic analysis in Sec. IV. We devo
Sec. V to the numerical study of singularity formation usi
the model equation.

II. FORMULATION AND LEADING ORDER ANALYSIS

In this section, we first review the formulation of the 3-
vortex sheet problem. We then apply a leading order anal
to the 3-D vortex sheet equation near the equilibrium st
This leading order analysis provides a critical guideline
our study of singularity formation in 3-D vortex sheets. T
analysis is based on properties of certain singular inte
operators. Using a special transformation of the interf
variables, we show that the 3-D vortex sheet problem is
sentially equivalent to a 2-D vortex sheet problem. Furth
more, our analysis indicates that the tangential velocity ju
between the upper and lower layer of the fluid is the driv
force of the instability.

A. Formulation of the 3-D vortex sheet equation

We consider an interfaceG separating two infinite layers
of incompressible, inviscid, irrotational and identical flui
in the absence of surface tension. Under the Lagrang
frame, the interface location at any instantt is in the form of

z~a1 ,a2 ,t !5„x~a1 ,a2 ,t !,y~a1 ,a2 ,t !,z~a1 ,a2 ,t !…T,
~1!

where (a1 ,a2) is the Lagrangian surface parameter. Th
the normalized tangential vectors to the surface,t1 and t2 ,
are defined by

t15
za1

uza1
u
, t25

za2

uza2
u
. ~2!

The unit normal vector to the surfacen is defined by

n5
za1

Ãza2

uza1
Ãza2

u
. ~3!

We label the region below the interface as Region 1 a
the region above the interface as Region 2. Under this n
tion, the velocity fieldu1 (u2) is the velocity below~above!
the interface. We defineu1 to be the limit ofu2 approaching
the interface from Region 2 andu2 to be the limit of u1
n
to
r
f
t
in-

I,

n

a-
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e
s-
r-
p

n

,

d
a-

approaching the interface from Region 1. Since the flow
each region is irrotational, we can introduce the velocity p
tentialsf1 andf2 so that

u15“f1 , u25“f2 . ~4!

Furthermore, since the flows are incompressible in their
spective regions, the velocity potentials satisfy the Lapla
equation:

¹2f150 and ¹2f250.

We express the potentials in the fluid domain using a dip
representation:16

f~z!5E m~a8!~za1
Ãza2

!~a8!•“z8G„z2z~a8!…da8,

~5!

wherea85(a18 ,a28) and

G~z2z8!52
1

4puz2z8u
,

¹z8G~z2z8!52
z2z8

4puz2z8u3 ,

and m(a)5f22f1 . Here f2 and f1 are the potentials
approaching the interface from Region 2 and Region 1,
spectively.

After differentiating Eq.~5! with respect toz and then
integrating by parts, we obtain

“f~z!5E u“am~a8!T,“az~a8!TuÃ“z8G„z2z~a8!… da8,

~6!

where we have used the notation

u“am~a8!T,“az~a8!Tu5
]m

]a1
za2

2
]m

]a2
za1

.

In the Lagrangian formulation of the interface problem
the motion of the interface is governed by

]z~a,t !

]t
5u„z~a,t !,t…, z~a,0!5z0~a!,

where u5(u,v,w) is the velocity of fluid particles on the
interface. The kinematic condition that ensures the interf
moving with the fluid requires the normal component of t
velocity to be continuous at the interface. However, the t
gential velocity at the interface is arbitrary and we choos
at our convenience.

For the vortex sheet problem, we apply Bernoulli’s equ
tion to the upper and lower layer of fluid, respectively. Usi
the continuity of the normal stress and Eqs.~5!–~6!, one can
show that by choosing the interface velocity to be the av
age of the interface velocity from aboveu1 and the interface
velocity from belowu2 from above and from below, respec
tively, i.e., u5 1

2(u11u2), then we have17

]m

]t
~a,t !50. ~7!
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Equation~7! says that the circulation stays constant along
trajectories whose motions are determined by the ave
fluid velocity.

With this particular choice of tangential velocity, the v
locity of the vortex sheet interface can be obtained by
average of the limiting velocities in Eq.~6! approaching
from the upper and lower layer of fluid. The equation of t
surface particle motion can be written as18

]z

]t
~a,t !5E u“am~a8!T,“az~a8,t !TuÃ“z8G„z~a,t !

2z~a8,t !… da8, ~8!

z~a,0!5z0~a!, ~9!

where the integral takes the Cauchy principal value.
Sometimes it is more convenient to use a different se

parametrization (b1 ,b2) for the vortex sheet in our analysis
Except in Secs. III C and IV B, this change of parametriz
tion is made at a fixed time and is time independent. Thub
is still a Lagrangian variable. We remark that it is essentia
perform our analysis of 3-D vortex sheet singularities in
Lagrangian frame. The Lagrangian formulation conta
some important physical information about the singular
formation. The change of variables froma to b enables us to
obtain a simplified leading order system and reveal the t
dimensional nature of the three-dimensional vortex sh
problem.

When the change of parametrization is time depend
as in Sec. III C and Sec. V B, the vortex sheet equation ne
to be modified by adding an appropriate tangential veloc
field:

]z

]t
~b,t !5E u“bm~b8!T,“bz~b8,t !TuÃ“z8G„z~b,t !

2z~b8,t !… db81T1t11T2t2 , ~10!

]m

]t
~b,t !5

T1

uzb1
u
mb1

1
T2

uzb2
u
mb2

. ~11!

T1 and T2 are the added tangential velocities to the vor
sheet. By choosingT1 and T2 properly, we can impose a
certain special property of the parametrization for the vor
sheet. Note that the shape of the vortex sheet is solely d
mined by the normal velocity. The tangential velocity of t
interface only changes the paremetrization of the vor
sheet, but not the shape of the interface.

It is tempting to perform the analysis of vortex she
singularities in a non-Lagrangian dynamic new frame. Ho
ever, this would lose certain essential features that come
the Lagrangian frame and complicate the analysis consi
ably. We only deal with the effect of a dynamical change
variables when it is necessary, e.g., when we discuss
motion of complex singularities and the numerical compu
tions.
e
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B. Leading order analysis of the near-equilibrium
case

In this subsection, we perform leading order analysis
for the vortex sheet equation~8! near equilibrium. This
asymptotic analysis provides the critical leading order str
ture of the 3-D vortex sheet equation. It reveals the surp
ing two-dimensional nature of the three-dimensional vor
sheet problem under appropriate changes of variables. In
ticular, the analysis in this section suggests the global cha
of variables for the interface position using the Riesz tra
form. A variant of this change of variables will be used
Sec. III D when we study the structure of the physical sing
larity. The analysis in this section also suggests the chang
variable from the original Lagrangian variable,a, to b, by
introducing the dipole strength,m, as one of the independen
Lagrangian variables. A variant of this change of variab
plays an essential role in our analysis of early time singu
ity formation in Sec. III B.

The leading order approximation is obtained by perfor
ing asymptotic analysis for vortex sheets near equilibriu
First, we express the interface variablez in the form of

z5S x
y
z
D 5S a1

a2

0
D 1S S1

S2

S3

D , ~12!

whereS1 , S2 andS3 are small in amplitude and are doub
periodic with period of (2p32p). Under this assumption
Eq. ~8! in the original Lagrangian parametrization become

]z

]t
52

1

4p E E ~g1za2
8 2g2za1

8 !Ã~z2z8!

uz2z8u3
dz8

52
1

4p E E F g1S S1a2
8

11S2a2
8

S3a2
8

D 2g2S 11S1a1
8

S2a1
8

S3a1
8

D G
3S a12a181S12S18

a22a281S22S28

S32S38
D da8

uz2z8u3 ,

whereg i5]m/]a i ( i 51,2), z85z(a8,t) and Si85Si(a8,t)
( i 51,2,3). We assume that the amplitude ofSi is of order«,
i.e., Si;O(«), and assume thatg i is of order« perturbation
to a constant vortex sheet strength. It is reasonable to c
sider the linear terms in the numerator of the integral as
leading order terms. By writing down every component se
rately and keeping only the linear terms in the numerator
the integrand, we obtain approximate equations forS1 , S2

andS3 as follows:
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]S1

]t
52

1

4p E E „g1~11S2a2
8 !2g2S2a1

8 …~S32S38!

uz2z8u3 2
~g1S3a2

8 2g2S3a1
8 !~a22a281S22S28!

uz2z8u3 da8

52
1

4p E E g1~S32S38!2~g1S3a2
8 2g2S3a1

8 !~a22a28!

uz2z8u3 da81O~«2!, ~13!

]S2

]t
52

1

4p E E ~g1S3a2
8 2g2S3a1

8 !~a12a181S12S18!

uz2z8u3
2

„g1S1a2
8 2g2~11S1a1

8 !…~S32S38!

uz2z8u3
da8

521.5q
1

4p E E g2~S32S38!1~g1S3a28 2g2S3a1
8 !~a12a18!

uz2z8u3
da81O~«2!, ~14!

and

]S3

]t
52

1

4p E E „g1S1a2
8 2g2~11S1a1

8 !…~a22a281S22S28!

uz2z8u3
2

„g1~11S2a2
8 !2g2S2a1

8 …~a12a181S12S18!

uz2z8u3 da8

52
1

4p E E ~g1S1a2
8 2g2S1a1

8 !~a22a28!

uz2z8u3 2
~g1S2a2

8 2g2S2a1
8 !~a12a18!

uz2z8u3

2
g1~a12a181S12S18!1g2~a22a281S22S28!

uz2z8u3
da81O~«2!, ~15!
er

s

s

lla-
nd
o-

esz
:

ion
where we have used the notationsz5z(a), z85z(a8) and
Sj5Sj (a), Sj85Sj (a8), j 51, 2, 3.

Recall that to the leading order, we have

uz2z8u'ua2a8u.

Thus the above integral equations can be expressed in t
of the Riesz transforms which are defined as follows:

Hi~ f !5
1

2p E E ~a i2a i8! f ~a8!

@~a12a18!21~a22a28!2#3/2da8,

i 51,2, ~16!

L~ f !5
1

2p E E f ~a!2 f ~a8!

@~a12a18!21~a22a28!2#3/2da8, ~17!

for f PLp(R2), where 1,p,`. The integrals take the
Cauchy principal value. It is well-known that the Riesz tran
forms satisfy the following properties:19

H1
21H2

252I , H1D11H2D25L, ~18!

LHi52Di , H1D25H2D1 , i 51,2, ~19!

for functions with zero mean, i.e.,* f (a)da50, whereDi

5]a i
is the partial derivative with respect toa i . The above

properties can be verified easily from the spectral symbol
the Riesz transforms:19

Hkf̂ 5
2 i jk

~j1
21j2

2!1/2 f̂ , k51,2, ~20!

L f̂ 5~j1
21j2

2!1/2f̂ , ~21!

in which f̂ stands for the Fourier transformation off .
ms

-

of

From these properties, we find some surprising cance
tions when the problem is projected in certain variables, a
the leading order problem becomes essentially a tw
dimensional problem. Guided by the properties of the Ri
transform, we introduce the following change of variables

c15H2~S1!2H1~S2!, ~22!

c25H1~S1!1H2~S2!, ~23!

c35S3 . ~24!

Using~18!–~19!, we can also express (S1 ,S2 ,S3) in terms of
(c1 ,c2 ,c3) through the following equations:

S152H2~c1!2H1~c2!1^S1&, ~25!

S25H1~c1!2H2~c2!1^S2&, ~26!

S35c3 ~27!

where^Si&5 1/4p2 *2p
p *2p

p Si(a)da, i 51,2.
Differentiating Eqs.~22! and~23! with respect to timet,

we have

]c1

]t
5H2S ]S1

]t D2H1S ]S2

]t D , ~28!

]c2

]t
5H1S ]S1

]t D1H2S ]S2

]t D . ~29!

To derive the leading order terms of the evolution equat
for c1 , we substitute~13! and ~14! into ~28!. The result is
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]c1

]t
5H2S ]S1

]t D2H1S ]S2

]t D
5H2S 2

1

4p E g1~S32S38!2~g1S3a2
8 2g2S3a1

8 !~a22a28!

uz2z8u3
da8D

2H1S 2
1

4p E g2~S32S38!1~g1S3a2
8 2g2S3a1

8 !~a12a18!

uz2z8u3 da8D 1O~«2!. ~30!
a
is
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Note that givenz in the form of ~12!, we have

uz2z8u5ua2a8u1O~«!. ~31!

Thus the denominator of the vortex sheet kernel can be
proximated by that of the Riesz transform kernel. With th
observation, we can show that

]c1

]t
52

1

2
H2~g1LS32g1H2D2S31g2H2D1S3!

1
1

2
H1~g2LS31g1H1D2S32g2H1D1S3!1O~«2!

52
1

2
H2~g1H1D1S31g2H2D1S3!

1
1

2
H1~g1H1D2S31g2H2D2S3!1O~«2!5O~«2!,

~32!

where we have used the properties of the Riesz transfo
~18!–~19! in the last step. As we can see, the Kelvin
Helmholtz instability is eliminated to the leading order in t
c1 variable. In Sec. III D, we will use a similar analysis
study the structure of curvature singularity at the physi
singularity time. The fact that thec1 variable can be elimi-
nated from the leading order approximation plays an ess
tial role in obtaining a close form approximation of the lea
ing order curvature singularity structure.

Similarly, to derive the leading order terms in the evo
tion equation ofc2 , we substitute~13! and~14! into ~29! and
get

]c2

]t
5H1S ]S1

]t D1H2S ]S2

]t D
52

1

2
H1~g1LS32g1H2D2S31g2H2D1S3!

2
1

2
H2~g2LS31g1H1D2S32g2H1D1S3!1O~«2!

52
1

2
H1~g1H1D1S31g2H2D1S3!

2
1

2
H2~g1H1D2S31g2H2D2S3!1O~«2!. ~33!

Applying the properties of the Riesz transforms~18!–~19!
one more time, we can further reduce the above equatio
p-

s

l

n-
-

-

to

]c2

]t
52

1

2
g1D1~H1H11H2H2!S3

2
1

2
g2D2~H1H11H2H2!S31O~«2!

5
1

2
~g1D11g2D2!S31O~«2!. ~34!

The derivation of the leading order evolution equati
for c3 is more involved. We will leave the detailed deriva
tion to Appendix A. After some manipulations, we can sho
that the leading order equation forc3 is given by

]c3

]t
52

1

2
~g1D11g2D2!c21

1

2
~g2D12g1D2!c1

1O~«2!. ~35!

Combining~13!, ~14! and ~35! into a system, we get

]c1

]t
5O~«2!, ~36!

]c2

]t
5

1

2
~g1D11g2D2!c31O~«2!, ~37!

]c3

]t
52

1

2
~g1D11g2D2!c21

1

2
~g2D12g1D2!c1

1O~«2!, ~38!

whereD1 (D2) stands for differentiation with respect to th
a1 (a2) variable. The above leading order system is cons
tent with the leading order linearized system derived in
article of Hou and Zhang.13

Recall thatg i5]m/]a i , i 51,2. The above leading or
der analysis suggests a natural change of variables froma to
b as follows:

b15m~a1 ,a2!, ~39!

b25E
(0,0)

(a1 ,a2)

ma2
~a18 ,a28!da182ma1

~a18 ,a28!da28 . ~40!

The integration in~40! is path independent since (ma2
,

2ma1
) is divergence free.

Note that through this change of variables, we use
dipole strength as one of the independent variables. The
pole strength variable corresponds to the vortex line dir
tion (g1 ,g2). Thus, this choice of coordinates has a natu
physical interpretation. On the other hand, theb2 variable
corresponds to the direction that is orthogonal to the vor
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line direction. It is the parametrization of the level setm
5b1 for a constant value ofb1 . The idea of introducingm
as one of the independent variables motivates the chang
variables introduced in Secs. III A and III D. It plays an e
sential role in understanding the early time singularity str
ture and the curvature singularity at the physical singula
time. We remark that the above change of variables in
parametrization is time independent sincem~a! is time inde-
pendent. Thus, there is no induced tangential velocity fi
produced through this change of variables.

Substituting this change of variables into system~36!–
~38!, we obtain

]c1

]t
5O~«2!, ~41!

]c2

]t
5

1

2
Db1

c31O~«2!, ~42!

]c3

]t
52

1

2
Db1

c21
1

2
Db2

c11O~«2!. ~43!

In the new coordinates, we can see that the system
fers the Kelvin–Helmholtz instability because of the co
pling of ~42! and ~43!. It also shows that theb1 direction is
the unstable direction responsible for generating Kelv
Helmholtz instability. Moreover, since theb1 direction is the
tangential velocity jump direction between the upper a
lower layers of fluid, the leading order terms confirm that t
tangential velocity jump is the physical driving force of th
instability of the three-dimensional vortex sheet.

In a separate article,20 Hou and Hu prove a nearly opti
mal existence result for 3-D vortex sheets based on the ab
system. In particular, they prove rigorously that theO(«2)
terms are in fact smaller or smoother than the leading o
terms. In this article, we focus on the analysis of the sin
larity structure. Equations~41!, ~42! and~43! provide us with
a critical insight on the singularity structure. This will be
come clear in the study presented in the next section.

III. EARLY TIME SINGULARITY FORMATION

Following the leading order analysis from the last se
tion, we study the early time singularity formation in th
section. The study of the early time singularity formation
important because it reveals the mechanism why a bra
point singularity of order 3/2 is selected generically
t501 in the extended complex domain from the initial an
lytic solution. This selection mechanism is a result of t
strong nonlinear interaction of the leading order system
the extended complex domain. Once the initial singularity
formed, it will propagate in time along certain smooth ch
acteristics without changing its type. The analysis is based
a singular perturbation expansion in time around certain
gular points related to the derivatives of the Lagrangian
terface position in the extended complex domain.

Our work is motivated by a related study of Cowle
Baker and Tanveer8 for 2-D vortex sheets. The key in the
approach is to derive a leading orderlocal system and to
extend the interface variable to a complex domain. Varia
of
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of such local system have also been derived and studie
other researchers~see Moore,2 Caflisch and Semmes12!. In
most previous studies, the leading order local system
derived by means of a complex analysis. A special feature
the two-dimensional vortex sheet problem is that one
combinex and y to form a complex variablez(a)5x(a)
1 iy(a), and further complexifya to treatz as an analytic
function. This idea has no obvious extension to the thr
dimensional problem.

A. Early time singularities in 3-D vortex sheets

In this subsection, we derive a local approximate syst
to the 3-D vortex sheet equation using a different approa
Our derivation is based on the observation that the tange
velocity difference is the driving force of the Kelvin–
Helmholtz instability. This is the common feature betwe
the two- and the three-dimensional problems. In fact, we
re-derive the local approximate system for 2-D vortex she
using the same approach.

By combining the dipole formulation with the vorticity
formulation, Haroldsen and Meiron18 have derived the veloc
ity on the interface. In particular, using Eq.~6! related to the
upper layer fluid, one can obtain the interface veloc
V(a,t) as

V~a,t !5“f„z~a,t !,t…52Vloc~a,t !1V1~a,t !, ~44!

where

V1~a,t !5 lim
z→z(a,t)

f rom upper layer

E u“am~a8!T,“az~a8,t !Tu

3“z8G„z2z~a8,t !…da8, ~45!

Vloc~a,t !5
1

2
u“am~a8!T,“az~a8,t !Tu

3
za1

Ãza2

uza1
Ãza2

u2 ~a,t !. ~46!

Similarly, using the equation related to the lower lay
fluid, we get

V~a,t !5“f„z~a!,t…5Vloc~a,t !1V2~a,t !, ~47!

where

V2~a,t !5 lim
z→z(a,t)

f rom lower layer

E u“am~a8!T,“az~a8,t !Tu

3“z8G„z2z~a8,t !…da8. ~48!

We note thatV(a,t)5 1
2„V1(a,t)1V2(a,t)….

Further, we choose a parametrizationa at t50 such that
the coordinate satisfies

za1
•za2

50, ~49!

]m

]a1
51,

]m

]a2
50, ~50!
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at time t50. In some sense, we use the dipole strengthm as
one of the independent variables. As we will see later,
gives rise to a natural interpretation of the Kelvin–Helmho
instability. We remark that this is not a strong assumption
fact, we can show that starting from a given coordinate,
can find a coordinate that satisfies~49! and ~50!. We defer
the justification of such coordinate to the next subsection

Using the properties~49! and ~50!, we can simplify the
local term to

Vloc5
1

2
u“amT,“azTuÃ

za1
Ãza2

uza1
Ãza2

u2

5
1

2
za2

Ã
za1

Ãza2

uza1
Ãza2

u2

5
za1

2uza1
u2 . ~51!

Thus, substituting~51! into Eqs.~44! and ~47!, we can ex-
press the evolution equation for the 3-D vortex sheet in
following two equivalent formulations:

]z~a,t !

]t
52

za1
~a,t !

2uza1
~a,t !u2 1V1~a,t !, ~52!

]z~a,t !

]t
5

za1
~a,t !

2uza1
~a,t !u2

1V2~a,t !, ~53!

at t50, whereV1 andV2 are defined in~45! and ~48!.
To derive our local approximate system for 3-D vort

sheets, we use the Clifford algebra~see also Wu21!. Let e1

ande2 be the two Clifford bases. They satisfy the followin
properties:

e1
2521, e2

2521, e1e252e2e1 , ~54!

e1̄52e1 , e2̄52e2 , ~55!

wheres̄ is the conjugate ofs. We regard points~vectors! j
5(x,y,z)PR3 and their corresponding Clifford 1-vectorsj
5x1ye11ze2 as equivalent. The same notationj can either
be a point or its corresponding 1-vector in different contex
for example, for vectorsj and h, the multiplicationjh is
obtained through Clifford multiplication by regardingj and
h as their Clifford 1-vector counterparts; for Cliffor
1-vectorsj, h andz, j(h3z) is obtained by first regardingh
andz as vectors and calculating the cross producth3z, then
rewriting h3z as its corresponding Clifford 1-vector an
calculating the Clifford multiplication betweenj andh3z.
We also use the notationja5xa1yae11zae2 .

Clifford algebra shares several important properties
complex variables. For example, we can show using~54!–
~55! that

jj̄5~x1ye11ze2!~x2ye12ze2!5x21y21z25uju2,
~56!

and
is

n
e

e

:

f

1

j
5

j̄

uju2
,

1

j̄
5

j

uju2
. ~57!

Now regardingz as Clifford 1-vector, we can rewrite th
evolution equation~52! as follows:

]z~a,t !

]t
52

1

2z̄a1
~a,t !

1V1~a,t !, ~58!

whereV1 is still defined by~45! with z as a Clifford 1-vector.
To derive an equation forz̄, we take the conjugate of th

both sides of~53!. We get

] z̄~a,t !

]t
5

1

2za1
~a,t !

1V2~a,t !, ~59!

whereV̄2 is defined as

V2~a,t !5 lim
(x2ye12ze2)→ z̄(a,t)

y,y(a,t)

E u“am~a8!T,“az̄~a8,t !Tu

3“z̄8G„z̄2 z̄~a8,t !…da8. ~60!

For the case we consider,z is a periodic perturbation
over a flat surface, i.e.z5a11a2e11s with s5S11S2e1

1S3e2 being double periodic ina. We can further rewrite
the above equations in terms ofs. We get

]s~a,t !

]t
52

1

2~11 s̄a1
!

1V1~a,t !, ~61!

] s̄~a,t !

]t
5

1

2~11sa1
!

1V2~a,t !. ~62!

Observe that the leading order terms on the right ha
sides of~61!–~62! only involve derivatives ina1 . This im-
plies thata1 is the most unstable direction responsible f
generating the Kelvin–Helmholtz instability. Thea2 direc-
tion is in a stable direction. This observation suggests that
need only complexify thea1 variable and treata2 as a real
parameter which parametrizes the singularity curve in
extended complexa1 domain. To better illustrate the mai
idea, we will suppress the dependence ofs on a2 , and write
s(a1 ,t). Following Caflisch and Orellana6 and Cowley,
Baker and Tanveer,8 we extends(a1 ,t) and s̄ to the upper
half complexa1 domain. We says(a1) is analytic if each
component ofs is analytic with respect toa1 . In particular,
if s(a1 ,t) has a convergent Taylor series expansion in
neighborhood ofa10, then we say thats(a1 ,t) is analytic at
a10.

To unify notations, we will denote the complexa1 vari-
able asa15Real(a1)1Im(a1)e1, and regarda1 as a Clif-
ford 1-vector. In particular, the analytic extension of the co
jugate function s̄(a1 ,t) is defined by the following*
operator:

s* ~a1 ,t !5s~a 1̄,t !̄. ~63!

Now analytically extending Eqs.~61!–~62! to the upper half
complexa1 domain, we obtain

]s~a1 ,t !

]t
5

sa1
*

2~11sa1
* !

1S V1~a1 ,t !2
1

2D , ~64!
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]s* ~a1 ,t !

]t
52

sa1

2~11sa1
!

1S V2~a1 ,t !1
1

2D , ~65!

at t50.
Note that when we analytically extends to the upper half

complexa1 domain, the integrals inV1 andV2 are no longer
singular. In fact, one can show that in the regions of
complexa1 domain where

Im~a1!@1 and s5O~1!, ~66!

we have

V1~a1 ,t !5o~1! and V2~a1 ,t !5o~1!,

as Im~a1!→`. ~67!

This is easy to see over one period in thea8 variable since

u“z8G~z2z8!u<
C

uIm~a1!u21uRe~a2a8!u2 , ~68!

which tends to zero as Im(a1)→`. The contributions from
other periodic images can be estimated using the Ewald s
mation formula.18 Note that the integral inV1 or V2 involves
the derivatives ofz(a8,t). Since the derivativesza i

( i
51,2) are evaluated only atreal a8, the integrand remains
small even at the points where the leading order local te
blow up, which corresponds to either (11sa1

)50 or (1

1sa1
* )50.

The above local system is a generalization of the lo
system obtained by Cowley, Baker and Tanveer in Ref. 8
2-D vortex sheets. For eacha2 fixed, we can apply the sam
analysis developed by Cowley, Baker and Tanveer8 to show
that s and s* develop singularities of order 3/2 in the e
tendeda1 domain att501. For the sake of completenes
we outline some of the key steps in the early time singula
analysis of Cowley, Baker and Tanveer.8 There are two cases
In case one, there existsa10 such that 11sa1

(a10) and 1

1sa1
* (a10) vanish simultaneously. In case two, there exi

a10 such that only one of two quantities mentioned abo
vanishes ata10. We only demonstrate the second case
which we assume

11sa1
~a10!50,

but

11sa1
* ~a10!Þ0.

As noted by Cowley, Baker and Tanveer,8 one needs to
introduce a rescaling neara15a10. In order to determine
the appropriate asymptotic structure, we expand the solu
s and s* first in time and then in space neara15a10. Let
z5a12a01. We have

s5s001s01z1
1

2
s02z

21¯1S s01*

2~11s01* !
1K00D t1¯ ,

~69!

s* 5s00* 1s01* z1
1

2
s02* z21¯1S 2s01

2s02z
1¯ D t1¯ , ~70!

where
e

m-

s

l
r

y

s

e
n

n

s0n5
]ns

]a1
n ~a10,0!, s0n* 5

]ns*

]a1
n ~a10,0!,

and

K005V1~a10,0!2
1

2
.

The nonuniformity arises from the leading order coefficie
of theO(t) term in ~70!. The leading coefficient of theO(t)
term in ~70! plays a determining role in the asymptotic stru
ture. This indicates that the key terms are those includings01*
and s02. These terms are comparable in~70! when z
5O(t1/2). This consideration suggests that the asympto
scaling for smallz when t!1 is

z5hvt1/2, where v5U 2

s02~11s01* !
U1/2

. ~71!

Using this asymptotic scaling, we expands and s* as fol-
lows:

s5s001s01hvt1/21S 1

2
1K001

1

11s01*
A~h! D t1¯ ,

~72!

s* 5s00* 1„~11s01* !B~h!2h…vt1/21¯ . ~73!

The functionsA(h) and B(h) will be determined from the
evolution equations ofs and s* . Using a careful analysis
which is supplemented by numerical study, Cowley, Ba
and Tanveer8 showed thatA(h) and B(h) have a branch
point singularity of order 3/2 at a certain pointh0 . In par-
ticular, A(h) andB(h) have the expansions

A~h!5A01A1~h2h0!1Ap~h2h0!p1¯ , ~74!

B~h!5B01B1~h2h0!1Bp~h2h0!p1¯ , ~75!

in the neighborhood ofh0 with A1B1Þ0, p5 3
2. Thus we

conclude thats ands* form a singularity of order 3/2 spon
taneously att501.

In the above derivation, the complex conjugate of~53! is
analytically continued into the upper half complexa1-plane,
using conjugate variables* . This is equivalent to analyti-
cally continuing the equation into the lower half of the com
plex a1-plane usings because of the definition ofs* (a1 ,t)

5s(a 1̄,t )̄ . Therefore, the directions towards which the an
lytical continuations take place are, in fact, opposite for~64!
and ~65!. As a result, it provides the coupling froms on the
upper half complexa1-domain tos on the lower half com-
plex a1-domain by introducings* . It is worth noting that it
is the coupling that generates the Kelvin–Helmholtz insta
ity.

B. Existence of the orthogonal coordinates

In the analysis presented in the previous subsection,
have assumed that (a1 ,a2) satisfies~49! and ~50!. Now we
show that for a reasonably large class ofm, we can always
find another coordinate system (b1 ,b2) such that Eqs.~49!
and ~50! are satisfied, i.e.,
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zb1
•zb2

50,
]m

]b1
51,

]m

]b2
50.

To satisfy ]m/]b1 51, we clearly should takeb1

5m(a). With this choice ofb1 , we can show that

]m

]b2
5ma1

a1b2
1ma2

a2b2
5

1

D
~2ma1

b1a2
1ma2

b1a1
!50,

~76!

sinceb15m. Here we have used the relationship

]~a1 ,a2!

]~b1 ,b2!
5

1

D S b2a2
2b1a2

2b2a1
b1a1

D . ~77!

We have assumed that the JacobianD of the transformb~a!
is nonzero, i.e.,

D[b1a1
b2a2

2b1a2
b2a1

Þ0.

The next step is to chooseb2 to satisfy the orthogonality
condition,zb1

•zb2
50, i.e.,

S za1

]a1

]b1
1za2

]a2

]b1
D •S za1

]a1

]b2
1za2

]a2

]b2
D50. ~78!

Definel1(a1 ,a2) andl2(a1 ,a2) as

l1~a1 ,a2!5
za1

•za1

za2
•za2

, ~79!

l2~a1 ,a2!5
za1

•za2

za2
•za2

. ~80!

Note that in the case that the interface is a small perturba
of a flat plane,l i is a small perturbation of a constant. B
substituting~79!–~80! into Eq. ~78!, we get

l1

]a1

]b1

]a1

]b2
1

]a2

]b1

]a2

]b2
1l2S ]a1

]b1

]a2

]b2
1

]a2

]b1

]a1

]b2
D50.

By applying ~77!, we obtain

2l1

]b2

]a2

]b1

]a2
2

]b2

]a1

]b1

]a1
1l2S ]b2

]a2

]b1

]a1
1

]b2

]a1

]b1

]a2
D50.

Furthermore, substitutingb15m to the above equation lead
to

S l1

]m

]a2
2l2

]m

]a1
D ]b2

]a2
1S ]m

]a1
2l2

]m

]a2
D ]b2

]a1
50.

~81!

Note that the equation forb2 is a first order linear hyperbolic
equation. Therefore it is well-posed. Further, if we assu
that the interface is a small perturbation of a flat plane, a
g i are near constants, then we can solve forb2 explicitly by
a line integral as in~40! to the leading order. In this case, w
can show that the JacobianD5g1

21g2
21O(e).0. In gen-

eral, we can show thatD will always be a small perturbation
of some nonzero constant. This proves the existence of
orthogonal coordinates (b1 ,b2) satisfying~49! and ~50!.

Remark:The above construction of the orthogonal coo
dinates can be applied to the vortex sheet solution at
n

e
d

he

-
y

given time. Note that we always haveb15m(a). If a is the
Lagrangian variable, thenm~a! is time independent. On the
other hand,b25b2(a) is time dependent. Thus, when w
view the solution in the original coordinate (a1 ,a2), the
vortex sheet solution can have singularity in botha1 anda2

through the coordinate mappinga5a(b,t) dynamically.

C. Motion of the singularities

In the previous subsection, we have shown how to der
a local approximate system for 3-D vortex sheets and how
use the corresponding 2-D analysis to show that singular
of order 3/2 develop spontaneously att501 in the complex
a1 domain around the positions where (11sa1

)50 and/or

(11sa1
* )50. This implies that the singularities develop s

multaneously along one or several one-dimensional cur
parametrized byb2 , i.e., b1(b2 ,t). Once the complex sin-
gularities of order 3/2 are formed initially, they generical
do not change type in time. As time increases, each poin
these one-dimensional curves moves around in the com
b1 domain. The physical singularity time is the first tim
when these curves hit the realb1 axis.

In this subsection, we show that at any timet before the
singularity time, the one-dimensional singularity curve in t
complexb1 domain, denoted asjs(b2 ,t), is always an ana-
lytical function of b2 . Due to the analyticity ofjs(b2 ,t) as
a function ofb2 , the curvejs(b2 ,t) cannot intersect with
the real (b1 ,b2) plane in a segment, for if this were the ca
it would imply that the entire curve has a zero imaginary p
by analytic continuation. Therefore, its intersection with t
real (b1 ,b2) plane contains either isolated points, or the e
tire js(b2 ,t) curve. In the latter case, the vortex sheet s
face becomes singular along an entire one-dimensional c
at the singularity time.

At time t501, from the results of the previous sectio
js(b2,0) is defined implicitly by 11s(js(b2,0),b2,0)50 or
11s* (js(b2,0),b2,0)50. Since the initial condition is as
sumed to be analytic in bothb1 and b2 , we conclude that
js(b2 ,0) is an analytic function ofb2 .

To derive an evolution equation forjs(b2 ,t), we follow
the analysis in Ref. 8. Close to the singularity we seek
asymptotic expansion of the form

s5S0~b2 ,t !1S1~b2 ,t !h1Sp~b2 ,t !hp1¯ , ~82!

s* 5S0* ~b2 ,t !1S1* ~b2 ,t !h1Sp* ~b2 ,t !hp1¯ , ~83!

where we now defineh5j2js(b2 ,t). Substituting~82!–
~83! into ~64!–~65! with the dynamically reparametrized co
ordinate (b1 ,b2), and equating like powers ofh, we find
that ~82!–~83! is an acceptable local solution if the followin
compatibility conditions are satisfied:

Ṡ02 j̇sS15
S1*

2~11S1* !
1K~js ,t !,

~84!

Ṡ0* 2 j̇sS1* 52
S1

2~11S1!
1J~js ,t !,
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j̇s
252S 1

2~11S1!~11S1* ! D
2

, Sp5~2~11S1!2Sp* !j̇s ,

~85!

where an overdot denotes differentiation with respect
time. Note that the dynamical reparametrization introduce
tangential velocity field to the right-hand sides of~64!–~65!
in the form of

zb1

]b1

]t
1zb2

]b2

]t
.

This corresponds to choosingT15]b1 /]t uzb1
u and T1

5]b2 /]t uzb2
u in ~10!–~11!. Note that in the original La-

grangian variablea, the dipole strengthm~a! is time inde-
pendent. Thus we have]b1 /]t 50 sinceb15m(a). One
can derive an equation for]b2 /]t by differentiating Eq.~81!
in time and using the evolution equation. From Eq.~81!, we
can conclude that]b2 /]t has the same order of regularity a
zb i

( i 51,2). Thus the]b2 /]t (js ,t) is well defined. Taking
into account this added tangential velocity field, which w
denote asVT5zb2

]b2 /]t, we have K(js ,t)5(V11VT)

3(js ,t)2 1
2, andJ(js ,t)5(V21VT)(js ,t)1 1

2. SinceS0 , S1

andS0* , S1* are analytic inb2 , we conclude thatjs is ana-
lytic in b2 . As a result, we show that when physical sing
larities appear, they appear either at some isolated point
along the entire one-dimensional curve in the real (b1 ,b2)
plane. It is not possible for the interface to develop fin
time singularities along a segment of a one-dimensio
curve.27 This result will be confirmed by our numerical re
sults.

D. The local form of the curvature singularity

Our arguments in the previous subsection show that
gularities of order 3/2 develop at the complexa1 domain
whereuIm(a1)u@1 at t501. As time increases, the singular
ties propagate in the extendeda1 complex domain. The firs
time at which their trajectories intersect the reala1 axis
gives the time that a physical singularity appears. In t
subsection, we study the local form of the interface shap
the neighborhood of the physical singularity.

Without loss of generality, we assume that the singu
ity forms att50 and (a1 ,a2)5(0,0), and that the surface i
moving with a velocity ofż at that point. We also assum
that at the time of singularity formation, the surface is loca
flat in the neighborhood of the singularity, withz
;z0(a1 ,a2), wherez0 is a plane.

Motivated by our leading order analysis near equil
rium, we introduce atime independentchange of variables
from a to b given by ~39!–~40!. To simplify our presenta-
tion, we may assume that such a change of variables
been made att50. We will still denoteb asa. It is easy to
check that in this new coordinate, we have

]m

]a1
51,

]m

]a2
50. ~86!

We seek an asymptotic expansion of the solution of
three-dimensional vortex sheet equation~9!. Following the
o
a

-
or

al

n-

s
in

r-

-

as

e

idea of Cowley, Baker and Tanveer,8 we separate the integra
on the right-hand side of~8! into two regions: a local region
where ua8u5O(t) and an outer region covering the rest
the sheet,

]z

]t
~a,t !5S E

ua8u.d
1E

ua8u<d
D u“am~a8!T,“az~a8,t !Tu

3“z8G„z~a,t !2z~a8,t !… da8. ~87!

In order to determine the local shape of the vortex sh
near the singularity, it is not necessary to consider the fi
integral in detail, other than to note that in the Taylor expa
sion of z(a,t) in powers of t, the first two terms of the
asymptotic expansion can be assumed to beO(t0) and
O(t1), as in Cowley, Baker and Tanveer.8 This means that
the leading order contribution from the first integral is
orderO(t0). It also suggests that the leading order correct
terms from the first integral is smaller than that of the seco
integral, as we will show later. Therefore, the shape of
vortex sheet in the neighborhood of the singularity is ess
tially determined by the second integral. In order to appro
mate the singularity, it is convenient to writez in the form of
components on the two tangential and one normal directio

z5 ż0t1S z0
t1

z0
t2

z0
n
D 1S P1~a,t !

P2~a,t !
P3~a,t !

D , ~88!

where

z0
t15z0•t1 , z0

t25z0•t2 , z0
n5z0•n,

and

t15

z0a1

uz0a1
u
, t25

z0a2

uz0a2
u
,

n5

z0a1
Ãz0a2

uz0a1
Ãz0a2

u
,

whereP1 , P2 andP3 are small perturbations of the interfac
from the tangent plane in thet1 , t2 andn directions, respec-
tively.

We substitute~88! into the second integral of the three
dimensional vortex sheet equation and seek asymptotic
pansions ofPi ’s. We follow the analysis by Hou and Zhang13

in which they studied the growth rate for the linearized m
tion about an arbitrary smooth solution to the thre
dimensional vortex sheet equation. In our case, we can
their result directly because a flat plane is an equilibriu
state of Eq.~8!, and therefore, the leading order terms e
tracted from the asymptotic expansion coincide with t
leading order terms in the linearized equation.

Motivated by the leading order analysis near equilibriu
in Sec. II B and the analysis in Hou and Zhang,13 we intro-
duce a change of variables from (P1 ,P2) to (f1 ,f2) as
follows:

f15~s2!21H̃2P12~s1!21H̃1P2 , ~89!
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f25~s1!21H̃1P11~s2!21H̃2P2 , ~90!

where H̃1 and H̃2 are the Riesz transforms defined on t
interface,

~H̄ l f !~a!

5
1

2p E ~a l2a l8! f ~a8!

uz0a1
~a!~a12a18!1z0a2

~a!~a22a28!u3 da8,

~91!

ands l
215uz0a l

u with l 51,2. Using the property~86! of our

coordinate, we can greatly simplify the leading order syst
derived by Hou and Zhang.13 By using the properties of the
Riesz transforms@see Lemma 4.4 and Eqs.~41!–~42! in Hou
and Zhang13#, we obtain the following leading order approx
mation to the 3-D vortex sheet equation:

]f1

]t
5E1~f1 ,f2 ,P3!, ~92!

]f2

]t
5

1

2
s1

3s2

]P3

]a1
1E2~f1 ,f2 ,P3!, ~93!

]P3

]t
52

1

2
s1

5s2
3 ]f2

]a1
1

1

2
s1

4s2
4 ]f1

]a2
1E3~f1 ,f2 ,P3!,

~94!

whereE1 , E2 andE3 are the general representations of ter
that are either smaller or smoother than the leading o
terms, provided that the perturbations are of small amplitu
While the Hou and Zhang analysis is for smooth solutio
their result can also be generalized to interfaces that dev
singularities of order 3/2. Moreover, the assumption of
orthogonal coordinate in Hou and Zhang13 is not necessary
It can be removed using the analysis of a related pape
Hou and Zhang22 @see~67! on p. 15 of Hou and Zhang22#.
The additional terms due to the nonorthogonal coordin
@see Eqs.~74!–~75! on p. 17 of Hou and Zhang22# contribute
only to the lower order terms since we assume the interf
is a small perturbation near the equilibrium. A variant of th
result has been proved by Caflisch and Semmes12 for 2-D
vortex sheets. An estimate similar to Caflisch and Semm
can also be derived for 3-D surfaces using Clifford alge
representation. To illustrate, we first consider the 2-D cas
typical term inEi consists of

1

p E S 1

z~a!2z~a8!
2

1

za~a8!~a2a8! Dda8.

Let z(a)5a1s(a), and assume thats is of a small ampli-
tude. Thus we haveza511sa . By expanding 1/(11sa) in
Taylor series, we get
s
er
e.
,

op
n

y

te

e

es
a
A

1

p E 1

za~a8!~a2a8!
da8

5
1

p (
k50

`

~21!kE sa~a8!k

~a2a8!
da8

5 (
k50

`

~21!kH~sa
k !, ~95!

where H is the Hilbert transform, H( f )(a)
5 1/p * @ f (a8)/(a2a8)# da8. Similarly, we have

1

p E 1

z~a!2z~a8!
da8

5
1

p (
k50

`

~21!kE „s~a!2s~a8!…k

~a2a8!k11 da8. ~96!

Comparing Eq.~96! with Eq. ~95! term by term, we find that
the zeroth order terms in both equations vanish. For the le
ing order linear term from Eq.~96!, integration by parts im-
plies that

1

p E „s~a!2s~a8!…

~a2a8!2 da85H~sa!,

which cancels exactly the linear term from Eq.~95!. For the
quadratic term from Eq.~96!, we have after performing in-
tegration by parts twice,

1

p E „s~a!2s~a8!…2

~a2a8!3 da8

5H~sa
2 !2

1

p E „s~a!2s~a8!…

~a2a8!
sa8a8~a8!da8,

which cancels the corresponding quadratic term in Eq.~95!
with an error term of the form

1

p E s~a!2s~a8!

~a2a8!
sa8a8~a8!da8. ~97!

If s(a) has a singularity of order 3/2, in other words,s(a)
has 3/2 order regularity~in C3/2), then the kernel (s(a)
2s(a8))/(a2a8) is a smoothing kernel of order 3/2. Thi
means that we can gain 3/2 order regularity to the singu
integrandsa8a8 in Eq. ~97!. Therefore, we argue that th
error term given by Eq.~97! is a half order smoother than th
leading order term, which is of ordersa . Because of the
nonlinearity, the error term is also smaller in amplitude. T
argument can continue to higher order terms. For exam
for the third order terms, the error functions have the follo
ing forms:

1

p E S s~a!2s~a8!

a2a8 D ~sa8
2

!a8~a8!da8,

or

1

p E S s~a!2s~a8!

a2a8 D 2

sa8a8~a8!da8.

In either case, we have a smoothing kernel of order 3/2. T
the same argument used for the quadratic terms applies
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The above argument can be generalized to the 3-D c
by using the Taylor expansion in terms of the small pert
bations (S1 ,S2 ,S3). Instead of dealing with the Hilber
transform as in the 2-D case, we now have to deal with
Riesz transform. Since the derivations are quite technical
would not present them here. Our numerical experime
have also confirmed that the error terms are generically
half order smoother than the leading order terms for fu
tions with singularity of order 3/2.

Next we study the self-similar singularity solution of th
leading order approximate system. Following the idea
Cowley, Baker and Tanveer,8 we introduce a rescaling by

a15~2t !x, ~98!

and seek similarity solutions of the form

f15~2t !qF1~a2 ,x!1¯ , ~99!

f25~2t !qF2~a2 ,x!1¯ , ~100!

P35~2t !qF3~a2 ,x!1¯ , ~101!

whereq.1 in order to be consistent with the assumption
the sheet being locally flat in the neighborhood of singular
Since we have shown that branch point singularities in
a1 variable develop att501, we anticipate thatFi

;Fi 6
uxuq asx→`, in order to match with the ‘‘outer’’ re-

gion wherea15O(1). For theinitial conditions analyzed in
the previous subsection, we haveq53/2.

With the rescaling of~98!, we substitute~99!, ~100! and
~101! into ~92!, ~93! and ~94! and extract theO„(2t)2q11

…

terms. It leads to

xF1x
2qF150, ~102!

xF2x
2qF25

1

2
s1

3s2F3x
, ~103!

xF3x
2qF252

1

2
s1

5s2
3F2x

1
~2t !

2
s1

4s2
4F1a2

. ~104!

Note that~102! has a zero forcing term. This suggests th
there is noqth order singularity in thef1 term. We conclude
that F150. Moreover, substituting this result into~103! and
~104! leads to

xF2x
2qF25

1

2
s1

3s2F3x
, ~105!

xF3x
2qF252

1

2
s1

5s2
3F2x

. ~106!

Sinces1511O(e) ands2511O(e) are nearly constant
in the neighborhood of the singularity, without loss of ge
erality, we may assume thats151 ands251 to the leading
order. Note that in Eqs.~105! and ~106!, a2 can be consid-
ered as a parameter, which shows that the essential dire
in which singularities form is thea1 direction.

To solve~105! and~106!, we substitute the leading orde
approximations15s251 to Eqs.~105!–~106!. Moreover,
we define

F5F21 iF 3 , ~107!
se
-

e
e

ts
e
-

y

f
.
e

t

-

ion

so that we can combine the system and obtain

xF82qF52
1

2
iF 8. ~108!

By solving F from ~108!, we obtain

F5CS x1
1

2
i D q

5C22q~4x211!q/2 exp~ iq arctan„~2x!21
…!, ~109!

to the leading order, whereC is a function ofa2 only.
The above analysis gives a leading order approxima

of the possible singularity structure at the physical singu
ity time. However, it does not provide a mechanism to det
mine the exponent,q. The selection mechanism of the sin
gularity type, i.e., the exponentq, is due to the strong
nonlinear dynamic interaction att501. As we have shown
in Sec. III A that the generic type isq53/2. Once the initial
complex singularity is formed, it propagates along some a
lytic trajectory as we demonstrate in Sec. III C. Moreover,
type will not change dynamically.

An important consequence of the above analysis is
by projecting (zt1,zt2,zn) into (f1 ,f2 ,zn), we found that the
curvature singularity does not appear on thef1 function to
the leading order at the singularity time. The curvature s
gularity of order 3/2 can be observed in the other two va
ables,f2 andzn. This special feature will be confirmed late
by our numerical study.

E. A remark on the Brady and Pullin result

Before ending this section, we would like to demonstra
that our result is consistent with that of Brady and Pullin10

In a recent paper by Brady and Pullin,10 they studied a three
dimensional vortex sheet with cylindrical shape and stren
distribution at the same time. In particular, they assum
that, initially, the interface has a normal mode disturbance
the z component of the form

h~x,y!5A exp@ i ~mx1ny!#, ~110!

with uniform velocity jumpU in thex-direction. By rotating
from (x,y,z) axes to (x8,y8,z8) axes with

kx85mx1ny, ky852nx1my, z85z, ~111!

wherek25m21n2, they showed that the singularity evolu
tion in this special case is equivalent to that of a tw
dimensional vortex sheet inx82z8 variables with velocity
jump of Um/k along thex8 direction.

To apply our analysis to this special case, we takex
5a1 andy5a2 at the initial time to fit the initial coordinates
taken by Brady and Pullin.10 Under this choice of coordi-
nates, the transformations~89! and ~90! applied to the nor-
mal mode is equivalent to a rotation of the axes. This
because the Fourier representations of the Riesz transfo
are

Hk̂~j1 ,j2!5
2 i jk

~j1
21j2

2!1/2, ~112!
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wherek51,2 and (j1 ,j2) are the Fourier mode. Since th
normal mode functions only have one Fourier mode, app
ing the Riesz transforms is equivalent to multiplying a co
stant factor to such functions. Specifically, the transform
tions ~89! and ~90! applied to normal mode initial condition
~110! is equivalent to the axis rotation of~111!. In this par-
ticular case,f1 defined by~89! turns out to be zero, as ha
been proved by Brady and Pullin.10 The strength of the sin
gularity is proportional to the projection of the jump in th
tangential velocity~in thex-direction! to thex8-direction. In
particular, when we takem50, which means that the direc
tion along which the wave propagates is orthogonal to
x-direction, the singularity disappears. This shows that
result is consistent with the result of Brady and Pullin wh
we apply our analysis to their initial data.

IV. A 3-D VORTEX SHEET MODEL EQUATION

All results in the previous section are based on form
asymptotic analysis. We need to perform a careful numer
study to confirm our analytical results. However, direct sim
lations of the three-dimensional vortex sheet equation
very expensive. The complexity in every time step isO(N4)
by direct summation of the dipole representation, whereN is
the number of particles used to discretize the surface in e
dimension. Moreover, for initial conditions which are doub
periodic perturbations to the flat surface, one has to sum
contributions from all the periodic images. This adds su
stantially to the overall computational cost. It becomes p
hibitively expensive even withN at the level ofO(100). The
fast multipole methods developed by Greengard a
Rokhlin,14 Berman and Greengard15 can be used in principle
to reduce the operating account tocN2. However, the con-
stantc could be quite large in practice.

To alleviate the numerical difficulty mentioned abov
we introduce a model equation for the three-dimensional v
-

th
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e
r

l
al
-
re

ch

he
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d

,
r-

tex sheet problem. Our model equation has two import
properties. First, it captures the leading order behavior of
singular solution for 3-D vortex sheets. In fact, we will sho
that our model equation forms the same tangential velo
jump condition as that of the full equation. Therefore,
applying the same analysis developed for the full equati
we can show that our model equation captures the singula
type of the full equation. We also show that the local sing
larity structure of our model equation has the same form
that of the full equation near the physical singularity tim
Another important property of our model equation is that
can be computed efficiently. In particular, we show that wh
using a special parametrization, our model equation can
expressed in terms of the Riesz transform, which is a con
lution operator. Thus it can be evaluated with the fast Fou
transform withO„N2 log(N)… operation count. This offers a
tremendous saving over the full equation and enables u
perform well-resolved computations to study the singular
formation of 3-D vortex sheets.

A. Formulation

In this subsection, we will derive our 3-D vortex she
model equation. From the stability analysis of Hou a
Zhang,13 we know that the leading order contribution of th
integral on the right-hand side of Eq.~8! is the near field
interaction in the neighborhood ofz(a). Since we expect
that the vortex sheet surface is differentiable at the singu
ity, we propose to approximate

z~a,t !2z~a8,t !

by the first order Taylor expansion aroundz(a8,t),

za1
~a8,t !~a12a18!1za2

~a8,t !~a22a28!.

Consequently, the 3-D vortex sheet equation~9! becomes
]z

]t
~a,t !5E u“am~a8!T,“az~a8,t !Tu

za1
~a8,t !~a12a18!1za2

~a8,t !~a22a28!

uza1
~a8,t !~a12a18!1za2

~a8,t !~a22a28!u3
da8, ~113!

which can be further simplified as

]z

]t
~a,t !5

1

4p E E „ma1
8 ~a12a18!1ma2

8 ~a22a28!…~za1
8 Ãza2

8 !~a8,t !

uza1
8 ~a12a18!1za2

8 ~a22a28!u3 da18da28 , ~114!
be
s-
wherez85z(a8,t), m85m(a8). In order to evaluate the in
tegral in the model equation~114! efficiently, we would like
to reduce the above integral to a convolution operator. To
end, we would like to find a coordinate system (a1 ,a2),
such that

za1
•za2

5C1~ t !za2
•za2

, ~115!

za1
•za1

5C2~ t !za2
•za2

, ~116!
is

whereC1(t) andC2(t) are independent ofa1 anda2 . The
construction of such a spectral coordinate system will
provided in Sec. V B. With the choice of this coordinate sy
tem, the integral on the right-hand side of Eq.~114! can be
expressed in terms of the convolution operators,

1

2 S H̃1S za1
Ãza2

uza2
u3

ma1D 1H̃2S za1
Ãza2

uza2
u3 ma2D D , ~117!

where
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Hk̃~ f !5
1

2p E ~ak2ak8! f ~a8!da8

@C2~a12a18!212C1~a12a18!~a22a28!1~a22a28!2#3/2, ~118!
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with k51,2. The exact Fourier symbols of these Riesz tra
forms can be written down explicitly as follows:13

H1
˜̂ ~j1 ,j2!5

2 i ~j12C1j2!

~C22C1
2!~j1

222C1j1j21C2j2
2!1/2, ~119!

and

H2
˜̂ ~j1 ,j2!5

2 i ~C2j22C1j1!

~C22C1
2!~j1

222C1j1j21C2j2
2!1/2. ~120!

Since the Riesz transforms,Hk̃, can be evaluated by fas
Fourier transform, the complexity in evaluating the mod
equation~117! in each time step is reduced toO(N2 logN)
from O(N4), whereN is the number of mesh points in eac
direction. Moreover, the constant in front ofO(N2) is very
small.

It is interesting to note that in the special case of 2
vortex sheets, our model equation reduces to

] z̄

]t
5

1

2i
HS g

za
D , ~121!

wherez5x(a,t)1 iy(a,t) is the complex interface position
g5ma is the time independent vortex sheet strength,H is
the Hilbert transform,H( f )5 1/p * f @(a8)/(a2a8)# da8.
Using a similar approximation by Caflisch and Semme12

we can rederive the local hyperbolic system of Caflisch a
Semmes.12 Moreover, in Hu’s Ph.D. thesis,23 he has per-
formed extensive analytical and numerical studies to sh
that our 2-D model equation captures the same type of
vature singularities of order 3/2 as the full 2-D vortex sh
equation. Further, Hu23 showed that our 2-D model equatio
captures the subtle disparity behavior between the singula
in the x variable and that in they variable observed by
Shelley5 for certain initial data.

Before we perform our numerical study using the abo
3-D model equation for vortex sheets, it is important to u
derstand whether or not our model equation can capture
same singularity structure of the full 3-D vortex sheet eq
tion. That is the topic of the next subsection, where we sh
that our model equation does capture the singularity type
the full equation, while the physical singularity time and l
cation could be different.

B. Early time singularity formation

Our goal in this subsection is to show that our thre
dimensional model equation preserves the singularity typ
the full three-dimensional vortex sheet equation. We cons
a vortex sheet interfaceG separating two layers of fluids. W
parametrize the interface by

z~a1 ,a2 ,t !5„x~a1 ,a2 ,t !,y~a1 ,a2 ,t !,z~a1 ,a2 ,t !…T,

and assume that the coordinates (a1 ,a2) satisfy
-
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za1
•za2

50,
]m

]a1
51,

]m

]a2
50, ~122!

at time t50. Further, we assume thatz is a small perturba-
tion from the flat equilibrium solution, i.e.,uz2(a1 ,a2,0)u
!1.

In the previous section, we have shown that by cons
ering a2 as a parameter and complexifyinga1 , z(a1 ,•) de-
velops singularities of order 3/2 on thea1-direction at
t501. The key to this result is to derive a local term fro
the differential-integral equation. For the full 3-D vorte
sheet equation, we have shown that the interface velocity
be written as

V~a,t !52Vloc~a,t !1V1~a,t !, ~123!

5Vloc~a,t !1V2~a,t !, ~124!

where

Vloc5
za1

2uza1
u2 , ~125!

at t50, andV1 , V2 stand for the limiting velocity approach
ing from the upper and lower layer fluid, respectively.

Furthermore, the local term 2Vloc represents a tangentia
velocity jump from the upper layer limiting velocity to th
lower layer limiting velocity across the sheet. We found th
the jump in tangential velocity fields is the driving force
the development of vortex sheet singularities. To derive
similar local approximate system for our model equation,
analyze the difference between the right-hand side of the
equation and that of our model equation. We will show th
the difference is a regular integral and does not generate
discontinuity when extended into the complexa1 domain.

Define

uf~a,t !52
1

4p E E u“am~a8!T,“az~a8,t !Tu

3
z~a,t !2z~a8,t !

uz~a,t !2z~a8,t !u3
da8,

and

umod~a!52
1

4p E E u“am~a8!T,“az~a8,t !Tu

3
za1

~a8,t !~a12a18!1za2
~a8,t !~a22a28!

uza1
~a8,t !~a12a18!1za2

~a8,t !~a22a28!u3
da8,

where

u“amT,“azTu5
]m

]a1
za2

2
]m

]a2
za1

.

The difference is
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Diff ~a,t !5~uf2umod!~a,t !

52
1

4p E E u“am~a8!T,“az~a8,t !Tu

3K~a,a8,t !da8,

where

K~a,a8,t !5
z~a,t !2z~a8,t !

uz~a,t !2z~a8,t !u3

2
za1

~a8,t !~a12a18!1za2
~a8,t !~a22a28!

uza1
~a8,t !~a12a18!1za2

~a8,t !~a22a28!u3 .

For initial data which are small analytic perturbations to t
equilibrium, we can show that

lim
a8→a

K~a,a8,t !<
A

ua2a8u3/2 ~126!

for a2 real anduIm(a1)u small. The above estimate holds u
to the singularity time. This estimate implies that the ker
K(a,a8) is integrable, and the integral is continuous ina.
Therefore, there will be no jump on the integral when mo
ing from one side of the reala1-axis to the other side of the
real a1-axis.

Moreover, we can show that if the vortex sheet is
order O(e) perturbation to equilibrium, Diff(a,t) contains
only higher orderO(e2) contributions. In other words, ou
model equation captures all the leading order contributi
of the full 3-D vortex sheet. Since the analysis is quite te
nical, we would not present it here. Our numerical expe
ments indicate that Diff(a,t) is half order smoother thanuf

or umod even if z develops singularities of order 3/2. See t
arguments after Eq.~94!. A variant of this result has bee
proved by Caflisch and Semmes12 for 2-D vortex sheets. This
is also supported by our numerical experiments for anal
functions with singularities of order 3/2.

To derive a local approximate system for the mod
equation, we express the velocity field in terms of the vel
ity field of the full 3-D vortex sheet equation and the diffe
ence operator, Diff(a,t):

Vmod5Vf2Diff,

whereVmod is the velocity evaluated from the model equ
tion. Using Eqs.~124! and ~123!, we obtain

Vmod52Vloc1V12Diff, ~127!

5Vloc1V22Diff. ~128!

Since Diff is continuous across the reala1 axes, Diff does
not contribute any jump in the tangential velocity field
Thus the model equation and the full equation generate
same jump in the tangential velocity fields. Moreover, sin
Diff is smaller and smoother than the leading order contri
tion, Vloc , we obtain the same local approximate system
our model equation as that for the full vortex sheet equat
Thus the analysis we developed for the early time singula
for the full 3-D vortex sheet equation applies to our mod
equation. Consequently these two equations develop
l
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same type of singularities at almost identical location up
the leading order term att501. However, it is important to
note that the trajectories of the singularities in the exten
a1 domain for the model equation are different from tho
for the full vortex sheet equation. This is because the low
order terms also contribute to the propagation of the sin
larity trajectories.

C. Local form of the curvature singularity

In this subsection, we show that our model equation p
serves the same local form of the curvature singularity n
physical singularity time as the full vortex sheet equation

From the analysis presented in the previous section,
sufficient to show that we can derive the asymptotic syst
~92!–~94! from the model equation. Following the derivatio
by Hou and Zhang,13 we can show that as long as the pe
turbations are small in magnitude, the difference between
model equation and the full equation only contributes
smoother or smaller terms. Thus, the leading order sys
from our model equation has exactly the same leading o
terms as~92!–~94!. Following the same derivations in Se
III D, we can show that by the same transformation on
interface variables, our model equation preserves the s
local form of the curvature singularity near physical sing
larity time.

V. NUMERICAL STUDY

In this section, we confirm our theoretical analysis
performing numerical computations on three-dimensio
vortex sheet problems. After briefly reviewing the formul
tion for our model equation, we will discuss some impleme
tation issues and outline the computational algorithm. O
detailed numerical experiments confirm several aspects
our analytical results and provide strong evidence that sin
larities of order 3/2 develop for 3-D vortex sheets at so
isolated points. Moreover the solution is more singular in
b1 direction than in theb2 direction.

A. Formulation

In this subsection, we would like to further simplify ou
3-D model equation derived in the previous section so tha
can be computed more efficiently. As we can see, the inte
in the model equation~114! is not a convolution operator in
its present form. If we use direct numerical summation in o
evaluation of the velocity integral, it would takeO(N4) com-
putational complexity in each time step, whereN is the num-
ber of mesh points in each direction. The numerical calcu
tion becomes prohibitively expensive even whenN reaches
the level ofO(100). To be able to efficiently evaluate th
velocity on the right-hand side of the equation, we introdu
a special coordinate system (a1 ,a2) to reduce the integra
operator in~114! to a convolution operator, so that fast Fo
rier transform can be used to evaluate the integral oper
efficiently.

The special coordinate system is chosen so that E
~115!–~116! are satisfied. With this set of coordinates, t
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integral on the right-hand side of Eq.~114! becomes a con
volution operator with the kernel

a i

2p~C2a1
212C1a1a21a2

2!3/2, ~129!

wherei 51,2. In particular, whenC150 as in the case of ou
computation, the spectral representations of these two R
transforms become

2 i j1

C2~j1
21C2j2

2!1/2, ~130!

and

2 i j2

~j1
21C2j2

2!1/2, ~131!

respectively. For an interface near equilibrium, it is possi
to prove the existence of a set of coordinates satisfy
~115!–~116! by a fixed point iteration@see ~138!–~139!#.
From our numerical experiences, we find that such coo
nates exist even for large initial data.

B. Some implementation issues

In this subsection, we discuss several implementa
issues for our computations. The most important issue is h
to construct a coordinate system that satisfies Eqs.~115!–
~116! for all time. We divide this into two steps.

1. Step 1: Initial orthogonal system

Initially, we need to find a system of (a1 ,a2) such that
Eqs. ~115!–~116! are satisfied. We can derive a system
PDEs for these coordinates which can be solved by an it
tion method.

Specifically, if the surface we consider is given by

z5„x,y,h~x,y!…

with x and y being the two parameters, we want to find
mapping (x,y)⇒(b1 ,b2) such that Eqs.~115!–~116! are sat-
isfied. Suppose we have

x5b11S1~b1 ,b2!, ~132!

y5b21S2~b1 ,b2!, ~133!

whereS1 andS2 are periodic inb. By the chain rule, we ge

zb1
5~xb1

,yb1
,hxxb1

1hyyb1
!

5„11S1,b1
,S2,b1

,hx~11S1,b1
!1hyS2,b1

…,

zb2
5~xb2

,yb2
,hxxb2

1hyyb2
!

5„S1,b2
,11S2,b2

,hxS1,b2
1hy~11S2,b2

!….

Thus, substituting these equations into~115!–~116! we get
the coupled equations forS1 andS2 :

]S1

]b2
1

]S2

]b1
5C1~zb2

•zb2
!2~zb1

•zb2
2S1,b2

2S2,b1
!

[F1 , ~134!
sz

e
g

i-

n
w

f
a-

]S1

]b1
2C2

]S2

]b2
5S S1,b1

2
zb1

•zb1

2
D

2C2S S2,b2
2

zb2
•zb2

2
D

[F2 , ~135!

where

C15
^zb1

•zb2
&

^zb2
•zb2

&
, C25

^zb1
•zb1

&

^zb2•zb2&
,

with ^ f &5 (1/4p)2 * f (b)db. Further, by differentiating
~134! and ~135! with respect tob1 and b2 and with some
manipulations, we can derive the following couple system
elliptic equations forS1 andS2 :

]2S1

]2b1
1C2

]2S1

]2b2
5C2

]F1

]b2
1

]F2

]b1
, ~136!

]2S2

]2b1
1C2

]2S2

]2b2
5

]F1

]b1
2

]F2

]b2
. ~137!

For surfaces which are small perturbations from a flat s
face, the existence ofS1 and S2 can be proved by a fixed
point iteration. However, we found from our numerical stu
that such a coordinate system exists generically for m
general surfaces. In practice, we also solve forS1 andS2 by
the same iterative method. Specifically, the iteration sche
is given as follows:

]2S1
n11

]2b1
1C2

n
]2S1

n11

]2b2
5C2

n
]F1

n

]b2
1

]F2
n

]b1
, ~138!

]2S2
n11

]2b1
1C2

n
]2S2

n11

]2b2
5

]F1
n

]b1
2

]F2
n

]b2
, ~139!

where

C1
n5

^zb1

n
•zb2

n &

^zb2

n
•zb2

n &
, C2

n5
^zb1

n
•zb1

n &

^zb2
n
•zb2

n &
.

Herezb i

n , Fi
n , etc., stand for the functions obtained using t

nth iterative solutionSi
n ( i 51,2). These quasi-Poisson equ

tions for S1 and S2 are easily solved using FFT. For man
examples we have considered, such an iterative scheme
verges rapidly. It takes only a few iterations to reduce
iterative error to the order of 10210. The same idea can als
be applied to more general surfaces which are parametr
by z5„x(a),y(a),z(a)….

2. Step 2: Enforcing (115) –(116) dynamically

During the evolution, it is possible that the coordinat
from the last time-step do not satisfy Eqs.~115!–~116! in the
current time-step. To avoid re-adjusting the coordinates
ery time-step, we add two tangential velocities to the evo
tion equation. These two added tangential velocities are
termined by a set of linear elliptic PDE’s to guarantee th
Eqs.~115!–~116! are satisfied for all time.
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As we know, the shape of the interface is determin
solely by its normal velocityw•n. Let (T1,T2) denote the
tangential velocity fields to be added to the original interfa
equation so that Eqs.~115!–~116! are satisfied for all time.
The governing equation for the interface now takes the fo
of Eq. ~10!.

For any given time, we can derive a system of line
elliptic equations forT1 andT2 to satisfy Eqs.~115!–~116!.
Since the derivation of the elliptic system is quite technic
we defer it to Appendix B.

In the previous section, we have shown that the mo
equation generates the same type of branch point singu
ties at the extended complex domain as the full 3-D vor
sheet equation att501. If we use the same reparametriz
tion given by~115!–~116! for both the model equation an
the full 3-D vortex sheet equation, the solutions of these t
equations still have the same singularity structure att501
in the new parametrization. While it is possible that the re
arametrization may introduce additional singularities of
different type in the extended complex domain, the analy
study of Caflisch, Ercolani, Hou and Landis24 for the leading
order hyperbolic system shows that an isolated singularit
generically a square root branch point and it is stable un
dynamic evolution. A square root branch point singularity
the hyperbolic system studied by Caflischet al.24 corre-
sponds to a singularity of order 3/2 in the interface positi
Thus, without loss of generality, we may assume that bra
point singularities of order 3/2 are generated att501 for
both the model equation and the full 3-D vortex sheet eq
tion in the new parametrizationb.

Note that the new parametrization does not change
tangential velocity jump. Moreover, the argument that
difference between the right-hand sides of the full vor
sheet equation and the model equation is smoother still
plies with the new parametrization. Further, the reparame
zation of the vortex sheet does not change the shape o
surface, and curvature is independent of parametrizat
These considerations suggest that the model equation
tures the leading order singularity structure of the full 3
vortex sheet equation at the physical singularity time.

The modification of the tangential velocity changes t
evolution equation of the dipole strengthm, i.e., m is not
conserved with time anymore. The evolution equation om
under the new added tangential velocities is now gover
by Eq. ~10!.

We remark that after each small time-step evolutio
even though we evolve the interface with the added tang
tial velocities,~115!–~116! might not be completely satisfie
at the discrete level due to the numerical error. Therefore,
need to use a projection technique to ensure that~115!–~116!
are exactly satisfied at every time step~see Ref. 25 for
details!.

3. Algorithm

We can summarize our computational algorithm as f
lows.

~1! Given the initial interfacez, construct (b1 ,b2) that sat-
isfies ~115!–~116!.
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~2! Evaluate the original interface velocity,w, on the right-
hand side of Eq.~114! using FFT.

~3! Compute the tangential velocitiesT1 andT2 on b1 and
b2 directions using the original interface velocityw.

~4! Evolve the interface and the dipole strength using
fourth order Adams–Bashforth method.

~5! Reconstruct the fluid interface based on the newly
dated interface to satisfy~115!–~116! exactly in the dis-
crete level.

~6! Compute the solution at the next time step from step~2!.

C. Numerical results

In this subsection, we perform careful numerical stud
using our 3-D vortex sheet model to confirm our theoreti
results obtained in the previous sections. In particular,
investigate three aspects of singularity formation in 3-D v
tex sheets:

~1! Interface shape and the curvature.
~2! Singularity formation.
~3! Local singularity structure.

In our three-dimensional computations, we study tw
initial conditions. The first case corresponds to using an
thogonal coordinate, while the second case uses a no
thogonal coordinate.

1. Case 1: Orthogonal coordinates

In this study, we take the following initial data:

z~ t50!5~a1 ,a2 ,«1 sin„a12«2 sin~a2!…!, ~140!

where«150.1, and«250.5, with

m~a1 ,a2!52a1 . ~141!

For this initial condition, we solve the model equatio
with N564, N5128, N5256, N5512 andN51024, re-
spectively, to ensure the convergence of our computatio
Every time we double the mesh points, we reduce the tim
step Dt by half. As a result,Dt ranges from 0.01 to
0.000625. As in numerical study for 2-D vortex sheets,4,5 it is
essential to control the growth of round-off error by using
Fourier filter. The Fourier filter is simply to set to zero a
Fourier coefficients that are below a certain given toleran
The filter tolerance level is set to 10212 in our computations
which use the standard double precision. Higher precis
computations would be desirable especially if we want
obtain an accurate form-fit for the singularity. However, t
computations using higher precisions become very expen
with our limited computing resources. So we only prese
the results using double precision arithmetics.

Specifically, our computations proceed as follows.

~1! Evolve the interface usingN5256, Dt50.0025 up tot
51.00.

~2! Double the mesh size, reduce the time step in half,
continue the computation up tot51.65 withN5512 and
Dt50.00125.

~3! At time t51.45, further double the mesh size, reduce
time step in half and compute up tot51.60 with N
51024 andDt50.000625.
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We summarize our numerical results below.

~1! Interface shape and the curvature plot. In this part of the
study, we illustrate the dynamical evolution of the she
interface and its mean curvature. In Fig. 1, we plot t
sheet interface att51.64. The interface looks quit
smooth at this time although the curvature already de
ops some high gradient structures, see Fig. 4. We can
from Figs. 2–5 that the mean curvature develops a ra
growth in time and a curvature singularity may devel
in finite time. It is important to point out that the initially
smooth curvature function is pushed to form a sharp g
dient along a certain direction~like the b1 direction in
our analysis in Sec. II B! while it remains relatively
smooth perpendicular to this direction~like theb2 direc-
tion in our analysis in Sec. II B!. This confirms our ana-
lytic prediction that singularity formation for 3-D vorte
sheets can be essentially reduced to a 2-D vortex s
along a certain space curve. For these particular in

FIG. 1. Interface calculated from a three-dimensional model equatio
t51.64.

FIG. 2. Curvature calculated from a three-dimensional model equatio
t51.20.
t
e

l-
ee
id

-

et
l

data, we haveb15a1 and b25a2 according to~39!–
~40!.
In Sec. III, our analysis predicts that for each fixedb2 ,
singularities of order 3/2 form in the extended compl
b1 domain spontaneously att501. Since the speeds a
which the singularities propagate depend onb2 , we ex-
pect that the physical singularities would generically a
pear at some isolated points first, and then spread in
one-dimensional curve. In Fig. 6, we present the cont
plot of the curvature. We can see that the singular reg
of curvature is indeed concentrated along a o
dimensional curve which is parametrized byb2 . The
curvature achieves its maximum value at isolated po
along these one-dimensional curves.

~2! Singularity formation. We study the singularity type in
this part of the numerical study. Our purpose is to co
firm that the singularity is of order 3/2 for a wide rang
of initial conditions along a certain direction. Followin
the work of Krasny,4 we use the log–log plot of the

at

at

FIG. 3. Curvature calculated from a three-dimensional model equatio
t51.400.

FIG. 4. Curvature calculated from a three-dimensional model equatio
t51.60.
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Fourier coefficients of thex-component of the intersec
tion along theb1 direction with a fixedb2 . The b2 is
chosen such that the maximum curvature value is
tained at the intersection of these two directions. If t
interface forms a singularity of order 3/2 attc as pre-
dicted by our analysis, the slope of the logarithm of t
Fourier modes would approach22.5 asymptotically. In
fact, from Figs. 7–10, we see that the Fourier modes
approaching the22.5 slope as time increases. In partic
lar, the four curves in Figs. 8–10 represent the Fou
modes at four different times. As the singularity time
approached, we can see that the Fourier modes co
sponding to the lower to intermediate wave numb
converge to the22.5 slope, while the higher wave num
ber modes also move towards this slope as the singu
ity time is approached. In addition, we find that thex, y,
andz components form a singularity of order 3/2 simu
taneously. This indicates that the interface may form

FIG. 5. Curvature calculated from a three-dimensional model equatio
t51.646.

FIG. 6. Curvature contours calculated from a three-dimensional m
equation att51.646.
-
e

re

r

re-
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a

singularity of order 3/2 in finite time.
To provide further evidence of singularity formation o
order 3/2, we have performed a careful resolution stu
In Fig. 11, we present the numerical resolution study
the x variable usingN5512 andN51024, respectively.
In addition, Fig. 12 shows the close-up of the plot in F
11 in the high frequency region. From the close-up p
ture, we observe that as soon as the logarithms of
Fourier modes deviate from the22.5 slope, the curves
representing the logarithms of the 512 by 512 compu
tions also deviate from those in the 1024 by 1024 co
putations. Therefore, we conclude that the decaying
havior of the higher wave number modes in these figu
is due to the lack of numerical resolution and the filte
ing effect. Moreover, we observe that at the same h
wave number, the coefficients computed from high
resolution (N51024) are closer to the22.5 slope. This

at

el

FIG. 7. Cross section of the curvature plot alongy5p, at t51.2, 1.3, 1.4,
1.5, 1.641–1.647, respectively.

FIG. 8. Log–log plot of the Fourier coefficients in anx variable along the
a1-direction passing through the maximum curvature position at timt
51.61, 1.62, 1.63, 1.64. The Fourier coefficients increase as time incre
The straight line shows the22.5 slope.



en
e
m
he
or
h

he
lu
s

.g
o
on
n,
ex

for
ted
e
s.
tent

o

s

we
e

e
as

e
as

e

esh

the
e

024

167Phys. Fluids, Vol. 15, No. 1, January 2003 Singularity formation in 3-D vortex sheets
indicates that the higher wave number modes will ev
tually converge to the22.5 slope as more and mor
mesh points are used. This resolution study gives so
evidence that a singularity of order 3/2 is formed at t
singularity time. Very similar behavior is observed f
the y andz variables. Since the results are basically t
same, we do not present them here.
We remark that to obtain a complete confirmation of t
order of the singularity, one has to perform high reso
tion computations with high machine precisions, and u
some sophisticated form-fitting technique; see, e
Shelley.5 Unfortunately, due to the drastic increase
computational costs for the 3-D vortex sheet equati
we could not afford to perform such high resolutio
high machine precision computations for the 3-D vort

FIG. 9. Log–log plot of the Fourier coefficients in ay variable along the
a1-direction passing through the maximum curvature position at timt
51.61, 1.62, 1.63, 1.64. The Fourier coefficients increase as time incre
The straight line shows the22.5 slope.

FIG. 10. Log–log plot of the Fourier coefficients in az variable along the
a1-direction passing through the maximum curvature position at timt
51.61, 1.62, 1.63, 1.64. The Fourier coefficients increase as time incre
The straight line shows the22.5 slope.
-

e

e

-
e
.,
f
,

sheet equation. This should be done and will be left
future work. Thus, our computational results presen
in this paper provide only partial confirmation of th
finite time singularity formation of 3-D vortex sheet
The results on the order of the singularities are consis
with our analytic prediction.

~3! Local singularity structure. In Sec. III D, in order to
study the local singularity structure, we introduce tw
new variablesf1 andf2 . We show that to the leading
orderf2 andz form singularities of order 3/2 but there i
no singularity of order 3/2 in thef1 variable. Since our
analysis is based on formal asymptotic analysis,
would like to confirm this result numerically. From th
log–log plot of the Fourier coefficients of thef1 andf2

es.

es.

FIG. 11. Log–log plot of the Fourier coefficients in anx variable along the
a1-direction passing through the maximum curvature position at timt
51.641, to 1.647 at the interval of 0.001. The straight line shows the22.5
slope. The two sets of curves correspond to computations using 512 m
points and 1024 mesh points, respectively.

FIG. 12. Close-up plot of Fig. 11. Note that as soon as the logarithms of
Fourier modes deviate from the22.5 slope, the curves corresponding to th
512 by 512 computations also deviate from those of the 1024 by 1
computations.
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variables along theb1 direction in Figs. 13 and 14, we
see that the Fourier modes of thef1 variable approache
the 23.1 slope, while the Fourier modes of thef2 vari-
able approaches the22.5 slope. This confirms thatf1 is
indeed smoother thanf2 near the singularity time.

Throughout our analysis, we argue that under the spe
set of coordinates, one direction is the essential singula
direction ~the b1 direction!. In the case we study here, eve
with the added tangential velocities and the adjusted dip

FIG. 13. A comparison of the log–log plot of thef1 variable Fourier coef-
ficients to that of thef2 variable along thea1 direction. Both cross section
along a1 pass through the maximum curvature position at timet51.646.
The upper line corresponds to the Fourier coefficients of thef2 variable, the
straight line has the slope of22.5. The lower line corresponds to the Fouri
coefficients of thef1 variable, the straight line has the slope of23.1.
Solutions are computed usingN5512 andN51024.

FIG. 14. Zoomed plot of Fig. 13. A comparison of the log–log plot of t
f1 variable Fourier coefficients to that of thef2 variable. Both intersections
pass the maximum curvature position at timet51.646. The upper line is the
Fourier coefficients of thef2 variable, the straight line has the slope
22.5. The lower line stands for the Fourier coefficients of thef1 variable,
the straight line has the slope of23.1. Solutions are computed usingN
5512 andN51024.
ial
ty

le

strength, theb1 direction corresponds to thea1-direction. So
the a1-direction should be the essential singular direction
the leading order. To confirm this, we compare the Fou
coefficients of the solution along thea1-direction to the Fou-
rier coefficients of the solution along thea2-direction. As we
can see from Fig. 15, even though our«150.1 is not particu-
larly small, there are still disparities in the tails of the Four
coefficients in thex variable. Almost the same behavior
observed for they and z variables. This shows that theb1

direction, which coincides with thea1-direction in this case,
is the essential direction driving the singularity formation
the 3-D vortex sheet problem. We also present the same c
parison at a later time in Fig. 16 which provides furth
evidence to support our analytical result.

FIG. 15. A comparison of the log–log plot of the Fourier coefficients in
x variable along thea1-direction with that along thea2-direction at t
51.64. The upper line corresponds to the Fourier coefficients along
a1-direction. The lower line corresponds to the Fourier coefficients alo
the a2-direction.

FIG. 16. A comparison of the log–log plot of the Fourier coefficients alo
thea1-direction with that along thea2 direction att51.647. The upper line
corresponds to the Fourier coefficients along thea1-direction. The lower
line corresponds to the Fourier coefficients along thea2-direction.
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2. Case 2: Nonorthogonal coordinates

In our last example, there exists a set of coordinates
satisfy the equation withC150. In addition, the tangentia
velocity jump direction coincides with one of the parame
direction. This makes the computation somewhat specia
our next example, the tangential velocity jump has the c
tributions in botha1 and a2 directions. Also, there is no
orthogonal coordinates that satisfy Eqs.~115!–~116!.

In this study, we choose the initial condition as

z~ t50!5~a1 ,a2 ,«1 sin„a12«2 sin~a2!…!, ~142!

where«150.1, and«250.5, with

m~a1 ,a2!5a11a2 . ~143!

In our computations, we use the mesh size of 256
Dt50.0025 to compute up tot51.500, then tot51.825
with a mesh size of 512 andDt50.00125, finally to t
51.885 with a mesh size of 1024 andDt50.000625. For
these initial data, we haveb15a11a2 , b25a12a2 , ac-
cording to~39!–~40!. To confirm our analysis for this case
we analyze theb1 and b2 intersections to compare the
Fourier coefficients.

In Fig. 17, we present the log–log plot of the Fouri
coefficients of thex variable. Two sets of plots are generate
one along theb1-direction with a fixedb2 , and the other
along theb2-direction with a fixedb1 . The fixed parameters
b1 or b2 are chosen so that the cross-section along the o
direction passes the maximum curvature position at timt
51.881, to 1.885 at the interval of 0.001. As we can see,
Fourier coefficients increase as time increases. The stra
line shows the22.5 slope. The cluster of curves on the t

FIG. 17. Log–log plot of the Fourier coefficients in thex variable along the
b1-direction versus the same Fourier coefficients along theb2-direction.
Both curves along both directions pass through the maximum curva
position at timet51.881, to 1.885 at the interval of 0.001. The top curv
correspond to the Fourier coefficients along theb1 direction. The lower
curves correspond to the Fourier coefficients along theb2 direction. The
straight line shows the22.5 slope. The solutions are computed usingN
5512 andN51024, respectively.
at
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corresponds to the Fourier coefficients along theb1 direc-
tion, while the cluster of curves in the lower part correspon
to the Fourier coefficients along theb2 direction. We can see
that solution is clearly more singular along theb1 direction
than that along theb2 direction.

In Fig. 18, we present a close-up of the Fourier coe
cients along theb1 direction presented in Fig. 17. To ensu
that we have enough resolution, we have used two set
numerical resolutions in this study, one with 512 by 5
mesh points, and in another with 1024 by 1024 mesh poi
We can see that the Fourier coefficients converge to the s
22.5 as time increases with increasing resolution. This
again consistent with our theoretical prediction given in t
previous section. The same behavior has also been obse
in the y andz variables. We do not present them here.
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FIG. 18. The close-up of the top curves in Fig. 17 along theb1 direction.
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APPENDIX A: LEADING ORDER EQUATION OF c3

In this appendix, we will derive a leading order evolution equation forc3 . To this end, we substitute~25! and ~26! into
~35!, and extract the leading order terms:

]c3

]t
52

1

4p E E g1„2H2~c18!2H1~c28!…a2
~a22a28!

uz2z8u3 1
g2„H2~c18!1H1~c28!…a1

~a22a28!

uz2z8u3

1
g2„H1~c18!2H2~c28!…a1

~a12a18!

uz2z8u3
2

g1„H1~c18!2H2~c28!…a2
~a12a18!

uz2z8u3 2
g2„H1~c12c18!2H2~c22c28!…

uz2z8u3

2
g1„2H2~c12c18!2H1~c22c28!…

uz2z8u3
2

g1~a12a18!1g2~a22a28!

uz2z8u3
da81O~«2!, ~A1!

wherec i85c i(a8), i 51,2. By using~31! and the properties of the Riesz transforms~18!–~19!, we obtain

]c3

]t
5

1

2
g1H2

2D2c11
1

2
g1H2H1D2c22

1

2
g2H2

2D1c12
1

2
g2H2H1D1c21

1

2
g1H1

2D2c12
1

2
g1H1H2D2c2

2
1

2
g2H1

2D1c11
1

2
g2H1H2D1c21

1

2
g2LH1c12

1

2
g2LH2c22

1

2
g1LH2c12

1

2
g1LH1c2

1
1

4p E g2~a22a28!1g1~a12a18!

uz2z8u3
da81O~«2!

5
1

2
~g1D11g2D2!c21

1

4p E g2~a22a28!1g1~a12a18!

uz2z8u3 da81O~«2!. ~A2!

It is necessary to analyze the integral term of Eq.~A2! and extract the leading order contributions. By further expand
the integral in terms ofSi ’s, we find that the leading order terms are

1

4p E g2~a22a28!1g1~a12a18!

uz2z8u3
da852

3

4p E g2~a22a28!@~S12S18!~a12a18!1~S22S28!~a22a28!#

uz2z8u5
da8

2
3

4p E g1~a12a18!@~S12S18!~a12a18!1~S22S28!~a22a28!#

uz2z8u5
1O~e2!. ~A3!

Using integration by parts and applying~18!–~19!, we get

1

4p E g2~a22a28!1g1~a12a18!

uz2z8u3
da8

52
1

2
g2„H1D2~S1!1~2H2D21H1D1!~S2!…2

1

2
g1„~2H1D11H2D2!~S1!1H1D2~S2!…1O~«2!. ~A4!

The above derivation is similar in spirit to that of Appendix B in the paper by Hou, Teng and Zhang.26 By substituting~25! and
~26! into ~A4!, we write the leading order terms inc1 andc2 :

1

4p E g2~a22a28!1g1~a12a18!

uz2z8u3
da8

52
1

2
g2~H1D2!~2H2c12H1c2!2

1

2
g2~2H2D21H1D1!~H1c12H2c2!

2
1

2
g1~2H1D11H2D2!~2H2c12H1c2!2

1

2
g1H1D2~H1c12H2c2!1O~«2!, ~A5!

which can be further simplified to
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1

4p E g2~a22a28!1g1~a12a18!

uz2z8u3
da8

52
1

2
~H1D11H2D2!~2g1H21g2H1!c11~H1D11H2D2!~g1H11g2H2!c21O~«2!

52~g1D11g2D2!c22
1

2
~g1D22g2D1!c11O~«2!. ~A6!

Thus we obtain the leading order evolution equation forc3 as follows:

]c3

]t
52

1

2
~g1D11g2D2!c21

1

2
~g2D12g1D2!c11O~«2!. ~A7!
sy
.
s.
APPENDIX B: DERIVATION OF EQUATIONS FOR T1

AND T2

In this appendix, we will derive the elliptic system forT1

andT2 so that Eqs.~115!–~116! are satisfied for all times.
Recall that

zb1
5uzb1

ut1 ,

zb2
5uzb2

ut2 .

Note that

„C1~ t !…2,C2~ t !, ~B1!

since

C1~ t !uzb2
u25zb1

•zb2
,uzb1

u•uzb2
u.

Thus we have

„C1~ t !…2,
uzb1

u2

uzb2
u2

5C2~ t !.

Now define

t1•t25
zb1

•zb2

uzb1
u•uzb2

u
5

C1~ t !

AC2~ t !
5cosu, 0,u,p. ~B2!

Suppose that we have constructed the initial coordinate
tem satisfying Eqs.~115!–~116! at t50. To ensure that Eqs
~115!–~116! are satisfied for all time, we differentiate Eq
~115!–~116! with respect to time. This gives

~zt!b1
•zb2

1zb1
•~zt!b2

52C1~ t !~zt!b2
•zb2

1C18~ t !uzb2
u2, ~B3!

~zt!b1
•zb1

5C2~ t !~zt!b2
•zb2

1
C28~ t !

2
uzb2

u2. ~B4!

Next, we introduce two new variablesT3 andT4 as fol-
lows:

T35T11cosuT2, ~B5!

T45T21cosuT1. ~B6!

Then we have
s-

T15
1

sin2 u
~T32cosuT4!, ~B7!

T25
1

sin2 u
~T42cosuT3!. ~B8!

Using the interface equation~10!, we can reduce~B3!–~B4!
to the following system:

uzb1
uTb2

3 1uzb2
uTb1

4 22C1~ t !uzb2
uTb2

4

52uzb2
u~ t1b1

•t2!T12uzb1
u~ t2b1

•t1!T2

12C1~ t !uzb2
u~ t1b2

•t2!T12uzb2
uwb1

•t22uzb1
uwb2

•t1

12C1~ t !uzb2
uwb2

•t21C18~ t !uzb2
u2, ~B9!

uzb1
uTb1

3 2uzb2
uC2~ t !Tb2

4

5C2~ t !uzb2
u~ t1b2

•t2!T12uzb1
u~ t2b1

•t1!T2

1C2~ t !uzb2
uwb2

•t22uzb1
uwb1

•t11C28~ t !
uzb2

u2

2
.

~B10!

If we divide Eq. ~B9! by uzb2
u and Eq.~B10! by uzb1

u, we
arrive at

AC2~ t !Tb2

3 1~Tb1

4 22C1~ t !Tb2

4 !5L11G11C18~ t !uzb2
u,

~B11!

Tb1

3 2AC2~ t !Tb2

4 5L21G21C28~ t !
uzb2

u

2
, ~B12!

where

L152~ t1b1
•t2!T12AC2~ t !~ t2b2

•t1!T2

12C1~ t !~ t1b2
•t2!T1, ~B13!

G152wb1
•t22AC2~ t !wb2

•t112C1~ t !wb2
•t2 , ~B14!

L25AC2~ t !~ t1b2
•t2!T12~ t2b1

•t1!T2, ~B15!

G25AC2~ t !wb2
•t22wb1

•t1 . ~B16!

Define
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R15L11G11C18~ t !uzb2
u, ~B17!

R25L21G21C28~ t !
uzb2

u

2
. ~B18!

By differentiating Eqs.~B11!–~B12! with respect tob1 and
b2 , we can rewrite the system as

D̃T35AC2~ t !
]

]b2
S R12

2C1~ t !

AC2~ t !
R2D 1

]R2

]b1
, ~B19!

D̃T45
]R1

]b1
2AC2~ t !

]R2

]b2
, ~B20!

where

D̃5
]2

]b1
2 22C1~ t !

]2

]b1]b2
1C2~ t !

]2

]b2
2

is an elliptic operator since„C1(t)…2,C2(t). The right-hand
sides are linear functions of“Ti andTi ( i 51,2). The solu-
tion exists for ~B19!, ~B20! by the linear elliptic system
theory. This completes the derivation of the elliptic syste
for T1 andT2.
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