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Singularity formation in three-dimensional vortex sheets
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We study singularity formation of three-dimensioriatD) vortex sheets without surface tension
using a new approach. First, we derive a leading order approximation to the boundary integral
equation governing the 3-D vortex sheet. This leading order equation captures the most singular
contributions of the integral equation. By introducing an appropriate change of variables, we show
that the leading order vortex sheet equation degenerates to a two-dimensional vortex sheet equation
in the direction of the tangential velocity jump. This change of variables is guided by a careful
analysis based on properties of certain singular integral operators, and is crucial in identifying the
leading order singular behavior. Our result confirms that the tangential velocity jump is the physical
driving force of the vortex sheet singularities. We also show that the singularity type of the
three-dimensional problem is similar to that of the two-dimensional problem. Moreover, we
introduce a model equation for 3-D vortex sheets. This model equation captures the leading order
singularity structure of the full 3-D vortex sheet equation, and it can be computed efficiently using
fast Fourier transform. This enables us to perform well-resolved calculations to study the generic
type of 3-D vortex sheet singularities. We will provide detailed numerical results to support the
analytic prediction, and to reveal the generic form of the vortex sheet singulari®0@ American
Institute of Physics.[DOI: 10.1063/1.1526100

I. INTRODUCTION from a fixed reference particle afdd, is the position of the
singularity. Although Moore’s analysis was based on formal
One of the classical examples of hydrodynamic instabil-asymptotic analysis, his result was supported by Meiron,
ity occurs when two fluids are separated by a free surfacBaker and Orszagwho analyzed a power series solution in
across which the tangential velocity has a jump discontinuitytime. Further, Moore’s result was confirmed numerically by
This is called Kelvin—Helmholtz instability. Kelvin— Krasny* and Shelley, in which the roundoff error growth
Helmholtz instability is a fundamental instability of incom- was controlled by spectral filtering. Moreover, as a rigorous
pressible fluid flow at high Reynolds number. The idealiza-validation of Moore’s analysis, Caflisch and Orell&na
tion of a shear layered flow as a vortex sheet separating twproved the existence for a slightly perturbed vortex sheet up
regions of potential flow has often been used as a model t t=0(|log(e)|) for Moore’s initial condition (see also
study mixing properties, boundary layers and coherent struduchon and Roberts More recently, Cowley, Baker and
tures of fluids. Without physical regularization such as vis-Tanveef provided a further detailed study to singularity for-
cosity or surface tension, the vortex sheet problem is ill-mation of the two-dimensional vortex sheet problem. In par-
posed in the Hadamard sense. Small perturbations in higticular, they showed how th&singularity in the vortex sheet
frequency modes can lead to rapid growth in time. Moreoveris selected at early time in the extended complex domain.
nonlinear interaction of high frequency modes can lead tdVloreover, they obtained an asymptotic description of the
singularity formation in finite time. It has been conjecturedsheet shape as the physical singularity forms.
that Kelvin—Helmholtz instability plays a role in maintaining Most studies of 2-D vortex sheets are based on formu-
turbulent flow by causing the break-up of shear layers. lating the problem in complex variables. Such a formulation
The singularity formation in two-dimensioné-D) vor-  does not generalize naturally to three-dimensig8éD) vor-
tex sheets has been thoroughly studied in the last two ddex sheets. There have been only limited progresses in the
cades. Among the early contributions, Mootudied the study of three-dimensional vortex sheets. Among them, Ishi-
nonlinear evolution of a vortex sheet with a small sinusoidahara and Kanedaprovided some evidence of the singularity
initial disturbance of amplitude. He predicted that close to formation in the three-dimensional problem by directly gen-
the singularity, the curvature of the sheet is proportional teeralizing Moore’s analysis to the three-dimensional problem.

[T —T'¢ 2 whereT is the circulation in the sheet measured However, their result does not give a clear description of the
singularity structure of the 3-D vortex sheet problem. Brady

aElectronic mail: hou@acm.caltech.ed and Pullirt® studied three-dimensional vortex sheets which
YElectronic mail: gang.hu@lehman.edu have cylindrical shape and normal mode initial data. They
®Electronic mail: pzhang@pku.edu.cn showed that for this type of special initial data, the three-
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dimensional vortex sheet problem can be reduced exactly ttion to the local vortex sheet surface in the neighborhood of
a two-dimensional vortex sheet problem. the singularity near the physical singularity time. We show
In this article, we study singularity formation in three- that with an appropriate transformation of the interface vari-
dimensional vortex sheets with more general initial data usables, the local form of the curvature singularity is observed
ing a new approach. We do not consider the surface tensioonly in two of the three components to the leading order.
effect in this study. The key in our analysis is to identify the Thus, the technique used by Cowley, Baker and Tarf\aer
leading order contribution of the three-dimensional vortexbe applied to obtain the local form of the singularity at the
sheet equation by using properties of certain singular integralingularity time. We remark that the leading order asymptotic
operators. This asymptotic analysis suggests a global changealysis cannot determine the order of the singularity. This
of variables via the Riesz transform. The leading order strucinformation must be obtained from the early time singularity
ture of the vortex sheet problem becomes more apparent uanalysis using a singular perturbation technique. The analysis
ing the new variables. Moreover, the leading orderneeds to takes into account the nonlinear interactions among
asymptotic analysis suggests we use the dipole strength a&srious singular terms by appropriately rescaling the space
one of the independent variables. Using these new variableand time variables near the singularity.
we obtain a surprising result: along the direction of the tan-  One interesting open question is whether the singularity
gential velocity jump, the three-dimensional vortex sheetn a 3-D vortex sheet first appears as isolated points or along
problem can be effectively reduced to a corresponding twoa one-dimensional line segment? We investigate this question
dimensional problem to the leading order approximationin our paper. By studying the motion of singularities in the
More precisely, we show that the Kelvin—Helmholtz insta-extended complex domain, we show that the singularity
bility is mainly due to the coupling of two of the three trans- curve in the extended complex domain is actually an analytic
formed interface variables. The analysis also suggests th&inction of its parametrizatiop, (see Sec. Il §. Using ana-
one need only to complexify one of the two independentlytic continuation, we argue that when physical singularities
variables along the direction of the tangential velocity jump.form, they appear either at some isolated points, or along the
The other independent variable serves as a parametrization eftire one-dimensional curve in the real parameter plane. It is
the singularity curve in the extended complex domain. Thusiot possible for the interface to develop finite time singulari-
many techniques for studying singularity formation for 2-D ties along a segment of a one-dimensional curve.
vortex sheets can be used to study singularity formation for ~ To confirm our analytical study, we perform careful nu-
3-D vortex sheets. merical experiments to study singularity formation in 3-D
What is the generic form of vortex sheet singularities invortex sheets. However, direct simulations of the three-
3-D vortex sheets? We investigate this question by studyinglimensional vortex sheet equations are very expensive. The
the early time singularity formation of solutions to the three-complexity in every time step i©(N*) by direct summa-
dimensional vortex sheet equations. The key in studying th&ons of the dipole representation, whe\es the number of
early time singularity is to derive a local approximate systemparticles used to discretize the surface in each dimension.
for the vortex sheet equations. Previous studisee Moreover, for initial conditions which are double periodic
Moore?! Caflisch and Semmé$, Cowley, Baker and perturbations to the flat surface, one has to sum the contri-
Tanvee?) relied on complexifying the integral and applying butions from all the periodic images. This adds substantially
the residue theorem. However, there is no natural way teo the overall computational cost. It becomes prohibitively
extend this idea to the three-dimensional problem. Here wexpensive even with at the level 0fO(100). The fast mul-
take a different approach which applies to the threetipole methods developed by Greengard and RoKHiBer-
dimensional problem. By using the dipole representation anchan and Greengatdcan be used in principle to reduce the
Bernoulli's equation, we are able to derive the local termsoperating account toN?. However, the constant could be
describing the velocity jump in the tangential directionsquite large in practice.
across the sheet. From this local approximate system, we To alleviate the numerical difficulty mentioned above,
show that along certain space curves on the threewe introduce a model equation for the three-dimensional vor-
dimensional vortex sheet surface, singularity formation istex sheet problem. Our model equation has two important
equivalent to that of a two-dimensional vortex sheet to theproperties. First, it captures the leading order behavior of the
leading order. Moreover, by choosing a special set of coorsingular solution of 3-D vortex sheets. In fact, we show that
dinates at=0 and complexifying one of the two indepen- our model equation forms the same tangential velocity jump
dent variables, we show that branch point singularities ofs that of the full equation. Therefore, by applying the same
order 3/2 develop spontaneouslytat0+ in the extended analysis developed for the full equation, we can show that
complex domain. The formation of the complex singularity our model equation captures the same singularity type of the
of order 3/2 at=0+ from initially analytic data is a singu- full equation. We also show that the local singularity struc-
lar perturbation in time due to the strong nonlinear interacture of our model equation has the same form as that of the
tion. Once the 3/2 singularity is formed, it generically doesfull equation near the physical singularity time. Another im-
not change type dynamically, and it becomes a physical sinportant property of our model equation is that it can be com-
gularity when it reaches the real axis. puted efficiently. In particular, we show that when using a
To study the local form of the curvature singularity at the special coordinate, our model equation can be expressed in
physical singularity time, we employ the asymptotic analysisterms of certain Riesz transforms, which are convolution op-
performed by Hou and Zharld.We present an approxima- erators. Thus our model equation can be evaluated with the
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fast Fourier transform(FFT) with O(N?log(N)) operation approaching the interface from Region 1. Since the flow in
count. This offers a tremendous saving over the full equatioigach region is irrotational, we can introduce the velocity po-
and enables us to perform well-resolved computations tdentials¢; and ¢, so that
study the singularity formation of 3-D vortex sheets. Our U=V U=V ¢ @)
extensive numerical study provides partial confirmation of ! 72 2
our analytical predictions. In particular, our results show thatFurthermore, since the flows are incompressible in their re-
the three-dimensional vortex sheet develops a curvature sigpective regions, the velocity potentials satisfy the Laplace
gularity in finite time. We provide evidence showing that the equation:
singularity is of order 3/2, and the singularity is essentially 5 5
two-dimensional. Vi, =0 and V<¢,=0.

Th? rest of the paper is organized as follows. In Sec._ e express the potentials in the fluid domain using a dipole
we review the formulation of 3-D vortex sheets and der'verepresentati0ﬁ§
the leading order approximation to the 3-D vortex sheet. In
Sec. lll, we study the early time singularity formation and , , , ,
the local singularity form in the three-dimensional vortex ¢(Z):f m(a@') (24, X2,))(a") -V G(z=2(a’))da’,
sheet problem. Our model equation is introduced and ana- (5)
lyzed by similar asymptotic analysis in Sec. IV. We devote

Sec. V to the numerical study of singularity formation usingWherea = (a1, ;) and

the model equation. 1
G(z=2)= 4mlz—27'|"
Il. FORMULATION AND LEADING ORDER ANALYSIS
In this section, we first review the formulation of the 3-D V,G(z—2')=— is
z 4m|z—2'|*’

vortex sheet problem. We then apply a leading order analysis
to the 3-D vortex sheet equation near the equilibrium state,,q w(a)=d_—¢.. Herep_ and ¢, are the potentials
This leading order analysis provides a critical guideline toapproaching the interface from Region 2 and Region 1, re-
our study of singularity formation in 3-D vortex sheets. Thespectively.

analysis is based on properties of certain singular integral’ per differentiating Eq.(5) with respect toz and then
operators. Using a special transformation of the i”terfac‘?ntegrating by parts, we obtain

variables, we show that the 3-D vortex sheet problem is es- ’

sentially equivalent to a 2-D vortex sheet problem. Further- _ T T , ,
more, our analysis indicates that the tangential velocityjumpvd’(z)_ Va(a')', Voz(a') | XV, G(z—2(a")) da',
between the upper and lower layer of the fluid is the driving (6)
force of the instability. where we have used the notation

A. Formulation of the 3-D vortex sheet equation e Em
) ) , o |\Vou(a)T\V,2(a") | = —2, — —2,..
We consider an interfade separating two infinite layers dag "2 dap 1

of incompressible, inviscid, irrotational and identical fluids
in the absence of surface tension. Under the Lagrangiaph
frame, the interface location at any instans in the form of €

In the Lagrangian formulation of the interface problem,
motion of the interface is governed by

Z(ay,ap,t)=(X(a1,a5,t),y(ay,a,1),2(ay, a; ,t))T,(l) @ =u(z(a,t),t), z(a,0)=2zy(c),
where (x;,a;) is the Lagrangian surface parameter. Thus,yhere u=(u,v,w) is the velocity of fluid particles on the
the normalized tangential vectors to the surfageandt,,  jnterface. The kinematic condition that ensures the interface
are defined by moving with the fluid requires the normal component of the
z, z, velocity to be continuous at the interface. However, the tan-
t,= Z 1| . b= Z 2| . 2 gential veIocny at the interface is arbitrary and we choose it
ay ap at our convenience.

For the vortex sheet problem, we apply Bernoulli's equa-
tion to the upper and lower layer of fluid, respectively. Using
24, X2y, the continuity of the normal stress and E¢9—(6), one can
n= 120 X240 | 3 show that by choosing the interface velocity to be the aver-

2 age of the interface velocity from aboue and the interface

We label the region below the interface as Region 1 andelocity from belowu_ from above and from below, respec-
the region above the interface as Region 2. Under this notaively, i.e., u=3(u, +u_), then we hav¥

tion, the velocity fieldu; (u,) is the velocity below(above
the interface. We define, to be the limit ofu, approaching
the interface from Region 2 and_ to be the limit ofu;

The unit normal vector to the surfaceis defined by

I
E(a,t)=0. (7)
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Equation(7) says that the circulation stays constant along theB. Leading order analysis of the near-equilibrium
trajectories whose motions are determined by the averagease
fluid velocity. In thi . . .
ith this particular choice of tangential velocity, the ve- n this subsection, we pe_:rform leading c_’fde_r analys_|s of
Wit P 9 Y. for the vortex sheet equatiof8) near equilibrium. This

locity of the voriex sheet interface can be obiained by theas mptotic analysis provides the critical leading order struc-
average of the limiting velocities in E(q6) approaching ymp ysIS p 9

from the upper and lower layer of fluid. The equation of theture of the 3-D vortex sheet equation. It reveals the surpris-

surface particle motion can be writtentis ing two-dimensional nature of the three-dimensional vortex

sheet problem under appropriate changes of variables. In par-
ticular, the analysis in this section suggests the global change

8_Z(a't):J‘ IV u(a )T, V,z(a' t)T| XV, G(z(a,t) of variables for the interface position using the Riesz trans-
Jt form. A variant of this change of variables will be used in
—z(a',t))de’, (8)  Sec. llID when we study the structure of the physical singu-

larity. The analysis in this section also suggests the change of

variable from the original Lagrangian variable, to 3, by

introducing the dipole strengtlx, as one of the independent

Lagrangian variables. A variant of this change of variables

where the integral takes the Cauchy principal value. lays an essential role in our analysis of early time singular-
Somgumgs it is more convenient to use a different seto ty formation in Sec. Il B.

parametrization 8,,3,) for the vortex sheet in our analysis. The leading order approximation is obtained by perform-

tE.’“’e.pt n dSects. I]Icl C da?d v B’dt.h'i. chap %e of %ara:n$trlza—ing asymptotic analysis for vortex sheets near equilibrium.
uon IS made at a fixed time and 1S ime independent. ,zB_Ius First, we express the interface varialzlén the form of
is still a Lagrangian variable. We remark that it is essential to

perform our analysis of 3-D vortex sheet singularities in the
Lagrangian frame. The Lagrangian formulation contains

Z(a,0)=2o(a), €)

some important physical information about the singularity X ay S,

formation. The change of variables framto 3 enables us to z=|Y|=|a|+| S, (12
obtain a simplified leading order system and reveal the two- z 0 S;

dimensional nature of the three-dimensional vortex sheet

problem.

When the change of parametrization is time dependent, . .
as in Sec. lll C and Sec. V B, the vortex sheet equation need@’heresl’ S, andS; are small in amplitude and are double

to be modified by adding an appropriate tangential velociyP€rodic with period of (2rx2m). Under this assumption,

field: Eq. (8) in the original Lagrangian parametrization becomes
9z T ’ T
2 — 73 Z
~2(B,0) dB’+ Tl + T2y, (10 o Am |z=7
Siaz 1+ Sial
I T T __ 1 f f 1+ S
— - JE— = Y o - a
ot (ﬁ,t) |ZB1| M51+ |Z'82| MBZ (11) 4 1 Sé 2 2 Sé 1
az *1
T! and T? are the added tangential velocities to the vortex a;—a;+5-S; da’
sheet. By choosing* and T? properly, we can impose a x| ay—ay+S,— S, =3
certain special property of the parametrization for the vortex S-S5 a4

sheet. Note that the shape of the vortex sheet is solely deter-

mined by the normal velocity. The tangential velocity of the

interface only changes the paremetrization of the vortex ) , , , ,
sheet, but not the shape of the interface. V\(here Yi=dulda; (i=1,2), 2’ =2z(« ,t') andS/ =S (a’,t)

It is tempting to perform the analysis of vortex sheet(i=1.2,3). We assume that the amplitudeSpfs of ordere,
singularities in a non-Lagrangian dynamic new frame. How--€-, Si~0(g), and assume thag, is of ordere perturbation
ever, this would lose certain essential features that come witfp & constant vortex sheet strength. It is reasonable to con-
the Lagrangian frame and complicate the analysis considepider the linear terms in the numerator of the integral as the
ably. We only deal with the effect of a dynamical change ofleading order terms. By writing down every component sepa-
variables when it is necessary, e.g., when we discuss th@tely and keeping only the linear terms in the numerator of
motion of complex singularities and the numerical computathe integrand, we obtain approximate equationsSpr S,
tions. andS; as follows:
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(71530, 2834, (@2~ a3+ S, )

oS 1 (y1(1+S3,,) = ¥2554,)(Ss— S5)
24 :

|z—2'|® |z—2'|® de’
1 Y1(S5783) = (71834, ¥2S34,) (@2~ @3)
———ff 7T da’+0(&?), (13
(Y1830, Y2S30 ) (1= a1+ 81— S)) (7181, 72(1+ 51, )(S3—S3) ,
at - JJ |lz—2'|® B |z—2'|3 da
Y2(S5=83) + (¥1S342~ ¥2S34,) (@1~ @)
3 a +0(e9),
ff = da’+0(e?) (14)
and
(7’151a 72(1+Sia1))(a2_aé+52_5§) (7’1(1+S§a2)_’stéal)(al_ai+51_si) ,
o7t ff |z—2']® a |lz—2'|® dar
1 (7’1Sia2_ ?’251a1)(a2_ aé) (715§a2_ ’stéal)(ch_ ai)
- Eff |lz—2'|® |z—2'|?
~yla—ag+§-§)+ Yz(az_aé"'sz_sé)da,_i_o(sz), 15

|z—2'|3

where we have used the notations z(«), zZ’=2z(«') and

Sj:Sj(a), S]-'=Sj(a’), j:l, 2, 3
Recall that to the leading order, we have

|z—Z'|~|a—a’]|.

From these properties, we find some surprising cancella-

tions when the problem is projected in certain variables, and
the leading order problem becomes essentially a two-

dimensional problem. Guided by the properties of the Riesz

transform, we introduce the following change of variables:

Thus the above integral equations can be expressed in terms

of the Riesz transforms which are defined as follows:

_a’)f(a/)
= JJ[ al) +(ay— aé)2]3’2da ,
i=1,2, (16)
()~ f(a’) ,
A= jf[(al al) +(ay— é)2]3/2da ) a7

for feLp(Rz), where I<p<®. The integrals take the
Cauchy principal value. It is well-known that the Riesz trans-

forms satisfy the following properties:
HZ+H3=—1, H;D;+H,D,=A, (18)

AH{==D;, HiD,=H,D;, i=12, (19

for functions with zero mean, i.ef,f(a)da=0, whereD;

=g is the partial derivative with respect tq . The above
properties can be verified easily from the spectral symbols of g (581) <(952>

the Riesz transforms*

—  —i& B
H.f= (Ei"‘—ﬁ)mf’ k=1,2, (20
At=(&+8)", (21)

in which f stands for the Fourier transformation fof

h1=Ho(S) —H1(S,), (22
o=H1(S) +H(S,), (23
P3=Ss. (24)

Using (18)—(19), we can also expres$(,S,,S3) in terms of
(1,4, ,43) through the following equations:

Ho(¢1) —Hi(¢2) +(Sy), (25
S;=Hi(¢1) —Ha(4h) +(Sy), (26)
S;= i3 (27)

where(S))= 1/472 [T [T _S(a)da, i=1,2.

Differentiating Eqs(22) and(23) with respect to time,
we have

prrainiar] el Bl ekt el ¥ (29)
J 3S 9
%zHl(a—tl)—kHz(a—Stz). (29

To derive the leading order terms of the evolution equation
for ¢, we substitutg13) and(14) into (28). The result is
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Py [0S IS,
7"*2(7)‘“1(7)

Hou, Hu, and Zhang

_Hz(_ﬂ |lz—2'|3

1 [ V2SS9 + (¥1Ss4,~ Y254 ) (a1~ ay)

L[ (S~ (nSan,~ 728 (@2 @) )
23

_Hl(_ﬂ |lz—2'|3

Note that giverz in the form of(12), we have

|z—Z'|=|a—a'|+0O(e). (32)

Thus the denominator of the vortex sheet kernel can be ap-
proximated by that of the Riesz transform kernel. With this

observation, we can show that

Py 1
ot §H2( Y1AS3— y1H3D S5+ y,H D1 Sg)

1
+ EHl( ¥2ASy+ y1H1D,S3— y,H1D1S3) +O(&?)

da' | +0(&?). (30
|

i, 1

o 571D1(H1H1+ HoH2)S;

1
- 572D2(H1H1+ H,H)S;+O(e?)

1
:E(Y1D1+72D2)53+O(82)- (34

The derivation of the leading order evolution equation
for 3 is more involved. We will leave the detailed deriva-
tion to Appendix A. After some manipulations, we can show

that the leading order equation fgg is given by

1
=— =Hy(y1H1D1S;+ y,H,D s 1 1
2 Ma(71HiD15s% v2H2D:159) i GS T v2D2) Y2t 5 (72D1=v1D2) ¥
1
+ 5Hi(71H1D,S5+ 7,H,D5S5) +0(s%) = O(s?), +0(&?). (35
@2 Combining(13), (14) and(35) into a system, we get
32
. . ) 2
where we have used the properties of the Riesz transforms ——=0(&), (36)

(18—(19) in the last step. As we can see, the Kelvin—
Helmbholtz instability is eliminated to the leading order in the AP 1 2
4, variable. In Sec. IlID, we will use a similar analysis to gt 2 (71Dt 72D2) ¢+ O (%), (37)
study the structure of curvature singularity at the physical
singularity time. The fact that thé; variable can be elimi- s L L

guiarty CE 1 Yeer Tt~ 2 (mD1t ¥2D2) ¥t 5(v2D1= 7D2) i
nated from the leading order approximation plays an essen-
fcial role in obtaining a close _form approximation of the lead- +0(8?), (39)
ing order curvature singularity structure.

Similarly, to derive the leading order terms in the evolu-WhereD1 (D) stands for differentiation with respect to the

tion equation ofi,, we substituté13) and(14) into (29) and
get

ol 2]on 2
1 2

el ot

1
=- §H1( Y1AS3— y1H2D 2S5+ y,H,D 1 S5)
1 2
- EHZ( Y2AS3+ y1H1D S5~ v,H1D1S3) + O(&7)
1
=- EHl( ¥1H1D 1S5+ v-H,D4S3)

1
_§H2(71H1D233+ y2H,D,S3) +O(e2). (33

Applying the properties of the Riesz transforris8)—(19)

a1 (ay) variable. The above leading order system is consis-
tent with the leading order linearized system derived in the
article of Hou and Zhang®

Recall thaty,=dul/da;, i=1,2. The above leading or-
der analysis suggests a natural change of variables dr¢mn
B as follows:

,81=,u(a1,a'2), (39)

(a1,az)
o= | o et @) dat - g (af apda. @O
The integration in(40) is path independent sinCQu(,Z,
_'“al) is divergence free.

Note that through this change of variables, we use the
dipole strength as one of the independent variables. The di-
pole strength variable corresponds to the vortex line direc-
tion (y41,7v,). Thus, this choice of coordinates has a natural
physical interpretation. On the other hand, {Bg variable

one more time, we can further reduce the above equation toorresponds to the direction that is orthogonal to the vortex
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line direction. It is the parametrization of the level get of such local system have also been derived and studied by
=, for a constant value oB;. The idea of introducing.  other researchergsee Mooré, Caflisch and Semmé&s. In
as one of the independent variables motivates the change ofost previous studies, the leading order local system was
variables introduced in Secs. III A and llID. It plays an es- derived by means of a complex analysis. A special feature of
sential role in understanding the early time singularity structhe two-dimensional vortex sheet problem is that one can
ture and the curvature singularity at the physical singularitycombinex andy to form a complex variable(a)=X(«a)
time. We remark that the above change of variables in theriy(«a), and further complexifyx to treatz as an analytic
parametrization is time independent singgy) is time inde-  function. This idea has no obvious extension to the three-
pendent. Thus, there is no induced tangential velocity fieldlimensional problem.
produced through this change of variables.

Substituting this change of variables into systé36)—  A. Early time singularities in 3-D vortex sheets

(38), we obtain In this subsection, we derive a local approximate system

AP ) to the 3-D vortex sheet equation using a different approach.

ot =0(e%), (4D our derivation is based on the observation that the tangential
velocity difference is the driving force of the Kelvin—

I ED +0(2) (42) Helmholtz instability. This is the common feature between

a2 A& & the two- and the three-dimensional problems. In fact, we can
» 1 1 re-derive the local approximate system for 2-D vortex sheets
&_t3 _ EDﬁ1¢2+ EDBZ'/’PLO(SZ)- (43) using the same approach.

By combining the dipole formulation with the vorticity
In the new coordinates, we can see that the system syformulation, Haroldsen and Meirdhhave derived the veloc-

fers the Kelvin—Helmholtz instability because of the cou-Ity On the interface. In particular, using E@) related to the

pling of (42) and (43). It also shows that th@, direction is upper layer fluid, one can obtain the interface velocity

the unstable direction responsible for generating Kelvin—V(a.1) as

Helmholltz instapility. Moreqver,.since the, direction is the V(a )=V d(z(a,t) )= -Vl at) +Vy(at),  (44)

tangential velocity jump direction between the upper and

lower layers of fluid, the leading order terms confirm that thewhere

tangential velocity jump is the physical driving force of the

instability of the thret_a-dimensional vortex sheet. _ Vi(a,t)= lim IV u(a)T,V,z(a’ 1)T|
In a separate artic®, Hou and Hu prove a nearly opti- 2 2(art)
mal existence result for 3-D vortex sheets based on the above from upper layer
system. In particular, they prove rigorously that Bés?) XV, G(z—z(a' t))da’, (45)
terms are in fact smaller or smoother than the leading order
terms. In this article, we focus on the analysis of the singu- 1 T .
larity structure. Equation@t1), (42) and(43) provide us with Viod(a@,t) = §|Va'“(“ ) Vaz(a’ 1)
a critical insight on the singularity structure. This will be-
come clear in the study presented in the next section. Zalxzaz
Xm(d,t). (46)
apt T

IIll. EARLY TIME SINGULARITY FORMATION Similarly, using the equation related to the lower layer

Following the leading order analysis from the last sec-fluid, we get
tion, we study the early time singularity formation in this _ _

| . . . L V(a,t)=Vo(z(a),t)=V, )+ Vo(a,t), 4
section. The study of the early time singularity formation is (€. =V @), )=V &) +Vo(a.1) “7
important because it reveals the mechanism why a branchere
point singularity of order 3/2 is selected generically at
t=0+ in the extended complex domain from the initial ana-

: : : : L Vy(a,t)= lim V,u(e' ), Vz(a' )T
lytic solution. This selection mechanism is a result of the 2at) 22 at) [Vars(a')', Vozla’, U]
strong nonlinear interaction of the leading order system in from lower layer
the extended complex domain. Once the initial singularity is XV, G(z—z(a' ,t))da’. (48)

formed, it will propagate in time along certain smooth char-

acteristics without changing its type. The analysis is based oi/e note that/(e,t) = 3(Vi(a,t) + Vy(a,t)).

a singular perturbation expansion in time around certain sin-  Further, we choose a parametrizatiemtt=0 such that
gular points related to the derivatives of the Lagrangian inthe coordinate satisfies

terface position in the extended complex domain.

Our work is motivated by a related study of Cowley, Zay 20, =0, (49)
Baker and Tanve@rfor 2-D vortex sheets. The key in their
approach is to derive a leading ordecal system and to &_'“_ ‘9_'“:0 (50)

extend the interface variable to a complex domain. Variants Ja; " day
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at timet=0. In some sense, we use the dipole strengts T 1 ¢
one of the independent variables. As we will see later, this - _>  Z__>_ (57)

gives rise to a natural interpretation of the Kelvin—Helmholtz & |§|2, I3 |§|2.

instability. We remark that this is not a strong assumption. In Now regardingz as Clifford 1-vector, we can rewrite the
fact, we can show that starting from a given coordinate, W&, olution equatior(52) as follows:

can find a coordinate that satisfie®9) and (50). We defer

the justification of such coordinate to the next subsection. 9z(at) __ 1 FVy(at) (58)
Using the propertie$49) and (50), we can simplify the at ZZkl(a,t) B
local term to whereV, is still defined by(45) with z as a Clifford 1-vector.
1 7 Xz To derive an equation far, we take the conjugate of the
V|oc=§|VaMT,VaZT|X% both sides 0f53). We get
2, X2
o gzet) FVo(at 59
1 2, X2, it 2z, (at) 2( @b, (69

=—7 X—2 —
272" |z, Xz, whereV, is defined as

z

__fm Va(a)= lim |Vare(a)T,V,z(a' 1))
= 5. (51 _
2|Z"‘1| (x—ye;—z&)—z(a,t)
y<y(a.t)
Thus, substituting51) into Egs.(44) and (47), we can ex- XV5G(Z—Z(a’' t))da’. (60)

press the evolution equation for the 3-D vortex sheet in the

. . . For the case we considez,is a periodic perturbation
following two equivalent formulations:

over a flat surface, i.ez=a;+ as,e;+s with s=S;+ S,e;

9z(a,t) Z, (a,t) + S;e, being double periodic ine. We can further rewrite
o 5+ Vi(a,t) (52  the above equations in terms &fWe get
ot 2|za (a,t)| o
1 el . +Vi(a,t) (61)
= r a! )
az(at)  Zaat) ot 2(1+s,) !
= 7 +Va(at), (53

t 2|z, (ab)] s a,t)

R 2(1+5,) +Vy(a,t). (62)

att=0, whereV; andV, are defined in45) and (48).
To derive our local approximate system for 3-D vortex ~ Observe that the leading order terms on the right hand

sheets, we use the Clifford algebfsee also WAH). Lete,  sides of(61)—(62) only involve derivatives inx; . This im-

ande, be the two Clifford bases. They satisfy the following Plies thata; is the most unstable direction responsible for

properties: generating the Kelvin—Helmholtz instability. The, direc-
tion is in a stable direction. This observation suggests that we
eiz -1, e§= -1, ee=—eyeq, (54) need only complexify they,; variable and treatv, as a real
L L parameter which parametrizes the singularity curve in the
e1=—€1, €=-—8,, (55  extended complexx; domain. To better illustrate the main

o idea, we will suppress the dependencesoh «,, and write
wheres is the conjugate o§. We regard pointgvectors & S(ay,t). Following Caflisch and Orellaffaand Cowley,
=(x,y,2) e R® and their corresponding Clifford 1-vectoé&s  gaker and Tanvedrwe extends(a;,t) ands to the upper
=Xx+ye; +ze, as equivalent. The same notatiéoan either gt complexa, domain. We says(a;) is analytic if each
be a point or its corresponding 1-vector in different contextscomponent of is analytic with respect ta; . In particular,
for example, for vectors and 7, the multiplicationézn is s(a;,t) has a convergent Taylor series expansion in a
obtained through Clifford multiplication by regardirggand neighborhood ofryo, then we say thai(a;,t) is analytic at
n as their Clifford 1-vector counterparts; for Clifford aso.
1-vectors, nandg, (77 ¢) is obtained by first regarding To unify notations, we will denote the complex vari-
and/ as vectors and calculating the cross prodgsts, then  gpje asa;,=Real(x;)+Im(ay)e;, and regarde; as a Clif-
rewriting 7 ¢ as its corresponding Clifford 1-vector and forq 1-vector. In particular, the analytic extension of the con-
calculating the Clifford multiplication betweefiand X ¢. jugate functions(a;,t) is defined by the following*

We also use the notatiof),=x,+y.e1+2z.€;. operator:

Clifford algebra shares several important properties of -
complex variables. For example, we can show usBg)— s (ag,t)=s(ay,t). (63)
(55) that Now analytically extending Eq$61)—(62) to the upper half

- o L 2a 202 e2 complexa, domain, we obtain
EE=(x+ye +26)(X—ye,—26)=x"+y +z°=[¢|%, N
(56) osla ) S

at 2(1+s;)

+

1
Vl(al!t)_ E) ) (64)
and
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9s* (arq ,t) Say _ 1 _d"s o s
0 =— 2(1+s,) +| Vo(aq,t)+ ik (65 SOn_aag(alOvo): Son= Jal (a10,0),
att=0. and
Note that when we analytically exteisdo the upper half
complexa; domain, the integrals i, andV, are no longer Koo=V1(@100)— =
singular. In fact, one can show that in the regions of the 2
complexa; domain where The nonuniformity arises from the leading order coefficient
Im(a;)>1 and s=0(1), (66)  of theO(t) term in(70). The leading coefficient of the(t)
term in(70) plays a determining role in the asymptotic struc-
we have ture. This indicates that the key terms are those inclugjpg
Vi(ap,t)=0(1) and Vy(a;,t)=0(1), and ;. These terms are comparable {@0) when ¢
=0(t¥?. This consideration suggests that the asymptotic
asImay)—oe. (67)  scaling for smallf whent<1 is
This is easy to see over one period in e variable since > 172

(71)

=pwt'?  where w=|———
Sk A1+ 5y

Im(a)|*+|Re(a—a’)[*’ N . :
. o Using this asymptotic scaling, we expasdand s* as fol-
which tends to zero as Im{)—o. The contributions from |q\s:

other periodic images can be estimated using the Ewald sum-

V2 G(z=2')[< (68)

mation formula® Note that the integral iV, or V, involves v (1

the derivatives ofz(a’,t). Since the derivativeg, (i §= S0t Sor7@tH | 5+ Koot 1+§ Rt '
=1,2) are evaluated only atal «’, the integrand remains (72
small even at the points where the leading order local terms s . "

blow up, which corresponds to either %, )=0 or (1 S =550+ (1+55)B(7) — pot™+---. (73
+521)=0- The functionsA(#n) andB(#) will be determined from the

The above local system is a generalization of the locakvolution equations o6 and s*. Using a careful analysis
system obtained by Cowley, Baker and Tanveer in Ref. 8 fowhich is supplemented by numerical study, Cowley, Baker
2-D vortex sheets. For each, fixed, we can apply the same and Tanveér showed thatA(#) and B(#) have a branch
analysis developed by Cowley, Baker and Tan¥éershow  point singularity of order 3/2 at a certain poigg. In par-
that s and s* develop singularities of order 3/2 in the ex- ticular, A(n) andB(#) have the expansions
tendeda; domain att=0". For the sake of completeness,
we outline some of the key steps inéhe early time singularity Alm)=Ao+As(7= 170) + Ap(m—70)"+ -, (74)
analysis of Cowley, Baker and Tanvédrhere are two cases. _ _ o \P...

In case one, there exists,o such that s, (alo) and 1 B(7)=Bo+ Ba(n= 7o)+ By(n= o)™+, 79
+} (@0 vanish simultaneously. In case two there existsin the neighborhood ofyq with A;B;#0, p=3. Thus we

@10 such that only one of two quantities mentioned above conclude thas arlds* form a singularity of order 3/2 spon-
taneously at=0

vanishes atx;5. We only demonstrate the second case in L ) )
which we assume In _the above. derlvqtlon, the complex conjugat€Xs) is
analytically continued into the upper half complex-plane,
1+s,,(@10)=0, using conjugate variable*. This is equivalent to analyti-
cally continuing the equation into the lower half of the com-
plex a;-plane usings because of the definition & (a4,t)

1+s; (@10 #0. =9s(a;,t). Therefore, the directions towards which the ana-
lytical continuations take place are, in fact, opposite(i
and(65). As a result, it provides the coupling froson the
Hpper half complexx;-domain tos on the lower half com-
plex @;-domain by introducing*. It is worth noting that it

is the coupling that generates the Kelvin—Helmholtz instabil-

but

As noted by Cowley, Baker and Tanvéemne needs to
introduce a rescaling near;=a,o. In order to determine
the appropriate asymptotic structure, we expand the solutio
sands* first in time and then in space neaf= a;q. Let
g: a1 — dpq - We have

ity.
1 2 Siocl
S=Spot Spnd + 5S026 "+ 201+s) +Koo |+, B. Existence of the orthogonal coordinates
(69) In the analysis presented in the previous subsection, we
1 — S have assumed that(,a,) satisfies(49) and(50). Now we
S* =50t o1l + 555‘2§2+---+ T +eee |t (700 show that for a reasonably large classwofwe can always

find another coordinate systens{,3,) such that Eqs(49)
where and(50) are satisfied, i.e.,
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25 -25.=0, —=1, —=0.
L P2 B B2

To satisfy dul/dB, =1, we clearly should takeB;
= u(a). With this choice ofg,, we can show that

[ 1
0B, Pt a2, = 3 (T e, F ayPr, ) =0,
(76)
sinceB;= . Here we have used the relationship
Nay,ay) 1 32% _’Blaz
HBLB) A\ =B Bi, | (77)

We have assumed that the Jacohianf the transformB(«)
is nonzero, i.e.,

A=py, B2, —P1, B2, #0

The next step is to choog®, to satisfy the orthogonality
condition,zﬁl~zﬁ2=0, ie.,

day day day day
2“1(9_/31+Z“2(9_/31 -(zal&—ﬁzJrzaza—ﬁ2 =0. (78
Defineh1(aq,a5) andA,(aq,a5) as
Zy " Z,
N(ag,az)= Z:-Zal’ (79
2 2
2y, Za,
No(ag,ap)= 2oy 7o, (80)

Hou, Hu, and Zhang

given time. Note that we always hayg = u(«a). If ais the
Lagrangian variable, thep(a) is time independent. On the
other hand,3,= B5(«) is time dependent. Thus, when we
view the solution in the original coordinatex{,«,), the
vortex sheet solution can have singularity in bathand a,
through the coordinate mapping= «(3,t) dynamically.

C. Motion of the singularities

In the previous subsection, we have shown how to derive
a local approximate system for 3-D vortex sheets and how to
use the corresponding 2-D analysis to show that singularities
of order 3/2 develop spontaneouslytatO+ in the complex
a, domain around the positions where4($a1)=0 and/or

(1+s§l)=0. This implies that the singularities develop si-

multaneously along one or several one-dimensional curves
parametrized by3,, i.e., 81(B2,t). Once the complex sin-
gularities of order 3/2 are formed initially, they generically
do not change type in time. As time increases, each point on
these one-dimensional curves moves around in the complex
B1 domain. The physical singularity time is the first time
when these curves hit the reg@} axis.

In this subsection, we show that at any titmeefore the
singularity time, the one-dimensional singularity curve in the
complexB; domain, denoted a&(8,,t), is always an ana-
lytical function of B8,. Due to the analyticity o&4(8,,t) as
a function of 8,, the curveé,(B,,t) cannot intersect with
the real 31,85) plane in a segment, for if this were the case
it would imply that the entire curve has a zero imaginary part
by analytic continuation. Therefore, its intersection with the
real (B1,82) plane contains either isolated points, or the en-
tire £,(B,,t) curve. In the latter case, the vortex sheet sur-

Note that in the case that the interface is a small perturbatithce becomes Singu|ar a|ong an entire one-dimensional curve
of a flat plane\; is a small perturbation of a constant. By at the singularity time.

substituting(79)—(80) into Eq. (78), we get

(9(11 (9&1 (9(12 (9&2 (&al (9&2
YoBy dBs By dB2 P\ dBy 9B
By applying (77), we obtain
By B 9B B (3,32 By By P

day &al)
dB1 92

day day  dag da, day dag  daj day
Furthermore, substituting, = u to the above equation leads
to
AL e Y (o
lD"C(z Z&al 0"6(2 &011 25’0[2 (96(1 '
(81

At time t=0+, from the results of the previous section,
£4(B,,0) is defined implicitly by 1 s(&(82,0),8,,0)=0 or
1+5*(£4(B2,0),82,0)=0. Since the initial condition is as-
sumed to be analytic in botf3; and 8,, we conclude that
&4(B2,0) is an analytic function of,.

To derive an evolution equation f@g(8,,t), we follow
the analysis in Ref. 8. Close to the singularity we seek an
asymptotic expansion of the form

$=So(B2:1) +S1(B2,t) 1+ Sy( B2, 1) 7P+, (82

S*=S5(B2, ) +S[ (B2 )+ S5 (B2 )P +---, (89

where we now defineyp=¢&—&4(B,,t). Substituting(82)—

Note that the equation fg8, is a first order linear hyperbolic (83) into (64)—(65) with the dynamically reparametrized co-
equation. Therefore it is well-posed. Further, if we assumerdinate (31,8,), and equating like powers of, we find
that the interface is a small perturbation of a flat plane, andhat(82)—(83) is an acceptable local solution if the following

v; are near constants, then we can solvedgrexplicitly by

a line integral as if40) to the leading order. In this case, we

can show that the Jacobiak= y§+ y§+ O(€e)>0. In gen-

eral, we can show that will always be a small perturbation
of some nonzero constant. This proves the existence of the

orthogonal coordinatess,3,) satisfying(49) and(50).

Remark:The above construction of the orthogonal coor-
dinates can be applied to the vortex sheet solution at any

compatibility conditions are satisfied:

K

P
S—ES= 57 gy TR,

(84)

ek S
SO_gssl__ 2(1+Sl) +‘](§Sit)a
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2 . idea of Cowley, Baker and Tanvetwe separate the integral
c S=(2(1+5)°Sp) s, on the right-hand side dB) into two regions: a local region
(85) where|a’|=0(t) and an outer region covering the rest of
the sheet,
where an overdot denotes differentiation with respect to

1
2(1+S)(1+S))

=

time. Note that the dynamical reparametrization introduces a a_z(a t)= f +f IV u(a)T,V,z(a' 1)
tangential velocity field to the right-hand sides(6#)—(65) gt l'|>s Jia'|<s] © e ’
in the form of
XV, G(z(a,t)—z(a't))da’. (87)
By B2

In order to determine the local shape of the vortex sheet
near the singularity, it is not necessary to consider the first
integral in detail, other than to note that in the Taylor expan-
sion of z(«,t) in powers of t, the first two terms of the
asymptotic expansion can be assumed to Qg and
O(tY), as in Cowley, Baker and TanvekThis means that
the leading order contribution from the first integral is of
orderO(t%). It also suggests that the leading order correction
) terms from the first integral is smaller than that of the second
can conclude thai3,/dt has the same order of regularity as jegral, as we will show later. Therefore, the shape of the
Z, (i=1,2). Thus the)B,/dt (&s,t) is well defined. Taking  \qrtex sheet in the neighborhood of the singularity is essen-
into account this added tangential VelOCity fleld, which WEUa”y determined by the second integraL In order to approxi_
denote asVy=zz dB,/dt, we haveK(&s,t)=(Vi+Vr)  mate the singularity, it is convenient to writen the form of
X (&,t) — 3, andJ(&q,t) = (Vo+ V1) (&, 1) + 3. SinceSy, S; components on the two tangential and one normal directions:
andSj, S; are analytic in3,, we conclude thag; is ana-

25174'2327.

This corresponds to choosing'=dp;/dt|zg | and T*
=(?/32/<9t|z,32| in (10—(11). Note that in the original La-
grangian variablex, the dipole strengthu(«) is time inde-
pendent. Thus we haveB,/dt =0 since 8;=u(a). One
can derive an equation fan3,/dt by differentiating Eq(81)
in time and using the evolution equation. From Egfl), we

t
lytic in B,. As a result, we show that when physical singu- Zy Pi(a,t)
larities appear, they appear either at some isolated points, or z=2Zz,t+ zf)z +| Pa(e,t) |, (89
along the entire one-dimensional curve in the re&,(3,) Pl Ps(a,t)

0

plane. It is not possible for the interface to develop finite
time singularities along a segment of a one-dimensionayvhere

curve?’ This result will be confirmed by our numerical re- 4 6 .
ZO:ZO'tl, ZO:ZO'tz, Zo:ZO'n,

sults.
) . and

D. The local form of the curvature singularity

Our arguments in the previous subsection show that sin- { = 20, t= %,
gularities of order 3/2 develop at the complex domain Yz |7 )z |
where|Im(ay)[>1 att=0". As time increases, the singulari- “ “
ties propagate in the extended complex domain. The first 7, Xz,

] aQ

time at which their trajectories intersect the real axis n= ,

gives the time that a physical singularity appears. In this |Zoalxzoa2|

subsection, we study the local form of the interface shape in . _

the neighborhood of the physical singularity. whereP,, P, andP; are small perturbations of the interface
Without loss of generality, we assume that the singularfrom the tangent plane in tte, t, andn directions, respec-

ity forms att=0 and (;,a,) = (0,0), and that the surface is tively. . . .

moving with a velocity ofz at that point. We also assume e substitute88) into the second integral of the three-

that at the time of singularity formation, the surface is IocaIIyd'me_”s'onﬁlI Yortex sheet equation gnd seek asymptotic ex-

flat in the neighborhood of the singularity, witz ~ Pansions oP;’s. We follow the analysis by Hou and Zhaig

~7o(ay,a,), wherezy is a plane. in which they studied the growth rate for the linearized mo-
Motivated by our leading order analysis near equilib-fion about an arbitrary smooth solution to the three-

rium, we introduce @ime independenthange of variables dimensional vortex sheet equation. In our case, we can use

from « to 8 given by (39—(40). To simplify our presenta- their result directly because a flat plane is an equilibrium

tion, we may assume that such a change of variables h&$ate of Eq.(8), and therefore, the leading order terms ex-

been made at=0. We will still denote as«. It is easy to tracted from the asymptotic expansion coincide with the

check that in this new coordinate, we have leading 'order terms in thg linearized equgtion. o
Motivated by the leading order analysis near equilibrium
du du in Sec. 1IB and the analysis in Hou and Zhargye intro-
dJay aTyz_O' 88 guce a change of variables fronP{,P,) to (¢;,¢,) as
follows:

We seek an asymptotic expansion of the solution of the 5 5
three-dimensional vortex sheet equati@). Following the dr1=(0,) *H,P1—(01) "H,P,, (89
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$2=(a1) H1P1+ (o) TH,P, (90) if—l da’
7 ) z(a")(a—a")
whereH; andH, are the Riesz transforms defined on the 1= (o' )k
interface, :_2 (—1) f(
(Hif)(@) = (—1MH(), (95
! ! k=
= oo™ e )Tar) da’ here H is the Hilb form, H(f)(a)
=5 T —zda’, where is the Hilbert transform, @
™) |20, ()@= @)+ 2, (@)(az—as)] = Um [[f(a')/(a—a’)]da’. Similarly, we have

EJ z(a)—z(a')d“
ando; '=|z, | with 1=1,2. Using the property86) of our
a4

1\ \K
coordinate, we can greatly simplify the leading order system  _ f (S(e) — S(‘iz) da'. (96)
derived by Hou and Zhan§.By using the properties of the

Riesz transformfsee Lemma 4.4 and Eqgl1l)—(42) in Hou
and Zhang®], we obtain the following leading order approxi-
mation to the 3-D vortex sheet equation:

Comparing Eq(96) with Eq. (95) term by term, we find that
the zeroth order terms in both equations vanish. For the lead-
ing order linear term from Eq96), integration by parts im-

plies that
<;b1
_E1(¢1 ¢2 ) (92) J (S(a da H(S)
—z— )
2, 1 P, which cancels exactly the linear term from Eg5). For the
72 202020 +Eo(1,d0,P3), (93 quadr_atic term from _Eq(96), we have after performing in-
tegration by parts twice,
(S(a)—s(a"))?
a_P?’:_l 5 3%4_} 4 4&¢ +E (1,0 ) T (a—a')’ da
ot 20102(9&1 2 12 3(P1,¢2,P3),
94
( ) )__J’ (S(a) S(/) ))Sa’a’(a’)da’a

whereE,, E; andE; are the general representations of terms,hich cancels the correspondmg quadratic term in (@6)
that are either smaller or smoother than the leading ordefih an error term of the form

terms, provided that the perturbations are of small amplitude.
While the Hou and Zhang analysis is for smooth solutions, 1 [ S(@)—s(a’) s (a')d @7
their result can also be generalized to interfaces that develop 7 ) ~ (a—a’) @@ ¢ /5%
singularities of order 3/2. Moreover, the assumption of ar'lI _ . _
. . . f has a singularity of order 3/2, in other wor

orthogonal coordlnate_m Hou and Zhéﬁg;s not necessary. az(cé)lz order rggulariéc/yin C32). then the kernelc;(%zg
It can be remoi\]/zed using the analysis of a related %aé]per bp &) (a—a') is a smoothing' kernel of order 3/2. This
Hou and Zhants [see(67) on p. 15 of Hou and Zhang].
The additional terms due to the nonorthogonal coordinat(;[\::teezr;zntgzt We.ﬁagqgi'g;/ %rr?g?eefro:zg%Zrlgrézéh:q;ln&ﬂar
[see Eqs(74)—(75) on p. 17 of Hou and Zharg] contribute o’ a!
only to the lower order terms since we assume the interfac?er;?jrir:err:rg;e?e% Exﬁi?r:sisa 2?'2?(;2? Sgg:;zg;tg?qgge
's a small perturbation near the equilibrium. An}'/??]riant of this nonlingarity the err,or term is also smaTIér in amplitude. This

It h flisch 2-D ’ . ! )
Vorex Sheste, An sstimate.similr 1o Cafiseh and Semmegl9ument can cortinue o higher orde terms. For exainple
can also be derived for 3-D surfaces using Clifford algebraor tfhe thl.rd order terms, the error functions have the follow-
representation. To illustrate, we first consider the 2-D case. A9 forms:

typical t inE; ists of
ypical term inE; consists o f(S(a) S(a )(s) (a')da’

1 ( 1 1 ,
Ef A —2a)  zia ) a—a"

—J ( ) S(a )) S, (a)da'.
Let z(a)=a+9(«a), and assume thatis of a small ampli-
tude. Thus we have,=1+s,. By expanding 1/(}*s,) in In either case, we have a smoothing kernel of order 3/2. Thus
Taylor series, we get the same argument used for the quadratic terms applies.
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The above argument can be generalized to the 3-D cas® that we can combine the system and obtain
by using the Taylor expansion in terms of the small pertur-
bations §;,S,,S;). Instead of dealing with the Hilbert F'—qF=— E /

: ; X gF iF’. (108

transform as in the 2-D case, we now have to deal with the 2
Riesz transform. Since the derivations are quite technical, w
would not present them here. Our numerical experiment
have also confirmed that the error terms are generically one
half order smoother than the leading order terms for func- F=C
tions with singularity of order 3/2.

Next we study the self-similar singularity solution of the =C2 94x?+1)%expig arctar((2y) 1)), (109
leading order approximate system. Following the idea by

Cowley, Baker and Tanvedve introduce a rescaling by (0 the leading order, wher€ is a function ofa; only.
The above analysis gives a leading order approximation

y solving F from (108), we obtain

1 \d

X+Ei

ar1=(—t)x, (98) of the possible singularity structure at the physical singular-
and seek similarity solutions of the form ity time. However, it does not prqvide a mechanism to de_ter-
mine the exponent). The selection mechanism of the sin-
d1=(—0)IFy(az,x)+- -, (99 gularity type, i.e., the exponerd, is due to the strong

_ nonlinear dynamic interaction &&=0+. As we have shown
$2=(Z Doz )+, (100 in Sec. Il A that the generic type = 3/2. Once the initial
Ps=(—t)F3(ay,x)+- -, (101 complex singularity is formed, it propagates along some ana-
lytic trajectory as we demonstrate in Sec. lll C. Moreover, its
type will not change dynamically.

An important consequence of the above analysis is that
%y projecting 1,22, 2") into (¢, , b,,2"), we found that the

whereq>1 in order to be consistent with the assumption of
the sheet being locally flat in the neighborhood of singularity.
Since we have shown that branch point singularities in th

ilF va'a(;bIe de\flqp a(tjt=(t)+, vtveh aq::cgﬁatf tth aEFi curvature singularity does not appear on thefunction to
i lxITasy—ee, In order o maich With the “Outer=re- i, jaading order at the singularity time. The curvature sin-
gion wherea;=0(1). For theinitial conditions analyzed in  gyarity of order 3/2 can be observed in the other two vari-

the previous subsection, we hage: 3/2. ables,¢, andz". This special feature will be confirmed later
With the rescaling 0f98), we substitutg¢99), (100 and by our numerical study.

(102) into (92), (93) and (94) and extract th@((—t) 9*1)

terms. It leads to E. A remark on the Brady and Pullin result
xF1 —qF.;=0, (102 Before ending this section, we would like to demonstrate
that our result is consistent with that of Brady and Pulfin.
YF, _szzftﬁang ' (103 Iq a rec'ent paper by Brady gnd Pylﬁ%phey studied a three-
X 2 X dimensional vortex sheet with cylindrical shape and strength

1 —1) distribution at the same time. In particular, they assumed
xF3 —qF,=— - 0505F, + (—a‘llogFl (104 that, initially, the interface has a normal mode disturbance in
X 2 X 2 2 the z component of the form
Note that(102) has a zero forcing term. This suggests that
there is nagth order singularity in thep, term. We conclude
that F,=0. Moreover, substituting this result intd03 and  with uniform velocity jumpU in the x-direction. By rotating
(104) leads to from (x,y,z) axes to &’,y’,z") axes with

h(x,y)=Aexdi(mx+ny)], (110

Xsz_qF2:%U§02F3X, (105 kx'=mx+ny, Kky'=-nx+my, 2z'=z, (111
wherek?=m?+n?, they showed that the singularity evolu-
tion in this special case is equivalent to that of a two-
dimensional vortex sheet iR’ —Zz' variables with velocity
jump of Um/k along thex’ direction.

To apply our analysis to this special case, we take

=, andy = a, at the initial time to fit the initial coordinates

1 5 3
)(F3X—qF2= - 5010'2':2)(- (106)
Sinceo;=1+0(€) ando,=1+0(€) are nearly constants

in the neighborhood of the singularity, without loss of gen-

erality, we may assume thag =1 ando,=1 to the leading  yayen by Brady and Pullitf Under this choice of coordi-
order. Note that in Eq4105) and (106), a, can be consid- \5te5 the transformatior89) and (90) applied to the nor-
ered as a parameter, which shows that the essential directigh,| mode is equivalent to a rotation of the axes. This is
in which singularities form is thev, direction. _ because the Fourier representations of the Riesz transforms

To solve(105 and(106), we substitute the leading order are
approximationo;=0,=1 to Eqs.(109-(106). Moreover,
we define Fl\(f £) —i& 012

. 182)= a1
F=F,+iFs, (107) )Y
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wherek=1,2 and &,,&,) are the Fourier mode. Since the tex sheet problem. Our model equation has two important
normal mode functions only have one Fourier mode, applyproperties. First, it captures the leading order behavior of the
ing the Riesz transforms is equivalent to multiplying a con-singular solution for 3-D vortex sheets. In fact, we will show
stant factor to such functions. Specifically, the transformathat our model equation forms the same tangential velocity
tions (89) and (90) applied to normal mode initial condition jump condition as that of the full equation. Therefore, by
(110 is equivalent to the axis rotation ¢111). In this par- applying the same analysis developed for the full equation,
ticular case @, defined by(89) turns out to be zero, as has we can show that our model equation captures the singularity
been proved by Brady and PulltiThe strength of the sin- type of the full equation. We also show that the local singu-
gularity is proportional to the projection of the jump in the larity structure of our model equation has the same form as
tangential velocity(in the x-direction to thex’-direction. In  that of the full equation near the physical singularity time.
particular, when we taken=0, which means that the direc- Another important property of our model equation is that it
tion along which the wave propagates is orthogonal to thean be computed efficiently. In particular, we show that when
x-direction, the singularity disappears. This shows that ouusing a special parametrization, our model equation can be
result is consistent with the result of Brady and Pullin whenexpressed in terms of the Riesz transform, which is a convo-

we apply our analysis to their initial data. lution operator. Thus it can be evaluated with the fast Fourier
transform withO(N? log(N)) operation count. This offers a
IV. A 3-D VORTEX SHEET MODEL EQUATION tremendous saving over the full equation and enables us to

perform well-resolved computations to study the singularity

All results in the previous section are based on formal
|orma'uon of 3-D vortex sheets.

asymptotic analysis. We need to perform a careful numerica
study to confirm our analytical results. However, direct S|mu-A Formulation
lations of the three-dimensional vortex sheet equation are”
very expensive. The complexity in every time stefiEN*) In this subsection, we will derive our 3-D vortex sheet
by direct summation of the dipole representation, wh¢lie  model equation. From the stability analysis of Hou and
the number of particles used to discretize the surface in eachhang® we know that the leading order contribution of the
dimension. Moreover, for initial conditions which are double integral on the right-hand side of E() is the near field
periodic perturbations to the flat surface, one has to sum thimteraction in the neighborhood @ «). Since we expect
contributions from all the periodic images. This adds sub-hat the vortex sheet surface is differentiable at the singular-
stantially to the overall computational cost. It becomes proity, we propose to approximate
hibitively expensive even withl at the level 0ofO(100). The
fast multipole methods developed by Greengard and Z(@t)—za',t)
Rokhlin* Berman and Greengdrtican be used in principle
to reduce the operating accountddl®>. However, the con-
stantc could be quite large in practice. Z, (' D) (a1—a))+2z, (a' ,t)(a,—aj).

To alleviate the numerical difficulty mentioned above, ! ?
we introduce a model equation for the three-dimensional vor€Consequently, the 3-D vortex sheet equati®nbecomes

by the first order Taylor expansion aroumg’,t),

Zal(a D (a—ap)+z, (a ) (a—aj)

0z
- T T
()= | [Vop(a) Voot 7] (@ D(ar—ap+zo (@ D(ag—aplPo® (9
which can be further simplified as
(i (@r—a)) + i (@ = ap)(z, Xz, ) (@' )
E(a't 47Tff |z), (al ay)+z), (a2 a2)|3 deydas, (114

wherez’' =z(«a',t), u'=u(a’). In order to evaluate the in- whereC,(t) andC,(t) are independent a&; and a,. The
tegral in the model equatiofil4) efficiently, we would like  construction of such a spectral coordinate system will be
to reduce the above integral to a convolution operator. To thiprovided in Sec. V B. With the choice of this coordinate sys-
end, we would like to find a coordinate system(«,), tem, the integral on the right-hand side of Efj14) can be

such that expressed in terms of the convolution operators,
R ) 1/ - |24 X2, _ [z, X2,
o By a2y By e E(Hl |;—|32Ma1 +H2 |; |32Ma2 .
2

Zal' Zal:CZ(t)Zaz' Zazi (116)

where
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1 (ay—ap)f(a’)da’
)= — f , : , S 118
= 2 | [Car—al P+ 2Cs(ar— a)(ar—ah) + (ap— a1 (118
|
with k=1,2. The exact Fourier symbols of these Riesz trans- I s
forms can be written down explicitly as follows: Zo, Za,=0, [77[1=1, @:0- (122
ﬁ(g £)= —i(§1—C1&r) 119 & timet=0. Further, we assume thatis a small perturba-
BoLS20 (C,— CH)(£5—2C 1 £,£,+ C,85) 2 tion from the flat equilibrium solution, i.e|z— (a;,a,,0)|
<1.
and In the previous section, we have shown that by consid-
— —i(Cpéy—Cyéy) ering a, as a parameter and complexifyiag , z(a4,-) de-
H,(&1,6)= > 252 1% 1. (120 velops singularities of order 3/2 on the,-direction at
(Co=CD(£172C 16182+ Caé) t=0+. The key to this result is to derive a local term from

Since the Riesz transformidy, can be evaluated by fast the differential-integral equation. For the full 3-D vortex
Fourier transform, the complexity in evaluating the modelSheet equation, we have shown that the interface velocity can

equation(117) in each time step is reduced @(N2logN) P& written as

from O(N?), whereN is the number of mesh points in each V(a,t)=— Vo a,t) +Vy(a,t), (123
direction. Moreover, the constant in front 6f(N?) is very
Sma” :V|OC(a1t)+V2(alt)1 (124)
It is interesting to note that in the special case of 2-D
. where
vortex sheets, our model equation reduces to
z
gz 1 [ Vo= (125
= - loc 2
gt 2i H(za)’ (12 2|z,

wherez=x(a,t)+iy(a,t) is the complex interface position, &tt=0, andVy, V, stand for the limiting velocity approach-
y=1, is the time independent vortex sheet strengthis N9 from the upper and lower layer fluid, respectively. _
the Hilbert transformH(f )= /7 [ f[(a’)/(a—a')]da’. Fgrthermore, the local term\Z,, rt—?-pr_e_sents a tgngentlal
Using a similar approximation by Caflisch and Semrfes, Velocity jump from the upper layer limiting velocity to the
we can rederive the local hyperbolic system of Caflisch andOWer layer limiting velocity across the sheet. We found that
Semme<? Moreover, in Hu's Ph.D. thesf he has per- the jump in tangential velocity f|eld§ is the.(_jrlvmg forC(_a of
formed extensive analytical and numerical studies to sho//’€ development of vortex sheet singularities. To derive a
that our 2-D model equation captures the same type of cuSimilar local approximate system for our model equation, we
vature singularities of order 3/2 as the full 2-D vortex shee?"@lyze the difference between the right-hand side of the full
equation. Further, Hd showed that our 2-D model equation €duation and that of our model equation. We will show that
captures the subtle disparity behavior between the singularitj€ différence is a regular integral and does not generate any
in the x variable and that in the/ variable observed by dlscontl_nwty when extended into the complex domain.
Shelley for certain initial data. Define

Before we perform our numerical study using the above 1
3-D model equation for vortex sheets, it is important to un-  u'(e,t)=— Ef f |V.u(a’)",V,2z(a’ ,t)T]
derstand whether or not our model equation can capture the
same singularity structure of the full 3-D vortex sheet equa- Z(a,t)—2z(a’'t) ,
tion. That is the topic of the next subsection, where we show [z(a,t)—2z(a’ D)3 @,
that our model equation does capture the singularity type of
the full equation, while the physical singularity time and lo- and
cation could be different.

1
Ut a)= - o~ f f V(@) Voz(a! 1)
B. Early time singularity formation m

Our goal in this subsection is to show that our three- y z,(a' (a1~ ay)+z,(a’" )(ar—ay) o
dimensional m.odel equation preserves the s!ngularlty type of |Za1(a'-t)(a1— ap) 2, (@' 1)(ar— ab)? @,
the full three-dimensional vortex sheet equation. We consider
a vortex sheet interfade separating two layers of fluids. We where
parametrize the interface by

I
Z

2 Jday @y’

I
T T ™
Zay,ap,t)=(X(ay,a,t),y(ay,az,1),2(ay,az,h))7, Vot V2| &alza

and assume that the coordinates («a,) satisfy The difference is
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Diff (a,t) = (u"—um%(a,t) same type of singularities at almost identical location up to
the leading order term at=0". However, it is important to

_ if f IV, (e, V,2(a’ )] note that the trajectories of the singularities in the extended

4o « T ' a, domain for the model equation are different from those

for the full vortex sheet equation. This is because the lower
order terms also contribute to the propagation of the singu-
where larity trajectories.

XK(a,a' t)da',

Z(a,t)—2z(a' 1)

C. Local form of the curvature singularity
|2(a,t) —2z(a’ D)?

K(a,a't)=

In this subsection, we show that our model equation pre-
zal(a’,t)(al— ai)+za2(a’,t)(a2— as) serves the same local form of the curvature singularity near
physical singularity time as the full vortex sheet equation.
From the analysis presented in the previous section, it is
For initial data which are small analytic perturbations to theSufficient to show that we can derive the asymptotic system
equilibrium, we can show that (92—(94) from the model equation. Following the derivation
by Hou and Zhang® we can show that as long as the per-
turbations are small in magnitude, the difference between our
model equation and the full equation only contributes to
smoother or smaller terms. Thus, the leading order system
for a, real and|Im(ay)| small. The above estimate holds up from our model equation has exactly the same leading order
to the singularity time. This estimate implies that the kernekerms as(92)—(94). Following the same derivations in Sec.
K(a,a') is integrable, and the integral is continuousdn ||| D, we can show that by the same transformation on the
Therefore, there will be no jump on the integral when mov-interface variables, our model equation preserves the same
ing from one side of the reat;-axis to the other side of the |ocal form of the curvature singularity near physical singu-

real a;-axis. larity time.
Moreover, we can show that if the vortex sheet is an

order O(e) perturbation to equilibrium, Diff¢,t) contains
only higher orderO(e?) contributions. In other words, our
model equation captures all the leading order contributiond- NUMERICAL STUDY
of the full 3-D vortex sheet. Since the analysis is quite tech-
nical, we would not present it here. Our numerical experi-
ments indicate that Diff¢,t) is half order smoother tham'

or u™d even ifz develops singularities of order 3/2. See the
arguments after Eq94). A variant of this result has been

|Zal(a’,t)(a1—ai)-i—zaz(a’,t)(az—aé)|3'

A
lim K(a,a’,t)$m (126

In this section, we confirm our theoretical analysis by
performing numerical computations on three-dimensional
vortex sheet problems. After briefly reviewing the formula-
tion for our model equation, we will discuss some implemen-
tation issues and outline the computational algorithm. Our
_detailed numerical experiments confirm several aspects of
_ L . Sur analytical results and provide strong evidence that singu-
functions with singularities of order 3/2. larities of order 3/2 develop for 3-D vortex sheets at some

Tq derive a local approximate system for the mOdelisolated points. Moreover the solution is more singular in the
equation, we express the velocity field in terms of the veloc-

rection than in th rection.
ity field of the full 3-D vortex sheet equation and the differ- A1 direction than in thes, direction
ence operator, Difig,t):

d_ v/ _ Dj . . . Lo
vmet=V' - Diff, In this subsection, we would like to further simplify our
whereV™ is the velocity evaluated from the model equa- 3-D model equation derived in the previous section so that it

A. Formulation

tion. Using Egs(124) and (123, we obtain can be computed more efficiently. As we can see, the integral
o . in the model equatiofi114) is not a convolution operator in
V%= =V + V, — Diff, (127 its present form. If we use direct numerical summation in our

evaluation of the velocity integral, it would tak®N*) com-
putational complexity in each time step, whétés the num-
Since Diff is continuous across the rea] axes, Diff does ber of mesh points in each direction. The numerical calcula-
not contribute any jump in the tangential velocity fields. tion becomes prohibitively expensive even whérreaches
Thus the model equation and the full equation generate ththe level of O(100). To be able to efficiently evaluate the
same jump in the tangential velocity fields. Moreover, sincevelocity on the right-hand side of the equation, we introduce
Diff is smaller and smoother than the leading order contribu-a special coordinate systena{,«,) to reduce the integral
tion, V.., we obtain the same local approximate system foroperator in(114) to a convolution operator, so that fast Fou-
our model equation as that for the full vortex sheet equationrier transform can be used to evaluate the integral operator
Thus the analysis we developed for the early time singularityefficiently.

for the full 3-D vortex sheet equation applies to our model  The special coordinate system is chosen so that Egs.
equation. Consequently these two equations develop th@d15—(116) are satisfied. With this set of coordinates, the

:V|Oc+ Vz_ Diff. (128)
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integral on the right-hand side of E(L14) becomes a con- S, JS, 25,25,
luti t ith the k I ——C,——= —_—
volution operator with the kerne B, C, B, 18, 5
aj
129 Z5. -2
27(Cyra’+2C ajay+ a3)¥?’ ( _ _ TR TR
(Coay 1010+ @3) C, 32,132 5

wherei=1,2. In particular, whei€,=0 as in the case of our
computation, the spectral representations of these two Riesz =F;, (139
transforms become

where
—i
Wélgz)uz, (130 c :<Zﬂ1‘zﬁz> :<Z/31‘Zﬁ1>
2\61 262 1 <Z,82’Zﬁz>’ 2 <Z,82'Zﬁ2>’
and
. with (f)= (1/47)? [f(B)dB. Further, by differentiating
—1é 13 (134) and (135 with respect tog; and 8, and with some
(§§+ c2§§)1/2’ (13D manipulations, we can derive the following couple system of
. ) _ . . elliptic equations forS; andS;:
respectively. For an interface near equilibrium, it is possible ) 5
to prove the existence of a set of coordinates satisfying 9“S1 i d S1=C <9_F1+3_F2 (136
(115—(116) by a fixed point iteration[see (138—(139)]. By 2B, 2aB, 9By’
From our numerical experiences, we find that such coordi- ) 5
nates exist even for large initial data. IS, +C, IS, _ ‘9_':1_ ‘9_':2_ (137)
I°B1 B2 IP1 IB2

B. Some implementation issues For surfaces which are small perturbations from a flat sur-

In this subsection, we discuss several implementatioriace, the existence d§, and S, can be proved by a fixed
issues for our computations. The most important issue is howoint iteration. However, we found from our numerical study
to construct a coordinate system that satisfies Fis5—  that such a coordinate system exists generically for more
(116 for all time. We divide this into two steps. general surfaces. In practice, we also solveSpandS, by
the same iterative method. Specifically, the iteration scheme
is given as follows:

P PST oFY oF

Initially, we need to find a system ok, a,) such that 728, +C3 75, :Czaﬂz + 9B, (139
Egs. (115-(116) are satisfied. We can derive a system of
PDEs for these coordinates which can be solved by an itera- °S) ™" en PSt oFY oF}
tion methqd. ' o 9B 228, 9B, 9By

Specifically, if the surface we consider is given by

z=(X,y,n(X,y))

1. Step 1: Initial orthogonal system

(139

where

n n n n
(23,23, n_(zﬁl.zlgl)

with x andy being the two parameters, we want to find a =, =
mapping &,y)= (81, 8,) such that Eqs(115—(116) are sat- (23, 2p,) (Zg2- Za)
isfied. Suppose we have Herez;}i , FI', etc., stand for the functions obtained using the
X=B1+S1(B1,B2), (132 nth iterative solutiorS! (i=1,2). These quasi-Poisson equa-
B tions for S; and S, are easily solved using FFT. For many
y=B2%S(B1.B2), (133 examples we have considered, such an iterative scheme con-

whereS,; andS, are periodic in3. By the chain rule, we get verges rapidly. It takes only a few iterations to reduce the
7. = (x o ) iterative error to the order of 1% The same idea can also
£~ (Xpp Yy X, Yy be applied to more general surfaces which are parametrized

= (1 + Sl'Bl’ 82”311 77)(( 1 + S]_,ﬁl) + nySZ,Bl)a by = (X(a) ’y(a) ,Z(Cll)).
Zﬁzz (Xﬁz’yﬁz’ nXX,B2+ nyyﬁz)

2. Step 2: Enforcing (115) —(116) dynamicall
= (Sup, Lt Sopy Sip, + 7y(1+ S2). P 9 (H5) ~(116) dynamically

o ) ) During the evolution, it is possible that the coordinates
Thus, substituting these equations inid5—(116) we get oy the last time-step do not satisfy E415—(116) in the

the coupled equations @, andS,: current time-step. To avoid re-adjusting the coordinates ev-
S, 9S, ery time-step, we add two tangential velocities to the evolu-
(9_,82+ ﬁ—lgl:Cl(Zﬁz'sz)—(231'252—31,32—52,51) tion equation. These two added tangential velocities are de-

termined by a set of linear elliptic PDE’s to guarantee that
=F,, (134 Egs.(115—(116) are satisfied for all time.
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As we know, the shape of the interface is determined2) Evaluate the original interface velocity, on the right-

solely by its normal velocityw-n. Let (T, T?) denote the hand side of Eq(114) using FFT.

tangential velocity fields to be added to the original interface(3) Compute the tangential velociti@s and T2 on 8; and
equation so that Eq$115—(116) are satisfied for all time. B, directions using the original interface velocity

The governing equation for the interface now takes the forn{4) Evolve the interface and the dipole strength using a
of Eq. (10). fourth order Adams—Bashforth method.

For any given time, we can derive a system of linear(5) Reconstruct the fluid interface based on the newly up-
elliptic equations forT! and T to satisfy Eqs(115—(116). dated interface to satisf§i15—(116) exactly in the dis-
Since the derivation of the elliptic system is quite technical, crete level.
we defer it to Appendix B. (6) Compute the solution at the next time step from s@p

In the previous section, we have shown that the model
equation generates the same type of branch point singularé. Numerical results
ties at the extended complex domain as the full 3-D vortex
sheet equation a@t=0+. If we use the same reparametriza-
tion given by(115-(116) for both the model equation and

In this subsection, we perform careful numerical studies
using our 3-D vortex sheet model to confirm our theoretical

results obtained in the previous sections. In particular, we

the fu!l 3-D vortex sheet equation, the §o|ut|ons of these tWanestigate three aspects of singularity formation in 3-D vor-
equations still have the same singularity structuré=ad+ tex sheets:

in the new parametrization. While it is possible that the rep-
arametrization may introduce additional singularities of a(1) Interface shape and the curvature.
different type in the extended complex domain, the analytid2) Singularity formation.
study of Caflisch, Ercolani, Hou and Lantfior the leading  (3) Local singularity structure.
order hyperbolic system shows that an isolated singularity is . ) ]
generically a square root branch point and it is stable under In our three-dimensional computations, we study two
dynamic evolution. A square root branch point singularity ininitial conditions. The first case corresponds to using an or-
the hyperbolic system studied by Cafliset al?* corre- thogonal coord_inate, while the second case uses a nonor-
sponds to a singularity of order 3/2 in the interface positionthogonal coordinate.
Thps, v.vithout.lgss of generality, we may assume that brancg_ Case 1: Orthogonal coordinates
point singularities of order 3/2 are generatedtat0+ for _ o
both the model equation and the full 3-D vortex sheet equa- !N this study, we take the following initial data:
tion in the new parametrizatiof. 2(t=0)=(ay,ay,e1 Si(a;— e, SiNay))), (140

Note that the new parametrization does not change the
tangential velocity jump. Moreover, the argument that theW
difference between the right-hand sides of the full vortex  u(a;,ay)=2a;. (142
sheet e_quation and the mOQeI gquation 's smoother still ap- For this initial condition, we solve the model equation
plies with the new parametrization. Further, the reparametri ith N=64, N=128, N=256. N=512 andN=1024, re-

zation of the vortex sheet does not change the shape of th ! .
pectively, to ensure the convergence of our computations.

surface, and curvature is independent of parametrizatio i double th h point q the ti
These considerations suggest that the model equation ca very ime we double the mesh points, we reduce the time-
tep At by half. As a result,At ranges from 0.01 to

tures the leading order singularity structure of the full 3-D . . o
vortex sheet equation at the physical singularity time. 0‘0006.25' As in numerical study for 2-D vortex she‘é‘iﬂ,|§
The modification of the tangential velocity changes theessennal to control the growth of round-off error by using a
Fourier filter. The Fourier filter is simply to set to zero all

evolution equation of the dipole strenggh i.e., w is not Fouri fficients that bel 1ain o tol
conserved with time anymore. The evolution equatioruof ourier coethicients that are below a certain given folerance.

under the new added tangential velocities is now governea—h(.e fiter tolerance level is set to 1& In our co.mputatlonfs.
by Eq. (10). which use the standard double precision. Higher precision

computations would be desirable especially if we want to

We remark that after each small time-step evolution, ' . . )
even though we evolve the interface with the added tangenthaln an accurate form-fit for the singularity. However, the

tial velocities,(115—(116) might not be completely satisfied C(_)trrr]]putatll_on_? l:jsmg hlgr:_er precisions beé:ome ver}ll expensn:e
at the discrete level due to the numerical error. Therefore, Wt ! ourltlml € c(;)m[k))? Ing rgs_ource% Ot.We only presen
need to use a projection technique to ensure (s —(116) € resufts using double precision anthmetcs.

are exactly satisfied at every time stégee Ref. 25 for Specifically, our computations proceed as follows.

heree;=0.1, ande,=0.5, with

detalls. (1) Evolve the interface usind =256, At=0.0025 up tot
=1.00.
3. Algorithm (2) Double the mesh size, reduce the time step in half, and
. . . continue the computation up te= 1.65 withN=512 and
We can summarize our computational algorithm as fol- At=0.00125
lows. (3) Attimet=1.45, further double the mesh size, reduce the
(1) Given the initial interfacez, construct 3;,8,) that sat- time step in half and compute up te=1.60 with N

isfies (115—(116). — 1024 andAt=0.000625.
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Curvature

FIG. 1. Interface calculated from a three-dimensional model equation at

t=1.64.
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FIG. 3. Curvature calculated from a three-dimensional model equation at

t=1.400.

We summarize our numerical results below.

(1) Interface shape and the curvature plai this part of the

study, we illustrate the dynamical evolution of the sheet
interface and its mean curvature. In Fig. 1, we plot the
sheet interface at=1.64. The interface looks quite

smooth at this time although the curvature already devel-

ops some high gradient structures, see Fig. 4. We can see

from Figs. 2-5 that the mean curvature develops a rapid
growth in time and a curvature singularity may develop
in finite time. It is important to point out that the initially
smooth curvature function is pushed to form a sharp gra-
dient along a certain directioflike the B, direction in
our analysis in Sec. IIBwhile it remains relatively
smooth perpendicular to this directidlike the 3, direc-
tion in our analysis in Sec. 11 B This confirms our ana-
lytic prediction that singularity formation for 3-D vortex
sheets can be essentially reduced to a 2-D vortex sheet
along a certain space curve. For these particular initial

2

Curvature
o
!

Curvature

data, we haveB;= a4 and B,= a, according to(39)—
(40).

In Sec. lll, our analysis predicts that for each fixesl,
singularities of order 3/2 form in the extended complex
1 domain spontaneously & 0+. Since the speeds at
which the singularities propagate depend®n we ex-
pect that the physical singularities would generically ap-
pear at some isolated points first, and then spread into a
one-dimensional curve. In Fig. 6, we present the contour
plot of the curvature. We can see that the singular region
of curvature is indeed concentrated along a one-
dimensional curve which is parametrized |8y. The
curvature achieves its maximum value at isolated points
along these one-dimensional curves.

Singularity formation We study the singularity type in
this part of the numerical study. Our purpose is to con-
firm that the singularity is of order 3/2 for a wide range
of initial conditions along a certain direction. Following
the work of Krasny, we use the log—log plot of the

FIG. 2. Curvature calculated from a three-dimensional model equation aFIG. 4. Curvature calculated from a three-dimensional model equation at

t=1.20.

t=1.60.
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Curvature

FIG.
t=1.646.
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Curvature

5. Curvature calculated from a three-dimensional model equation at
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FIG. 7. Cross section of the curvature plot along w, att=1.2, 1.3, 1.4,

1.5, 1.641-1.647, respectively.

Fourier coefficients of th&-component of the intersec-
tion along theB; direction with a fixedB,. The 3, is
chosen such that the maximum curvature value is ob-
tained at the intersection of these two directions. If the
interface forms a singularity of order 3/2 &t as pre-
dicted by our analysis, the slope of the logarithm of the
Fourier modes would approach2.5 asymptotically. In
fact, from Figs. 7—10, we see that the Fourier modes are
approaching the- 2.5 slope as time increases. In particu-
lar, the four curves in Figs. 8—10 represent the Fourier
modes at four different times. As the singularity time is
approached, we can see that the Fourier modes corre-
sponding to the lower to intermediate wave numbers
converge to the- 2.5 slope, while the higher wave num-
ber modes also move towards this slope as the singular-
ity time is approached. In addition, we find that they,
andz components form a singularity of order 3/2 simul-
taneously. This indicates that the interface may form a

0 T T
/ F T sk _—
10k
sk
N
- =20
¢
k] sk w‘l
\ -30
J 35|
-40 |- !
/ -45 L
[ 1 3 5
logk
o i 2 3 s 5 s : o :
a FIG. 8. Log—log plot of the Fourier coefficients in anvariable along the

equation at=1.646.

a,-direction passing through the maximum curvature position at time
FIG. 6. Curvature contours calculated from a three-dimensional modek1.61, 1.62, 1.63, 1.64. The Fourier coefficients increase as time increases.
The straight line shows the 2.5 slope.

singularity of order 3/2 in finite time.

To provide further evidence of singularity formation of
order 3/2, we have performed a careful resolution study.
In Fig. 11, we present the numerical resolution study in
the x variable usingN=512 andN=1024, respectively.

In addition, Fig. 12 shows the close-up of the plot in Fig.
11 in the high frequency region. From the close-up pic-
ture, we observe that as soon as the logarithms of the
Fourier modes deviate from the 2.5 slope, the curves
representing the logarithms of the 512 by 512 computa-
tions also deviate from those in the 1024 by 1024 com-
putations. Therefore, we conclude that the decaying be-
havior of the higher wave number modes in these figures
is due to the lack of numerical resolution and the filter-
ing effect. Moreover, we observe that at the same high
wave number, the coefficients computed from higher
resolution (N\=1024) are closer to the 2.5 slope. This
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FIG. 9. Log-log plot of the Fourier coefficients inyavariable along the  FIG. 11. Log-log plot of the Fourier coefficients in arvariable along the
a;-direction passing through the maximum curvature position at time q,-direction passing through the maximum curvature position at time
=1.61, 1.62, 1.63, 1.64. The Fourier coefficients increase as time increases.1.641, to 1.647 at the interval of 0.001. The straight line shows—tBe&

The straight line shows the 2.5 slope. slope. The two sets of curves correspond to computations using 512 mesh
points and 1024 mesh points, respectively.

indicates that the higher wave number modes will even-

tually converge to the-2.5 slope as more and more sheet equation. This should be done and will be left for
mesh points are used. This resolution study gives some future work. Thus, our computational results presented
evidence that a singularity of order 3/2 is formed at the  in this paper provide only partial confirmation of the
singularity time. Very similar behavior is observed for  finite time singularity formation of 3-D vortex sheets.
they andz variables. Since the results are basically the  The results on the order of the singularities are consistent
same, we do not present them here. with our analyt'ic prediction. .

We remark that to obtain a complete confirmation of the(3) Local smgulanty_structu_re In Sec. llID, In order to
order of the singularity, one has to perform high resolu-  study the local singularity structure, we introduce two
tion computations with high machine precisions, and use  new variabless; and ¢,. We show that to the leading
some sophisticated form-fitting technique; see, e.g., order¢, andz form singularities of order 3/2 but there is
Shelley> Unfortunately, due to the drastic increase of ~ no singularity of order 3/2 in the, variable. Since our
computational costs for the 3-D vortex sheet equation, analysis is based on formal asymptotic analysis, we
we could not afford to perform such high resolution, would like to confirm this result numerically. From the
high machine precision computations for the 3-D vortex  log—log plot of the Fourier coefficients of thg and ¢,
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-
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FIG. 10. Log—-log plot of the Fourier coefficients inzavariable along the  FIG. 12. Close-up plot of Fig. 11. Note that as soon as the logarithms of the
a,-direction passing through the maximum curvature position at ime Fourier modes deviate from the2.5 slope, the curves corresponding to the
=1.61, 1.62, 1.63, 1.64. The Fourier coefficients increase as time increase512 by 512 computations also deviate from those of the 1024 by 1024
The straight line shows the 2.5 slope. computations.
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FIG. 13. A comparison of the log—log plot of th#, variable Fourier coef-
ficients to that of thep, variable along ther; direction. Both cross sections
along «; pass through the maximum curvature position at timel.646.
The upper line corresponds to the Fourier coefficients otitheariable, the
straight line has the slope ef2.5. The lower line corresponds to the Fourier
coefficients of the¢, variable, the straight line has the slope of3.1.
Solutions are computed usilg=512 andN=1024.

variables along thg; direction in Figs. 13 and 14, we
see that the Fourier modes of tthg variable approaches
the — 3.1 slope, while the Fourier modes of tkg vari-
able approaches the2.5 slope. This confirms thaf; is
indeed smoother tha#, near the singularity time.

Throughout our analysis, we argue that under the speci

set of coordinates, one direction is the essential singulari%

direction (the B, direction. In the case we study here, even

with the added tangential velocities and the adjusted dipol

log ¢, vs.log ¢,
Q‘K_‘ g 9,

>
o

-20 - I I
45 5

log k

FIG. 14. Zoomed plot of Fig. 13. A comparison of the log—log plot of the
¢, variable Fourier coefficients to that of tlge variable. Both intersections
pass the maximum curvature position at titeel.646. The upper line is the
Fourier coefficients of thep, variable, the straight line has the slope of
—2.5. The lower line stands for the Fourier coefficients of ¢hevariable,
the straight line has the slope ef3.1. Solutions are computed usiiy
=512 andN=1024.
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log Xk

logk

FIG. 15. A comparison of the log—log plot of the Fourier coefficients in an
x variable along thea;-direction with that along thex,-direction att
=1.64. The upper line corresponds to the Fourier coefficients along the
a4-direction. The lower line corresponds to the Fourier coefficients along
the a,-direction.

strength, theB, direction corresponds to the,-direction. So
the a4-direction should be the essential singular direction to
the leading order. To confirm this, we compare the Fourier
coefficients of the solution along the -direction to the Fou-
rier coefficients of the solution along the-direction. As we
can see from Fig. 15, even though eyr=0.1 is not particu-
larly small, there are still disparities in the tails of the Fourier
ﬁoefﬁcients in thex variable. Almost the same behavior is
bserved for they and z variables. This shows that the;
irection, which coincides with tha-direction in this case,

is the essential direction driving the singularity formation of
fhe 3-D vortex sheet problem. We also present the same com-
parison at a later time in Fig. 16 which provides further
evidence to support our analytical result.

:15, Wf "My ]
W fy

) log Xk.

30k

35k 4

-40

-45 ;
o] 1 2 3 4 5 6 7
log k

FIG. 16. A comparison of the log—log plot of the Fourier coefficients along
the a;-direction with that along the:, direction att=1.647. The upper line
corresponds to the Fourier coefficients along thedirection. The lower
line corresponds to the Fourier coefficients along dhedirection.
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Case 2, T = 1.881 to 1.885, 512 vs. 1024, x-variable Case 2, T = 1.881 to 1.885, 512 vs. 1024, x-variable, zoomed
0 T T T T T T T

I L -
a4 46 48 5 5.2 5.4 5.6

-25

0 1 2 3 4

FIG. 17. Log—log plot of the Fourier coefficients in tkevariable along the ~ FIG. 18. The close-up of the top curves in Fig. 17 along fhedirection.
B,-direction versus the same Fourier coefficients along ghelirection.

Both curves along both directions pass through the maximum curvature

position at timet=1.881, to 1.885 at the interval of 0.001. The top curves

correspond to the Fourier coefficients along g direction. The lower

curves correspond to the Fourier coefficients along ghedirection. The corresponds to the Eourier coefficients a|0ng }3’1edirec-

straight line shows the-2.5 slope. The solutions are computed ushig fi hile the clust f in the | ¢ d

—512 andN=1024, respectively. ion, while the cluster of curves in the lower part corresponds
to the Fourier coefficients along th direction. We can see
that solution is clearly more singular along tg direction

2. Case 2: Nonorthogonal coordinates than that along thg3, direction.

In our last example, there exists a set of coordinates that In F;g. 186 we dPrese_”t a close—ug .oth-he |1:;)u1r_|er coeffi-
satisfy the equation witlC,;=0. In addition, the tangential C'€Mts along thes, direction presented in Fig. 17. To ensure
velocity jump direction coincides with one of the parametertat we have enough resolution, we have used two sets of

direction. This makes the computation somewhat special. [fumerical resolutions in this study, one with 512 by 512
our next example, the tangential velocity jump has the conMesh points, and in another with 1024 by 1024 mesh points.
tributions in botha, and a, directions. Also, there is no We can see that the Fourier coefficients converge to the slope

orthogonal coordinates that satisfy E¢k15—(116). —2.5 as time increases with increasing resolution. This is
In this study, we choose the initial condition as again consistent with our theoretical prediction given in the
previous section. The same behavior has also been observed

2t=0)=(ay,ay,6,SiN(a1— &, SiN(@y))), (142) in they andz variables. We do not present them here.

wheree;=0.1, ande,=0.5, with

ulag,az)=ay+ ay. (143  ACKNOWLEDGMENTS
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APPENDIX A: LEADING ORDER EQUATION OF i3

In this appendix, we will derive a leading order evolution equationgfgr To this end, we substitut@5) and (26) into
(35), and extract the leading order terms:

s 1 [ [ A H) H) (@ ad)  va(Ha(d) + H(95) (= ap)
wel]

|z—2'|® * |z—2'|®

yZ(H 1( ¢1) - H2(¢é))al(al_ ai) B yl(Hl( lpjll_) - HZ( lﬂé))az(al_ ai) _ ‘)/Z(H 1( l,lll_ l/f:ll_) - Hz( l//z_ l)[fé))

v =T =T =z’
(—Ha(gn= ) —Hi(o=¢3)  ya(as—ap)+ya(ap— o
~ va(=Ha(¢h |Zl,i1;|3 1($2=¥2)) 7yl l;)_z?’é( 2 2>da’+0(82), (A1)

where | = i(a'), i=1,2. By using(31) and the properties of the Riesz transfor(h8)—(19), we obtain

s 1 1 1, 1 1, 1
7257’1H2D2¢1+ E?’leHlDzlﬂz_572H2D1¢1_§7’2H2H1D1¢2+ 571H1D2¢1_§71H1H2D2¢2

1 1 1 1 1 1
- E?’zH%Dll/fﬁ‘ 5’)’2H1H2D1¢’2+ EYZAHll/’l_ E)’zAHzlﬂz_ E?’lAHzl/fl_ E?’lAHH[’Z

1 Yalax—az)+ yi(a;— aj)

i ’ 2
1 1 Yolaz—ay)+yi(ar—ay) | 5
—5(71D1+ 72D2)¢2+Ef Rk da’+0(&%). (A2)

It is necessary to analyze the integral term of E&R) and extract the leading order contributions. By further expanding
the integral in terms 08;’s, we find that the leading order terms are

1 [ voag—ax)+yi(as—ay) | 3 [ valaz=ax)[(Si=S)(a1—a) +(S,=S)(a—a3)] |
e 13 o = — — 15 da’
4 |z—Z'| 47 |z—Z'|
3 —a)[(S1—S)(ar1—a})+ (S~ Sh)(a,—aj
2 yilar—ay)[(S;—Sy)(ay ,04;) (S~ S))(ar az)]+o(€2). (A3)
4o |z—2'|
Using integration by parts and applyif@8)—(19), we get
if Yolaz—ay) +yi(ar—ay)
41 |z—2'|® “«
1 1 2
:—E72(H1D2(51)+(2H2D2+H1D1)(Sz) —57’1((2H1D1+ H2D2)(S1) +H1D2(S;))+O(&%). (A4)

The above derivation is similar in spirit to that of Appendix B in the paper by Hou, Teng and 2fABggsubstituting(25) and
(26) into (A4), we write the leading order terms iy and i, :

a/

if Yalap—ay)+ yi(a@—ay)
4 lz—2'|®

1 1
=- EVZ(HlDZ)(_ Hotry—Hqyihs) — 57’2(2H2D2+ HiD1)(H11—Hzih)
1 1
- 571(2H1D1+H2D2)(_ Hotry —Hqin) — 571H1D2(H1¢1_ Hyi,) +0(e?), (A5)

which can be further simplified to
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a!

if Yola— az)+ yi(a;— ay)
4 lz—2'|®
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1
== E(H1D1+ HoD o) (= yiH o+ yaH1) ¢y + (HiD 1+ HoDo) (y1H1+ y2H,) 2+ O(£2)

1
=—(y1D1+ v2D2) ¢~ E('leZ_ ¥2D1) ¢h1+O(&?).

Thus we obtain the leading order evolution equationggras follows:

s _
ot

APPENDIX B: DERIVATION OF EQUATIONS FOR T*
AND T?

In this appendix, we will derive the elliptic system fot
and T? so that Eqs(115—(116) are satisfied for all times.

Recall that
Zﬂ;[: |Z'31|t1,
ZBZZ |Zﬁ2|t2
Note that
(C1(1)2<Cy(1), (B1)
since
Cl(t) | Z'B2|2: Zﬁll Z:BZ< |ZB1| . |ZB2| .
Thus we have
5 |ZB1|2
(Ca(1) <72 =Cx(1).
|ZB2|
Now define
Zs -2
B B Ca(1)
ty-ty= = =cod, O0<6<w. (B2
|Zf31| ’ |232| VCZ(t)

Suppose that we have constructed the initial coordinate sys-
tem satisfying Eqs(115—(116) att=0. To ensure that Egs.
(119-(116) are satisfied for all time, we differentiate Egs.

(119-(116) with respect to time. This gives

(Zt)gl' Zg, 12, (Zt),Bzz 2C1(t)(zt),32' Zg,

+Ci(t)]2g,/% (B3)
Cy(t)
(205,25, = ColV)(2) g, 25, + — 5125,/ (B4)

Next, we introduce two new variablds andT* as fol-

lows:
T3=T1+cosHT?, (B5)
T4=T2+cosHT:. (B6)

Then we have

1 1
== 5(?’1D1+ ¥2D2) o+ E()’le_ y1D5) 1+ 0(&?).

(AB)
(A7)
[
Ti= ! (T3—coshT?) (B7)
Sir? @ ’
TZ:sinlz 0(T4—0056T3). (B8)

Using the interface equatiaii0), we can reducéB3)—(B4)
to the following system:

|zﬁl|T§2+ |zﬁ2|T4ﬁl—2C1(t)|zﬁz|T22
=- |ZB2|(t1B1' tp) T - |ZB1|(t2B1' t)T?

+2C1(1)[2,|(trp, t2) T =2 |Wp, - to— |25 [ W, 1

+2C1(1)[zg,|Wg, t2+ Ci(1)|24, /%, (B9)
|Z,81|T?31_ |Z,82|C2(t)T432
=Ca(1)|25,|(t1p, t2) T = |25 [(t2p,- t1) T?
2
+Cy(t)|zg,|Wg, ta— |25, |Wg, - t1+ Ca(1) %.
(B10)

If we divide Eq.(B9) by |z | and Eq.(B10) by |z |, we
arrive at

VCo(D) T, + (T, —2C1 ()T )=L1+G1+Ci(1)[zg)],

(B11)

3 4 ) |232|
5~ VCa(D)Tj,=Lo+ Go+ Co(t) ——, (B12)

where

L1=—(tyg, o) T2= Cy(t) (L, 1)) T?
+201(t)(t1,32-t2)T1, (B13)
Gy=—Wpg -t Co()wy  t; +2Cy ()W -t,,  (B14)
Lo=Co(D)(typ, t2) T = (tzp, t) T2 (B15)
G,=VCo(Wy, t,—wWp -ty (B16)

Define



172 Phys. Fluids, Vol. 15, No. 1, January 2003
Ri=L1+G1+Ci(1)[zg,), (B17)
Lo 128

By differentiating Eqs(B11)—(B12) with respect to8; and
B,, we can rewrite the system as

g 2C, (1) IR,
T°=Cy(t)—| Ri——=R —, B19
Z(t)ﬂﬁ 1 m 2 (7’31 ( )
e R ic
AT 38 2(t)wz, (B20)
where
~ (92 2 2
A= ‘931 —2C4(t )&,8 5, +C2(t)o7,82

is an elliptic operator sincéCl(_t))2< C,(t). The right-hand
sides are linear functions &T' andT' (i=1,2). The solu-
tion exists for(B19), (B20) by the linear elliptic system
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