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Abstract

The motion of surface waves under the effect of bottom is a very interesting and chal-
lenging phenomenon in the nature. we use boundary integral method to compute and
analyze this problem. In the linear analysis, the linearized equations have bounded error
increase under some compatible conditions. This contributes to the cancellation of instable
Kelvin-Helmholtz terms. Under the effect of bottom, the existence of equations is hard to
determine, but given some limitations it proves true. These limitations are that the swing
of interfaces should be small enough, and the distance between surface and bottom should
be large enough. In order to maintain the stability of computation, some compatible re-
lationship must be satisfied like that of [5]. In the numerical examples, the simulation of
standing waves and breaking waves are calculated. And in the case of shallow bottom, we
found that the behavior of waves are rather singular.

Key words: Fixed bottom, 2D surface wave, Boundary integral method, Linear analysis,
Energy analysis.

1. Introduction

It is well known that the solution to the Dirichlet and Neumann problems for Laplace’s
equation may be expressed in terms of boundary integrals of source or dipole distributions. In
this method, the boundary is always labelled as Lagrange markers. Numerical methods with
Lagrange markers were attempted for vortex sheets long ago by Rosenhead. Such Methods for
more general fluid interfaces were first proposed by Birkhoff [6]. The first successful boundary
intergral method (BIM) was developed by Longuet-Higgins and Cokelet [21], who calculated
plunging breakers. BIM for the exact, time-dependent equations have been developed and
used in many other works, including Vinje, Brevig [33], Baker, Meiron, Orszag [2], Pullin [26],
New, Mclver, Peregrine [24], Dold [10], Schwartz, Fenton [29]. Yeung [35] reviewed these early
works. Methods of boundary integral type have been used even for the ill-posed cases of fuid
interface motion, including vortex sheets and Reyleigh-Taylor instability (Moore [22], Krasny
[20], Kerr [19], Tryggvason [32], Shelley [30]), a regularization or filtering of high wave numbers
is necessary for numerical stability.

Flows such as those generated by surface waves over bottom topography or due to a solid
body in motion underneath an interface require Neumann boundary conditions at the solid
boundaries in addition to the free-surface conditions. Since the fluid can not penetrate a
solid boundary, the normal fluid velocity at the body must equal the normal body velocity.
The bottom boundary and interface are assumed to be 27-periodic in the horizontal direction.
Using the complex variables, we parametrize the free surface and solid boundary by zp(a,t)
and zp(a,t) respectively. The bottom is assumed stationary. We take a as the Lagrange
coordinate; i.e., dzp/dt is the velocity of the lower fluid at the surface. The dipole moment and
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source moment can be determined from the potential and boundaries by resolving two linear
integral equations. It is important that the integral equations are two Fredholm equations of the
second kind, they can be solved by simple iterative procedures. Verchota [34] and Kenig [17][18]
proved the existence of solution in the bounded domain with Lipscitz boundary. Beale, Hou and
Lowengrub [4] proved that the Fredholm equation has solution in H*,s > 0 in half plane with
smooth boundary. But it is hard to extend this result to system. We use an iterative sequence
to construct a solution and at the same time look for the sufficient conditions to guarantee the
existence of this solution. We find it is suffice to force the distance between surface and bottom
large enough and the perturbation of surface is small enough. And the later condition is the
same to the idea that the free surface is sufficiently close to equilibrium, which is well-known
as the condition of well-posedness of free surface according to W.Craig [8] and H. Yosihara
[36]. Although they are not satisfactory conditions, it is compatible with the computation and
we expect the proof of existence of more relaxed conditions, or even the removement of such
limitations.

The stability of numerical methods is closely related to the question studied in section 2
of the well-posedness of arbitrary linearizations, since the numerical error can be expected to
satisfy the linear equations to first approximations. Beale, Hou and Lowengrub [5] presented a
convergence proof of a boundary integral for water waves with or without surface tension. Fol-
lowing a framework developed in [4] for linearized motion perturbed about an arbitrary smooth
solution at the continuous level, they found that very delicate balances among terms with sin-
gular integrals and derivatives must be preserved at the discrete level in order to maintain
numerical stability. They also realized that suitable numerical filtering is necessary at certain
places to prevent the discretization from introducing new instabilities in the high modes. This
filtering depends on the choices for approximating spatial derivatives and quadrature rules for
singular integrals. Besides filtering, Hou and Zhang [16] discovered a new stablizing method
which compensates the unstable terms, the new method can be expanded to 3-D water waves.
In order to illustrate the necessity of filtering, we develop a group of numerical experiments
to show the differences that filtering brings with bottom. While the comparison under the
case without bottom was shown in [5]. When the bottom is considered, it doesn’t bring any
singularity to the velocity, which make the numerical analysis and computation comparatively
easy to work on, provided realizing the solvablity of the linearized Fredholm equations (see (29),
(30)).

The advantage of using alternating trapezoidal quadrature is that the approximation is
spectrally accurate. Sidi and Israeli [31] analyzed the spectral accuracy of a midpoint rule
approximation for a periodic singular integrate. They realized that the alternating quadrature
rule applied to singular integrals gives spectral accuracy. Shelley [30] used this scheme in the
context of studying the cortex sheet singularity by vortex methods. By using the spectral
accuracy of the alternating trapezoidal rule, Hou, Lowengrub and Krasny (14] simplifed the
proof of the convergence of the point vortex method for vortex sheets.

The rest of the paper is organized as follows: The following in Section 1 is devoted to
describe the boundary integral reformulation introduced by Beale, Hou and Lowengrub [5] and
their ideas to remove numerical instabilities. In Section 2, we present our linearize analysis
in continuous level. The numerical analysis is given in Section 3. Finally, in Section 5, some
numerical examples are included to demonstrate the robustness of the method. Numerical
simulation of shallow and deep water proceed to a time where it approximates the singularity.
The method remains stable even in the full nonlinear regime of motion.

1.1. Analytical Formulas

We consider the 2D incompressible, inviscid and irrotational fluid bounded by upper free
boundary and lower fixed bottom. Based on the potential theory and partial differential equa-
tions, we can regard the interface as dipole layer, and bottom as source layer with potential
flow, thus there exist potential function and stream function.

Assuming there is a source with strength m at z(e), then at any place z except z(e) the
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potential function and stream function are:

d)s:ElﬂT', wszmea
2
Wherer: |z—Z(€)|a g= a.rct‘,a.n.’: i:

Alternatively assuming there is a dipole with strength up at z(e), then at any place z except

z(e), the potential function and stream function are:
pp dlnr pp 06
éd By "1[){1 = AT
27 dn(e) 27 dne)
where n(e) is the unit vector of dipole from sink to source.
Integrating along the source layer, we get the complex potential at z:

(1)

P,(z) = f{q&,(e) + 1tp,(e) }ds(e) = % /m(e) In(z — z(e))ds(e). (2)
Let o(e) = m(e) - sc(e), then
1
2,() = 5- f o(e) In(z — 2(e))de. (3)
Similarly we have the complex potential generated by dipole layer:
L [ pr(e)ze(e)
f{ﬁf’d(e) + ip4(e) }ds(e) = 5 zfz——z(e)de' (4)
We denote the surface 2 (e), and bottom zg(e), Thus the general complex potential is:
O(z) = Z:rz f% e+ %fa(e) In(z — zg(e))de. (5)
Because o(e) = [up(e)]., integrating the second term by parts, we obtain
_ 1 [ pr(e)zr(e) 1 [usle)zs. () ,
Bia) o= Zm'f z —zp(e) de+21r/ z— zp(e) % (6)

Set ®(2) = ¢(z) + i1p(2), it follows from the Plemelj formula of complex variables the value of
¢ on the surfa.ce is:
1 [ pr(@)er (o) | f up(a)zp, ()
o) = gore) + g, [ L PE a4 [ SR a].
By dlﬁerentxatmg above equation with respect to a, there results a Fredholm equation for

)
1 zr, (@) () r, 2r. () o(a’) '
%a = 37(a) + Re [ ori | zr(@)—en(@) > T or s o vl R
Differentiating the complex potential with respect to z, we get the complex velocity w:
dd 1 ~(e) 1 /’ a(e)
= - — = d = ——nst e
w(z) dz  2m [ z—zp(e) et 2 ) z— zB(e)de )
By Plemelj formula, we obtain the complex velocity on the surface:
v(a) 1 f () i1 /’ o(a’) /
= — ] — — : 0
) 2zp, (@) e 2mi ) zp(a) — zp(af’)da & 2 ) zp(a) — zB(a’)da (10)

Along the bottom, the stream function 1» must be a constant (zero for convenience). Using
Plemelj formula on the bottom, we obtain:

rs(a) 1 f pr(a)zp, (o) ;1 f pp(a)zp, (o)
EEVY = Tl e i EENIERL AR o BN SRR ] .
2 " [271':' zp(a) — zp(a’)da * 2n | zp(a)— zp(a’) -
By differentiating (11) with respect to a, there results a Fredholm equation for a:
o(a) zg, () / ! 1 '
= = Im [ZBarZ) e B
2 m [ 2m (e )ZB(Q) 2= ZF(Ct")da

ZB. (a) ' 1 '
+—21r o(a )————ZB(Q) —an(a) da] . (12)

(11)
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Since a is a Lagrange coordinate, the velocity of the interface is that of the fluid below, and
we obtain an evolution equation for the interface:
9z
a(a,t) = w*(a, ), (13)
where the asterisk denotes the complex conjugate. For the evolution of ¢(a,t), we use Bernoulli
equation. If we neglect surface tension, the pressure is zero at the interface. Thus, Bernoulli
equation in the Lagrange frame is

b= 3ol + gy =0. (14)

To summarize, we obtain the entire evolution system consisting of (8), (10), (12), (13) and (14).

1.2. Numerical Formulas

From now on, with z(a,t) = a + s(a,t) (Note: in this paper, we would always denote
zp(ay t) or zp(a,t) as z(a,t) when we want to endow them the same properties), we assume
that s(e,t) and ¢(a,t) are periodic in a with period 27. With

+oo
1 z 1
—cot — = 5 2km, k € Z,
co kz pomre T z# 2km, k €

2 2

=—00

we obtain the complex potential under periodic condition:

1 — zp(a 1 — zp(a’
®(z) = m/ﬂF(GI)ZFa cot z—%d&'+ = [ug(a')zga cot %{)—daﬂ

—Tm -

and other equations under period 2:

Pa = %’Y(a} + Re —zi‘w(:l) /7(&') cot zr (@) — z¢(o) —2zp(a )da’

+——zFZ£ra) [c’(a')cot zr(a) —zp(e) ;ZB(a,)da' ; (15)

LR X R [OFL CIPY

-

25, () f”a(a,) ooy 280 —2B()

T ar 2 , (16)
wla) = ;i—:)(a)-i- ﬁ f’r(a')cot zr (@) — zp(&) EZF(Q’)da’
+$ [cr(a')cot zr(a) —z5(@) _zzﬂ(a’)da’, (17)

We use the same discrete scheme as that of [5], and the following is a simple repeat: Dividing
[—7, ] uniformly into N parts, set a; = jh,h = Ti= —% +1,--- ,%. Introduce discrete
operator Dj,, whose Fourier symbol is

- ; 2 N N
(Dflf)k = ?,kp(kh)fk, k= _? + ly"' ) ?‘
That D}, is of order ‘v’ refers to the fact that p satisfies
11— p(kh)| < C(kh)".

(18)
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For the second-order centered difference operator,we have:

pa(kh) = S5H),

for the fourth-order centered difference scheme,
8sin(kh) — sin(2kh
palih) = SR~ sin2lh),

6kh '
and for the cubic spline approximation,

pe(kh) =

sin(kh) 3
kh 2+ cos(kh) |

395

If Dy, is spectral derivative, it satisfies(i) p(—z) = p(z) , p(z) > 0; (ii) p € C? , p(x) = 0;

(iii) p(x)=1 when|z| < Ax, where 0 < A < 1. For example, when
p(kh) = exp(~10(2IkIR)%) , [k < N/2,

(Dy)k = tkp(kh) is a 25-order accurate approximation to the derivative operator.

The meaning of filtering is as follows: let z; be an approximation to z(«;), s; = z; — a; will

be periodic. We define zf as a; + s¥, where
§h = p(kh) - 3 .

(19)

It is clear that 2 is an rth-order approximation to z if p corresponds to the rth-order derivative

operator.

In order to approximate the singular integral, given the discrete functions z; ~ z(a;) and

v; = 7y(e;), we use the alternating trapezoidal rule, with filtering in zp as above:

= N P N/2 2P _ P
f‘y(a')cot _ZF(Q‘) = zr(@ )da’ = E 7; cot (—F Fj) 2h.
- j==N/241 2

(F=Dodd

(20)

Dealing with other integrals with the same rule, we obtain the following numerical formula:

N/2 P P
dZ: _ Yi 1 o sz
dt ~ 2(Dpa); ami D, ot (“—2— 2h
j==N/241
(i—i)odd
1 Ny Zp, — 2B
+ET- _ Z o; cot ('—2’-) 2h = w; — 1v; ,

F==N/2+1

(j—i)edd
deoy; 1 .
0 = Lz ot - ou

N/2 P p
Y Dy zp, Zp, — 2R,
D}|¢i = '5“+R€ E‘I’Z_‘ 7 Z Yi cot (—2—"-) 2h
J=—N/a+1
(i=i)odd
N/2
Dyzp, ZF, — Zp,
J=—N/2+41
(i~i)odd
N/2
a; - thB.- ZB; — RF;
i=—N/2+1
(j—i)odd

N/2

thB.‘ ZB; — ZBy
T Z O'j cot ('TJ) 2’1} .

i=—N/2+1
(i—i)odd

(24)
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2. Linear Analysis

2.1. Existence and Uniqueness of Fredholm Equations

Definition 2.1. We define the integral operators

Krle) = Re{ply [ Tl o).

2mi [, zr(a) — zp(a)

Kaold) = Re{ L f Mda'},

2r o zr(a) — za(a')
_ 1 v(@)zp. (@)
o) = ~tm{g; [ e ey}
1 [ a(@)z. (o) .
{5 [, i 2@ J
Definition 2.2. (%) condition:
(1) z2p(a)—a € H™(R),zp(a) —a € H™(R),m = 3,

(2) 0< s <m=2
(3) ey >0,hp >0, s.tfzp(a)— zp(a)]? > G(a— o) + hg, Vo, €R

K,;O’(C!)

Il

Lemma 2.1. Under the (¥) condition,
T 1
:I:EI+K1|4 and .‘.|:§I+KI'4

has bounded inverse on H*(R).

Proof. See [4] Theorem 3.
The Fredholm equations (15), (16) composed by 7,0 is

(%I — KI) v = ¢ — Ko, (25)

1
Y(y0,00) € H*(R) x H*(R), processing iteration:

1 o

(51 ~Ki)mt1 = ¢a— Kaon,
.

(‘iI + Kq )U'n+l = _Kﬂ’Yn:

n=20,1,2,.+
when n > 2,
T
(§I — Kl )('Y,H-l — 'Yn) — _KQ(JfL = an—l)

1 .
(*Kz)(§I+ K{) Y (=K3)(Yn—-1 — Tn-2)-
Let €, = ¥n — Yn—1, then
1 i 1 o .
€ntl = (EI_KI) . ‘Kz'(§I+K4) L. K; - €ni.
if we define Y .
T= (51 = KI)"]' - Ky - (§I+Kz)_1 - K,

it follows
k k L,
€ak4+1 = T €1, €2k42 = T €9, k= 0,1,2,“' 5
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In order that the iterative sequence converge, it suffices to have ey — 0 and e, 19 — 0 which
can be satisfied if ||7|| < 1 (in some normed space).

First we consider the space L? x L? : (y,0) € L*(R) x L*(R), and we try to find the
conditions to ensure [T’ . < 1.

1 eyt
||(,3 ~KD7

IGI+ED ™,

< 1

< 1 (27)

Assumption 2.1. y = F(z) on 081 and assume 3CF, s.t.

|F ( )< Cpg ,Vx (28)
and 0 < § < 1, s.t.
L+44> |z ()] >1=14¢
1.€. L+d6> [{zale), gala’)} >1-148

Theorem 2.1. Under (%) condition and Assumption2.1, there exist Clp > 0,hl; > 0
when Cp < Clp , hp > h}y, v,0 equations have unique solution in H*°(R) x H*(R).

2.2. Linear Analysis
Lemma 2.2. Assuming
: L fla)zp, () .,
K = Re|— [ —————"da'|,
s/(a) = [271’ f z,:-{a-)— zg(a’) N
K¢fla) = Im [ o)

and K| as above, then we have

) (@) = (Euf)e)+ R[5k [ fufa) 200 =2r@ 0y,

zp(e) — zp(a’)

(Ksf)(a) = (Asf)(a)Jer’[ f fula) (

zr(a) — zp(a')

(h’e},fJ-(u) = (}(ﬁf-){ﬂ‘)‘—fﬂl[%/.fn(al)‘

zpla) — zp(a')
Proof. The same as Lemma 2.4 in [4].

Lemma 2.3. When 0 < s < m — 2, denoting zp or zg as z, then the Cauchy integral

ot = o, [ £

defines a bounded operator on H*. And Kip(a) = Kp(a) — .—3;H pla) is a smooth operator from
HY 2o ™2,

Proof. See Lemma 2.2 in [4].
Corollary 2.1. K, f = Re(K) is a smooth operator.

Proof. Kif = Re(K) = Re(K — 3§ H ) = Re(K,).
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Lemma 2.4.

L1 & D
Fo)= 2m [x'eﬂl zp(a) — Za(a')da A-oo(0)

(i.e. HO"%% gm-2)

Proof. From (*) condition (3), we have

|lzp(@) — z5()* > cp((a — )? + h),

. 1 |o(a)|?
F@y < —5 f d [ d
P, < 272 Jorer chl(a —a')? + h) * acR “
< a6l
Using the same method as that applied to DYF(a) (|y| < m — 2), the conclusion is obtained.

Similarly, Ks, K3, K5, K are also smooth operators.
From the definition of Definition 2.1 and Lemma 2.3, the Fredholm equations can be reduced

then

to
1
= Kiur+ FHF + Kspug,
“75 = Kgup + Kqpp.

Employing relative results in [4] and above Lemma, we obtain the linearized equation for jip
and fipg:

; i . . . 1 .
¢ = ghF + Kifip + Re[(wo + w1 )2p] + Ksfts — Re (-2— i Hzp) ,
LZF,
+A—oo(i'F) (29)
kg = 2Kepr +2Kiip + A_o(2p), (30)
where
_ 1 (') /
wola) = 2mi ) zp(a) — zF(a’)da ¢
)
osfe) = 1 o(a’) .

2 | 2r(@) — 25(e")
This is also a Fredholm system similar to that in former section. We conclude

|raF]a < c(léFlu + |q'5|a):
|ﬂB|a < C(IZ-FIB ¥ |¢|s)a
0 £ 8 £m-—2 (31)
Differentiating (29) with respect to a, we get
: 1, . . .
ba = g Do(Ky1fir) + Re[(wo + w1)2r, ]| + DaKsiip (32)
-—Dalm( i HéF) + Ao(ir). (33)
225,
Using (31), because K, K5 are smooth operators, there results
4 = 2a — 2Re(wo + w1 )ir, ] + Dafmlez'F + Ao(3p) + A—oo(d). (34)

Defining p = 7/zF,, recalling the linearized equation for & from [4] and our equation for w
(10), we obtain
a(a)

_ 1 - : !
o = E(I—iH)p+A—oo(P)+A0(ZF)+2_7r[m
+%/( - )a(a’)ﬂ)—da’ )

2B, zp(a) — zp(a’)

<B

da'
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Similar to Lemma2.5, we have
1 ;
( - ) (@) —— ) ot — 4 lim), (36)

.2_77- ZB, ZF((I) - zB(a’)
which follows i
w= E(I —iH)p+ Ao(2r) + A—x(9), (37)
where p = 4/zF, — vzp, [}, . Substituting ¥ with (34), we find
o X : ; . . :
w= E(I —iH)Dy[¢ — Re(wzp)] + Ao(2r) + A_oo(0), (38)

Then the remaining proof is the same as [4], we have our conclusion:

Theorem 2.2. Under (%) condition and Assumption 2.1, there exist Cjp > 0, hig > 0,
when Cp < Cip , hp > hig, and furthermore
(ut,Ut)'ﬁ—(O,‘—g)‘T‘iEC())O (39)
holds at every point of the surface. Here (u,v) is the Lagrange velocity, 7 is the outer unit
normal, ¢ is constant. Then the solution of the linearized equations satisfy

2r (O3 + 1607 < Bu(0)(120(0)[241/2 + |6(0)2412)

3. Numerical Analysis

Definition 3.1. .
T* = sup{tlt < T, ||2llpa, 19,2 < 12, 13llp2 < B*/%} (40)

Definition 3.2.
Ky={keN,-N/24+1 < k < N/2,Nis even}

Error estimates will be given in terms of the discrete space is [*(Ky): a discrete function z
is said to be in [2(Ky) iff
N/2
leliz = 3> |zf*h < oo (41)
j=—N/2+1
Note. We will use [? to stand for {*(Ky) for convenience in the following proof.
We have the same conclusion as [5]:

P
#l
120l

]

K2, & L7

S

|Dn 2| 2rch, t <T*;

“QWL”:? Cll2||=s t ST (42)

Definition 3.3. We define discrete integral operators
(i—i)odd

1 Dy zp.
Kinvi = Re{— Z l{:h—i’d&' ;
2mi prert 2, ~ Zp

1 (—fodd o;Dyzp

Kpo; = Re{ — Y ihfigyrd
2 4 zZp. — zp,
JEZ i i

| Ui e
L = = = TiZh2B; 4 i
Kawyi = =Im i Z ——=da' 3,

ZB. ZF;
jez BT AH

IACIACIA L IA

j—i)odd
(6=3) O'thZB

= 1 El !/
K4h0'1 = Im { o E mdd } .

JEZ
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First we give the convergence proof of discrete formula, which is the base of energy analysis.

3.1. Existence of Solution for Discrete Fredholm Equations

Under the discrete condition, we introduce a lemma in [5]:

Lemma 3.1. Assume zp(-,t) , zp(-,t) € C® , 25,28, # 0, then there ezist constants hg
and C > 0, s.t. Yh when 0 < h < hy,

IGT % Koy g™

1 _
IGGT £ Eam) |

&, (43)

IA

| A

e (44)

Define 4 .
Th= (51~ Kiy) ™' Ko - (GI+ Kpy) ™' Kap

Theorem 3.1. Under () condition, if Cp is small enough, hp s large enough, and h small
enough, then (I +T),) is inversible on [2 x I2.
3.2. Stability

From [5] we introduce some notations:

1 Vi Vi Dyzp, Yi
E;=z— Z 52k, G= R — Z -7 2h,
2w (i Trdd Zp, — 2w Dy zp, 2mi (e Zp, — 2,

and their errors:

Byt %éj = m(-’ — iHp) ("Yj & Q%Dhiﬂ) + Ao(zry) + A-1(%;) + Ra(s), (45)

) ) : thF(ai) -:'[j
g = D W2 F; £ T o—s o
? wilen) g u—zi);wz 2p ()P — 2p(ag)P

- Y(a)
ZiZFa ((I,')
From the definition of Ky, we get
; a; . .
Re(@0) = Kiy(3) + Re { Dutron(an) - 51O HuDu(er) | +Aoe). )

Because the bottom zg is fixed , naturally we set 2 = 0 in the following analysis.
We define §
-
Gi=o— Y ——2h (48)
= G=tjodd " ~ #B;
and direct calculations show that the linear part GZ is given by

Gt = % Z ( i} o(a;)2r, ) 2h, (49)

zr(ai) — zp(ay)  [zr(a) — zB(0;)]?

Hy,Dy(2r,) + Ao(zF,)- (46)

) (i —i)odd
and nonlinear part Gf" L is given by
GNL — ES Z a(aj-)z';":-.d
: oM [zr(a) — zp ()| [2r () — zB(0;) + 25,]
L ip,
2 : __9%h.
" (jﬁzi);dd [zr(0s) = zB(a;)][zr (i) — zB(05) + 2]

(50)
To estimate the linear part of G, we need to introduce a lemma:
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Lemma 3.2.

R s ; N

2m (—)odd ZF(Q,') = ZB(C!_?')

Analogously, Ky, K3y, are also operators of kind A_,,, and
1 ogla;)zp. .
= Z: ( _1) T 22’!.: AD(ZF,—)

2m Lo 2R (@) = zB(aj)]
We use the same method as [5] to estimate the two terms in GN7 :
2 aa 2R (@) — zB(ag)][zr(es) = z8(e)) + 2r)] e
1 d’jif\ .
— - —2h = Ao(zp.),
o (-_-Z [2r(ei) — 2p(ay)][zr () — zB(e;) + 2] ksl
ji—1i)odd
then we have
Gi=A_n(d)+ Ao(z'pi).
Defining
Dy zp o
R O,
2 (j%;:dd zp(a;') - ZB(Q‘J')
we get
: DhﬁF. a0; A
P, = =/ ———L — 2h + Dpzp(a;)G;
2m Z zp(ai) — zp(ay) WaRi)

(§—i)odd

_ Dazp, a(a') , ) .
- 2m (/ zp(a) — zB(a’)da +O(h )) + Dhzp(ai)Gi,

recalling the decomposition of G;, it follows

. , 1
P; = Dypzpw; + thF‘(ai)E Z
(i~i)odd

a; :
—_—  2h+ A ’
2k () — z(a;) olér:)

From the definition of Ky, we have
RE(P,') = RE(D;,i‘Fl.wI) -+ sz.(o",') s Ao(z'Fl).

Defining
Dyzp, ¥i
X;=—= —2 ______9h,
! 27 (j_%dd zp(oy) — zr(ay)
using the similar methods as above, we get
; Dyzp, ( ¥i V()R )
Xf = =/ L = == 2h
omi 2 \ealed - aele) ~ Baen) - se(w)P
= A—I(;Y) + A{](é[;‘),
and
Dyzp. 'Y(aj)z.%‘-
o= = : —2h
2mi (,-_,Z-}:',,;d [28(0i) — 28(a;))[28() — zr(aj) — 2F)]
1 Yi2r;
= : ——2h,
27 (j%;dd [zB(e) — 2p(;)][zp(ei) — zp(a;) — zp;)
XNE = Ao(zm).
Then

X; = A_1(%) + 4o(3r),
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and from the definition of K3, we obtain
Im(X,,) = —Ksn (%) + Ag(i’p'). (62)
We define -
Y= ochla Z __0_3'_2]1, (63)
2T (j—D)odd ZB((};) = zg(aj)
then b .
¥ = hZB; Z ___Uj__?h‘ (64)
2w (§=2yodd ZB(O.',') — ZB(C!j)
from the definition of Ky,
Im(Y;) = —K3;,(63)- (65)
3.3. Energy Analysis
Based on the above results, we get:
@ = Ei+Gi+3iG+0h)
Dppi = % + Re(Qi+ Fi)+O(R")
a; = 2[77?.[X" + Y;] + O(hr)
From X and Y, we know
b = 2K 3,(63) — 2Kan(36) + Ao(ég,) + O(R") (66)
and from the theory of operator (see [5]),
1 o
5‘[ + B“Lh(.i)
has bounded inverse on [, , then we have
(67)

. 1 o R = o . =
o; = _(§I + Kip) YK () + Ao(zr,) + O(R7).

From the expression of Q,- and P,-
Dnp; = ?21 — K1, (%) + Kan(0:) + Re [Dr((wo + wi)2r,)]

. (i) Y
Zp. ) — — = H. D :
+Ao(2F,) — Re [ZiZF“(Gi)Hh th.] 3

substituting the expression of %; into above formula, we get:
. 1 B )
Dy + th(51 + K3,) 7 Ksn ()
(i) )éi]

1 S
(AT - Ki
_Re[wg(a;)th'p,.] + DpHpIm [Zzpﬂ i

+AU(*&F.') = O(hr)a

where
wa(y) = wolev) + wiai).

Owing to the inversibility of 11 — K7, we get
g 1 e ; ;
(I-=Tw)v = (EI — K) ™ {Dhéi — Re[wg (i) Dz,
lai)_ > oy r
+Dutum 5205 ]|+ do(ee) + 00, (69)
Because (I —T,,)~! is bounded, when the above formula is operated by operator of A_, type,
the terms including derivative are all transformed into bounded terms. Then
A_1 (1) = Ao(2r) + Ao(84)

We introduce Lemma 1 of [5]:
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Lemma 3.3. Assume f(-) € C°, w & %, then
Dh'.(f{ﬂ’-i-)u)r') = f(.‘-l-i)Dh.(_i-'Jj) + w’}’fu (ai) “+ A_L(w,,)
where &f = Gpq(kh), q(z) = £ (p(z)z).
Set

e [a : ?MJ.J} 3
W =g di — Relwal(oy)ip ] + Hylm | ————2;| 7, 70
{d [walai)ip] + Hy [Zz-p,_(a.;) (70)
as to the second terms in (70}, use the above lemmia,

DLW = {DJ..(ﬁ-; — Relws(o; ) Dy 2g | + Dy HyIm [;(;I())zf] } + Ao(2r,) + O(R").
¥

We already have

; ' | ex v [y d -
Y = (1 o Th) 1{51 = hlh.) . {thsﬁ"z - RE‘[W’A'(”JJDJ':':F.]
Flog) . . . )
+O,Hpdlm | ———2% | ¢ + Ao(Zp ) +O(R"), (71)
2zg, (a4)
and substitute it into following formula:
1 ’ —
o = —(51 + K, Kan(i) + Ao(Er,) + O(RT), (72)
and get:
1 j 1. :
Kopoy = —I\-gh(i_[ 4 Ky ) K (T — Th')—](if — ) {D,,_.q’), Relws{og ) Dy 2
Dy Hy I {ﬂ ] } + Agir) + O(h). (73)
ZBF“(Q' )

Because Ky, Ky is of type A_,, and the terms in the right parenthese only have l-order
derivatives, thus the above formula can be rednced to

Kano = AplZ) + Ao(d) + O(h") (74)
we obtain the estimate for 4
% = {20,,.1;5, ~ 2Re[ws(e) Duip,| + DuHilm { “‘“{"’).e,}
e
+Ao(zR) + Ao(di) + O(R) }. (75)

In the stability analysis, we have obtained &; | E; | &; and ¢;, now we substitute them inte
dz2/dt :

dz; 1 ) 3
o zm( S L { o )D”"} Ll
(%) A Ay (@) + Rylfa) + O(h"). (76)
From |5] we know:
Ru(%) = Ay(2) -+ Ag(@) + Oh"); (77)
then
dz? L i .
1 =23 =7 -'fi = D 2
it Dealan) | ) | ey }
L A3 + Ao(d) + ORY). (78)
Now applving (I — if}) to both sides of (75), similar to [5], we obtain
(=il = (0 —ily) [w;,{;;, _ 3 Re(wa(e YDy
Film ( 2 Dz 1)} b AoEn) + Ao(di) + O(). (79)
Substituting the above two terims into (76), we get

i 1 : _ _ .
b= oy i) Daldi = Rewlan)ie)] + Ao(Gr) + Au(d) +O(T) - (80)
=~ Y;)
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where
¥(ai)
224 (a;)
Then the remaining analysis is utterly the same as [5]. We state the convergence theorem
for the numerical method without surface tension :
I2ll2 + l]l;2 < BITIR, [[4]l;2 + |6 ]le < B(T)A",t < T
As for r > 3, and h small enough , we have
2l + l18llz < BDA ™ [l + lléllz < B(T)R™2,
owing to the meaning of T, we get

M(leg) = wg(a.;) +

=4

Theorem 3.2. Under (*) condition and Assumption2.1, and |zp(a,t)—2p(8,t)| = e1|a—3|

when 0 <t < T and some ¢; > 0, and
(utsve) -7 —(0,~g) 7> ¢cop>0 (81)

hold s at each point on the interface. Here (u,v) is the Lagrange velocity, 7i is the outer unit
normal to the interface (pointing out of the fluid region), and cy is some constant. Suppose
the numerical solution zp(t), ¢(t), v(t), o(t) of the initial value problem is computed using
algorithm (21)-(24). Then if Dy, is an rth-order derivative approzimation with r > 4,
there exist C3p hig, and ho(T'), s.t. when Cp < Cip, hg > hig , h < ho(T)

l2(t) — (. B)l s < C(TIA"
o) — 6,0 < C(TIR"
() —vC 8l < (TR
lott) — ol Dl < C(T)A"

if Dy, is a spectral approzimation as above, we have the same convergence result with h” replaced
by h™ in the right-hand sides.

4. Numerical Examples

In this section some examples are provided to illustrate the performance of methods dis-
cussed. We calculate the standing waves and breaking wave with fixed bottom and found many
interesting phenomena. We found that the bottom does affect the shape of wave, and even
produce breaker in standing wave. In the computation , we found that the depth of bottom is
very important. We introduce a variable "distance between surface and bottom” such as:

Distance = ué%)fg] |zr(a@) — zp(a)l,

(the period has been normalized to unit) and when the distance is comparable to the amplitude.
we regard the bottom is shallow; otherwise, deep bottom. The distance affects the converging
velocity of Fredholm equations greatly, and also the shape of the wave, thus we divide this
section into two subsection: deep bottom and shallow bottom. In all examples surface tension
was neglected and the iteration would stop when the error between two sequential terms <
1071, and in most examples we use 128 points to divide the domain [0,1] and choose At =
0.0025, except that we use 256 points and At = 0.001 in the computation of standing wave
with bottom yp = —0.02, which is a rather confusing problem.

4.1. Deep Bottom

First we give the comparison between wave with bottom and wave without bottom, when
the distance is rather large. In this case, the wave is nearly periodic and the period is larger
than that of wave without bottom. The initial values of standing wave are:

zp(e,0) = @+ 0.01sin(2ra), yp(a,0) = —0.01sin(27a);
zg(a,0) = a, yp(,0) = —0.3 + 0.1sin(2ma);
(e, 0) = 0.01sin(2ma), a e [0,1).
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0.01 1 0.01
0 0
-0.01¢ -0.01
0 05 1 0 05 1
Figure 1 real line: no bottom, dot: with bottom yz = —0.3 4 0.1 # sin(27ra)
0.01} 1 0.01} ﬁ
0 {time=2.400000 0 k time=2.800000
-0.01¢ -0.01¢
0 0:5 1 0 0i5 1
Figure 2 real line: no bottom, dot: with bottom yz = —0.3 4 0.1 # sin(2na)

In Figure 2, when time=2.4, two waves have departed about half wavelength.

In the computation of standing wave without bottom, if we don’t use filtering, Kelvin-
Helmholtz instable phenomenon would happen (see [5]). And in the computation of standing
wave with fixed bottom, if we don’t use filtering either, Kelvin-Helmholtz instability would
happen too. For example, we set the bottom to be: (z,—0.3+0.1#sin(27z)),z € [0,1), and use
2-order centered difference to approximate the derivative. Four lines of left subfigure in Figure
3 from bottom to top are repectively the log value of spectrum of v when time=0.6, 0.64, 0.68,
0.715. When time= 0.715, the high-frequency oscillation has been not neglectable and this is
the reason why the right subfigure of v(Figure 3) is so concussive.

5
0 0.2 fime=0.710000
0.1
-5} 0
=10} -0.1
_15} | -02
0 20 40 60 0 05 1

Figure 3 Second-order finite difference derivative, no filtering

4.2. Shallow Bottom

The distance affects the steration of Fredholm equations very much. For example, as to the
standing wave, we set the initial value as the first example, and the bottom horizontal. Using
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2-order centered difference method to approximate the derivative and Euler method to evolve in
time, we gradually minish the distance between surface and bottom , and observe the iterative
times:

bottom y= -0.4 1 -0.2 | -0.1 | -0.08 | -0.06 | -0.04 | -0.02 -0.01
iterative times | & 15 | 29 36 47 71 164 | blow up

When bottom is y=-0.01, the distance between is already 0 which contradicts the sufficient
condition of Theorem3.2. From the above table we learn that the more shallow of the bottom,
the more iterative times the Fredholm equations need to converge! In fact in subsection 2.1
and subsection 3.1 we have only proved the existence of solution with large distance between
surface and bottom. But we believe that there must exist solution as long as there are positive
distance. We expect the proof under this more relaxed condition. Although the iteration is
difficult to converge when bottom is shallow, but we can use extrapolation method to enhance
the velocity. We use a fourth-order extrapolation in time to obtain a more accurate initial guess
for the iterative solution for v and &, with a result that the iterative times decrease dramatically.
For example,

bottom y= -0.1 | -0.05 | -0.02
iterative times without extrapolation | 28 54 164
iterative times with extrapolation 7-8 | 7-10 | 11-22

The following example computes the standing wave with bottom:

zp(a) =a, yp(a)=—0.04 +0.01 «sin(27a), o € [0,1),

0.02 - '
0.02 -
0 \/\ N’_
0 L 4
-0.02 1.0.02
-0.04 fime=0.000000 ~__~]-0.04[fime=0.590000 A
0 05 10 05 1
Figure 4
0.02 1 0.02 |
-0.02¢ -0.02f
-0.04 ffime=1.120000 -0.04 fime=1.430000 ]
0 05 0 05 1

Figure 5



Numerical Studies of 2 Free Surface Waves with Fixed Bott i 407

0.02 1 002
0 w 0
0.02 1.0.02
0.04 W 004 fm{zm A
0 05 10 05 1
Figure 6
0.02} | 10.02
ob—8— N\ 0
0.02 1-0.02
-0.04 W 004 m -
0 05 10 05 1

Figure 7

0.02 1 0.02
0 M 0 \/\/\/\/\

-0.02 -0.02

-0.04 [fime=4.660000 -0.04 [fime=5.470000 o

0 05 1 0 05 1

Figure 8

On t = 0.59 we know that the wave is largely different from the case with deep bottom; when
{ = 1.43, the crest go to the right, then breaking into two small crests with inverse direction
(t = 1.59). Then the wave forms more high crest on the left (1 = 2.20) and run to right again.
During this process, it forms two more small crests(f = 2.89); when the wave travel back to
left, the crest is more large followed by three growing crests (# = 3.83). When time passing, the
shape of whole wave is more singular and unexpectable.

Now we compare the above calculation with that of wave with horizontal bottom: yp(a) =
—0.04, We illustrate some figures of this case:
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0.02 1 0.02 1
0 ;_,/\-/\ 0

0,02 ! 0.02
-0.04 [{ime=1.590000 -0.04 [ime=3.830000
0 05 10 0.5 1
Figure 9
0.02} ! 0.02 -
0 /\/\/\_/ 0 f\_/\/\
0.02} | 0.02}
-0.04 156=4.660000 -0.04 [+6-5.470000
0 05 10 05 1
Figure 10

From the comparisons between Figure 9,10 and Figure 6,7,8 in the same time, we find that the
sinine bottom generate more wave numbers than flat bottom.

Now we give a more singular computational example: wave with rising-step bottom. The
bottom topography has the form (o — sin(27(a — 0.5))/(27), —0.04 + 0.01 sin(2m(a — 0.5))).

0.02 ' 10.02 | ]
0 /\/\_ 0 \/\/\/\/\/
-0.02 ftime=1.430000 1 -0.02 ltime=3.830000 -
004~ f\ 004~ I—\
0 0.5 10 0.5 1
0.02 ' 1 0.02 1 | | -
5 /_\/\}/\' 0 ’/&/
-0.02 ftime=4.590000 1.0.02
-0.04 f\ 004} time=4.590000

0 05 1 06 0.65 0.7 0.75 08
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5
-5
4 Ltime=4.590000 )
0 20 40 60

Figure 11 the fourth subfigure is the enlargement of the third subfigure,
and the last figure is the log spectral plot for gamma

When ¢t = 4.6, the iteration blows up and a spilling breaker formed.

When the bottom is set to be yg(a) = —0.02, some singular phenomenon occur. In the
following figures, in order to clearly see the time evolution of the water waves, we plot two
periods of waves. With N=256 and time step = 0.001, we compute up to t = 1.215 and then
the tips comes out on the surface wave which contribute to the blow up in computation.

0.02} 0.02¢
O o~ O Ao > V——
-0.02 |
“ time=0.530000 . b time=0.850000
0 0.5 1 1.5 2 0 0.5 1 1.5 2
5
0.02} 1
OM\
0
-5 1
-0.02 -
time=1.215000 . 10 time=1.215000 _
0 0.5 1 15 2 0 50 100

Figure 12 the last figure is the log spectral plot for gamma at t = 1.215

We don’t know the reason to this phenomenan, but judging from the properties from above
examples with shallow bottom, we guess this can be largely contributed to the nature of water
waves because now the disturbance of initial wave is too large for the wave itself to hold stable.

We also compute the breaking wave above different bottom, the surface condition is always:

z(a,0) = a, y(a,0) = 0.1cos(2ra), vy(a,0) = —1.0 4 0.1sin(27a), o € [0,1).

The time integration in this numerical example is the fourth-order explicit Adams-Bashforth
method and the first four steps are Runge-Kutta method. The filtering operator is spectral
stated in subsection 1.2. In the Figure 13 and 14 there are breaking waves above four bottoms,
and the topic above every subgragh is the bottom equation where the horizontal coordinate is
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always set to be a.

no bottom —0.5 + 0.1"cos(2*pi*a)

0.1
0.05

01
0.05

-0.05
-01

?
>

-0.05

-0.1
time = 0.517500

0 0.5 1 0
-0.2+ 0.1*cos(2*pi*a)

time = 0.517500

05 1
-0.240.1*sin(2*pi*a)

0.1 0.1
0.05 0.05
0 f\ 0 \6\
-0.05 -0.05
-0.1

-0.1
time = 0.517500

0 05 1 0

time = 0.415000
05 1

Figure 13 the fourth subgragh blows up first at ¢ = 0.4150
then at ¢t = 0.5175, the first and second subgragh blow up.

no bottom -0.5 + 0.1*cos(2*pi*a)

0.1
0.05

0.1
0.05

-0.05
-0.1

-0.05

-0.1
time = 0.517500

0 0.5 1 0
-0.2+ 0.1*cos(2"pi*a)

?
’

time = 0.517500

0.5
-0.2+0.1*sin(2*pi*a)

—

0.1 0.1
0.05 0.05
0 0
-0.05 -0.05
-0.1 -0.1
time = 0.547500 time = 0.415000
0 0.5 1 0 0.5 1
Figure 14

the third subgragh blows up at t = 0.5475

It seems that only when the bottom is rather close to the surface, the effect of the bottom
is able to be remarkable. Finally we give two examples about breaking wave above rising-
step bottom and descending-step bottom. In these case, the bottom is more shallow and the
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difference is more remarkable. Judging from these two figures , we find that the height of
breaker changes with the step and its appearance is far earlier than that in the case of infinite

depth.
0.2 - 0.2
01 1 104} 1
-0.1 ftime=0.265000 1 =0.1 fime=0.255000 1
w2fe T e
0 0?5 1 0 0j5 1

Figure 15

The left bottom topography has the form (a—sin(2n(a—0.5))/(27), —0.2+40.05sin(27(a—0.5))),
and the right has the form (a — sin(2n(a — 0.5))/(27), —0.2 — 0.05sin(27(a — 0.5))).
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